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Chapter 1 Executive Summary

Historically, scientific computing efforts have demonstrated the clear need for, and effective use of, su-
percomputing with traditional time-stepped simulations. Nevertheless, there are several areas in the mission
spaces of the U.S. Department of Energy and other agencies waiting to tap advanced computing research using
a different, discrete event style of modeling, simulation, and analysis. These span a wide spectrum of applica-
tions including energy grid resilience, urban planning and policy, transportation science, building technologies,
emergency response and planning, environmental impact analysis, computational epidemiology, Internet com-
munications, cyber security, and cyber-physical systems, to name only a few. Even within traditional scientific
applications, the role of discrete event modes of execution is increasing in the form of new event-based math-
ematical solvers such as quantized state integration methods and discrete-continuous hybrid system solvers.
Co-design of advanced supercomputing hardware systems is another area that exploits discrete event simulation
at its core for effective analyses. Complex systems, entity behaviors and interconnections play a significant role
in all these applications, which are mapped to large-scale models with discrete event formulations.

To make advancements in all the aforementioned scientific areas, many technical aspects need to be more
thoroughly studied and deeply understood in parallel discrete event simulation (PDES). The unique dynamics
inherent in a discrete event modeling approach, by their very nature, intersect and influence the entire stack
of the computing system, including (a) the unique nature of the instruction sets exercised in PDES workloads
without a predominance of high-precision floating point operations, (b) virtual time-constrained multi-threaded
execution of many logical processes per processor, (c) extremely variable and difficult to predict network traffic
characteristics, (d) interfaces and inter-dependencies with machine learning and artificial intelligence codes at
higher software layers, and (e) highly challenging load balancing needs, especially in effectively accounting for
accelerated/extremely heterogeneous computing in current and future high-performance computing systems.
Efficient and accurate parallel execution of PDES workloads is also dominated by challenges in dealing with
their asynchronous concurrency fundamentally present at the model level. Conservative synchronization,
optimistic/speculative synchronization, and their hybrid schemes open new questions in fundamental computer
science with respect to reversibility of computation and prediction (lookahead) of behaviors inherent within
model codes. On the implementation front, there are relatively few scalable, general-purpose parallel discrete
event simulators in the world, and even fewer have been studied on emerging hardware platforms. To enable
scientific advances using PDES, the research needs in computer science must also be pursued and met in the
intersection of the algorithmic and hardware-aware aspects of scalable PDES engines.

This report is aimed at capturing a computer science-oriented view of this important area of research in
PDES, presenting a sample of important applications with their inherent discrete event technology elements.
Needs are outlined in core areas of parallel discrete event research as well as cross-cutting directions in computer
science research that positively impact scientific advancements across several important application areas. A
selection of priority research opportunities in advanced computing for PDES is identified to serve as reference
for key research topics and their order of importance for scientific advancements.



Chapter 2 Overview

2.1 Challenges from a Changing Landscape

In the rapidly evolving landscape of high-end computing, significant changes are happening across scalable
hardware system solutions, complex software technologies as well as application needs, which in combination
are bringing research in PDES to the fore.
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Figure 2.1: PDES in a Changing Landscape

Hardware: On the hardware front, fundamental
changes and advancements are occurring in accel-
erated computing, beyond-Moore computing, and ex-
tremely heterogeneous computing. Supercomputing
is poised to undertake the next set of challenges in
moving from exascale computing to zettascale com-
puting. An amalgamation of technological offerings
such as graphical processing units (GPUs), Field Pro-
grammableGateArrays (FPGAs), Intelligent Process-
ing Units (IPUs), massive integrated circuit wafers,
neuromorphic machines, and various combinations of
such hardware technologies are fundamentally trans-
forming the hardware landscape. On many of these
new hardware platforms, relatively little is known re-
garding how to efficiently achieve discrete event exe-
cution that has traditionally focused on conventional
central processing unit (CPU) and multi-CPU-core platforms. The gap in our scientific understanding creates
a major hurdle when the next generation of computing by DOE and other agencies is aimed at applications in
their mission.
Software: On the software front, a new generation of software technologies has overtaken all aspects of
development, deployment and enhancement, with profound implications to high-end computing performance,
maintenance, and usability. These include new high performance programming languages, compiled-plus-
interpreted frameworks built on mature just-in-time compilation, continuing dissolution of distinctions between
fine- versus coarse-grained execution as well as parallel versus distributed execution, and an explosion of
open-source and massive software enterprises. The domination of powerful, new tools such as artificial
intelligence (AI) and machine learning (ML) libraries or tool-chains are disrupting traditional views of software
for high-performance computing. New challenges and opportunities have thus arisen in tapping the power
of these software and algorithmic advancements to yield a range of benefits in discrete event execution.
Without addressing these key software challenges, advancement will be severely hindered acrossmany important
applications.
Mission Applications: On the application front, several mission-relevant areas are emerging that can deliver
great benefits when high-performance computing and distributed computing infrastructures can be effectively
utilized. There is an increase in the significance of newer, high-end computing-based solutions for national-
scale problems such as the resilience of the massive energy grid, transformation of the transportation enterprise
including increasingly intelligent mobility infrastructure as well as intelligent carriers such as AI-powered



2.2 Priority Research Opportunities

commercial and consumer vehicles, and the immense significance of non-pharmaceutical interventions and
feedback effects in global-scale epidemiological phenomena. Advancements from PDES research will directly
enable the development of novel solutions in such computational applications. On the scientific modeling front,
PDES can directly benefit the simulation of complex phenomena that are dominated by multi-scale effects such
as shocks and magneto-hydrodynamics. Applications are necessarily being recast as fundamentally new model
formulations that are discrete event in nature. The actual realization of the benefits of PDES models via efficient
computer science methods in these applications represents a great challenge and opportunity to be tapped for
the greater good of the society and nation. PDES is the only approach to delivering the required speed and scale
in many of these applications, and greatly complements existing methods in other applications as well.
Science Enterprise: The enterprise of basic science itself is undergoing a transformation in the nature of how
research and development is performed to tackle the next set of scientific grand challenges. The computational
needs of the past were adequately solved with experimentation, data generation and computation in relative
isolation or localized settings. By contrast, the scientific enterprise of the immediate future is dominated by
many new dimensions. Edge computing, geographically inter-connected workflows, and distributed scientific
interactions among scientific groups are changing the way we conceptualize, virtually prototype, test, and
validate designs and changes across the science enterprise. Effective exploration, planning, design, prototyping,
testing, and iterating through the solutions is fundamentally defined by a set of discrete event models of all
the important components in the scientific enterprise. Advances in the DOE scientific enterprise, therefore,
are critically reliant on corresponding advances in large-scale parallel discrete event simulations of the large
aggregate of the Science Enterprise: scientific instruments, scientific workflows, scientists’ behaviors, and
high-end computational systems, all of which are interconnected by complex networking infrastructures. The
benefits from the next wave of research in PDES are expected from rich collaborations and contributions
by the simulation community, the high-performance computing community, the subject matter experts in the
application domains, and various policy-making and decision-making communities.
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Figure 2.2: Selected PDES Research Items

In this newmilieu, PDES represents a fundamen-
tal core that enables effective solution in the design of
the national science enterprise as well as in important
mission applications. Advancements from research
and development in PDES are needed to fill the gaps
in our ability to meet the DOE’s scientific mission
needs, needs across the national scientific enterprise,
and new applications for the society. The rest of this
chapter provides a summary of some of the priority
research opportunities (PROs) in relation to PDES
that need to be immediately pursued in a concerted
research program. Chapter 3 provides a brief back-
ground on PDES and illustrations of important ap-
plications. The technical background and additional
details on the PROs are presented in Chapter 4 and
Chapter 5.
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2.2 Priority Research Opportunities

PRO Category I: Core Advancements (Inner Technologies)

This category of priority research opportunities encompasses the advancements needed in the core method-
ological and technological aspects of PDES in terms of fundamental algorithms, integration methods, and effi-
cient execution of complex discrete event models on new and emerging hardware architectures. This includes the
immense challenge in an effective exploitation of the latest insights and technical leaps in artificial intelligence
(AI) and machine learning (ML) as well as adapting to the significantly changing hardware landscape.

1. Even as the mainstream computing hardware is not specifically PDES-oriented in nature, how can new
PDES research best exploit the current supercomputing architectures that are designed for non-PDES
workloads and applications?

2. How can PDES programming models, libraries, and runtimes be enhanced to improve parallel decom-
position, dynamic load balancing, and event scheduling performance? This direction would take into
account the following observations.

Due to virtual timemechanisms, the relative importance of balancing computation versusminimizing
communication is different when compared with those of non-PDES applications.
PDES load balancers and event schedulers need to take into account both application characteristics
and hardware costs, especially with the awareness that the relative costs of computation, data
movement, and synchronization are in great flux on forthcoming computer systems.
How can runtime capabilities be improved (e.g., using artificial intelligence) to better determine
when and how to load balance and schedule events? In what ways should programming language
support and/or library support be augmented to assist the runtime in making better decisions?
How can load balancing account for highly heterogeneous PDES models across a wide spectrum of
fine-grained to coarse-grained event codes inherently imposed by the application model behaviors.

3. Since PDESperformance critically depends on the amount of lookahead available in themodel (necessarily
for conservative synchronization and supplementarily for optimistic synchronization), new compiler
analyses are needed for automated lookahead extraction.

What are the limits of new compiler techniques that can extract (virtual) temporal information from
model code? What are the fundamental time and space complexities in such analyses?
What model augmentation can provide the PDES engines and environments the hooks needed for
increased lookahead extraction while not burdening the modeler? What are the language primitives
or directives (such as pragmas) that can help in achieving this improvement?

4. What are the novel methods by which the new accelerator-dominant hardware of extant high performance
computing platforms (such as GPUs and FPGAs) can be used for executing the logical process-based
discrete event models?

How can optimistic PDES execution be realized on modes of execution such as streamed Single
Instruction Multiple Data (SIMD) computation of GPUs?
How can reversible event handlers be efficiently realized on non-CPU-based hardware to enable
optimistic modes of PDES execution?
Just as OpenMP and CUDA have been successful in efficiently bridging the gap between the
programmer and the parallel hardware, how can compilation and automation tools be targeted at
automated generation of efficient PDES codes on next generation platforms?

5. In light of advances in AI/ML technologies, what new AI/ML-based dynamic model simplification
methods can be developed and exploited to provide leaps in PDES execution, and provide efficient and
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2.2 Priority Research Opportunities

intelligent multi-scenario execution? How can AI/ML frameworks be incorporated into PDES core
engines and models?

How can AI/ML methods be used to speed up models, providing the same results but with automat-
ically coalesced event execution that reduces event processing costs? How can models be learned
on-the-fly for simplified model substitution or for enabling multi-scale models?
Within actual runtime implementations of the PDES engines, how can AI/ML methods help inform
key decisions made by the engines for synchronization and efficiency in conservative and optimistic
settings (such as in minimizing rollbacks or increasing dynamic lookahead)?

6. On the emerging hardware defined by extreme levels of heterogeneity, new hybrid virtual time synchro-
nization methods are needed to be optimized for heterogeneous platforms.

What new intra-accelerator synchronization schemes can be developed and used with multiple
threads within accelerators?
Howcan intra-node and inter-node synchronizationmethods efficiently integrate the inter-accelerator
synchronization with CPU-to-accelerator inter-node algorithms for correct and efficient virtual time
advances across interconnects?

7. What are the new theoretical, temporal ordering frameworks that can be designed and developed to enable
the next generation of discrete event modeling and execution?

What are the new ways in which under-explored concepts such as approximate time, aggregate time,
and time intervals can be developed and applied to scalable PDES execution?
How can discrete event engines be designed and implemented to effectively exploit the relaxations
uncovered by these new temporal paradigms?
How can the implicit conflict between repeatability and concurrency in the presence of bursts of
zero-delay events be resolved? What new metrics or frameworks are feasible to assure measures
of correctness in the presence of concurrent events (as in processor models in large hardware
co-design)?

PRO Category II: Usability Advancements (Outer Technologies)

Amajor impediment in realizing the benefits of PDES is the high bar the users face with respect to usability.
While a sequential discrete event simulator is relatively easy to develop, the complexity of a parallel version
increases significantly even for small-scale parallelism (such as for multi-core workstations), let alone for high-
end clusters and supercomputing platforms. Furthermore, modeling interfaces, automated support for reversible
event computation or lookahead extraction, event-based solvers, and so on, need to be advanced such that the
complexity and effort for the scientists are significantly lessened. The ideal target would be fully automated
approaches that can shield the user via intelligent compiler analyses, powerful model transformations, and smart
code generation techniques.

1. It is relatively rare to find new PDES applications written from the ground up in isolation. As a result,
advancements in applications are often made from linking multiple functionalities together. For example,
new energy grid simulations combine specialized simulators of transmission grid with renewable energy
models or distribution networks. Similarly, transportation networks combine macroscopic traffic models
with detailed individual models of smart mobility at the vehicle level or driver level.

What support for interoperability of discrete event execution and for federated, virtual time-
synchronized execution can be defined and implemented specifically aimed at high-performance
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2.2 Priority Research Opportunities

computing platforms?
How can interoperable and federated execution of multiple simulators be built over standards such as
the Message Passing Interface (MPI) for assured portability and efficiency on emerging platforms?

2. How can PDES ensembles be managed intelligently, especially as large scenarios unravel new decision-
points dynamically based on the states discovered in the course of the simulation? For example, how can
ensemble road transportation simulations be efficiently realized to share computation and memory when
incremental changes are inserted as “what-if” scenarios, such as accidents inserted based on congestion
levels on routes. Similarly, how can the trajectories of large PDES runs be steered by the user to adjust
and/or realize configurations of interest that are hard to anticipate at initialization time?

3. What are the new visualization techniques and systems that can be employed across the PDES stack, from
the engine internals (such as event blocking times and rollback behaviors) to the application level (such
as integration with sophisticated 3-dimensional animations)? The following categories are important in
such visualizations:

Detailed visibility into event behaviors and dynamics across processors, with low runtime overheads
introduced for visualization and insights
Complex rollback behavior display and analyses with automated mitigation insights for optimistic
parallel discrete execution
Detailed event blocking and idling analyses and insights for conservative parallel discrete execution
Interfaces and integration of discrete event engines with visualizers and immersive displays for
gaining scientific insights of simulated systems.

4. How can dynamic, streaming data be efficiently integrated into PDES applications? How can the important
PDES-specific effects from file system characteristics and interconnection network dynamics be addressed
when event-based execution results in highly variable access patterns across the parallel and distributed
system?

5. What new modeling interfaces and domain-specific languages can be developed that are more read-
ily amenable to PDES-specific optimizations as compared to using general-purpose languages? What
source-to-source compilation techniques enable retaining the best state-of-the-art optimizations of native
compilers? Of specific benefit are primitives that are easy to integrate into extant popular programming
languages while making it easier to extract lookahead and/or automatically generate corresponding reverse
code from the forward event code.

6. Another important area of research concerns PDES runtime support. In order to enable advanced
partitioning, dynamic load balancing, and event scheduling policies, the runtime requires support from the
programmingmodel (i.e., language and libraries) to accomplish tasks that may be difficult to automatically
infer (such as component state serialization). The PDES programmingmodel should be enhanced to make
these tasks as easy as possible for the application developer to specify.

While the runtime can observe program behavior to make dynamic load balancing decisions, it
is still helpful for knowledge of the application behaviors and constraints to be made available
to the runtime through the programming interface. This could appear in forms such as nominal
connectivity information (such as which hardware components are allowed to send events to which
other components).
Event scheduling optimizations (e.g., avoiding mis-speculation when the runtime can anticipate
future event timestamps) can be enabled through mechanisms that allow the programming model to
derive and pass hints to the runtime.

6



2.2 Priority Research Opportunities

Figure 2.3: DOEScienceEnterprise reproduced fromBenjaminBrown’s presentation to theAdvancedScientific
Computing Advisory Committee (ASCAC), 2021 [10]

Dynamic event aggregation policies can be enabled by ensuring that application code (what is being
computed) is sufficiently abstracted away from how those computations are scheduled and at what
granularity in space and time.

PRO Category III: Advancements for the Scientific Enterprise and Mission Applications
(Cross-cut Technologies)

In addition to the inner and outer technological advancements, a related set of cross-cut technologies
need to be advanced. Failing to make these advancements will severely limit the ability of DOE to broaden
the scientific spectrum beyond the traditional basic science applications. Without making progress on these
research opportunities, many applications of interest to national security and resilience will remain untapped in
the DOE mission space.

Discrete Event Simulations of the DOE Science Enterprise

In the broader vision for DOE’s scientific enterprise (see Figure 2.3), a new PDES-based system can
provide a national-scale facility by which major additions, changes, or needs can be thoroughly evaluated in a
system-scale simulation of the enterprise operation. Feasibility can be confirmed, conformance to constrains
can be verified, investments can be vetted, cost trade-offs can be explored, and so on, all in the holistic view of a
nation-scale scientific enterprise system encompassing the behaviors of all infrastructural matter and scientific
minds.

In order to move towards this vision, research is needed to develop effective discrete event models of
the scientific facilities (including the numerous, interconnected cyber-physical processes), computing and
networking infrastructures, the scientific workflows, and the (human inquiry-driven) behavioral elements of
scientific inquiry. Owing to the scale, size, speed, and complexity of all the factors at play, the underlying
problem is fundamentally a distributed and parallel manifestation of many interconnected PDES models. These
need to be exercised in the aggregate for evaluating their effectiveness for scientific discovery and innovation.

What are the model development and repository infrastructures that can result in a distributed set of
models for DOE facilities that can be interconnected for holistic evaluation?
How can we enable each facility to develop and maintain the discrete event simulation models of their
own components that are part of the broader DOE enterprise?
How can the holistic enterprise simulations be hosted and offered to stakeholders across the DOE science
and application offices to enable comprehensive evaluations for major installations and innovations that
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2.2 Priority Research Opportunities

affect the large user base of the scientific community?

Discrete Event-based Mathematical Solvers

Fundamentally new numerical methods based on highly asynchronous and dynamic updates can be applied
in scientific codes (see Section 5.2). However, major research advances remain to be made to reap their benefit
in applications.

In certain classes of unstable-source numerical systems, such as fluid systemswith large variations in wave
speeds, how can PDES make adaptive local time stepping integrators more efficient while maintaining
numerical stability?
By making numerical simulations more work efficient, PDES offers great potential to enable the use of
more complex computational methods and analysis. How can the potential be realized in such methods
such as discontinuous Galerkin methods, ensemble forecasting, and uncertainty quantification?
While previous work has demonstrated the impact with low-order explicit methods, how can future
research extend the methods to both higher order systems and implicit/iterative methods with irregular
spatial convergence properties?

Key Application-Driven PDES Technology Advancements

In addition to the core advancements detailed in the previous PRO, there are additional cross-cutting
capabilities demanded by many PDES applications that are waiting to be addressed. As task-specific hardware
accelerators become more commonplace, PDES runtimes should provide a mechanism for logical processes to
access shared accelerator resources in an efficient manner. For example, in transportation simulation, scientists
are exploring how to deploy and optimize distributed traffic controllers that utilize reinforcement learning, which
involves a large amount of AI training and inference. The traffic controllers may be executing in parallel on
different CPU threads, all submitting tasks to a set of shared offload tensor co-processors. Furthermore, the
runtime itself may be submitting AI tasks to the accelerators (e.g., to determine how to rebalance the simulation).
In this example, there is a critical need for the PDES runtime to present a unified mechanism for shared access
to the accelerators in a way that can prioritize the submitted tasks (e.g. taking events’ virtual times into account)
to most efficiently utilize the shared hardware resources.

Furthermore, what are some benchmarks that are relevant in that domain that can be contributed to
the PDES community for inner and outer technology advancement? A repository of benchmarks spanning
application areas such as material science and transportation science is necessary to serve the applications
and PDES core proper. Similarly, key proofs-of-concept are necessary to exercise, demonstrate, and enable
PDES-based solutions across applications. Simulator engines and actual implementations are needed, along
with definition and validation in important scenarios, which, when in place, will be key enablers to advance the
specific applications as well as PDES in general.
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Chapter 3 Background and Illustrative Application Areas

In this chapter, a brief background on discrete event simulation and parallel discrete event simulation is
provided, followed by an illustrative overview of PDES that underlies important application areas of particular
relevance to DOE, including the science enterprise, transportation, energy grid, cyberinfrastructure, material
sciences, and epidemiology.

3.1 Parallel Discrete Event Simulation

Parallel and distributed discrete event simulation deals with ways of making leaps in virtual time and
employing multiple computational resources in a simulation containing a large set of entities defined as discrete
event-based models. Achieving correctness of parallel execution requires efficient and accurate synchronization
across all processing elements despite the simulation being partitioned spatially or temporally and the partitions
beingmapped to processors. All processors together serve to collectively simulate an integrated set of application
models such that the results are correct and reliable despite each processing element evolving virtual time
asynchronously in complex patterns.

To be meaningful, the results produced by a parallel simulation run must ideally match those that could be
produced by an equivalent sequential simulation run. To achieve this match, parallel execution must be properly
synchronized to preserve the right orderings and dependencies during computation of simulation state across
processors. One of the significant challenges in this synchronization is in minimizing the runtime execution
overheads (memory, computation and communication) incurred during parallel execution. It is thus important
to keep the overhead within acceptable levels, in order for the parallel execution to deliver sufficient value above
and beyond sequential simulation.

In this vein, parallel and distributed discrete event simulation techniques have been studied in the past two
to three decades. The literature spans books and survey articles covering traditional techniques in parallel and
distributed simulation. The interested reader is referred to a few early articles [18, 33, 34, 42] and a few recent
publications in this area [3, 35, 43, 70, 81, 84]. Notwithstanding these, recent emergence of new application
demands, techniques and hardware platforms are resulting in the need to revisit traditional techniques and to
develop newer techniques.

Spatial decomposition is by far the most commonly used parallel simulation scheme. In this scheme,
application models are partitioned into logical processes (LPs). Each LP contains its own individual state
variables, and interactions among LPs are only via exchange of time-stamped events. The simulation progresses
via execution of these events in temporal order. The temporal ordering is either inviolably maintained at
every instant during simulation (this approach being known as conservative execution), or is achieved in an
asymptotic manner (this approach being known as optimistic execution) in which the system guarantees eventual
convergence to the correct overall temporal order.

In general, there is a one-to-one mapping from the modeled physical time to simulation time. In contrast,
there may or may not exist a specific relationship between simulation time and wallclock time. The mode of
simulation execution determines this particular relationship. In an as-fast-as-possible execution, the simulation
time is advanced as fast as the computing speeds allow, unrelated to wallclock time. In real-time execution, on
the other hand, the advances in simulation time are performed in lockstep with wallclock time – that is, one unit
of simulation time is advanced in exactly one same unit of wallclock time. A variation of real-time execution is



3.1 Parallel Discrete Event Simulation

scaled real-time execution, in which simulation time period is some constant factor times an equivalent wallclock
time period. Synchronization algorithms are required to provide correct execution, avoiding undesirable effects
such as deadlocks, live-locks and termination problems. What more, in analytic simulations, which are executed
in an as-fast-as-possible fashion, an important system goal is to minimize the overheads of synchronization such
that the simulation completes as faster than real-time as possible. This adds the need for delivering rapid
simulation progress, on top of correctness of parallel operation.

PDES Synchronization Approaches: Conservative, Optimistic, Hybrid

Broadly speaking, parallel discrete event simulations have been viewed as conservative, optimistic, or
hybrid simulations. Conservative parallel simulations ensure that every event is executed only when the value
of the model’s state just prior to the event is always correctly ascertained (that is, the read set of an event
handler holds the correct, lasting value). Optimistic simulations relax this mode by ensuring that the value of
the model’s state just after the event will (eventually) be correct prior to the end of the simulation (that is, the
read set of an event handler may not necessarily be fully ready before the event is executed). Hybrid simulations
employ various combinations of these two approaches, along with a wide set of variants in terms of the amounts
and types of knowledge that becomes available in different parts of the system as the simulation progresses, and
in different methods of exploitation of such dynamically generated knowledge.

These modes result in vastly different technologies necessary to deliver the best performance on high
performance computing systems. A tremendous degree of complexity underlies all the modes, spanning many
dimensions such as compiler technologies, programming patterns, domain-specific modeling languages, inter-
processor communication, and software engineering.

Among them, the optimistic style of parallel discrete event simulation has lately received a significant
amount of attention in terms of a rich set of techniques that add reversibility to model execution. There remain
significant challenges and opportunities in advancing them to the newhardware and software in high performance
computing systems. At the same time, a comparable degree of attention is also overdue to new conservative
techniques that can discover and learn model-level concurrency latent in the models via lookahead-extraction
techniques (see Section 4.3), potentially via sophisticated code analyses and machine learning techniques that
were not available until recently.

Computational Characteristics of PDES

In general, the computational characteristics of PDES application workloads differ starkly from those of
traditional scientific, high-performance computing codes.
Bandwidth and Latency Demands: Due to the inherently bursty and asynchronous nature of computation,
PDES applications tend to be significantly affected by network latency parameters and relatively less by network
bandwidth parameters. The speed of system-wide distribution of virtual time information is by far the most
critical factor that determines the overall efficiency of an PDES application. The next critical parameter is the
speed with which inter-LP events are exchanged, which not only limits the progress of the simulation on each
processing element but also indirectly affects the virtual time advancements that account for transient events
across processors.
Floating Point versus Fixed Point Operations: Generally speaking, the computational core of PDES ap-
plications involves event handling codes that are not as dominated by floating point operations as scientific
codes tend to be. Moreover, the most frequently encountered operations involve integer operations, as well as
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Figure 3.1: Illustration of time-stepped and discrete event style of modeling and execution

complex, linked data structures. For example, cyberinfrastructure simulations involve network packet transfer
models dominated by integer operations; similarly, enqueing and dequeing operations dominate vehicular and
manufacturing models. This is in contrast to the computationally-heavy floating point operations involving large
matrices in some of the traditional scientific computing codes.
Simulation andWall-clockTimeDynamics: In traditional time-stepped execution, simulation time is generally
advanced via (fixed) time increments, and the system state is updated in a global fashion while the simulation
time is frozen at a certain value after a time increment. In contrast, PDES execution is dominated by arbitrarily
variable simulation time advances both within as well as across processing elements. Figure 3.1 shows the
salient differences in the execution styles. PDES allows floating point simulation time values, offers highly
asynchronous time leaps, and can generally complete the simulation faster. However, these also translate into
highly variable network communication, congestion, and buffering demands that a PDES application places on
the runtime system.
Computational Elements: Many scientific computing codes involve the solution of coupled partial differential
equations, implicit/explicit solution methods, linear algebra solvers, memory management, and so on, which
have been well studied in the high-performance computing domain. However, PDES is fundamentally built on
less studied concepts such as fine-grained event codes, timestamp ordering, global virtual time computation,
lookahead, rollbacks, state-saving, reversal, fossil collection, and so on, which directly determine the efficiency
of PDES application as a parallel code (see Figure 3.2).
Modeling Elements: Table 3.1 shows the common modeling elements in PDES in comparison with those
in high-performance computing applications that are broadly based on time-stepped simulations. While many
scientific codes are built on concepts such asmesh elements of complex geometries, PDES applications are based
on the notion of logical processes (LPs). Similarly, while messages and shared arrays dominate many scientific
codes, communication in PDES applications is defined in terms of events which are time-stamped messages that
constrain the global time-ordered execution of the entire parallel run. Modeled phenonema in PDES tend to be
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Figure 3.2: Illustration of differences in basic concepts underlying parallel discrete event from traditional high
performance computing applications

Traditional Supercomputing 
(Time-stepped) Simulations

Parallel Discrete Event 
Simulations

Modeling Units Mesh elements, etc. Logical Processes (LPs)

Inter-unit 
Communication Support

Messages, Shared arrays Time-stamped Messages 
(Events)

Virtual time advances Periodic, regular, mostly 
static

Highly dynamic, irregular

Computational 
concurrency

Across space, at frozen virtual 
time (time step)

Staggered across time and 
space (event timestamps, and 
LPs)

Modeled phenomena Predominantly physical Predominantly anthropogenic

Modeled inter-entity 
interactions

Often structured in space and 
time

Predominantly unstructured in 
both space and time

Scientific basis Focused compositions of 
well-understood basic laws

Exploratory compositions of 
evolving views/insights

Table 3.1: Representative dimensions of traditional high performance computing applications and parallel
discrete event applications
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Figure 3.3: Implications of parallel discrete event execution on the underlying system features of the high
performance computing platform

predominantly anthropogenic in nature, rather than defined by physical system laws. Inter-entity interactions are
nearly always unstructured in nature, in direct contrast to the physically dimensioned structures arising in many
scientific codes. Note that the unstructured nature is different from that encountered in scientific codes in terms
of unstructured meshes. Technically, the bandwidth of the graph formed by the network of entities (and their
interdependencies) in many PDES applications tends to be proportional to the number of entities in the graph,
in contrast to the relatively low bandwidth that can be obtained in a graph defined by unstructured meshes.

From the standpoint of high-performance computing systems, PDES constitutes a qualitatively unique class
of applications (see Figure 3.3). Its characteristics translate to a different set of optimizations, communication
patterns, latency needs, buffering requirements, scheduling constraints, synchronization and flow control needs
at the levels of hardware and middleware of the system. A layered schematic of the PDES software stack is
shown in Figure 3.4.

3.2 Science Enterprise Design and Provisioning

The DOE high performance computing and networking facilities provide world-leading capabilities that
act as the substratum to interconnect and enable geographically distributed, collaborative science using the
most advanced scientific user facilities, leadership computing, and production computing (see Figure 2.3 on
page 7). Some of the fastest and broadest networking superhighways tie them together as a seamless whole. The
next leaps in scientific advancements are enabled by unprecedented levels of collaborative scientific workflows
realized over this large scientific enterprise. An excellent portrayal of this vision can be found in the presentation
[10] by Benjamin Brown et al titled “Vision of DOE Science/User Facility Eco-system” in the DOE Advanced
Scientific Computing Advisory Committee (ASCAC) meeting on September 29, 2021.
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Figure 3.4: The hardware and software stack of PDES technology components and applications

Risk

Acritical dimension that is emerging in this rapidly evolving scientific enterprise is the immense complexity
of composition of all the elements at play. While the physics of the enterprise is made of the scientific
instruments, computing, networking, and storage, the behaviors of the enterprise compound the complexity
in terms of the collective scientific minds pursuing dynamic, insights-driven, temporally and geographically
distributed scientific inquiries (see Figure 3.5).

Although it is relatively easier to conceive the concept of operations in a localized setting of scientific studies
(say, at the level of a single facility within a laboratory), the newly expanded scientific enterprise is extremely
difficult to conceive and design without a methodical, holistic, and thorough simulation-based exploration of
solutions. The high level of risk in major decisions for the enterprise can be significantly mitigated and educated
via a holistic PDES-based evaluation of the enterprise.

System-scale simulation is helpful in not only covering the scientific activity space in a thorough manner,
but also most efficiently react and provision in an evolving landscape. It can be used in answering many types
of questions such as: How does a new planned installation impact the rest of the enterprise? What effects
do changes in scheduling policies or down-times have on different parts of the enterprise? This is akin to
national-scale air traffic simulations that are necessary to help predict the design, planning and responses to
dynamic air traffic scenarios, especially due to the sheer complexity and scale of the system. The risk of not
relying on a holistic simulation of the science enterprise lies in missing less expensive solutions and operating
with an inadequate understanding of the full design space, which leads to slower scientific advancement, reduced
productivity, and a predominance of local optimalities,

Vision

In the broader vision for DOE’s scientific enterprise, a new PDES-based system can provide a national-scale
facility by which major additions, changes, or needs can be thoroughly evaluated using a large, system-scale
simulation of the integrated operation of the entire enterprise. Feasibility can be confirmed, conformance
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Figure 3.5: DOE Computing Facilities reproduced from Benjamin Brown’s presentation to the Advanced
Scientific Computing Advisory Committee (ASCAC), 2021 [10]

to constrains can be verified, investments can be vetted, cost trade-offs can be explored, expansions can be
planned, effects can be stress-tested, and many additional analyses can be achieved, all in the holistic view of a
nation-scale scientific enterprise system encompassing the behaviors of all infrastructural matter and scientific
minds.

The problem of simulating the DOE science enterprise is fundamentally the challenge of discrete event
modeling and simulation of its full complexity: scientific experiment models, buffers, staging, delays, jitters,
storage, networks, volumes, velocities, insight generation, documentation, software, security, authentication,
provenance, archiving, etc. In order to move towards realizing this vision, research is needed to develop
effective discrete eventmodels of the scientific facilities, computing and networking infrastructures, the scientific
workflows, and the behavioral elements of scientific inquiry. Owing to the inherently large sizes and high speeds
of operations, the result is a large PDES execution for which DOE will be directly responsible to establish and
sustain as a critical service to the science community.

3.3 Transportation and Mobility Applications

Metropolitan-scale transportation systems are becoming increasingly complex and interconnected with the
integration of ubiquitous sensor, communications, and control technologies such as real-time GPS and camera
data feeds, 5G communications networks, and intelligent infrastructure and vehicle behavior controllers. The
resulting system consists of a collection of distributed agents (e.g., vehicles and infrastructure controllers), each
making different decisions such as how to optimize either their individual utility (e.g., user travel time) or the
system efficiency (e.g., minimize overall congestion or system fuel use). Control strategies implemented through
traffic management can include infrastructure modifications such as signal phase timing adjustments of signals
to expedite congestion mitigation. With the introduction of autonomous vehicles, an even greater opportunity
is expected for agents to make frequent decisions in response to system dynamics.
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Figure 3.6: Tokyo road network partitioned into regions for mapping to a multi-processor parallel discrete
event execution [36]

Transportation Simulation Systems

The rapid introduction of distributed, intelligent control technology makes it increasingly difficult for
researchers and government transportation agencies to understand and predict the dynamics of congested
transportation systems. Traffic network simulation is a key capability for these organizations to analyze different
scenarios and predict the potential impacts of infrastructure changes, policies, or control strategies at scale.
PDES is a key computational capability that enables modeling and analysis of these complex systems at
metropolitan scale involving millions of agents, nodes, links, etc.

Transportation system simulators can be broadly classified as macroscopic, mesoscopic, and microscopic
based on the level of detail of the behavior of individual agents simulated. Macroscopic models typically rely
on continuous flow approximations of traffic rather than modeling the behavior of discrete vehicles. While
macroscopic models can capture bulk, aggregate behavior of traffic networks, they are insufficient to model
the detailed, discrete agent behavior that are characteristic of dynamic, intelligent control systems. In contrast,
mesoscopic and microscopic models can resolve the behavior of individual vehicles, but their computational
cost has traditionally limited their applicability to smaller geographical regions. Simulators such as TRANSIM
[66], MATSim [59], POLARIS [2], DynaMIT [4], DynaSmart [58], SCATTER [79], SCATTER-OPT [124],
Aimsun [14], SUMO [57], INTEGRATION [89], BEAM [101], Mobiliti [17], MANTA [123], and others [113]
fall along the spectrum of different modeling approaches, target problem scales, modeling fidelities, and outputs.
Many of these simulation tools are functionally sequential, and some of the parallel simulators utilize a fixed-time
stepping method. The efficacy of parallel discrete event simulation has been demonstrated to varying degrees
[2, 17, 66, 101, 124]. Some of these tools utilize conservative synchronization (e.g., TRANSIM, POLARIS,
BEAM, SCATTER), while others utilize an optimistic approach (e.g., SCATTER-OPT andMobiliti). Improving
parallel scalability of these simulation tools is an important area of research, as domain scientists and engineers
aim at simulating ever larger systems with significantly greater traffic volumes.
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Challenges

There are a number of important computational challenges that need to be addressed to further enable
transportation scientists to utilize PDES technology. These include:

Partitioning for efficient load balancing
Dynamic load balancing
Efficient mapping of microscopic models and inter-entity shared states to new high-performance systems
such as those that make use of accelerator-based computational kernels and memories.

As with other PDES domains, performance is dependent on the model representation as a collection of
logical processes (LPs), their associated execution events (compute and communicate costs), and their mapping
to compute resources. An important aspect of the mapping problem is the parallel domain decomposition
to balance the work of the simulation across compute resources. Efficient partitioning involves recognition of
modules of an application process that could run concurrently, withminimal, infrequent interaction between each
other (see the illustration in Figure 3.6). In particular, zero-lookahead interaction is to be avoided for parallel
simulation efficiency. A common domain decomposition of the traffic system partitions the road network into
subgraphs and assigns each subgraph to a compute resource.

The domain decomposition and load balancing problem is challenging because traffic systemswith complex
control can contain a variety of heterogeneous agents, each with their own computational requirements and
characteristics. Examples of agents in such a system include link actors that are responsible for computing
congestion that occurs among vehicles simultaneously occupying a link, vehicle rerouting controllers that are
responsible for computing new routes for vehicles based on current congestion patterns, and dynamic traffic
signal controllers that are responsible for changing the signal timing of an intersection or set of intersections.
The computational cost of executing events for these different agents may be highly variable both spatially and
temporally, depending not only on the type of LP and event (e.g., status updates versus shortest-path calculations
versus neural network inference) but also on the dynamic state of the system. As a result of this variability, the
resulting simulation is difficult to statically load balance and requires novel dynamic load balancing methods to
meet the scaling needs.

Another reason to utilize dynamic load balancing is due to the movement of vehicles across the road
network. In some implementations, the vehicles flowing through the system may not need to be represented by
LPs themselves, but can rather be represented as events that are passed between the road links [17, 124]. The
advantage of such an approach is that the communication pattern between road link LPs has very good spatial
locality and remains stable during the simulation, even as vehicles travel from one end of the road graph to the
other. However, if vehicles need to serve as direct destinations of events (rather than indirectly through their
current link), vehicles need to be instantiated fully as LPs. In this case, if the vehicle LPs were partitioned
statically, it would result in much more non-local message traffic as the vehicles traverse the road network and
need to communicate with road segments and vehicles far away from their initial locations. A dynamic load
balancing approach takes the vehicle’s changing simulated location into account when determining to which
compute partition to migrate the vehicle’s LP, thus helping minimize the physical distance that messages have
to travel between LPs that interact with one another in the simulation.

In addition to partitioning for spatial locality and dynamic load balancing, there is a question of how to
optimally leverage accelerators for transportation PDES. Several classes of agents process different types of
events that benefit from hardware acceleration. For example, microscopic models may be mapped to GPUs,
while traffic signal controllers that utilize deep reinforcement learning could leverage Deep Neural Network
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(DNN) acceleration hardware. The efficient management and shared utilization of these hardware accelerators
and their memories by multiple LPs in the context of a distributed PDES simulation is an important topic of
investigation for future research. Also, mesoscopic models [86] that are suitable for computation on accelerators
need to be explored for exploiting the power of the emerging hardware systems.

3.4 National Energy Grid Applications

Distributed energy resources with increasing solar and wind energy penetration introduce bi-directional
electric power flows mixing the transmission and distribution functionalities of the energy grid. The large
size and complexity of electrical power systems demands the application of high performance computing in
simulating the hybrid models of the changing energy grid.

Hybrid Models for Grid

The simulation of hybrid models plays a leading role in the design of control systems for the power grid
in the large. Historically, industries adopting highly automated systems have motivated and promoted research
in hybrid models and their simulators; manufacturing and aerospace are prominent examples. The distributed,
automatic controls that are intrinsic to smart grids and renewable energy grids are the motivators for a new wave
of research in modeling and simulation of hybrid systems.

Hybrid models emerge from the study of interactions between a system’s digital and analog components.
The continuous dynamics of analog components are modeled with differential-algebraic equations. Discrete
event models are used to describe the dynamics of digital components. The interaction of these discrete event
and differential-algebraic models plays a central part in simulations of the complete system.

A simulation of frequency regulation by loads provides one example of a model containing continuous and
discrete event components [61, 63, 111]. Consider, in particular, a model used to select design requirements for
the sensors. At each load, a digital controller watches the frequency of the power system where it is installed.
The sensor in the controller has finite precision, and so acts upon only discrete changes in frequency. A typical
sensitivity is ∆f = 0.005 Hz [112]. When the sensor reports a change in frequency, the controller changes the
impedance of the load (e.g., by turning electrical equipment on or off) at its location. In the time between these
control events, the electro-mechanical aspects of the power system evolve continuously as described by their
differential-algebraic model. One variable in this model is the frequency observed by the sensors. Simulation
of the interacting dynamics of these two models — one discrete event and the other continuous — is necessary
to predict the effectiveness of the control scheme.

Discontinuity locking is a technique central to the discrete event simulation of hybrid systems [16]. With
this approach, interaction between the discrete event and continuous model occurs at the roots of state event
functions. In the preceding example, the continuous model contains a variable fk that is the frequency at the
kth bus; the sensor has a variable nk that is the frequency level at which the most recent control event took place
at the kth bus; and the next discrete event at the kth bus happens when fk − (nk ± 1)∆f = 0. This function
is an example of a state event function; by construction, it is zero at the event and changes sign upon crossing
zero. During the simulation of the differential algebraic model, all the discrete variables are read at their present
values. In this case, the nk terms are kept constant while simulating the electro-mechanical dynamics. However,
at each step of the numerical scheme that solves the differential-algebraic equations, the values of the state event
functions are calculated. If the sign of any these functions has changed, then the simulator missed an event (or,
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in general, at least one event). It then looks with a root-finding procedure for the precise location in time where
the state event function changed sign.

At best, the location of the event is found in just one extra evaluation of the differential-algebraic equations.
More often, several solutions to these equations must be calculated even as the root finding procedure narrows
the time interval containing the event. When the event is found, the discrete event is applied — in our example,
the admittance at the bus is modified — and the numerical algorithm restarted at the time of the event.

Computational Needs for Discrete-Continuous Models

The example just described highlights three key aspects of discontinuity locking that contribute to a high
computational cost for simulating hybrid models. The first is that the root finding procedure necessitates a
large number of evaluations of the differential-algebraic equations. Secondly, the frequency of events places a
potentially severe constraint on the step size of the numerical scheme that is used to simulate the continuous
model; this also contributes to a very large number of evaluations of the differential-algebraic systems.

Third, frequent discontinuities exhibited by discrete events prohibit in practice the use of multi-step
numerical methods. Although a number of multi-step numerical methods are available for optimized simulation
of electric networks, they cannot be used for discrete event execution, owing fundamentally to their closed-
system treatment and/or continuity at irregular points along the system trajectory. While the ability of multi-step
methods to reuse calculations fromprevious time steps is useful to improve the accuracy of the numerical solution
in next steps, they cannot be used to advance the simulation along irregular time steps. Instead, single step
methods that are easy to restart are preferable; for example, those in the Runge-Kutta family. These require
multiple evaluations of the differential-algebraic equations to calculate a single point in their trajectory; once
again, this increases the number of evaluations of the differential algebraic equations.

To examine wide area control of electro-mechanical transients by smart devices, simulation of electro-
mechanical dynamics at the transmission level are essential. Though previous work in power system simulation
has addressed this computational problem in a classical setting [41, 44, 102], the introduction of significant
discrete event dynamics necessitates a new approach.

With regard to the differential algebraic equations that model the electro-mechanical dynamics, it is the
solution of the linear system relating voltages and currents of the transmission network that poses the greatest
computational challenge. In particular, we must address two problems: (1) the frequent refactorization of
the admittance matrix as required to model some types of control events, and (2) the large numbers of back-
substitutions imposed by discontinuity locking.

Challenges

New algorithms are needed for solving this problem in the context of PDES. The broad framework for
discrete event-based hybrid simulation is shown in Algorithm 1. The new algorithms need to be designed to fit
into such simulation frameworks and reduce execution times for large-scale models from hours to a few minutes
as demanded by practical design tools. By large-scale is meant models with thousands to tens of thousands of
buses, each with its own discrete sensors and actuators.

The simulation of large-scale, discrete event-based hybrid models of the evolving grid raises challenges
and opportunities in mapping them to high performance computing.

How can the hybrid discrete-continuous models be mapped for efficient execution on accelerators such as
GPUs?
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Algorithm 1 Discrete event-based execution of energy grid simulation [83]
1: now ← 0
2: while now < end time do
3: δtmin ← min(δtintegrator, δtthreshold, δtexternal)

where, the δt values are determined as follows:

(a) δtintegrator ← δtGg for the largest time leap, δtGg,
that gives an acceptable error εGg in numerical
integration of the grid system state from now to
now + δtintegrator

now δt
G1

δt
G2

δt
Gg

...

ε
Gg

ε
G2

ε
G1< <

(b) δtthreshold ← δtHh for the earliest time leap δtHh

near the earliest time tH at which the system state
(e.g., voltage) crosses a threshold value specified
by a model component (e.g., automated control
from smart devices for voltage shedding)

now δt
H1

δt
H2

δt
Hh

...

t
H

(c) δtexternal = TE − now for TE = mini(TEi),
which is the earliest of all times {TEi} at which an
externally-specified system change is scheduled to
occur (e.g., outages due to non-electrical causes)

now δt
E1

δt
E2

δt
Ee

...

T
E1

T
E2

T
Ee

4: Advance the electric grid state from now by δtmin

5: Incorporate electric device control effects in the interval now and now + δtmin

6: Incorporate effects of external events, if any exist with time stamp ≤ now + δtmin

7: Advance the simulation time: now ← now + δtmin

8: end while

How can the models be efficiently distributed across multi-accelerator, multi-node architectures while
achieving correct, time-synchronized evaluation for large-scale grid scenarios?
How can linear algebra solvers be efficiently integrated into the discrete event execution in order to
advance the grid state across multiple distributed discrete events?
How can the graph network of the electric grid be efficiently partitioned and mapped to the parallel
system?
What is the most effective incorporation of sparse matrix algorithms within the discrete event-dominant
hybrid simulations?
How can the granularity of discrete event-initiated updates be increased so that the overheads of discon-
tinuous state updates of the grid model states from events are lowered.
What novel discrete event-based mathematical solution techniques (such as quantized state solvers) can
be designed and implemented for the fastest PDES-based grid simulations? How can such novel methods
be best realized on accelerated computing platforms?
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3.5 Internet and Cybersecurity Simulations

The complexity of communication networks and their associated protocols has grown to the point where an
accurate understanding or analysis of all but the most simple aspects and behaviors requires simulation. Network
simulators replicate the interactions of protocols, applications, and equipment, including the propagation of
electrical signals through a wire, or radio signals through an environment. Accurate network simulation enables
testing various applications and protocols at assorted scales, under a variety of conditions, yielding reproducible
results. No large-scale network testbed can offer all of that, thus large-scale high-fidelity network simulation is
a critical need.

Fundamental Discrete Event Nature

Nearly all current network simulation environments use discrete event simulation methods to simulate the
behavior of a communication network. Only certain states of the system being simulated (the network) need to be
tracked as they evolve over time. The state of the system is sampled at discrete points in time, and one can safely
ignore the state of the system at times in between those discrete points. As an example, consider simulating the
transmission of a network packet from one router across a wired point-to-point link to another router connected
to the same link. In the actual physical system, this seemingly simple act is in fact quite complicated, including
encoding the individual bits into electrical or optical waveforms, calculating error detection and correction
information, transmitting these waveforms on the actual communications link, detecting the waveforms at the
receiving end, verifying the correctness of the received signal, and reconstructing the packet at the receiving
router. However, in a network simulator, the overall behavior of this activity is captured by simply noting that
the transmitting router starts sending the packet at some time T , and the packet is completely received by the
receiving router at time T + ∆t. The ∆t in this case represents the time it takes the sender to transmit all of the
individual bits in the packet, plus the the time it takes for the signal to propagate from the sender to the receiver,
the signal propagation delay. The state of the system at any time during the interval ∆t varies in the physical
system, but can be safely abstracted out for this simulation. Using this approach, the state of the system only
needs to be changed twice in this example; once when the transmitter has completed sending the packet, and
once when the receiver has received the entire packet. Each state change is realized as an event in the discrete
event simulation.

The main motivation for implementing PDES in a network simulator is to reduce run-times for large-scale,
and/or complex simulations. Without parallelization, some large-scale high-fidelity network simulations require
weeks (or longer) to simulate the traffic occurring over short periods of time. Another motivation for PDES
is to enable the simulation of large or complex models that require more memory than is available on a single
computing element. Yet another reason for employing PDES is the need to integrate with each other multiple
simulators, each of which is specialized in a specific networking technology (e.g., wired and wireless network
simulators).

Time-stepped versus Discrete Event Network Simulation

In regard to advancement of simulation time, network simulators generally use discrete event simulation
(DES) rather than discrete time simulation (DTS). Discrete time simulations divide the simulated time into thin
uniform slices. All the events that occur during a time slice are processed, and then the simulation proceeds to
the next time slice. In contrast, in discrete event simulations, after processing one event, the simulation time

21



3.5 Internet and Cybersecurity Simulations

advances to the time of the next event, which is not constrained in any way to be a fixed time increment from
the previous event. One reason communication network simulators favor this next-event time progression over
a fixed-increment time progression is that determining an effective fixed step size would be tricky. Because
events can generate new events, one would need to determine a time step that would ensure any new events are
scheduled in the next time slice. The time increment would likely be very small, and would need to be fine-tuned
to optimize each different simulation. The times of the events in many network simulations are not uniform, and
are often sparse. As such, a discrete time simulation of a network may incur a large penalty when it faithfully
steps through each time slice in a simulation where there is a large gap between events. There would effectively
be no change in the simulation state between the gaps, yet every time slice would be processed. In contrast, a
discrete event simulation would simply advance to the next event, and instantly skip over the large gap. Discrete
time simulations work better for applications where a time step value is obvious, where many independent events
can be processed at each time step, and where event distribution is somewhat uniform without large variability
in time gaps.

One of the widely-used open source network simulators is ns-3 [32, 68, 87, 90], a discrete event-based
network simulator, written in C++ with Python bindings, popularly used for research and education in any
networked or Internet systems. A discrete-event network simulator such as ns-3 maintains a priority queue,
where events are sorted by their times such that an event with the earlier time will be processed before an event
with a later time. Events are usually associated with specific objects. In ns-3, the events are essentially function
calls on objects in memory. The simulator dequeues the earliest event from the priority queue and advances its
current simulation time to the time associated with that event. It processes the event, changing the system state
and typically adding one or more new events to the queue (set to be processed at specified future simulation
times). Then, the process repeats, once again advancing the simulation time, processing the next event, and so
on. Events generally relate to a simulated object, such as a network device. Network device A, for example,
may add an event to the queue representing the receipt of data on network device B, at a future time calculated
to mimic the time required to transmit and propagate the data.

PDES-based Network Simulation

In PDES-based network simulators, the simulated network devices are each assigned to one of the multiple
computing elements (or to logical processes which are in turn mapped to computing elements). Each computing
elementmaintains its own event queue, processing events for the simulated nodes allocated to it. Each computing
element runs in parallel, asynchronously advancing simulation time at its own pace. The simple example of
a network device A now becomes more complicated if network devices A and B are managed by different
computing elements. Suppose network device A is simulated on computing element a and network device B
is simulated on computing element b. Network device A cannot just add an event intended for network device
B to computing element a’s event queue because network device B relies on a different event queue. Instead,
a (virtual timestamped) message must be sent from computing element a to computing element b, requesting
that the new event be added to computing element b’s queue. Only in this way, will network device B be able
to act on the event (and simulate the receipt of the data) at its ordained virtual time in the correct temporal
order. However, this raises another potential issue. Since computing element a and computing element b are
proceeding at their own pace, it is possible that the message (containing the event for device B) may arrive
at computing element b after it has already advanced beyond the time specified in the event. In that case,
the simulation remains no longer accurate, as it has missed an event. This example illustrates the need for
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synchronization between the computing elements in the parallel discrete event simulation. Two main styles of
synchronization can be used: conservative and optimistic (also known as speculative).

Conservative PDES-based Network Simulation

In one of the conservative synchronization schemes called “granted time window,” assume that there was
a guarantee that no remote events (from other computing elements) would arrive at a computing element before
a specific virtual time in the future. The computing element would then be free to process all the events on the
event queue up to the given virtual time, with the assurance that it will not receive an event for a simulation
time in the “past.” Suppose further, that once all computing elements had reached the given simulation time,
they could synchronize, exchanging events that need to flow between computing elements, and then determine
a new future time with the same guarantee until when they could safely run. This is the granted time window
synchronization scheme, and the time to safely run until is called the granted time. But how is the granted time
determined? The catch is that, to use this scheme, a lookahead value must be determined which represents the
minimum delay between the sender and the receiver for inter-processor events. In other words, lookahead must
be set to a value smaller than the shortest amount of time it could ever take to physically communicate between
simulated entities allocated to different computing elements. In the case of a network of point-to-point links,
the lookahead time can be set to the smallest latency of the point-to-point links plus the transmission time for
smallest packet that the simulation sends. If network device A on computing element a, for example, sends a
packet across the point to point link connecting it to network device B on computing element b, where the link
latency (or delay) is 0.006 ms and the transmission time of the smallest packet expected to be sent is 0.005 ms,
the lookahead could be set to any value less than the sum 0.006 + 0.005 = 0.011. In this case, even if network
deviceA sent an event to network deviceB immediately after the last synchronization, it would not be scheduled
for receipt on B for 0.011 ms, which is after the next synchronization, ensuring it will be placed on the queue,
preventing the simulation time from advancing past it. Rather than just advancing in time slices, the earliest
next event time across all computing elements (or logical processes) is computed. This value, also called the
Lower Bound on incoming Time Stamp (LBTS), is added to the lookahead at each iteration to produce the new
granted time. Since synchronizing across all the computing elements is expensive, the key to good performance
using this scheme is to maximize the lookahead.

Optimistic PDES-based Network Simulation

In the other main style synchronization called optimistic synchronization, all the computing elements run
in parallel, optimistically assuming there will be no issues with events arriving from other computing elements
after they should have been processed. However, as they run, they store all the details of the previous messages
received and processed, and the resulting state changes. When an event is received for a simulation time in the
future, it is simply added to the event queue as usual. When an event is received for a simulation time in the
past, the computing element uses a restoration mechanism (such as memory log or reversible computation) to
undo all the changes incorrectly made by events to the state of the simulation until the state matches what it
was just before the simulation time of the incoming event. The event is then placed on the event queue, and
simulation restarts, processing this event, and then re-processing all that followed it. This process is repeated,
thus advancing the simulation optimistically and correcting the state on the fly as required. Rollback is the
fundamental method of synchronization in this case, rather than blocking the computing elements for guarantees
of correct state before events are processed. Optimistic PDES does not require a lookahead value and overcomes
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Figure 3.7: Scope of parallel discrete event simulation in network modeling and simulation problems at large
scale [32]

the restrictions of conservative PDES. However, implementing the ability to rollback is extremely complicated.
In particular, simulating a wireless network link between mobile nodes using PDES raises specific chal-

lenges. Unlike a wired point-to-point link, which has an appreciable and predictable lower bound on the
inter-link delay, the wireless link propagation time is proportional to the distance between the mobile nodes,
which is not only highly variable but also essentially lower-bounded by zero. Setting a lookahead would require
knowing or ensuring that the mobile node separation distance never fell below a certain level, which in most
scenarios is not admissible. For this and other reasons, many simulators such as ns-3 limit support for PDES on
wired point-to-point links. There is a critical need for an open source network simulator that supports PDES for
wireless connections, enabling large-scale, high-fidelity wireless network simulations possibly in combination
with wired network models. Enhancement of simulators like ns-3 to support optimistic PDES is one way to
achieve this goal. Such an undertaking, however, may require a large effort by teams from multiple institutions
(both government and academic) working together to succeed.

Network simulators can be evaluated in a spectrum of speed versus scale. The speed is represented by
the aggregate network traffic simulated in terms of packet transfers per second, and the scale is represented
by the number of network entities simulated in terms of thousands or millions of hosts and routers active in
the simulated network. In this spectrum shown in Figure 3.7, sequential simulation is situated in the bottom
left corner while specialized techniques such as time parallel simulation could be used to increase the speed.
However, PDES represents the best approach that provides the most increase simulatneously in speed and scale
needed to study large networks that, for example, arise in the DOE’s science enterprise (see Section 3.2).

To incorporate very complex software-defined network behaviors, a fully virtualized PDES-based network
simulation approach is needed [125].
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Challenges

There are several challenges in PDES for network simulation, some of which are highlighted in the
following.

Partitioning How should the network be partitioned into subnetworks/LPs? It is usually advantageous to
partition the network so there are more numerous LPs than processors to allow some flexibility in mapping
LPs to processors for load balancing purposes (described next). On the other hand, too many LPs reduce
the execution efficiency of the simulation because of the overhead in managing many LPs and because
event communication between LPs is generally less efficient than intra-LP event exchanges within a single
LP. Another very important question concerns which communication links are split across processing
elements when partitioning the network. For synchronization reasons, it is much more advantageous to
let communication links that have a high latency span processing elements. In other words, it is better to
partition low-bandwidth links that span long distances than high bandwidth links connecting nodes that
are close together.
Load balancingA related question concerns the distribution of logical processes among processors. The
load distribution algorithm attempts to simultaneously ensure each processor has approximately the same
amount of computation to perform, while also trying to minimize the communication that takes place
between processors. These two goals are sometimes conflicting. Static load distribution strategies map
the logical processes to computing elements prior to the execution of the simulation, and do not attempt
to redistribute workload during the course of the execution. Dynamic load distribution strategies do
redistribute the mapping of processes to processors after the execution begins in order to try to maintain
an effective load balance.
SynchronizationA synchronization algorithm is needed that performs well on wireless links and ensures
that the parallel execution of the simulator yields the exact same results as a sequential execution. In
particular, synchronization algorithms are needed to ensure that events are processed in the correct global
timestamp order and ensures that repeated executions of a simulation with the same inputs produce exactly
the same results.
Virtualization To reduce the modeling effort in producing high-fidelity behaviors of network entities, the
integration of virtual machines needs to be achieved with virtual time-aware synchronization built into
the frameworks [125]. Enabling discrete event execution in para-virtualization-based network simulation
systems such as Mininet [48] is a major challenge towards enabling novel applications of network
simulation. Also critical is the advancement of transparent and easily portable support for virtual time-
synchronized, unmodified software behaviors in networked environments executed using discrete event
simulation. Such a support is needed for a wide range of application scenarios spanning Internet of Things
(IoT), cyber-physical systems (CPS), and smart distributed devices.

3.6 Simulations for Hardware Co-Design

Simulations for hardware co-design involves the accurate exercise and exploration of software and hardware
configurations in tight conjunction for targeted advances in high-end computing. Co-design research uses a
wide variety of simulators spanning the space from individual component design to models of full HPC systems.
These simulators share similar approaches, trade-offs and challenges as described for network simulations in the
previous section, and the simulators reflect this design space. For example, one of the primary simulators used for
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the design of advanced processor features is gem5 [6, 109], which offers multiple modes of operation. However,
it is commonly limited to serial execution because of the challenges of running in parallel that incurs modeling
and accuracy limitations when synchronizing cores to improve the performance of the simulator. CODES [25,
62] is a simulator focused on modeling the system-level network, which supports parallel execution with both
optimistic and conservative synchronization across parallel threads of operation. The Structural Simulation
Toolkit (SST) [91, 106] supports simulations at both the node- and system-level and uses a conservative
lookahead interval for synchronization. One of the greatest challenges of using PDES for hardware co-design
is developing workflows that can tie these various levels of simulations together to inform the design of all the
components across the system stack.

Mixed Fidelity Models

The co-design of large-scale HPC systems requires understanding how the individual components of a
system will work in conjunction with several thousands of other components. Because it is impossible at
present to simulate all components at a high level of detail, it is necessary to develop techniques for simulating
systems at multiple levels of fidelity. For example, one could simulate a handful of nodes in the system at full
fidelity (including cycle-accurate CPU and memory system models), while simulating the rest of the system at
a higher level of abstraction. This allows the designer to analyze the node-level architecture performance as a
part of the larger system.

The greatest challenge for these types of simulations lies in the development of multiple compatible
models operating at the different levels of fidelity. The challenge lies in ensuring that the different fidelity levels
properly represent the application being modeled, as well as the network and system level protocols running
on the platform. For example, consider the problem of simulating large scale HPC system running a complex
MPI application. In the high fidelity models, the MPI stack would be running on the simulated processor. In
the low fidelity models, the MPI stack would be emulated using simplified abstractions. For the system to be
successfully simulated at a reliable level of detail, the choice of algorithms used for the various MPI operations
would have to be closely comparable between the two models.

Using Hardware to Simulate Hardware

With the increased availability of highly parallel computing architectures (FPGAs, CGRAs, etc.), it is desir-
able to exploit these hardware units as new simulator co-processors in co-design simulation frameworks. These
types of systems could be used to greatly increase the simulation performance of cycle-approximate/accurate
models for CPUs, GPUs and custom computational components. This methodology has been explored in the
past [19, 20] and was shown to improve instruction simulation rates for microprocessors by over an order of
magnitude. Further research is needed to understand how to generalize this approach to a wider range of
processor and accelerator architectures. This technique could be applied in conjunction with mixed fidelity
models to further increase the flexibility of the modeling capability.

There are challenges inherent with integrating any type of co-processor into the discrete event simulation.
The first is synchronizing the execution of the co-processor with the discrete event core. Another is finding
generic ways to translate the data between the software realm and hardware emulation realm.
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Event Scheduling Optimizations

A typical characteristic of cycle-accurate hardware simulation is the use of fine-grained event-drivenmodels
for the constituent hardware components such as cores and caches. For example, each hardware component
may have an associated clock handler that executes every clock cycle. Furthermore, depending on the workload,
the clock handlers may not have much computational work to perform in the execution, as in simply checking
to see if any requests have arrived over a bus and returning without the need to do any additional work. If the
amount of computational work per clock handler is very small, then a significant fraction of the simulation time
may be spent scheduling and running such fine-grained tasks. In these cases, there is an opportunity to improve
simulation performance by reducing task scheduling overheads using advanced event scheduling techniques
such as event aggregation. For example, SST consolidates all clock handlers into a single event that is scheduled
in the event queue. Additionally, the model is able to remove its clock handlers from the clock list when there is
no work to do. It would be beneficial to investigate more advanced techniques for enhancing the PDES runtimes
to help automatically determine when and how events can be aggregated to reduce these scheduling overheads
(also see Section 4.1).

Hardware Simulation with Optimistic PDES

In some cases, the performance of conservative PDES may be constrained by low latency links that span
multiple processing elements during the parallel domain decomposition. Because each component LP can only
execute events if it can prove that no remote LPs will produce events before its timestamp, the minimum latency
of the spanning links determines the frequency of synchronization and event exchange between components
assigned to different partitions. The lower the minimum link latency among all such links, the higher the
synchronization overheads, reducing the scalability of the simulation. It would be worth investigating the
degree to which optimistic methods of PDES can help improve the performance of these simulations by
reducing or eliminating the need for frequent synchronization, and how the speculation and rollback overheads
can be mitigated through effective load balancing (to reduce clock skew across simulator cores) and how new
blocked-waiting heuristics (such as based on event prediction) can be enabled through PDES programming
model and runtime advancements (see Section 4.1).

Simulation of Emerging Alternative Technologies

There is a range of new hardware technologies whose simulation models are naturally discrete event in
nature, which include neuromorphic computers [100] and quantum computing/networking devices [26, 122].
Computational needs are highly intensive in these simulations, requiring parallel execution. Previous attempts
at using PDES for these technologies have shown basic feasibility but also exposed immense challenges with
respect to model development and parallel scalability. Major advances are needed in PDES technologies to
enable the effective designs of neuromorphic and quantum hardware solutions. Event granularity optimization,
model entity aggregation, entity-to-processor mapping, load balancing, and event concurrency enhancement
are some of the major dimensions along which computer science needs arise in PDES-based design of these
emerging hardware technologies.
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Figure 3.8: Illustration of salient phenomena in material science for application of discrete event-based kinetic
Monte Carlo methods

3.7 Material Science Applications using Kinetic Monte Carlo

For more than half a century Kinetic Monte Carlo (KMC) simulations have been used successfully to
model many processes including crystal grain growth, thin film growth, dopant migration in semiconductors,
and material microstructure evolution due to radiation damage, accounting for the requisite time scales while
retaining atomistic resolution. The application range of KMC is exceptionally wide in the scientific computing
domain and includes diffusion-controlled chemical and biochemical reactions, which even intersects with studies
in epidemiology and population dynamics.

In KMC, only events significantly changing the system state are tracked, such as a vacancy diffusing from
one lattice site to a neighboring one in a solid. The simulation effectively integrates over unimportant faster
(stiff) time-scales, like atomic vibrations around their crystal lattice sites. Therefore, a KMC simulation belongs
to the class of discrete event models and simulations in general.

On a single processor, KMC may be relatively easy to implement. However, getting it to execute correctly
and with notable speed-up from parallel computers is considerably more difficult. Often, the instants and
locations of events are selected stochastically, which renders any parallel KMC simulation asynchronous and
irregular in nature. In addition, it is not certain that there is any upper bound on how fast information can
travel, making it difficult or nearly impossible to compute a meaningful lookahead for synchronization. To
further complicate things, interactions among objects in the simulation can have long-range effects, leading to
significant inter-object communication.

Given the tight synchronization constraints on KMC, optimistic simulation appears to be the most practical
and general approach ahead. A Time Warp-based KMC simulator, SPOCK, demonstrated [71] that KMC can
be executed accurately in parallel, without needing approximations as compared to a sequential simulation.
Further, the same implementation showed that the execution can scale linearly to 400,000 processor cores,
indicating that parallel KMC can be attempted even at the scale of the largest supercomputers.

The design and development of a general, parallel, and scalable KMC simulator would be groundbreaking
in many fields since there is a significant number of KMC applications across the sciences. There is a clear
need for such a simulator that allows researchers to formulate a model as a sequential simulation, which is
automatically enabled by PDES to employ the model on large supercomputers. However, much research and
development remain to accomplish this goal. Necessary components include automatic support for roll-back
and reverse computing of events and dynamic load-balancing. The feasibility of using automated incremental
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state-saving for roll-back support for the SPOCK simulator has been demonstrated lately [96, 97], but a large
amount of work remains to make the approach more practical and effective.

3.8 Epidemiological Planning, Response, Policy, and Decision-making

The significance of gaining better insights into the dynamics of large-scale epidemics is well known. The
enormity of epidemic outbreak effects has become common knowledge with world-wide attention directed
towards controlling them. In addition to the non-technical factors that come into play in the process of
effectively dealing with epidemics, an important technical aspect continues to be elusive and remains to be
explored, namely, gaining a good understanding of epidemic dynamics and the ways and means by which
various contributing factors affect the propagation phenomena. Public health planners and policy makers use
epidemiological simulations to study a variety of factors that influence epidemic dynamics within a population.
The set of all factors called non-pharmaceutical intervention (NPI) mechanisms plays an extremely important
role in the planning, prevention, and response phases for many epidemics. These NPI considerations represent
extremely high levels of financial effects, in addition to many other non-technological repercussions such as
political and societal impacts.

Simulation continues to be an important tool to augment analytical models that are based on simplifications.
In contrast to numerical integration-based analysis of analytical (differential equation-based) epidemic models,
simulation often provides tremendous flexibility in incorporating many factors. Large spatial scales and high
resolution of behavioral detail propel the challenge of sustaining simulations of epidemic propagation dynamics
at increasing scales from cities and states to countries. Certain epidemics with global spans serve to motivate
simulations at even world-scale.

Decisions and policies are typically based on statistical inferences from results of multiple simulation runs
that attempt to explore the model’s associated parameter space as exhaustively as possible. This requires very
fast turnaround times for each run so that enough statistics can be gathered within a reasonable duration of
wall clock time on which actionable decisions can be based. In light of this, the need for parallel execution
of such epidemiological models becomes evident. Large-scale computational epidemiology is an important
area of active research in an era when larger and more powerful parallel platforms are becoming increasingly
common. Scalable algorithms are therefore imperative for large scale realistic epidemiological simulations that
can exploit the computing resources offered by today’s state-of-the-art parallel platforms.

PDES is an excellent match to simulating NPI at large scales without sacrificing fidelity of representation
in geography, population sizes, behavioral complexity, and so on. Ideally, epidemiological models should be
sufficiently detailed to capture realistic models of the underlying phenomena and produce actionable insights.
Realistic models tend to be very complex and the associated parameter space very large. In turn, this implies
that the resulting computational problem becomes very large and unsuitable for sequential execution.

The basic processes underlying the non-pharmaceutical parts of epidemiological phenomena are discrete
interactions and transitions that can be mapped to events at which most pertinent state evolution happens.
Therefore, they are naturally amenable to discrete event modeling and simulation. Mobility and interactions in
proximity can be mapped to events of interest at which key modeling elements are invoked and incorporated,
whose composition and aggregation unravels all epidemiological variables of interest. Similarly, interventions
such as time-spanned vaccination campaigns, curfews, bio-bubbles, and so on are all readily treated as discrete
state transitions introduced into the base simulation of the epidemiological propagation. Feature-specific
models of health conditions and disease states are easily and efficiently modeled using discrete-event transitions
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Figure 3.9: System abstraction for discrete event-based modeling of epidemic propagation [82, 84, 85]

of probabilistically timed state transition machines at the level of each individual. These are discretized
generalizations that relax the classical SIR (susceptible-infected-recovered) or SEIR (susceptible-exposed-
infected-recovered) or many other similar classes of models into a single high-fidelity framework of models that
can be customized for various types of epidemics. While classical analytic models such as SIR are commonly
used with simplifying assumptions, the PDES-based approaches can accommodate a rich variety of complexities
in specifying and capturing the realities of modern epidemics [82, 85]. A wide range of spatial scales can be
supported using a hierarchy of the same basic discrete event framework of individuals diffusing and reacting
across intra-region and inter-region networks (see Figure 3.9).

Challenges

Although discrete eventmodels have been developed as proofs-of-concept, their parallel execution to sustain
large scales remains a significant challenge. The challenge is further amplified by an inadequate understanding
about the effective ways to realize these complete, discrete event models on the latest hardware platforms
including GPU and FPGA accelerators. Research is needed to enable new PDES modeling and execution
approaches to enable assimilation of dynamic data (such as rapidly arriving ground truth data streams) into
discrete event models of epidemic propagation and intervention phenomena for simulation-based predictions,
verification, and what-if decision-making, especially in the presence of rapidly changing environments in real-
time. Towards this end, new PDES-internal technologies are needed to increase the speed of model execution
using many modern parallel systems. Similarly, new PDES-external technologies are needed to optimize the
multi-scenario evaluation of PDES models for decision-making in the high-dimensional space of possible
scenarios that only differ from each other in minor increments [82]. Usability of PDES environment is a key
challenge in enabling the epidemiological domain experts to develop their own customized instances of the next
generation of PDES-based epidemiological simulation models.
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Chapter 4 Challenges and Opportunities in
Core Discrete Event Technologies

4.1 Virtual Time-Aware Load Balancing and Event Scheduling

One of the key requirements for PDES engines to achieve speedup is determining a good partitioning of the
state of the system and scheduling of work across compute resources. This is an issue that appears in many other
parallel computing paradigms outside of PDES, and is relatively well studied in previous literature. Because
finding optimal partitions and event execution schedules is generally intractable [114], practitioners have resorted
to heuristic techniques that span from iterative graph partitioning [46] to dynamic work stealing [1] and many
other approaches. A critical feature of the load balancing algorithm is managing the trade-off between data
migration costs, compute load imbalance, and communication and synchronization overheads. Furthermore,
there are also related considerations, such as how to select a good computational granularity for each partition,
task, and LP that exposes sufficient concurrency and flexibility to balance the loads adequately while still
amortizing the costs of event scheduling.

Load balance is critical to the performance of both conservative and optimistic PDES techniques. In
conservative approaches, under-loaded compute cores will advance their local virtual clocks faster than their
peers and then must wait for their peers to catch up before they can continue doing useful work. In optimistic
approaches, the under-loaded cores may execute too far into the future and then roll back events when straggler
events arrive, sometimes leading to cascading rollbacks. Having a well load balanced system ensures that
local virtual clocks of the LPs stay relatively aligned with one another, thus reducing time wasted in waiting,
misspeculation, and rollback overheads.

Load balancing specifically for PDES is not as well studied as for general-purpose, bulk-synchronous and
task-based execution paradigms; nevertheless, many techniques and lessons can carry over from those domains.
At a high level, load balancing approaches can be categorized into two types: static and dynamic. Static
approaches make fixed assignments of partitions/tasks/LPs to compute cores relying only on knowledge about
the system prior to simulation execution. These are often based on geometric or graph partitioning methods [46,
78, 93], which may be simple to implement and yield acceptable results for systems where task/event loads and
communication patterns are predictable and stable. However, this is not always the case: systems that tend to
be the most relevant to domain scientists are often those that have unpredictable and irregular behavior, which
cannot be ascertained before execution starts. Dynamic approaches allow partitions, tasks, or LPs to migrate
across compute cores during the simulation, resulting in load balance that is more robust to dynamic changes
in the distribution of event loads across the simulated system [15, 45, 53, 131]. The trade-off is that dynamic
load balancers are typically much more complicated to implement and require additional capabilities from the
application and runtime, such as support for runtime introspection, dynamic state migration, and directory
updates and indirection. Furthermore, semi-static schedulers constitute a class of load balancers that offer some
of the benefits of fully dynamic load balancing with less complexity than fully dynamic (asynchronous) load
balancers [9].

A research program is needed to investigate and address many PDES-specific considerations and challenges
to enable scalable PDES for dynamic applications. The design space for load balancing and event scheduling
algorithms is large and complex. While previouswork has applied various load balancing techniques to PDES [7,
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8, 29, 54, 60, 105, 110, 121], the community needs to do more to investigate techniques that take into account
how PDES-specific application load and communication characteristics interact with emerging hardware trends.

Synchronization-aware Partitioning

An example of a PDES-specific consideration is the latency of events that traverse links that are cut at
an inter-processor partition boundary. In many window-based conservative approaches, the minimum among
all latencies of links cut at processor boundaries determines the lookahead interval. The shorter the cut link
latency, the lesser the event concurrency exposed between processor cores for synchronizations, and the more
frequent the required synchronization. Similarly, in optimistic PDES, lower latencies of cut link increase
the probability that an event transmitted across a partition boundary causes a rollback, as the receiver may
speculatively execute events while the straggler events are in flight. As data movement and synchronization
costs are becoming increasingly dominant compared to compute costs on modern architectures, load balancers
need to place a greater emphasis on the costs of LP data migration, the subsequent communication costs, and
impacts on synchronization overhead, rather than focusing primarily on balancing local load metrics (e.g., event
count). Another example of a PDES-specific concern is managing the overheads of scheduling fine-grained
events. In a fixed-timestep computing paradigm, one might simply change the degree to which components
are aggregated to amortize overheads; however, in PDES each member component processes events at its own
individual event timestamps, complicating the selection of an optimal spatial aggregation strategy.

Application-Runtime Linkage

Another important question to be answered is how load balancing and event scheduling capabilities can be
productively enabled by the supporting software infrastructure. A highly productive PDES framework should
provide support in terms of the language, library, and runtime so that the simulator (with some assistance from the
application developer) can automatically determine when load balancing should occur, how LPs can be migrated
between processing elements, and how events to those LPs should be scheduled to the underlying compute
resources. Complicating the problem, the introduction of new hardware accelerators presents heterogeneous
resources to which the load balancer needs to assign work. The PDES runtime needs support for automated
introspection about the LP event execution and rollback and communication costs, as well as algorithms and
heterogeneous performance models to determine how to use that information to formulate a good load balancing
strategy. Finally, since application developers have domain-specific knowledge about the characteristics of their
system, it would be beneficial to allow developers to expose a kind of relevant information that the runtime
would not be able to determine by itself.

Elastic Execution

Strongly coupled to the load balancing problem is the challenge of making PDES execution dynamically
scalable. With elastic computing platforms providing the mechanisms to add and remove hardware resources
on-the-fly during execution, PDES runtimes should be able to adopt their mapping and scheduling to the
resource changes. This dynamism may be even more critical for real-time execution in which the PDES runtime
must adopt not only to dynamically changing computational demands from the event processing but also to
fluctuations in the externally induced real-time constraints from the application.
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4.2 Compiler Support

Optimistic PDES has the fundamental requirement of reverting on demand to previously (speculatively)
executed states of an event function. This aspect has attracted a significant amount of compiler work regarding
reversible computation, broadly addressed by two approaches: (1) generating reverse code which allows the
computation backwards from a given program state, and (2) different variants of checkpointing (also called
incremental state-saving), including copy checkpointing, differential checkpointing, and incremental check-
pointing (Chapter 9 “Adding Reversibility to Irreversible Programs,” in Introduction to Reversible Computing
[80]).

The advantage of having reverse code for reversible programs is that no run-time overhead is incurred in the
forward direction. For irreversible programs a run-time overhead occurs, by storing the destroyed information,
making them reversible. Checkpointing approaches usually incur a higher runtime overhead than reverse
code approaches in the forward direction, but can be faster when restoring a previous state depending on the
checkpointing frequency and scope of a checkpoint. Reversibility can also be addressed at the language level,
such as in Janus [126, 127] a reversible programming language. For example, in a reversible program language
a program for lossless compression needs to be implemented only for compression. The decompression of data
can be achieved by simply calling the inverse (or undo) operation.

Compiler transformations have been focusing on automating these techniques at the source and binary
level. The scope of the language supported constructs is another dimension, where various forms of parallelism
have attracted most attention recently.

Reverse code generation has previously been discussed [80] for the C language and with exact measures of
how much information is destroyed by certain operations and how code can be generated to store and recover
this information in the backward code. Techniques for incremental check-pointing are also discussed in the same
context, and automated compiler-based techniques for reverse code generation have previously been investigated
[12, 49, 96, 116].

An illustration of this approach is Low Overhead Runtime Assisted Instruction Negation (LORAIN) [49]
that accounts for, and in many cases reverses, the computation without resorting to state-saving techniques.
Based on the Rensselaer’s Optimistic Simulation System (ROSS), it is coupled with the LLVM compiler to
generate the reverse code. The reverse code generation is limited as it cannot handle more sophisticated C++

language features such as virtual functions and exceptions, but since it operates on the LLVM IR, it is independent
of the source level language. Loops require user-provided information. An alternative fine-grain time-sharing
Time Warp system [77] runs on multi-core Linux machines and makes systematic use of event preemption in
order to dynamically reassign the CPU to higher priority events/tasks.

Another approach [96] automates incremental state-saving for C/C++ at the source-level by instrumenting
all write operations such that any irreversible C/C++ program becomes reversible by storing a trace of all
memory modifications as a sequence of address-value pairs which are used when restoring a previous state.
The approach is implemented in the tool called Backstroke and its use has been demonstrated for Kinetic
Monte-Carlo simulations.

There also exist methods for autonomic state management for optimistic simulation platforms such as an
autonomic system that can utilize both an incremental and a full checkpointing mode [76]. At run time both code
variants are available and the system switches between the two variants, trying to intelligently select the more
efficient checkpointing version. An instrumentation technique has been previously applied [23] to relocatable
object files, operating on the Executable and Linkable Format (ELF) using the tool Hĳacker [75] to instrument
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the binary code to generate a cache of disassembly information. This avoids disassembly of instructions at run
time. At run time, the reverse instructions are built on-the-fly also using pre-compiled tables of instructions.
This approach has been further refined to also operate on shared libraries [24] and bears similarity to other
methods [96] paying an instrumentation overhead. The information that it extracts from instructions is similar
to address-value pairs, pairing the target address with the size of a memory write. Some progress has been
made also in utilizing hardware transactional memory for further optimizing single node performance [95].

A focused research program is warranted to build on these preliminary, scattered attempts into a coordinated
and cohesive whole to bridge the critical gap of a streamlined, PDES-oriented compiler technology.

4.3 Lookahead Extraction

An important challenge in lookahead-based advancements relates to application-agnostic and application-
specific approaches for automated lookahead extraction [67, 104]. Application-agnostic methods include
compiler-based analyses of application event handler codes and randomnumber streampresampling. Application-
specific methods include domain-specific analyzers, application programming interfaces, and domain-specific
languages to enable exposure of information needed for extraction at configuration time or runtime. All looka-
head extraction techniques work in such a way that there is no burden on the modeler. The most ideal techniques
ensure that there is no additional information that needs to be supplied on top of a sequential model.

Lookahead-extraction methods have been previously studied in a limited context at small scales of paral-
lelism and applications such as mobile ad-hoc network simulations and multi-processor simulation [22, 28].
However, modern parallel processing and supercomputing architectures need new research to apply those
techniques or invent new techniques.

Research is needed to investigate how to efficiently achieve lookahead extraction from pre-sampling random
number generators particularly on accelerated platforms. Because of the hardware-specific nature of libraries on
accelerators, the implementations need to be revisited to (1) add new interface methods to provide pre-sampling
functionality, (2) provide new, efficient implementations for pre-sampling, and (3) provide balance between
memory, pre-computation time, and parallel execution facilities.

New compiler-based methods are needed to perform code path analyses to track the virtual time delays
backwards from each event scheduling operation within the application event handlers. Generalize methods
as well as domain/application-specific methods need to be investigated to intelligently extract the maximum
amount of lookahead from the applications’ event codes.

Through a concerted research program, advancements made in lookahead extraction can have far-reaching
impacts and fundamentally change PDES at its core, to consequently benefit a large number of applications
and their adoption.

4.4 Benchmarks

Benchmarks for evaluating the performance and correctness of simulators form an important ingredient in
the development of PDES technology. They allow comparing and ordering different simulation approaches and
implementations and they also aid in identifying flaws in implementations.
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Correctness Evaluation of Complex Dynamics

PDES benchmark models have been developed [99] for evaluating simulators that goes beyond the classic
PHOLD benchmark model. This is enabled by including extra state variables and matrix computations that
aid in detecting simulator errors. In such models, each event involves non-commutative matrix algebra, and
the matrix that results from the simulation of the model serves as a checksum or hash of the simulation and
is sensitive to the order of events. The size of this matrix can be controlled by the user, as can the number of
bits in its elements. This new benchmark is particularly useful for debugging simulators that are based on the
Time Warp Algorithm as its mathematical properties allow for checking of various assertions. In this model,
the amount of arithmetic operations can be tuned relative to the amount of memory modifying operations.

The state of each LP contains two square matrices of integers: an accumulation matrix A, and a transfor-
mation matrix T , each of size n × n , where n is an integer constant chosen by the user. Each event message
contains the transformation matrix of the sender. Upon execution of an event, the receiving LP multiplies
its accumulation matrix to the right with the received transformation matrix. When an event is executed, the
receiving LP schedules a new event for a randomly selected LP at an exponentially distributed virtual time delay.

At the end of the simulation, the matrices of all LP’s are multiplied together, in LP ID (rank) order. The
resulting matrix is the output of the simulation. Since matrix multiplication is in general non-commutative, the
output depends on the individual events being executed in the correct order. The output serves as a check sum
or hash of the simulation, and its size can be controlled by choosing the matrix size and the number of bits in
the matrix elements.

A first evaluation of this benchmark [97] used a reversible variant of matrix multiplication and evaluated
multiple system variants: the Backstroke tool [96, 98] for generating reversible C++ code, the (adapted) Janus
compiler [128] for generating forward/reverse functions in C, and hand-written reverse code. These constitute
a first step that needs to be methodically expanded and refined in a PDES research initiative for the success
of PDES-enabled scientific advancements. Many additional benchmarks need to be developed similar to the
preceding examples for the automatically evaluating the correctness of complex dynamics in PDES execution.

Characterizing PDES Model Properties

For any given simulation application or model implementation, there are a number of metrics that can
have a large influence on the execution speed, relatively independent of the simulator engine used. Classic
parallel computing measures such as ratios of computation to communication, computation to I/O, computation
per memory access, etc. remain directly relevant. Nevertheless, to gain the additional insight necessary for
PDES execution, the conventional measures often have to be recast in terms relevant for PDES execution:
computation per event, ratio of local to remote events, number of events (or computation) per lookahead period
(for conservative simulation) or between remote events (for optimistic simulation), size of event data per event,
etc. In addition, there are PDES-specificmetrics characterizing the simulation engine itself that bear importance,
such as synchronization overhead, run time cost for sending remote events as a function of event size, overhead
for time synchronization, and so on.

Typically, simulation engines are benchmarked for performance using standard benchmark models, such
as the classical PHOLD bechmark or the later LA-PDES benchmark. There is also considerable amount of
literature on performance of various algorithms to manage the event priority queues. However, other than
a few rare efforts [27], there is a dearth of application model characterization across different application
domains. As a result, the field lacks a sound basis to weigh trade-offs between computation, communication,
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global synchronization, I/O, partitioning, load-balancing, etc. This characterization can be useful in answering
questions as follows. How important is model-space event retraction/cancellation? What fraction of events are
rolled back for a given partitioning? Even for questions where the options are well characterized, such the choice
of priority queue algorithm, practitioners have only anecdotal evidence or experience to decide which algorithm
might best suit a given model. There is a general lack of a formal basis for choosing one synchronization or
partitioning algorithm over another, beyond domain experience, familiarity, or phenomenological approaches.

A comprehensive research program to define and characterize model properties across many application
domains would have a broader impact on the field. The results of such a program would inform practitioners’
judgement on a host of implementation choices when addressing a new application, by enabling direct com-
parison to existing model properties, and identifying truly novel behavior or regimes requiring new simulation
algorithms. At the same time such a program would enable meta-insights into equivalence classes of PDES
applications, in terms of performance properties, and generic performance predictors based on application
properties. These insights would move PDES application performance from phenomenology to the level of an
engineering discipline. All the “Inner Technologies” topics in PROCategory 1 would benefit from this program.

Assessing Communication, Computation, and Memory Performance

The LA-PDES benchmark [74] is a parameterized benchmark application for measuring parallel and serial
discrete event simulation (PDES) performance. Applying a holistic view of PDES system performance, LA-
PDES tests the performance factors of (i) the PDES engine in terms of event queue efficiency, synchronization
mechanism, and load-balancing schemes; (ii) available hardware in terms of handling computationally intensive
loads, memory size, cache hierarchy, and clock speed; and (iii) interaction with communication middleware
(often MPI) through message buffering. LA-PDES defines seven scenarios for individual performance factors
and an comprehensive stress evaluation scenario. Each scenario is simply a set of input parameter values
such as number of entities and events, end time, inter-send time distributions, computational and event load
distributions, memory use distributions, cache-friendliness, and event queue sizes.

At its core, each simulation entity in LA-PDES communicates sends messages at randomly chosen time
intervals to a set of randomly chosen destination entities; it receives messages from sending entities, which
cause it to execute a computational load before proceeding to sending out a next batch of messages. Input
parameters control all the distributions of receiving entities, times, work load, and locality.

LA-PDES has been implemented on several PDES engines with a particular emphasis [37] on comparing
Just-in-time PDES engines, such as Simian [94], to traditional engines, such as ROSS [11], and comparing
work-stealing [120] or load-balancing schemes [30].

Without a PDES research program, such initial efforts leave a wide gap in our scientific understanding
of the basic interactions of PDES workloads on the high-performance computing systems of DOE and other
agencies.

4.5 Accelerated Computing Systems

Given the dominance of accelerators in the high performance computing domain, new methods are needed
to fully exploit the accelerators in PDES systems. Currently, the known technology is severely limited in taking
traditional PDESmodels and porting them to the unique hardware capabilities of accelerators, such as the Single
Instruction Multiple Data (SIMD) mode of GPUs and the Bulk Synchronous Processing mode of Intelligent
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Processing Units. Fundamentally new algorithms are needed to realize efficient event storage, representation,
scheduling, and execution of events on the GPUs for main event processing. New synchronization methods are
needed to efficiently compute global virtual time in these architectures. It is possible that novel definitions, data
structures, and implementations can be invented specifically for these architectures. Also, the integration of
event processing needs to be carefully resolved with the new AI/ML algorithms that are becoming part of the
application codes. Without these advancements, it becomes nearly impossible to use the current leadership-class
accelerated computing systems of DOE user facilities in all the emerging applications in the DOE and scientific
mission spaces.
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Chapter 5 Challenges and Opportunities in
Discrete Event Eco-System and User Needs

In delivering the scientific and technological outcomes across applications, an important need that arises is
in regard to how the end-user can effectively use the PDES applications to solve the important problems of their
domain. This involves interfaces, modeling languages, usability features, ready-to-use solvers, interoperability
standards and implementations, ensembles, steering and visualization.

5.1 Domain-Specific Languages and Modeling Environments

Although advancement in PDES is necessary inmany applications, the bar is high for application developers
to move their DES models to PDES for effective parallel execution. Therefore, the barriers to moving from
DES to PDES need to be significantly lowered for success in PDES applications, especially for rapidly porting
to DOE’s leadership class computing at a low development cost. Similary, it would be highly desirable for
PDES application developers to easily move their PDES codes from laptops to supercomputers. Petri-Nets,
Agent-based Simulations (ABMS), and Cellular Automata (CA) models are instances where domain-specific
languages andmodeling environments are effective in briding the gap. However, scaling techniques are necessary
in PDES-based execution for achieving provably scalable parallel models in areas such as ABMS and CA.

To illustrate, Cellular Automata (CA) form the basis for models in domains as diverse as forest fires [39],
materials [88], transportation, chemistry, and countless other domains. It is less well known that CA constitute
a special case of discrete event simulation and that significant advantages in computational efficiency and, in
some cases, numerical accuracy can be obtained by transforming a cellular automaton into its event driven form
[69, 115, 118, 130]. Typically, the advantages of event driven CA derive from two aspects.

The first is natural activity tracking that emerges from an event oriented simulation method [64, 65,
117, 129]. Surprisingly, the possibilities of activity tracking are only now being rediscovered, separately, in
the domains sciences that often favor CA. Work on activity tracking in event driven CA anticipates, indeed
encompasses, recent work on front tracking for grain growth models [108] by offering efficient simulation
algorithms and conceptually simple modeling constructs to focus computational effort on dynamic portions
of the cell space. The second aspect is the use of continuous time in the simulation model. This improves
efficiency by avoiding delay steps to simulate velocities in the physical space being modeled, and it improves
numerical accuracy by not truncating random variables used to model motion through time. This continuous in
time simulation is achieved by progressing from event to event, rather than step to step, and allowing real valued
intervals between events.

The mathematical concepts and techniques that make cellular automata into a special case of discrete
event systems have been well know for decades [129]. Significant, practical improvements in the handling of
collisions in discrete event models simplified this original approach [21], and these improvements have become
commonplace in event driven simulations in general and cellular spaces in particular [69, 130]. The usefulness
of these basic techniques have been validated by a growing array of modeling and simulation techniques aimed
specifically at event driven simulation of cellular spaces [118, 119].

Where event driven CA can offer improvements in numerical accuracy and computational efficiency, these
improvements can only be enhanced by using PDES algorithms to further reduce execution times or to improve
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the resolution of a model by simulated a larger cell space. Initial forays into this research area [55] have been
promising, but the topic has yet to gain significant traction in the broader PDES community. Specifically, the
peculiar role of simultaneous events inmany cellular models imposes a need for specificmodeling constructs that
are less useful, and hence less familiar, in some other application domains [69, 70]. An expanded interest in the
application of PDES models to problems in scientific computing would spur rapid and profound advancements
at the intersection of PDES algorithms, modeling methods, and application domain that are unlikely to emerge
with the present, less integrated approach to research and development.

5.2 Discrete Event-based Mathematical Solvers

Discrete event-based mathematical solvers arise as the underlying execution model behind integrators such
as quantized-state integrators, variational integrators, and adaptive time-step integrators, and applications of the
transmission line matrix methods. Their application areas span a wide range such as radio signal propagation,
multi-scale physics (fusion, plasma, magnetosphere), electric grid transient dynamics, and cyber-physical system
dynamics, to name just a few.

PDES can also help enable more efficient execution of simulations where tasks are irregular (e.g., tem-
porally and spatially non-uniform), and their dependencies are only fully known when the global state has
reached a certain iteration or simulated time. Problems that exhibit these properties are termed unstable-source
problems [38]. For these unstable-source problems, both static and most dynamic task graph frameworks are
insufficient since the dependencies of a task are not necessarily fully known at task creation time and can be
altered by subsequent task executions. Additional checks must be made to determine whether a set of tasks
in the dependence graph are safe to execute (e.g., based on lookahead). For these reasons, many applications
resort to using a mechanism of global fixed time-step per iteration to enforce task dependencies. However, such
an approach can leave a lot of performance untapped due to global synchronization overheads and because it
prohibits the use of non-uniform time-step updates. PDES provides a way to re-capture some of that perfor-
mance by enabling asynchronous, spatially irregular update schemes (e.g., adaptive local time-stepping) while
at the same time enforcing all dynamic task dependencies that arise.

Fluid simulation codes with large discrepancies in wave speeds are a prime target for these techniques since
state dynamics tend to bemore localized, and non-uniform time-stepping techniques can provide a large potential
work-reduction opportunity. Examples of these types of applications of interest to DOE include: storm surge
simulation, plasma physics, and climate simulation. Recent work has shown significant speedup potential from
adaptive, locally time-stepped simulations using PDES [8], where an improvement of 4× per-node compute
throughput was demonstrated compared to a synchronous, fixed time-stepped formulation of a shallow water
equation simulation. Furthermore, a 15× work reduction was predicted for full-scale storm surge simulations
using the adaptive time stepping PDES techniques.

Still, there are many challenges and opportunities in this space, including implicit systems that utilize
iterative solver methods with non-uniform convergence behavior. For problems with locally non-smooth
solutions, they tend to exhibit very poor convergence around these regions. Synchronous methods handle
these cases by simply iterating globally until convergence of all regions of the mesh. However, similar to
the adaptively time-stepped simulations described above, there is a large work-reduction opportunity in these
iterative methods that can be enabled by PDES techniques by avoiding computationally unnecessary updates in
the locally converged regions. We could then explore dynamic load balancing to achieve a faster overall time to
solution in these cases. Implicitly time-stepped systemsmay be able to combine the local time-stepping and non-
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uniform iterative convergence optimizations together within a PDES framework to maximize work-reduction
opportunities.

Furthermore, an interesting possibility that arises when applying optimistic PDES approaches to iterative
convergence problems is the possibility of avoiding rollback operations. So long as the end solution still
satisfies the convergence criteria, speculative updates that temporarily change the evolution of the non-converged
state may not be harmful to the quality of the resulting solution. The performance and accuracy impact of
optimizations such as these would be an interesting topic of future investigation. In addition to these technical
research questions, practical challenges in this area include consolidating and characterizing local time-stepping
and iteration algorithms, packaging high-performance implementations of these algorithms together andmaking
them available through existing DOE computing software infrastructure, and demonstrating their impact on large
real-world applications.

The aforementioned methods also bear relevance to ways in which PDES could be used to help solve
implicit systems: (1) work reduction for systems with irregular spatial convergence properties, and (2) eliding
rollback when considered not harmful to quality of converged solution.

5.3 Interoperability, Federated Simulations and Ensembles

PDES encompasses an important mode of simulations, namely, federated simulations in which multiple
disparate simulators cooperate to achieve a combined, larger function. Interoperability at various levels is key
in this approach, which includes continuous-discrete model interfaces and multi-scale model interfaces.

The federated simulation services address two important components: (1) overall event processing order
by each federate, and (2) synchronized event delivery to each federate. While enabling event processing
order and synchronized event delivery, all in a single encompassing standard framework, the interface needs
to accommodate a large variety of individual types of simulators. In general, there is a plethora of different
simulator types — event-stepped vs. time-stepped, sequential vs. parallel, real-time vs. as-fast-as-possible,
conservative vs. optimistic, etc. A federation might include any combination of any of these simulator types
— this combination results in a PDES execution at its core. Moreover, the exact combination of the types
is not always made known a priori to the federation, and hence the interface as well as the implementation
must be sufficiently general to accommodate any/all of them. The interface must accommodate any arbitrary
combinations of, and any number of instances of, different types of simulators, all in one core, seamless interface.

While federated simulation has been previously well studied in the context of live, virtual, and construc-
tive simulators in the defense sector [33, 81], relatively little is known in the non-defense applications. To
realize federated execution of large DOE applications on high-performance computing platforms, new feder-
ated approaches are necessary that are specialized and custom-built for runtime performance using the unique
computational and networking infrastructure of the DOE science enterprise.

What-if scenario evaluations, real-time interfaces, and PDES-aware design of experiments are also key
enablers of user-oriented functionalities needed for effective application of PDES advancements. Advances in
this aspect of PDES ensembles can have tangible impacts on non-PDES applications as well, by presenting new
ways of exploiting computational and memory overlaps in any ensemble of computational experiments.
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5.4 Visualization

Visualization is key to successful PDES, playing an important role in understanding of the underlying
behavior (e.g., communication, rollback) of simulations as they unfold and in understanding the behavior of the
system being simulated.

Visual Analysis of Simulation Performance

Large-scale PDES can simulate millions of elements when predicting complex real-world infrastructure
and phenomena. To deliver on the potential of these parallel simulations, users need to understand the
execution behavior of the large simulation to ensure its efficiency. Optimistic, or speculative, executions
ensure local coherence by using event rollbacks while conservative executions employ event blocking, both of
which reduce simulation efficiency. The fact that rollbacks and blocking are impacted by several factors, such as
the organization of processors and the simulated communication patterns, makes it difficult to identify efficient
simulation configurations. The volume of multivariate time-series performance data also poses a challenge
to understanding the execution dynamics of different configurations. However, interactive visual analysis
of the simulator’s components and behaviors at varying granularities can provide insights into bottlenecks
and inefficiencies, thereby improving the capabilities of the simulator. Such visualizations present high-level
summaries of performance that highlight areas of interest and allow for the low-level explorations of these areas
to discover the sources of performance inefficiencies.

Previous efforts [13] showed that sampling and visualizing metrics related to rollback events can be used
to identify problems with executing simulations in a multiuser environment better than numerical methods
without visual analysis [31, 73]. Additionally, visual analysis of simulation performance using aggregates of
performance metrics can further expose communication patterns between processors that cause more rollbacks,
show the individual performance of processors relative to the global time, and help to identify non-performant
simulation configurations [92].

To further improve the capabilities of analysis tools for PDES, more advanced data processing and explo-
ration methods are required. Along this line, recent efforts have been made using advanced time-series methods
for simulation performance analysis. Specifically, clustering and dimensionality reduction have been used to au-
tomatically detect and correlate changes in communication patterns and identify similarities in the dataset [51].
Coupled with interactive visualizations, users can explore complex temporal behaviors of simulations and gain
insights into event execution dynamics. Such an understanding can guide the mapping of processes across the
system to mitigate bottlenecks and improve performance.

There still exist barriers to be overcome when analyzing simulation performance. The lack of support
for streaming data from simulations for in-situ data processing with lowered network bandwidth requirement
is one such barrier. Additionally, allowing for more visual interactivity and highlighting significant features
while maintaining low visual and cognitive loads remain challenging. Employing machine learning in the data
analysis will also provide opportunities for greater insights to be gained with little effort from the user.

On-line Data Analysis, Reduction, and External Interfaces

During a PDES simulation it is often desirable to interface with external hardware and software, such as for
saving restart files, on-the-fly visualization, and communicating with databases. In these applications, as well
as internally within a PDES simulation, the relevant quantities are often sought as reduced data. An example is
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the temperature in a materials simulation, which may depend on the state of many or all LPs, and which may be
needed for saving output files, looking up material parameters in a database, or for visulalizing the current state.
Although the implementation of data reduction inside a PDES model is possible, it is much more convenient to
have an Application Programming Interface (API) for the same provided by the simulator. This is especially
relevant for interfacing the PDES execution with the external world, which requires intimate knowledge of the
simulator itself to be accomplished correctly and without any causality violations. Here too, the simulator can
provide an appropriate API, alleviating the model developer from the predicament of creating fragile codes.

Research is required on how to best implement the suggested APIs in PDES in a way that is practical
to the user while not adversely affecting parallel performance. It is expected that such simulator-provided
APIs for on-the-fly data reduction and external world interaction will make PDES an attractive approach for
more applications, and to make implementation of many existing models more practical and maintainable. The
proposed APIs would provide the necessary mechanisms for data-streaming and on-the-fly analysis also relevant
to on-line performance analysis and visualization.

Domain Visualization of Simulated Workloads

Extracting themost insightful output from the results of a simulationwill positively impact user productivity
and efficiency. Simulated systems are fundamentally endowed with the capability to produce metrics that are of
a higher level of fidelity and granularity, as compared to real-world systems. However, this additional capability
complicates performance analysis. To resolve this conflict, domain-based visualizations capturing the structural
representation of the simulated system along with time-series data can efficiently expose important insights
from complex, system-wide performance data. While visualizations integrated with time-series analysis are
widely used to analyze and improve the performance of large-scale scientific applications [40], visual analysis
solutions for simulated performance have been limited and lagging their scientific counterparts.

Domain-based visualizations can show the impact of domain-specific configurations, such as the placement
of jobs on a simulated network [47], and the interactions between elements of the systems, such as nodes and
links in the network [103]. Previously, certain co-design and design space exploration efforts using PDES
have been supported by domain-visualization [13, 50, 72, 107]. Novel work has shown how well-selected
visualization design and interaction methods can enable the exploration of a simulated HPC application running
Dragonfly systems [5, 52, 56]. These visualizations capture the physical topology of the system for intuitive
analysis, exposing temporal correlations as well as visual similarities and differences. Interaction methods such
as creating connections between attributes and filtering allows users to apply expert knowledge in guiding their
analysis.

Notwithstanding such recent forays, much remains to be researched and developed in a coherent research
program. Due to the volume of data that can be generated by simulations, several challenges regarding data
collection, management, and processing remain. For example, the use of in-situ analysis should increase as it
would negate the need for storing large traces for post-processing and provide more information than offline,
profile-based analysis. However, in-situ visualization requires integrating the analysis tools with the simulation
without significant perturbation of the simulation performance. There are also opportunities to expose novel
views of the correlation between the simulated workload and the behavior of the simulator, such as showing local
state and metrics, synchronization, and global states and event passing. Finally, feedback from the simulated
systems can be used to steer simulations to increase execution efficiency and for more intelligent design space
exploration.
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