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When applying occupant models to building performance simulation (BPS), it is common practice to use a discrete-time
approach requiring fixed time steps. Consequently, a simulated occupant’s decisions do not increase in frequency in response
to rapid changes in environmental conditions. Furthermore, as illustrated in this study through the analysis of a discrete-time
EnergyPlus simulation, changing the time step between simulation runs may have a dramatic effect on BPS predictions. It is
therefore necessary to adhere to a prescribed time step, which may complicate the synchronization of events when models
of different domains are coupled. The main contribution of this study is an investigation of the viability of employing the
discrete event system specification (DEVS) formalism to represent occupant behaviour without fixed and prescribed time
steps. Results indicate that using an adaptive time advancement scheme, the DEVS formalism permits realistic patterns of
decision-making while facilitating the coupling of stochastic occupant models with thermal and heating, ventilation and
air-conditioning models.

Keywords: occupant behaviour; stochastic occupant model; discrete event system specification; adaptive time stepping;
building performance simulation; manual control of occupant

1. Introduction
Approximately 40% of the total energy produced in
North America is consumed by residential and commercial
buildings (DOE 2012). It is reported by NRCan (2010) that
nearly 60% of the total energy consumption of buildings
in Canada can be attributed to space heating and cooling.
Building performance simulation (BPS) is a powerful anal-
ysis tool for predicting buildings’ energy performance and
thermal comfort. It represents significant potential for opti-
mizing design such that substantial energy and operating
cost savings can be achieved with little, if any, additional
capital cost. Clarke (2012) estimated these savings to be
as high as 50–75% in new buildings and 30% in existing
buildings relative to 2000 levels; however only a marginal
change in building energy-use statistics was reported in the
last decade (NRCan 2010).

1.1. Research potential
BPS, despite the aforementioned potential for significant
improvements in energy use and indoor environment, has
often been undermined with predictions that do not fully
represent actual performance (Cole and Brown 2009; Hopfe
2009). Some of these discrepancies can be attributed to devi-
ations from standard weather data (Hong, Chang, and Lin

∗Corresponding author. Email: hgunay@connect.carleton.ca

2013), modelling and simulation simplifications
(Macdonald 2002), occupancy profiles (Page et al. 2008;
Wang, Yan, and Jiang 2011; Hong and Lin 2013),
unanticipated control behaviour, and material/workman-
ship-related uncertainties. However, the uncertainty intro-
duced by occupant behaviours are undeniable (Bourgeois,
Reinhart, and Macdonald 2005; Hoes et al. 2009;
Tanimoto et al. 2013). At the whole building scale,
occupants’ impact on building energy-use accounts for
about an uncertainty of 20% (Parys, Saelens, and Hens
2011) and the energy use in identical units, partic-
ularly residential units, occupied with different occu-
pants can vary by as much as 200–300% (Lutzenhiser,
Hackett, and Schutz 1987; Lutzenhiser 1993). Occupants
often adapt their environment (e.g. by opening a window,
lowering a blind, switching-on lights) and/or adapt to their
environment (e.g. by taking-off a layer of clothing, drink-
ing a hot/cold beverage) to maintain their comfort (Baker
and Standeven 1996; Nicol 2001; Rijal et al. 2007). These
adaptive behaviours, aside from their impact on comfort,
often have significant impacts on energy use. Therefore, a
major task for building designers is to foresee these occu-
pant behaviours and to adapt their designs accordingly. For
example, a concrete floor may be covered by a carpet or
hardwood flooring if an occupant finds the sensation of

© 2014 International Building Performance Simulation Association (IBPSA)
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458 H.B. Gunay et al.

Figure 1. Generic univariate deterministic, linear regression, and
logistic regression occupant models representing the probability
of undertaking an adaptive behaviour or observing an adaptive
state at a particular position.

cold feet too uncomfortable. Similarly, blinds may be left
closed by an occupant to avoid excessive glare in a house
designed to benefit from solar gains (Gunay, O’Brien, and
Beausoleil-Morrison 2013). Failure to consider these sim-
ple alterations can lead to inaccurate or misleading BPS
predictions and ultimately poorer performing buildings.

1.2. Background on occupant behaviour models and
simulation approaches

Recognizing the significance of adaptive occupant
behaviours, numerous researchers (Lee and Selkowitz
1994; Newsham 1994; Goller 1998; Reinhart and Voss
2003; Reinhart 2004; Inkarojrit 2005; Rijal et al. 2007;
Yun and Steemers 2007; Herkel, Knapp, and Pfafferott
2008; Inkarojrit 2008; Haldi and Robinson 2009; Dutton
and Shao 2010; O’Brien et al. 2010b; Zhang and
Barrett 2012b) carried out observational studies (e.g. time-
lapse photography or sensory data logging) to reveal the
stimuli (e.g. indoor temperature, transmitted solar radiation)
that lead to a particular adaptive behaviour (e.g. opening a
window). These observations on the states (e.g. window
open/closed), once plotted with respect to the monitored
variables (e.g. indoor temperature) resulted in data scat-
ter, as shown in Figure 1. Early researchers (Newsham
1994; Lee and Selkowitz 1994; Goller 1998) and most of the
current practitioners used deterministic models to predict
the adaptive occupant behaviours. These models are simple
enough to be easily incorporated in the BPS-based design
process and design recommendations such as ASHRAE
(2010). For example, in these models the probability of an

occupant being uncomfortable below the defined thresh-
old value is zero and the probability becomes one just
after the predictor variable or variables reach the threshold
value, as shown in Figure 1. A visual comparison between
the data scatter and the probability curve, which is a step
function, shows that a deterministic model cannot repre-
sent the observed adaptive occupant behaviour shown in
Figure 1. Nicol (2001) explained that occupants’ adaptive
behaviours, despite being clearly influenced by the phys-
ical conditions, are governed by a stochastic rather than
a precise relationship. Stochastic models estimate an adap-
tive behaviour by assuming a probabilistic relationship with
the predictor variable or variables. Although some of the
researchers (Warren and Parkins 1984; Inoue et al. 1988;
Foster and Oreszczyn 2001; Inkarojrit and Paliaga 2004)
employed linear-response models (e.g. linear or polyno-
mial regression), these failed to predict the upper and the
lower bounds of the observations as shown in Figure 1.
Generalized linear models (e.g. logistic regression or pro-
bit) cover such cases by letting response variables have
non-normal distributions. In generalized linear models, a
linking function (e.g. logit function) of the response vari-
able is a linear function of the predictor variables. Currently
numerous researchers (Nicol 2001; Clarke, Macdonald, and
Nicol 2006; Rijal et al. 2007; Haldi and Robinson 2008,
2009, 2010, 2011a; Inkarojrit 2008; Rijal et al. 2008; Zhang
and Barrett 2012a, 2012b) accept that logistic or probit
regression models are appropriate for estimating the prob-
ability of an adaptive occupant behaviour with respect
to predictor variables. To apply these stochastic models,
researchers (Fritsch et al. 1990; Reinhart 2004; Pfafferott
and Herkel 2007; Haldi and Robinson 2008, 2009; Rijal
et al. 2008; Hoes et al. 2009; Parys, Saelens, and Hens
2011; Zhang and Barrett 2012a, 2012b; Smires et al.
2012) sought algorithms and formalisms to simulate occu-
pant models dynamically with the building and heat-
ing, ventilation and air-conditioning (HVAC) domains.
In the reviewed literature, models for adaptive occu-
pant behaviours were typically simulated as random
processes, in particular Bernoulli or Markov processes
(Fritsch et al. 1990; Reinhart 2004; Pfafferott and Herkel
2007; Rijal et al. 2008; Haldi and Robinson 2009;
Hoes et al. 2009; Haldi 2010; Parys, Saelens, and
Hens 2011; Zhang and Barrett 2012a, 2012b; Smires
et al. 2012). A Bernoulli process is a memoryless pro-
cess represented as a sequence of independent binary
random variables such that current state has no impact
on future state. Occupant behaviour models simulated as
a Bernoulli process provides the probability of finding
a state in a particular position (e.g. 60% of the win-
dows will be open at 27◦C) rather than the probability
of a state transition (e.g. there is a 60% chance of open-
ing the windows at 27◦C). By contrast, a Markov pro-
cess is a random process, given that the present state is
specified, its past has no influence on the future (Papoulis
2002). Occupant behaviour models simulated as Markov
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Figure 2. Discrete-time simulation algorithm with a behavioural occupant model.

processes provide the probability of state transitions rather
than the probability of finding a state in a particular position.

To integrate these simulation approaches in conven-
tional BPS tools in which time advance in fixed time
steps, these random processes were typically employed
as discrete-time random processes. A simple and generic
example of a discrete-time Markov process representing
the simulation of a generic occupant behaviour model in
tandem with a Building/HVAC model simulation output
is illustrated as a flowchart in Figure 2. The HVAC and
building model simulations perform calculations which out-
put predictor variables such as indoor temperature. The
occupant model estimates the probability that a particular
behaviour will be undertaken or not, as shown in Figure 2.

However, it is worth noting that it does not predict the
time at which the active adaptive state (e.g. open win-
dow) will be reversed. In the meantime, a pseudo-random
number is generated and compared with the probability
that is estimated by the model. If the estimated probabil-
ity exceeds the random number, the occupant undertakes
the behaviour (e.g. opens the window). This is received as
a message by the building model and time advances to the
next time step. Haldi (2010) reported that these discrete-
time approaches (Bernoulli and Markov processes) alone
cannot truly simulate the dynamic realization of adaptive
occupant behaviours and developed a hybrid approach: state
transitions were predicted as Markov processes, while a
continuous-time approach was employed to estimate the
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time to reversal of the adaptive state (Haldi and Robinson
2011b). For example, blinds closing behaviour can be real-
ized as a Markov process and the duration blinds remained
closed (i.e. the following instant of decision-making) can
be estimated through a survival analysis. This was a notable
recognition of the importance of determining the instants
of decision-making (instants at which the Markovian state
transitions occur) in occupant behaviour simulation via a
continuous simulation approach.

1.3. Motivation
In traditional BPS tools (e.g. EnergyPlus), time advances in
fixed time steps. These discrete-time simulations are well
suited for continuous problems (e.g. heat transfer) that can
be defined with an approximation of a partial differential
equation (PDE). In other words, sampling the continu-
ous field variable (e.g. temperature) at fixed time steps
would be a reasonable approximation, if the time steps
are short enough. However, occupant actions are discrete
events that take place at irregular time instances. Using
a discrete-time approach for a discrete-event problem is
to assume that all events (e.g. window opening) will take
place at these discrete-time instants (Robinson 2004). Haldi
and Robinson (2009) and Parys, Saelens, and Hens (2011)
acknowledged this limitation and stated that fixed time steps
may cause a possible loss of information, redundant cal-
culations, and most importantly, time-step-size dependent
state transition predictions of the adaptive state which lim-
its the applicability to cases with a prescribed time step.
Thus, the discrete-time approach requires a stochastic occu-
pant behaviour model to have a time step that is both fixed,
meaning that it does not change during a simulation run, and
prescribed, meaning that it must not change between runs or
experiments. The issues related to the use of fixed and pre-
scribed time steps can be summarized as follows. (1) Fixing
the time step implies the frequency of an occupant’s instants
of decision-making remains constant; it is logical that these
instants should increase in frequency during periods in
which environmental conditions are rapidly changing. (2)
More complex models may require occupants to respond
immediately to prominent stimuli such as the activation of
artificial lights, the opening of a nearby window, or the
sounding of an alarm; with a discrete-time simulation, these
responses must be postponed should the stimulus occur
between time steps. (3) When coupling models for BPS, it is
sometimes desirable to synchronize events occurring in dif-
ferent models; this becomes more difficult when a model’s
time step may not be altered. (4) Different simulation-based
design applications require different levels of execution
speed and temporal resolution; the use of prescribed time
steps makes it more difficult to adjust the trade-off between
speed and accuracy to suit a particular application. (5)
Should a modeller choose to alter the time step of a
stochastic discrete-time occupant simulation, the conse-
quence may be a dramatic change in the BPS predictions.

Here, the adoption of a modular and continuous simu-
lation formalism, namely the discrete event system specifi-
cation (DEVS), is proposed as a potential solution. With
DEVS, it is common practice to quantize state changes
(e.g. 1◦C change in temperature or 100 lx change in work-
plane illuminance) rather than quantizing the time elapsed
in each state. As these quantized state changes can be
applied to the predictor variables of occupant models,
the time elapsed between decisions becomes a variable
quantity that can be compared with observations. The
decision-making mechanism of the occupants can be por-
trayed as ‘It is getting warm in here, should I open a
window?’ instead of ‘It has been 30 min since my last
decision, should I open a window?’. In this way, continuous-
time Markov Chains can be used to predict not only the
probability of state transitions, but also the instants of
decision-making.

1.4. Document structure
Section 2 provides a brief insight about the application of
the DEVS formalism by comparing it with the discrete-time
approach. In Section 3, adaptive occupant models used in
the current study are presented by discussing their limi-
tations and assumptions. In Section 4, the dependency of
stochastic occupant behaviour models on the time-step-size,
if simulated with a discrete-time procedure, is demonstrated
through a sensitivity analysis on a generic coupled-building
energy model. EnergyPlus v.7.2 is used to model a sim-
ple mixed-mode building (single-zone office space with an
operable window) and a simple HVAC system (packaged
terminal air conditioner); and the energy management sys-
tem (EMS) application of EnergyPlus v.7.2 is used to build
the stochastic occupant behaviour model. In Section 5, the
viability of the DEVS formalism to improve the aforemen-
tioned drawbacks of the discrete-time random processes
is investigated. A coupled-DEVS building energy model,
which is composed of the building, HVAC, and occupant
submodels, is established using a DEVS-based simulation
prototype (Autodesk DesignDEVS v.0.4.1). To illustrate the
modularity of the DEVS formalism, a building submodel,
an HVAC system submodel, and a stochastic occupant
submodel were developed independently as atomic mod-
els. These submodels were then linked with each other
by defining the input/output relationships to demonstrate
the overall response of the coupled-DEVS building energy
model. In Section 6, the results of the current study are dis-
cussed, limitations/challenges are assessed and acknowl-
edged by comparing them with the existing literature;
concluding results are summarized and future work rec-
ommendations are developed. Supplementary results for
the verification of DesignDEVS Building/HVAC models
and for the verification of the time-step-size sensitivity
in more detailed occupant models are provided in the
appendix.
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2. Discrete event system specification
The DEVS is a formalism for describing simulation models
in a continuous and modular fashion (Zeigler, Praehofer,
and Kim 2000). Although it has not yet been adopted by
the building science community, it has been widely used in
many other fields for the design, analysis, and implemen-
tation of complex systems. This section briefly outlines the
application of the DEVS formalism by comparing it with
the discrete-time approach. Detailed information about the
theory of DEVS can be found elsewhere (Wainer 2010;
Zeigler, Praehofer, and Kim 2000).

A DEVS model is either an atomic model or a coupled
model. Figure 3(b) illustrates the simulation procedure of an
atomic DEVS model. Simulation starts with the initial time
(to) and state (so). In BPS, state can be, for example, a tem-
perature array defined for all nodal points. Subsequently,
the internal transition function (δint) computes the new state
at the scheduled internal transition time (tint). For exam-
ple, an internal transition function in a building physics
model may compute the time at which a presumed tem-
perature change (i.e. discrete event) will occur and update
the temperature array at that time instant. A major differ-
ence between the DEVS and discrete-time approaches is
that time advances in a sequence of discrete events rather
than a sequence of fixed time steps, as shown in Figure 3.
For example, in EnergyPlus the state marches through time
by recalculating model equations at each time step (DOE
2011). The model equations (e.g. energy balance) are typ-
ically solved with an approximation such that state and

parameter properties remain constant in a given time step.
In the discrete event approach this approximation prevails
such that state and parameter properties remain constant
in a given event step. In the following time or event step,
the state and parameters are updated in accordance with
the model equations. It should be noted that model equa-
tions in BPS are non-linear such that the parameters evolve
in time as a function of the state in the solution domain
and on the convective and radiative boundaries. Therefore,
large time spacings between events should be avoided in
discrete-time simulations (Ceylan and Meyers 1980). For
example, the EnergyPlus adaptive time stepping algorithm
for plant size simulation acknowledged this and introduced
an upper limit (15 min) for the time-step-size (DOE 2011).
The external transition function (δext) defines how inputs
from other models affect the state at an external transition
time (text). For example, if an occupant opens a window at
text, the external transition function (δext) invokes the time
advance function (ta) and determines the physical impact
of opening the window on the heat transfer problem in the
building model. If text is earlier than tint, time advances to
text. Otherwise, time advances to tint. In other words, if occu-
pant chooses to open the window at text before the scheduled
event time (tint) – which may happen if, for example, if
the adaptive behaviour is modelled as a survival model
– the time advance function (ta) handles the discrepancy
between tint and text and determines the time-span of the
new state. Another major difference between the DEVS and
the discrete-time approach is the separation of the physical

Figure 3. (a) Discrete time and (b) DEVS simulation procedure.
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model (i.e. state transition functions) and simulator code
(i.e. time advancement). The δext and text which supports
the coupling of smaller models, does not exist in discrete-
time formalism. This makes DEVS a modular formalism.
The time advance function and the external and internal
transition functions are the key elements of indivisible, or
atomic, DEVS models.

The other type of DEVS model is the coupled model,
which links submodels of either type; i.e. both atomic and
coupled models. For example, the temperature calculated
in a building model can be used to calculate the window
opening probability; and the occupant’s window opening
behaviour can be used to update the airflow network in
the building model. In this way continuous (e.g. build-
ing and HVAC) and discrete (e.g. occupant control) state
systems of BPS can be coupled using the DEVS formal-
ism at discrete events. Continuous state system simulations
in DEVS can be achieved with the quantization of state
variables, instead of time discretization, described by differ-
ential equations (Cellier and Kofman 2006). In the context
of BPS, this approach can be adopted by discretizing tem-
perature changes (e.g. 0.5◦C or 1◦C) as discrete events. This
way, the occupant’s decision-making process can be iso-
lated from the time-step-size selection, i.e. an occupant may
decide whether to undertake an adaptive behaviour or not
when a physical stimulus is changed rather than restraining
decision-making instants to fixed time steps.

3. Occupant model
The occupant model developed for this study is a set of
decision-making processes related to the way an occupant
satisfies his/her thermal comfort. It involves actions to
adapt both personal (clothing, drinking) and environmental
(windows, blinds, and HVAC) characteristics. The occu-
pant model is based on logistic regression models with
model coefficients taken from Haldi and Robinson (2008).
Although this previous work was later refined, it serves as a
reasonable basis for comparing discrete-time and discrete-
event simulation approaches. It is worth noting that this
comparison, independent of the details of the model, is the
focus of the current paper.

The occupant model receives inputs such as the oper-
ative temperature (average of the indoor air temperature
and the mean radiant floor temperature), indoor luminance,
and occupant’ schedule and outputs control decisions about
the blind state, clothing state, drinks state, lights state, win-
dow state, and HVAC state, as shown in Figure 4. Given
social restrictions in office environments, daily clothing
level adaptations are modelled as a binary state of ±0.1
clo. This can be achieved by minor adjustments such as
shortening sleeves or opening collars (Haldi and Robinson
2011a). Based on a simple steady-state heat balance calcu-
lation for a human body weight of 70 kg and a surface area
(BSA) of 1.8 m2 with 100 W of metabolic energy generation
(MEG) rate, the clothing level change is assumed to provide

Figure 4. Inputs/outputs to the occupant model.

an additional 0.9◦C (�Tcloth) tolerance. Drinking cold
drinks are assumed to provide an incremental tolerance of
0.3◦C (�Tdrinks) as reported in Haldi and Robinson (2008).
The effects of personal adaptive behaviours (e.g. drinks or
clothing) are incorporated in the environmental adaptive
behaviours (e.g. blinds, windows, and thermostat) such that
the operative temperature is reduced by �Tcloth and �Tdrinks.
These additive tolerances (�Tcloth and �Tdrinks) are in line
with the adaptive increments concept suggested by Baker
and Standeven (1996).

The flowchart shown in Figure 5 shows the decision-
making process of the occupant. The probability of state
transitions (P) are estimated using uniformly distributed
pseudo-random numbers (R). The random number gener-
ator is seeded to ensure repeatability between simulation
runs. If P exceeds R, the occupant undertakes the cor-
responding adaptive behaviour. In the decision-making
sequence shown in Figure 5, the occupant first decides about
personal adaptive behaviours. This way, their immediate
impact on the perceived thermal comfort can be reflected
in the succeeding behaviours. For example, the operative
temperature sensed by the occupant (i.e. input in the logistic
regression model) is reduced by �Tcloth after the clothing
adaptation and by �Tdrinks after the drinking adaptation.
This indirectly reduces the probability of undertaking envi-
ronmental adaptive behaviours (e.g. window opening). If
the window opening probability (Pwin) exceedes the corre-
sponding random variable (Rwin), the window state (Swin)
is changed to ‘true’. If the probability of blind lowering
(Pblinds) exceeds the random variable (Rblinds), the blind state
(Sblind) is changed to ‘true’. The light use decision (Slight) is
undertaken when the indoor daylight (Edl) falls below 300
l× or when the blinds are closed. Lights are assumed to turn
off automatically, if the workplane illuminance rises above
300 l×. The blinds are assumed to block the airflow sub-
stantially, therefore the window was closed when the blinds
were closed. The HVAC system is assumed to be manu-
ally controlled by the occupant. If the probability of HVAC
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Figure 5. Decision-making process of occupants.

unit-on (PHVAC) exceed the random number (RHVAC), the
HVAC unit state (SHVAC) changes to ‘true’. Concurrently,
the occupant closes the window, once the HVAC unit is
switched-on.

The probability of undertaking these adaptive behaviours
(P) is calculated using logistic regression models
(Figure 6) with parameter coefficients taken from Haldi

Figure 6. Stochastic adaptive behaviour models taken from
Haldi and Robinson (2008).

and Robinson (2008). It should be noted that these param-
eter coefficients were not designed to be incorporated in
BPS. In the future, these regression coefficients can be
replaced with studies and analyses intended for calibrat-
ing simulation models such as those presented in Haldi
and Robinson (2009) for occupant control on windows, in
Haldi and Robinson (2010) for occupant control on shad-
ing devices, in Haldi and Robinson (2011a) clothing level
adjustments or in Reinhart (2004) for occupant control of
lighting. To this end, supplementary results are presented in
the appendix by employing Haldi and Robinson (2009) for
occupant use of windows only. However, Haldi and Robin-
son (2008), to the best of authors’ knowledge, remains as
the only study covering multiple adaptive behaviours in one
paper.

Another assumption made in the occupant model is that
the occupant decides any adaptive action in the flowchart
(Figure 5) regardless of his/her previous decision. In
other words, at the instants of decision-making all adap-
tive behaviours are simulated independently with only two
exceptions: (1) an occupant, if turning on the HVAC unit,
does not open the window, (2) an occupant, if opening the
window, does not close the blinds. However, it should be
noted that the order in which adaptive behaviours are under-
taken can impact simulation results significantly. In line
with this, Andersen (2009) reported that the order of the
manual control sequence (e.g. thermostat → window →
blinds → lights) may be responsible for up to 3.3-fold vari-
ation in the energy use predictions. However, it still remains
unclear whether or not the order in which the occupants
undertake adaptive behaviours can be stated in a statistically
coherent way.

It should be noted that the number of occupants respon-
sible for an adaptive action can also impact the overall
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464 H.B. Gunay et al.

likelihood of its realization (Herkel, Knapp, and Pfafferott
2008; Haldi and Robinson 2009). For example, Haldi and
Robinson (2009) observed a slight variation in the window
opening behaviour in offices with one or two occupants.
This was confirmed by similar observations by Herkel,
Knapp, and Pfafferott (2008) in two or three person offices
while studying manual blinds control and by Moore, Carter,
and Slater (2003) in one to nine person offices while study-
ing light switching. However, this complexity introduced
due to social dynamics between occupants is neglected in
the current study.

It is worth noting that this occupant model can be
used to predict the probability of undertaking an adaptive
behaviour; however the instances at which these discrete-
time random processes, representing the decision-making
sequence of the occupants (Figure 5), will be called by the
BPS tools are not inherently available. The challenge in
simulating these adaptive behaviour models in BPS is to
find a scheme that is capable of predicting the instants of
decision-making (i.e. the instants at which these discrete-
time random processes are to be called by the BPS tools)
and probability of the behaviour realization together.

4. Sensitivity of discrete-time solvers to the
time-step-size dependency

To demonstrate the influence of time-step-size alterations
on the BPS predictions with an example, a simplified ther-
mal model for a generic office space in Ottawa, Canada was
established in EnergyPlus v.7.2. The office was modelled
with a west-facing exterior window area of 7.8 m2 and an
opaque wall area of 4.6 m2. The floor and ceiling concrete
slabs were taken as 15.9 m2 area and 0.2 m thick. The room
air space was assumed to be separated from the floor slab
with a carpet and from the ceiling slab with ceiling tiles.
All other surfaces were taken as adiabatic due to symmetry
boundaries shared with rest of the building. EnergyPlus’
conduction transfer function solution algorithm was used
to solve for the combined heat and mass transfer problem
specified for the analysis domain. Windows were simply
modelled with the solar heat gain coefficient of 0.58 and U-
factor of 2.6. Infiltration rate was taken as 0.1 ach. A simple
HVAC system (i.e. a packaged terminal air conditioner) of
3 kW cooling coil capacity was included in the model. The
HVAC system was able to modulate proportionally such
that the cooling coil operates at full capacity once the system
variable (i.e. control point) was 6◦C above the setpoint. It
was assumed that the office space was occupied full-time by
four people from 8 am to 4 pm. Each occupant was assumed
with 100 W of metabolic heat generation rate. Of this, 30%
was taken as radiative and 70% was assumed as convective
heat gains. Mechanical ventilation was set to 10L̇/s-person
during the occupied period. All control decisions (i.e.
blinds, lights, windows, HVAC setpoint) were made as
defined in the occupant model. The EMS application in
EnergyPlus v.7.2 was used as the intermediary between the

physical model (i.e. building and HVAC) and control model
(i.e. occupant). It sensed variables from the physical model
such as operative temperature; and based on the control
decisions as defined in the occupant model actuated the
physical model components. For example, window open-
ing was modelled with an increase in the airflow rate due
to wind and stack driven single-sided ventilation (CIBSE
1997). To this end, the wind schedules at the height of the
opening were exported as output files and used in the EMS
application to revise the airflow rate accordingly. Light
switch-on was assumed to cause 210 W (6 × 32T8 light
bulbs) increase in heat gains. Half of this was taken as con-
vective and the other half was taken as radiative. Internal
roller blinds were defined as perfect diffusers with optical
properties that were independent of angle of incidence; i.e.
solar transmittance of 0.1 and reflectance of 0.75.

The operative temperature, cooling load, and adaptive
states of identical occupant and building models were sim-
ulated at different time steps. The results are presented in
Figure 7. In the figure, active adaptive states stand for open
windows, closed blinds, reduced clothing levels (shortened
sleeves or open collars), cold beverage use; while pas-
sive adaptive states stand for closed windows, open blinds,
unchanged clothing (sleeves and collar at default positions)
and beverage drinking at neutral temperature. Building and
HVAC models communicate with the occupant model only
at simulation time steps; i.e. the events were forced to take
place at fixed time steps. This caused simulations with
longer time steps to have more stagnant adaptive states;
e.g. windows remain open longer periods. For example, for
the simulation with one hour time steps, the window was
opened only one time, as shown in Figure 7(e). The fre-
quency of window openings increased from one per day for
1 h time steps to 103 per day for 1 min time steps. Simi-
larly, blind use frequency increased from four per day for
1 h time steps to 214 per day for 1 min time steps. As illus-
trated in Figure 8, the frequencies of simulated adaptive
behaviours resembled a power-law distribution. However,
the total duration that states remained active (e.g. open
window, lowered blind), showed significant variation with
the time-step-size. For example, the duration that clothing
state was active (e.g. opened collar or shortened sleeve)
changed from 5 h for 1 h time steps to 9 h for 3 min time
steps. Likewise, the duration that windows remained open
changed from 0.75 h for 15 min time steps to 2 h for 30 min
time steps. As a consequence of the time-step-size depen-
dency of simulated adaptive behaviours, the total cooling
energy input was estimated at 4.5 kWh/day for 30 min time
steps and 6.3 kWh/day for 1 min time steps. The peak cool-
ing load was estimated at 1 kW at 4:00 pmfor 1 h time
steps and 0.85 kW at 2:40 pm for 4 min time steps. Sim-
ilarly, the varying frequency of occupant behaviours for
different discrete-time steps resulted in discernible opera-
tive temperature distributions, as shown in Figure 7. More
importantly, identical occupant models, even if they were
in good agreement with the observed behaviour, generated
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Figure 7. Operative temperature, cooling load, and adaptive states calculated with identical occupant and energy models that were
simulated at time-step (a) 1 min, (b) 5 min, (c) 10 min, (d) 30 min, (e) 60 min, and (f) a reference model without an occupant model.

inconsistent results once simulated using varying fixed time
steps. A reference model was also simulated by removing
the occupant model and defining a fixed setpoint with the

identical HVAC system. Figure 7(f) shows cooling load
and temperature response in absence of the occupant model
from time steps of 1, 5, 15, 30, 60 min. Results indicate
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466 H.B. Gunay et al.

Figure 8. Change in number of simulated events (e.g. window openings or blinds closings) and duration of states remain active (e.g.
open windows or lowered blinds) with the time-step-size (a) blinds, (b) windows, (c) clothing, and (d) drinks.

that the time step selection represents a negligible impact
in comparison to its effect once the stochastic occupant
model was present. This indicates that a change in the time-
step-size alteration can account for dramatic changes in the
predicted outcomes of the adaptive states and BPS.

Many studies (Nicol and Humphreys 2007; Rijal et al.
2007, 2008; Haldi and Robinson 2008, 2009, 2010,
2011a) also acknowledged the time-step-size depen-
dency of Markov Chain discrete-time simulations and
suggested two complimentary methodologies to be
able to simulate stochastic occupant models; i.e. the
deadband incorporated models (Nicol and Humphreys
2007; Rijal et al. 2007, 2008) and the survival models (Haldi
and Robinson 2009, 2010, 2011a).

Deadbands are controls terminology suggesting that the
controller does not produce a signal for a particular range

of process variable. Deadband models assume that an event
(i.e. change in state) does not take place for a specified
range of predictor variable. For example, Rijal et al. (2007)
suggested to shift cumulative probability distribution curves
±2 K from the original logistic regression curve such that
window opening/closing probabilities would always be
4 K apart from each other. It was reported that a dead-
band must be introduced to occupant models otherwise
its effect would have resulted in instability, similar to the
fluctuations seen in smaller time steps (Figure 7(a)–(c)).
In other words, the deadband concept may be applied to
tackle the problems associated with the discrete-time sim-
ulation algorithm rather than modelling a certain observed
phenomenon. In fact, Rijal et al. (2007) acknowledged that
the deadband concept was approximate and required revi-
sions. Moreover, deadbands are not appropriate to be used in
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Figure 9. (a) Light switch off survival model predicted from a data scatter taken from Reinhart and Voss (2003) and (b) a window closing
survival model taken from Haldi and Robinson (2009).

this context as they restrain the modeller such that the win-
dow closing action can only be defined with the identical
set of predictors (e.g. temperature) as the window open-
ing action. This contradicts Haldi and Robinson (2009) and
Rijal et al. (2008) that suggest window opening action to
be modelled as a function of the indoor variables, while the
window closing action to be modelled with the outdoor and
indoor variables. Similarly, blinds are lowered for glare or
solar radiation protection (Reinhart and Voss 2003; Rein-
hart 2004); but they are raised to maintain the view to the
outside or to get more daylight (Veitch, Hine, and Gifford
1993; Veitch and Gifford 1996). Therefore, deadbands intro-
duced to behavioural models, despite providing numerical
stability, are limited due to the assumption that the reversal
of adaptive behaviours can be described with the same set
of predictor variables as the adaptive behaviour.

Survival analysis is a method to analyse the timing of
events. It was originally used to model the survival time
to the death, however it was later adopted by the vari-
ous engineering disciplines to study failure times. Haldi
and Robinson (2009) applied the technique to estimate
the duration windows remain open. To demonstrate this
technique, a crude survival model is built using the light
switch-off observations presented in Reinhart and Voss
(2003), as shown in Figure 9(a). As the time after departure
elapses, the probability of the lights remaining switched-on
decreases. The survival models were also extracted from
Haldi and Robinson (2009) which are shown in Figure 9(b).
The probability that windows remain open decreases as
the time elapses. However, the survival analysis resulted
in different curves at different indoor temperatures. In that
case, Haldi (2010) recommended to interrupt the simulation
and to change the survival curve, if the predictor variable
changes before the calculated survival-time. This was noted
as the first formal effort to predict the instants of decision-
making in occupant behaviour simulation in BPS. However,
the practical challenge here was to acquire observations

enough to establish survival curves for every possible pre-
dictor variable range. This questions the practicality of sur-
vival models to be able to predict the adaptive behaviours.
Survival analysis can be useful to describe events in which
the stimulating factors are weak. For example, the two
weak motivations for the manual light switch-off action
are workspace brightness (which is usually controlled with
the blinds) and the presumption that artificial light is not
healthy (Veitch, Hine, and Gifford 1993; Veitch and Gifford
1996). Therefore, light switch-off probability can solely be
described with the time elapsed using the survival analy-
sis. However, if there are significant time-varying stimuli
to reverse an adaptive behaviour, such as indoor temper-
ature causing window closing, survival analysis may not
be as appropriate. In fact, in those cases, with strong time-
varying stimuli for the reversal of an adaptive state (e.g.
closing a window), reversal of an adaptive state can itself
be treated as an adaptive behaviour. For example, win-
dow closing behaviour can be explained with the ambient
noise, thermal discomfort, or draftiness and can be repre-
sented as a Markov Process. However, doing so would again
result in with the same limitations related with discrete-time
approach; leading to inaccurate adaptive state predictions.

5. DEVS building energy model and simulation
DEVS, by quantizing the state variables, provides an adap-
tive time advancement scheme. Thus, the modeller does
not choose a time-step-size in BPS. This section demon-
strates the viability of the DEVS formalism to improve the
aforementioned limitations associated with the use of fixed
and prescribed time steps by providing an example applica-
tion. To be able to demonstrate the process of time-step-size
adaptation in a more transparent manner using explicit equa-
tions, a simplified thermal network model was formed to
represent the physical model (i.e. building and HVAC)
instead of using a packaged BPS tool (e.g. EnergyPlus).

D
ow

nl
oa

de
d 

by
 [

13
4.

11
7.

11
7.

18
2]

 a
t 1

9:
46

 1
4 

Se
pt

em
be

r 
20

15
 



468 H.B. Gunay et al.

Figure 10. (a) Analysis domain and (b) thermal network model.

5.1. Building model
The thermal network model was formed for the previ-
ously described generic west-facing office with the identical
geometry and constructions as the discrete-time model, as
shown in Figure 10. This thermal network model was used
to solve for the first-order approximation of the heat con-
duction equation. In a thermal network model, a building
is represented as an electrical network. Thermal masses,
which include both indoor air volumes and physical ele-
ments like walls, windows, and slabs, become nodal points
in the network. They are each assumed to have a uniform
temperature in the same way that nodal points in an elec-
trical network are each associated with a single voltage
level. Adjacent thermal masses may be linked by a time-
dependent thermal resistance – the reciprocal of thermal
conductance – through which heat flows like current in an
electrical network (Clarke 2012). A thermal network model
consists of lumped thermal mass (J/◦C), lumped conduc-
tance elements (W/◦C), and heat sources (W). Detailed
information about thermal network models can be found
elsewhere (Athienitis 1994).

Figure 11 shows the parameters used in the simplified
thermal network model which represents the building model
and the input/output relationships of these parameters. The

coupled-building model consists of two submodels: (1)
environmental load generator transforms the weather data
to environmental loads, (2) building model receives con-
trol decisions or loads from the occupant model, the HVAC
model and the environmental load generator through its
external transition function. Subsequently, building model
calculates the temperature at each of the nodes and outputs
the air temperature of zone and mean radiant temperature.
The building model, in absence of the occupant model and
the HVAC model, revealed the passive building response,
as shown in Figure 11.

All control decisions (i.e. blinds, lights, windows, and
HVAC setpoint) were made as defined by the occupant
model. A DEVS-based simulation prototype (Autodesk
DesignDEVS v.0.4.1) was used to sustain the communica-
tion between the physical model (i.e. building and HVAC)
and control model (i.e. occupant). It inputted variables from
the physical model such as air and mean radiant tempera-
tures and actuated the physical model components based
on the control decisions defined in the occupant model. For
example, window opening was modelled with an increase
in the airflow rate due to wind and stack driven single-sided
ventilation (CIBSE 1997). Similarly, light switch-on was
assumed to cause 210 W (6×32T8 light bulbs) increase in
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Figure 11. Parametric input/output relationships to the building model.

heat gains. Internal roller blinds were defined as perfect
diffusers with optical properties that were independent of
angle of incidence; i.e. solar transmittance of 0.1 and
reflectance of 0.75.

An explicit central finite difference formulation was
used to solve for the thermal network model explicitly as
follows:

Tm,t+�t = Tm,t

+

�Tm,t︷ ︸︸ ︷[
(1/Cm)

(∑
i=1

Uim,t(Ti,t − Tm,t) + Qm,t

)]
�t,

(1)

where the conductance U (W/◦C), the temperature T (◦C),
thermal mass C (J) and the heat source Q (W) at a given
time (t) were used to determine the heat flow in the ther-
mal network model. The time-step �t (s) was then used to
determine temperature variations �T (◦C) due to the heat
flow in the thermal network model. The subscripts m and
t denotes for the spatial and temporal labels for the nodal
point to be solved. The subscript i represents other nodal
points that exchange heat with node m. The summation of

�Tm,t and Tm,t are then used to determine the temperature
in the next time-step Tm,t+�t .

5.2. Time-step-size adaptation
While discrete-time solvers use fixed time steps, discrete
event solvers may vary the time-step according to how fast
a system is changing state. As mentioned, the quantization
of state variables is one way to determine �t (Cellier and
Kofman 2006). The building model presented here deter-
mines an adaptive�t by limiting the temperature change per
time-step for all thermal masses. Therefore, during the sim-
ulation, when abrupt temperature changes are expected due
to occurrences such as opening the window or turning the
HVAC unit on, the model chooses smaller �t′s, but during
unoccupied periods of the simulation such as night time, the
model chooses larger �t′s. The internal time advancement
in the building model is carried out as follows:

�t = min

⎛
⎜⎜⎝minm

⎛
⎜⎜⎝ �T∣∣∣∣ (1/Cm)

(∑
i=1 Uim,t

(Ti,t − Tm,t) + Qm,t
)∣∣∣∣

⎞
⎟⎟⎠ ; 15 min

⎞
⎟⎟⎠ ,

(2)
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Figure 12. (a) Parametric input/output relationships to the HVAC systems model and (b) an unit test on the HVAC systems model.

where �T (◦C) is the maximum temperature change (e.g.
0.5◦C change in temperature at any of the nodal points). The
function determines the scheduled time advance so that a
�T change can happen at any of the nodal points. It should
be noted that �t is a real number and its variation depends
on the physics of the problem. This internal scheduling can
be interrupted with an external input being received at any-
time or if the next scheduled event is more than 15 min away
from the current state. For example, if the occupant opens
the window; the time advance stops, the model is modified
accordingly with the change in physics, and then proceeds.
The limitation on the maximum time-step-size was cho-
sen based on the adaptive-time-step solver for HVAC plant
models of EnergyPlus to limit truncation error in the field
variable of the continuous domain. The choice of maximum
time-step-size did not affect the occupant model such that it
was not invoked, if the predictor variable was not changed
at the event-step-size.

5.3. HVAC model
A simple quasi-steady-state model of a packaged terminal
air conditioner was formed using a set of mass and energy
balance equations at each component. The HVAC systems
model was composed of a mixing box, a cooling coil, a
humidifier, and a reheater, as shown in Figure 12(a) (Clarke
2012). The cooling coil capacity was determined based on
a sizing run in EnergyPlus. The fresh air portion of the
ventilation was selected as per ASHRAE (2010) recom-
mendations. The return air mixing rate was selected to meet
13◦C at the diffuser (Sugarman 2005) when the cooling coil
was operated at full capacity. For simplicity, each compo-
nent was represented as a single node. At the mixing box
the return air (indoor air volume temperature) (80%) and the
outdoor air (20%) was mixed prior to entering the cooling
coil (Sugarman 2005). Then, the cooling coil extracted the
heat from the ventilation air. The humidifier and reheater
components maintained the humidity of ventilation air. The

conditioned ventilation air was then supplied to the zone.
Each component in the HVAC systems model introduced
a thermal inertia that lagged the output of the model. The
HVAC systems model needed to receive input messages
(HVAC decision, outdoor, and indoor air temperatures) to
invoke its internal transition function that solves for the out-
put message (heat input). To demonstrate this input/output
relationship of the atomic model before coupling with other
models, a few input messages were left on the HVAC sys-
tems simulation time grid, as shown in Figure 12(b). Input
messages (i.e. HVAC decision, zone temperature, ambient
temperature) were denoted with arrows pointing down-
wards and the output message (i.e. heat input) was denoted
with arrows pointing upwards. The event times (e.g. input
message arrival time) were specified within the triangle-
shaped objects that represent the states at different periods
of the simulation. Initially, HVAC decision (input) state was
defined as false, thus the heat input to the zone (output) is
0. The indoor and outdoor air temperatures were defined at
time = 31 min. Once the HVAC decision state was informed
as an input message to change ‘true’, the internal state tran-
sition function was invoked and solved for the heat input as
follows:

Energy balance

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṁocair(To − T1) + ṁrcair(Tr − T1)

= T1C1�t,
ṁ2cair(T1 − T2) + Q2 = T2C2�t,
ṁ3cair(T2 − T3) = T3C3�t,
ṁ4cair(T3 − T4) = T4C4�t,

(3)

Mass balance {ṁ2 = ṁ3 = ṁ4 = ṁo + ṁr ,︸ ︷︷ ︸
Qinput=(T4−Tz)ṁ4cair

where mi (kg/s) represented mass flow rate between the
component nodes, mo (kg/s) and mr (kg/s) were the out-
door and return air flow rates, cair (J/kg-K) was the specific
heat of air, Q2 (W) was the capacity of the cooling coil, Qinput
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Figure 13. Coupled-DEVS building energy model.

(W) was the heat input rate to the zone and Ci (J/K) was the
thermal mass of the component nodes. Q2 (W) was modu-
lated proportionally such that the cooling coil operated at its
full capacity once the difference between the setpoint and
the control point was 6◦C.

5.4. Coupled-DEVS building energy model
Three domains of the building energy simulation prob-
lem (i.e. building, HVAC systems, and occupant models)
have been separately modelled. A coupled-DEVS build-
ing energy model was formed as shown in Figure 13.
Figure 14 summarizes the DEVS simulation process with
an event-step-size of 0.5◦C. This event-step-size value
(0.5◦C), despite having an approximate meaning based on
ASHRAE (2010) to account for about an ±0.25 PMV devia-
tion, has no observational basis. It was assumed that ±0.25
PMV is a large enough thermal comfort variation which
can lead to a decision-making about an adaptive behaviour.
Here, it was intended to demonstrate that an event-step,
unlike a time-step, can attain an observational basis. This
way, occupant’s instants of decision-making increase in fre-
quency during periods in which environmental conditions
are rapidly changing. Also, event-driven advancement in
simulation ensures that occupant responses for stimuli need
not be postponed until the following time-step. This may be
particularly important for reactions against instantaneous
stimuli (e.g. light switch-on).

First, the building and HVAC models calculated that
temperature would reduce by 0.5◦C at t = 0.58 h. Then,
the occupant model decided whether or not this new state
caused discomfort. Thus, the occupant undertook control
decisions at t = 0.58 h. If the occupant decided to turn
the air-conditioning on, the HVAC model computed the
heat input rate to the zone. The building model again pre-
dicted the time of next event and updated the temperature
array. Time marched to t = 1.38 h, where the occupant
model again decided whether this new state required an
adaptive behaviour or not. This way the time evolved in

simulation, where adaptive behaviours were predicted at
state transitions. It should be noted that the building and
HVAC models did not march from t = 0 to t = 0.58 h or
from t = 0.58 h to t = 1.38 h at once. To limit the truncation
error imposed by the finite difference method, a maximum
time-step-size of 15 min was introduced for the building and
HVAC models. In other words, if the time-step-size calcu-
lated in Equation (2) was larger than 15 min, the building
and HVAC models advanced internally by 15 min. How-
ever, the occupant model was not invoked if the temperature
change since the last occupant decision instant does not
exceed the event-step-size. If the time-step-size calculated
in Equation (2) was smaller than 15 min, the building and
HVAC models advanced to a new state.

Figure 15 shows the operative temperature, cooling
load, and adaptive states calculated using the DEVS build-
ing energy model and simulation. The peak cooling load
was estimated at 0.51 kW at 3:42 pm. The total cooling
load was estimated at 2.3 kWh/day. For the day, the blinds
remained closed for 84 min, the windows remained open for
374 min, the clothing state was remained active for 292 min,
and the drink state remained active for 327 min. As opposed
to the frequent changes observed in the discrete-time simu-
lation, all adaptive behaviours were undertaken two to four
times and remained active for a relatively longer period of
times. This is in line with observational studies on adaptive
behaviours (Reinhart and Voss 2003; Inkarojrit and Paliaga
2004; O’Brien et al. 2010a; O’Brien, Kapsis, and Athieni-
tis 2013) suggesting that adaptive behaviours were rarely
applied more than a few times a day.

6. Discussion and conclusions
Simulation of building physics (e.g. building and HVAC
systems) and control (e.g. occupant) models has been draw-
ing attention from various researchers (Wetter 2009, 2011;
Nghiem 2013). It should be noted that the building physics
models involve a continuous problem (i.e. state variables
such as temperature are differentiable) whereas control

D
ow

nl
oa

de
d 

by
 [

13
4.

11
7.

11
7.

18
2]

 a
t 1

9:
46

 1
4 

Se
pt

em
be

r 
20

15
 



472 H.B. Gunay et al.

Figure 14. DEVS simulation algorithm with a behavioural occupant model.

models involve a discrete problem (i.e. state variable such
as blind position are not differentiable). Despite this sub-
stantial difference, the prevalent use of the discrete-time
simulation approach in BPS leads to the simulation of occu-
pant behaviour models as discrete-time random processes.
However, these discrete-time random processes require the
use of fixed and prescribed time steps. In the current paper,
the following problems associated with the use of fixed
and prescribed time steps in occupant behaviour simula-
tion are noted and the viability of the DEVS formalism
to provide a potential improvement for these problems is
discussed:

(1) When coupling models for BPS, it is sometimes
desirable to synchronize events occurring in different mod-
els; this becomes more difficult when a model’s time step

may not be altered. Also, different simulation-based design
applications require different levels of execution speed and
temporal resolution; the use of prescribed time steps makes
it more difficult to adjust the trade-off between speed and
accuracy to suit a particular application. Due to these diffi-
culties, the modeller may choose to alter the time step of a
stochastic discrete-time occupant simulation; however, it is
shown in Section 4 that the consequence may be a dramatic
change in the BPS predictions and in the predicted outcomes
of adaptive states. However, it is worth noting that this time-
step-size sensitivity represents a problem particularly for
BPS models with stochastic control inputs. For example, in
the stochastic occupant models shown in Figure 5, even at
lower temperatures, the probability of adaptive behaviours
is non-zero. Moreover, these probabilities are sensitive to
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Figure 15. Operative temperature, cooling load, and adaptive states calculated that was simulated using the DEVS building energy model.

the predictor variable at the instant of decision-making.
Therefore, simulation of stochastic occupant behaviour
models requires the prediction of the instants of decision-
making along with the probabilities of state transition. On
the other hand, this challenge is not relevant for determinis-
tic control models, such as a predefined setpoint controller.
A deterministic control model, as shown in Figure 1, is a
step function. The probability of a state transition is zero
below the setpoint and one above the setpoint. Therefore,
a deterministic occupant model would not suffer from poor
predictions of decision-making instants. Because, even if
the occupant makes a decision about undertaking an adap-
tive behaviour once in every minute, the likelihood of
realizing it will be zero for all instants below setpoint and
one for all instants above setpoint. This was illustrated in
Figure 7(f) by replacing the stochastic occupant control
model with a fixed setpoint controlled HVAC unit.

(2) More complex models may require occupants to
respond immediately to prominent stimuli such as the acti-
vation of artificial lights, the opening of a nearby window,
or the sounding of an alarm; with a discrete-time simula-
tion, these responses must be postponed should the stimulus
occur between time steps. It is shown here that DEVS,
being a continuous formalism, does not require occupant
responses to be postponed until the next time step. This

can become particularly important for actions responding
to instantaneous stimuli (i.e. light switch-on).

(3) Fixing the time step implies that frequency of an
occupant’s instants of decision-making remains constant;
it is logical that these instants should increase in fre-
quency during periods in which environmental conditions
are rapidly changing. It is shown here that DEVS, being
an event-driven formalism, inherently accommodates this
such that frequent occurrences of events can be associated
with rapid change in the stimulating variables. In DEVS,
time progresses at discrete events, which were defined as
a 0.5◦C variation in the temperature in this particular sim-
ulation. However, it should be noted these discrete events
could also be defined with non-thermal stimuli such as the
change in CO2 level or workplane illuminance. Therefore,
the probability of state transitions was not affected by the
time discretization; instead it was affected by the event dis-
cretization. It should be noted that both time and event
discretization introduce truncation error and observational
bias. However, observational bias introduced by the event
discretization can be reduced, since event discretization can
attain observational basis to a predictor variable; e.g. how
large a temperature change typically results in a window
opening. Time discretization can be prone to larger errors,
since it cannot attain observational basis to a predictor
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variable. This can be illustrated within the following explicit
finite difference formulation:

Tm,t+�t = Tm,t

+
[

1
Cm

(∑
i=1

Uim,t(Ti,t − Tm,t) + Qm,t

)]
�t(T ),

(4)

where – unlike the finite difference formulation shown in
Equation (1) – Uim,t (W/K) and Qm,t (W) are random vari-
ables; e.g. change in infiltration conductance after window
opening. The probability of state transition in time is repre-
sented with univariate logistic regression models, as shown
in Figure 6. It should be noted that these models were devel-
oped as a function of the predictor variable temperature;
which is also the state variable in the heat transfer prob-
lem. More importantly, although these occupant models
(Figure 6) do not depend on the time-step, the randomness
transformed to the temperature in the following time-step
Tm,t+�t becomes a function of the time-step-size (Bendat
and Piersol 2011). Therefore, the DEVS simulation scheme,
by suggesting an adaptive time advancement as a function of
the predictor variable �t(T ) as shown in Equation (4), can
better represent the occupant behaviours in BPS. It is worth
noting that there is a computationally less efficient way of
using the adaptive time advancement for stochastic occu-
pant behaviour models in conventional BPS tools. A small
time-step (e.g. 1 min) in building and HVAC systems can be
selected to acquire an almost continuous solution in these
domains. In that case, the stochastic occupant model can
be invoked only when a related continuous value changes
by at least some predefined interval. The control interfaces
for typical BPS tools (e.g. EMS application for Energy-
Plus) provides default calling points such as before time step
before predictor; implicitly leading occupant models to be
simulated as discrete-time random processes. Developers
of these BPS tools can enrich their calling points in these
control interfaces to support such discrete-event-based
interactions with stochastic occupant models.
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Appendix
Building model verification/calibration
Prior to the current study, a verification study was performed
on deterministic passive and active discrete-time models built in
Matlab, and EnergyPlus, and on discrete event models built in
DesignDEVS. Figure A1 shows the results of a passive building
simulation using each tool. DesignDEVS and Matlab solves for the
thermal network model. DesignDEVS quantizes temperature steps
of 0.5◦C to move forward in time; while Matlab and EnergyPlus
uses 1 minute time steps to handle the time advance. The results
of the DEVS model are in line with the EnergyPlus and Matlab
models. This shows that parameters and the logical structure of
the model implemented correctly in the building submodel; and
DEVS conforms to the traditional discrete-time model in absence
of the stochastic control inputs.

HVAC Model verification/calibration
Figure A2 shows the response of the coupled active building
response where a constant cooling setpoint is assigned at 25◦C
for the occupied period (i.e. work hours) and setback after the
occupied period. DEVS results indicate that both the temperature
and the cooling load are parallel with the discrete-time models
built in Matlab and EnergyPlus. This indicates that the parameters
and the logical structure of the DEVS coupled-building energy
model were implemented correctly.

Verification of time-step-size sensitivity of discrete-time
random processes
To verify the time-step-size sensitivity of discrete-time random
processes with more rigorous adaptive behaviour models; the
Markov Chain window use model of Haldi and Robinson (2009)
was adopted based on the coefficient parameters summarized in
Haldi and Robinson (2011b). These models, unlike the univariate
logistic regression models used in the current study, were multi-
variate models with explanatory variables of indoor and outdoor
temperatures, occurrence of rain (0 or 1), previous absence (0 or 1)
or ongoing presence (min) or next absence (0 or 1). This way, these
models accommodate the state of presence as arrival, during pres-
ence, and departure to update the probability of state transitions.
The equations representing these logistic regression models are as
follows:

Window opening at arrival:

P01 = e−13.88+0.312Tin+0.0433Tout+1.862 fabs−0.45 frain

1 + e−13.88+0.312Tin+0.0433Tout+1.862 fabs−0.45 frain .

Window opening during presence:

P01 = e−12.23+0.281Tin+0.0271Tout−8.78×10−4tpres−0.336 frain

1 + e−12.23+0.281Tin+0.0271Tout−8.78×10−4tpres−0.336 frain
.

Window opening at departure:

P01 = e−8.75+0.1371Tout+0.84 fabs+0.83 frain

1 + e−8.75+0.1371Tout+0.84 fabs+0.83 frain .
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Figure A1. Verification/Calibration of the DesignDEVS Build-
ing Model with EnergyPlus and discrete time Matlab models.

Window closing at arrival:

P10 = e3.97−0.286Tin−0.0505Tout

1 + e3.97−0.286Tin−0.0505Tout
.

Window closing during presence:

P10 = e−1.64−0.0481Tin−0.0779Tout−1.62×10−3tpres

1 + e−1.64−0.0481Tin−0.0779Tout−1.62×10−3tpres
.

Window closing at departure: (5)

P10 = e−8.54+0.213Tin−0.0911Tout+1.614 fabs−0.923 frain

1 + e−8.54+0.213Tin−0.0911Tout+1.614 fabs−0.923 frain ,

where Tin (◦C) is indoor temperature, Tout (◦C) is outdoor temper-
ature, fabs (0 or 1) is arrival or departure, tpres (min) is the duration
of presence, and frain is the binary rain indicator. Using these
models, five day long simulations were repeated with identical

Figure A2. Verification/Calibration of the DesignDEVS Build-
ing and HVAC Models with EnergyPlus and discrete time Matlab
models.

Building and HVAC models. Occupants’ only manual control
decision was opening or closing the window. Results shown in
Figure A3 suggest that the problem of time-step-size sensitive
predictions of adaptive states remains even if more realistic occu-
pant behaviour models are employed. Therefore, this limitation
is related with the predictions of instants of decision-making (i.e.
instants at which occupant models be invoked by the BPS tool).
As Haldi (2010) demonstrated, this problem can be overcome with
an hybrid approach combining discrete-time Markov Chains with
survival analysis; instead, here, continuous-time Markov Chains
were suggested as a potential solution.
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Figure A3. Verification of time-step-size sensitive adaptive state predictions with multivariate Markov Chain occupant model for window
opening taken from Haldi and Robinson (2009).
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