Computational and Compressed Sensing
Optimizations for Information Processing in
Sensor Network

VIJAY KUMAR
University of Missouri-Kansas City, Kansas City, Missouri, USA

1. INTRODUCTION

This report narrates the development and deployment of a Distributed Sensing Algorithm that
had a profound impact on the performance and capabilities of a number of computing systems.
It solved a number of complex issues in the deployment of large scale sensor networks. We begin
with a brief history of the development of this algorithm.

o 1
Operating)Opmtlng
il System1 | System2 ["

Virtual Sensor
Sensors

7| Sensor Appiication
Virtulization and configurability \\\:\EI Physical Sensors

:_-_] Virtual Sensors

Figure 1 : Real-Time extension of Brook-Iyengar algorithm showing Virtual sensor implementation.

In 1996, Iyengars group, in collaboration with Brooks and with funding from Oak Ridge Na-
tional Laboratory, invented a method of fault tolerance modeling that offered a computationally
inspired real-time task management solution. The algorithm referred to as Brookslyengar al-
gorithm or Brookslyengar hybrid algorithm is a distributed algorithm, that improves both the
precision and accuracy of the measurements taken by a distributed sensor network, even in the
presence of faulty sensors. The algorithm does this by exchanging the measured value and ac-
curacy value at every node with every other node. In addition, it computes the accuracy range
and a measured value for the whole network from all of the values collected. The algorithm
demonstrated that even if some of the data from some of the sensors is faulty, the sensor network
does not malfunction.

The group, in their investigation observed that mapping a group of sensor nodes to estimate
it value accurately needs all the sensors to exchange the values to each other making it compu-
tationally expensive. In their framework the sensors array that are highly distributed containing
individual sensors measure a common phenomenon. The real-time sensor stream is sent to a
virtual sensor which aggregates the setpoint only from good sensors. If the sensors are able to
communicate within themselves then some of the redundant information can be eliminated, but
such corporation would be highly energy inefficient. Design of such distributed systems would
not know how many faulty sensors are present, so the use of Byzantine algorithm allows to solve
this gap.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Computational and Compressed Sensing Optimizations for Information Processing in Sensor Network . 329

In 2000, the DARPA program manager used two major demonstrations to showcase SensIT's
advances and document the ability of sensor networks to provide new capabilities. One demon-
stration took place at the Twentynine Palms, California Marine Training grounds in August
2000, the other took place at BBN offices in Cambridge, Massachusetts in October 2011. Dr.
Gail Mitchell of BBN coordinated this work for BBN, DARPAs SenslT integration contractor.

The Figure 1 shows the relationship to data rate, energy efficient and virtualization in a
practical distributed sensor networks. Iyengar algorithm for noise tolerant distributed control to
the fault-event disambiguation problem in sensor-networks is shown with a small circle connected
to rectangle labeled “Virtual Sensors”.

2. REAL-TIME EXTENSIONS

This work emerged in new versions of real time extensions [Rogina et al. 1987] to Linux Oper-
ating Systems by Pablo J. Rogina and Gabriell Wainer in 2001. Many of these algorithms were
used and installed in the RT Linux Operating System. They are now working on formal model
verification by incorporating the algorithms into a new embedded kernel for robotic applications.
The profound contribution of the Brooks-Iyengar Distributed Computational Sensing work has
enhanced new real-time features by adding fault tolerant capabilities.

2.1 MINIX Testbed

The MINIX 1.5 operating system [Brooks et al. 1998] was taken as a base, and it was extended
with several real-time services [Chakrabarty et al. 2002]. The most important include task man-
agement capabilities (both for periodic an aperiodic tasks) and real-time scheduling algorithms
(Rate Monotonic and Earliest Deadline First). These strategies were later combined with other
traditional strategies, such as Least Laxity First, Least Slack First and Deadline Monotonic. At
present new flexible schedulers are being included.

To allow these changes several data structures in the operating system were modified (to
consider tasks period, execution time and criticality). A new multi-queue scheme was defined,
so as to accommodate real-time tasks along with interactive and CPU-bound tasks. The original
task scheduler of MINIX used three queues, in order to handle task, server and user processes in
that order of priority. Each queue was scheduled using the Round Robin algorithm.

A new set of signals was added to indicate special situations, such as missed deadlines, overload
or uncertainty of the schedulability of the task set. All these services were made available to the
programmer as a complete set of new system calls. A long list of tests demonstrated the feasibility
of MINIX as a workbench for real-time development.

Several works were done using the tool, spanning from the testing of new scheduling algorithms
to kernel modifications. Recently, the need to integrate the previous work in a new version for
the operating system became apparant. This was motivated in part for the release of new MINIX
versions in the meantime, and because several additional features were identified that would be
useful to be added to original environment.. Those extensions [Krishnamachari et al. 2004] were
done using MINIX 2.0; include the previous services and add new ones such as analog-digital
conversion, queue model modification and new real-time metrics. These services are described in
detail in the following paragraphs.

The need to acquire analogic data from the environment motivated this new feature. As stated
before, many real-time systems are used to control a real process, such as a production line or a
chemical reaction. A device driver was written following the same framework used under Linux
[Iyengar et al. 2010], with slight changes. The device driver adds a new kernel task that provide
the programmer with three basic operations (open, read, close) to access an A/D converter as a
character device (for instance, /dev/js0 and /dev/jsl, for joystick A and joystick B, respectively).

A second set of changes was related with the task scheduler management. The ready process
queuing and handling is arranged in four levels. The basic idea considered in joining the queues
was related with the goal that a real-time task should not be interfered by low level interrupts (and
its associated servers), working with the hypothesis that server and user queues can be joined,

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

330 . Vijay Kumar.

allowing File System (F'S) and Memory Manager (MM) processes to be moved from server to user
process category. An in-depth analysis was made to check the possibility of deadlock between
FS and MM, first revisiting the semantics of them and then trying to measure the impact of the
new scheduler (with the joined queues), showing that deadlocks cannot occur with the changed
scheduler.

Once the OS was extended with real-time services, the need arose to have several measuring
tools. It is needed to test the evolution of the executing tasks according with the different
scheduling strategies. The impact of the different workloads should be also considered. To do
so, the kernel is in charge to keep a new data structure accessible to the user via a system call.
Statistics also can be monitored online by means of a function key displaying all that information.

MINIX proved to be a feasible testbed for OS development and real-time extensions that could
be easily added to it. This "new” operating system (a MINIX 2.0 base with real-time extensions)
has a rich set of features, which makes it a good choice to conduct real-time experiences. The
added real-time services covered several areas:

Task creation: tasks can be created either periodic or aperiodic, stating their period, worst
execution time and priority

Clock resolution management: the resolution (grain) of the internal clock can be changed to
get better accuracy while scheduling tasks.

Scheduling algorithms: both RMS and EDF algorithms are supported, and can be selected on
the fly.

Statistics: several variables about the whole operation are accessible to the user to provide
data for benchmarking and testing new developments.

Supervisory Control and Data Acquisition: as a user application, it makes full use of real-time
services.

2.2 Sense-IT

Sense-IT demonstrations used the Brooks-Iyengar fusion approach to combine sensor readings in
real-time. Acoustic, seismic, and motion detection readings from multiple sensors were combined
and fed into a distributed tracking system. The first deployment was effective, but noisy. The
second demonstration built on the success of the first testing California. An improved outfielder
algorithm was used to determine which node was best situated to continue existing tracks. This
work was an essential precursor to the Emergent Sensor Plexus MURI from Penn State Applied
Research Laboratory (PSU/ARL) with Dr. Shashi Phoha as PI. In that MURI, researchers from
PSU/ARL, Duke, U. Wisconsin, UCLA, Cornell, and LSU extended SensIT’s advances to create
practical and survivable sensor network applications.

2.3 The Thales Group

The Thales Group, a UK Defense Manufacturer, used this work as part of its Global Operational
Analysis Laboratory.

3. VIRTUALIZATION

The team found that the hardware support fails to provide an unambiguous performance advan-
tage for two primary reasons: first, it offers no support for hardware fault detection; second, it fails
to co-exist with existing software techniques for distributed sensor networks. They look ahead
to emerging techniques as shown in Figure 1 for addressing this sensor virtualization problem in
the context of software-assisted distributed fault-tolerance.

A real-time operating system can be modified to host the abstract fault-tolerant sensor layer
with its own dynamic interval estimator, which is a mapping of the real-sensors.

An Abstract Sensor is a sensor that reads a physical parameter and gives out an abstract
interval-estimate I, which is bounded and connected subset of the real line R.

A Correct Sensor is an abstract sensor where the interval estimate contains the actual value of
the parameter being measured. If the interval estimate does not contain the actual value of the

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Computational and Compressed Sensing Optimizations for Information Processing in Sensor Network . 331

parameter being measured, it is called Faulty sensor.

4. COMPLEXITY OF ALGORITHM

As defined the abstract sensor finds an interval in a real-number line. The algorithm can sort the
N sensor’s data points along the x-axis, which can be performed in O(log(N)) operations. Now
moving from the highest value need to find the coarsest (L) to the finest (1) overlapping interval,
which can be accomplished in O(NN) operations. Then The algorithm can estimate the interval
(I << L) for the virtual sensor in O(N log(N)) operations.

REFERENCES

BroOOKS, R.R. AND IYENGAR, S. S., “Robust Distributed Computing and Sensing Algorithm” ITEEE Computer.
vol. 29 No. 6. pp. 53-60. June 1996.

BRrROOKS, R.R. AND IYENGAR, S.S., “Multi-Sensor Fusion, Fundamentals and Applications with Software, 1998
Prentice Hall PTR.

CHAKRABARTY, K. IYENGAR, S.S. H. QI AND E.C. CHO, Grid Coverage of Surveillance and Target Location in
Distributed Sensor Networks, IEEE Transactions on Computers, Vol 51, No. 12, December 2002.

KRISHNAMACHARI, B. AND IYENGAR, S.S., “Distributed Bayesian Algorithms for Fault-Tolerant Event Region
Detection in Wireless Sensor Networks”, IEEE Tran Comp, 2004.

Iyengar et al, ”Preventing Future Oil Spills with Software-Based Event Detection” IEEE Comp; 2010.

RoGINA, PABLO J. AND WAINER, GABRIEL, “Extending MINIX with Real-Time Services and Fault Tolerance
Capabilities” Infoteca, Departmentto de Computacion - FCEN, Argentina. 2000-2001.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

332 . Vijay Kumar.

Vijay Kumar is a Professor of Computer Science at the University of Missouri-Kansas
City, Missouri, USA. He is the founding Editor-in-Chief of the International Journal of
Next-Generation Computing (IJNGC). Prof. Kumar received his undergraduate and post
graduate degrees in Physics, with specialization in Crystallography, from Ranchi Univer-
sity, India. He started his education in Computer Science in University of Cambridge,
England, and completed his M.Sc. and Ph.D. degrees in Computer Science from the Uni-
versities of Manchester and Southampton in the U.K. He moved to the United States in
1983 and held faculty positions at the University of Cleveland, Ohio and University of
Massachusetts, Boston before joining the University of Missouri-Kansas. He has published
over 100 peer-reviewed papers in reputed international journals and conferences, besides
4 text-books and has been the Principal Investigator on 10 research projects from the
Government and the Industry. His current research interests include mobile databases,
web services, bio-informatics and sensor networks.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

