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ABSTRACT

In this paper we propose an approach combining discrete event simulation and model checking. Indeed,
methods like model checking suffer from the state space explosion when the modeled system is complex.
Consequently, we propose an approach that allows the model checking procedure to focus on a subset of the
total state space that is more likely to contain an erroneous state regarding a property. To do so, a simulation
run that allows us to observe some qualitative metrics is performed, and stopped when a predefined "critical
state" is reached. This state is then projected as the initial state of the finite non-deterministic automaton
used by the model checking procedure. Thus, the search will only explore states reachable from this critical
state, limiting state space explosion. We finally illustrate the proposed approach through a Network-On-Chip
system, and compare it with the ad hoc classical model checking approach.
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1 INTRODUCTION

Nowadays, hardware and software systems are becoming increasingly complex, and at the same time they
are more and more prevalent in our daily lives. Failure of these systems can have serious consequences and
is therefore unacceptable. The need of methods that can guarantee that a system satisfies specific properties
is growing. Therefore, several methods have been developed to verify a system specification. Among them,
the first method is known as testing. In this approach, observations and experiments are made directly on
the real system, however, for some systems, this method is extremely expensive and can also be dangerous.
Rather than interacting with the real system, the field of Modeling and Simulation (M&S) proposes to
make a model, which is an intelligent representation allowing properties verification of the real system. A
simulation, which is then only the execution of the model through time, is performed to generate the model
behavior by acting on its state variables and outputs according to inputs and parameters.

M&S provides relevant tools and techniques for system Verification and Validation (V&V). This field, be-
sides providing a methodology that simplifies modeling, proposes a quasi-universal formalism that makes it
possible to represent a vast majority of systems: the Discrete EVent System specification (DEVS). DEVS is
a hierarchical and modular dynamic formalism to design, analyze, and control both continuous and discrete
event systems. Due to its real-time base and modularity, DEVS has been considered as one of the most ex-
pressive formalisms for the modeling and simulation of Discrete Event System. The DEVS formalism and
its variations have been successfully applied in many applications (Zeigler, Kim, and Buckley 1999, Wang
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et al. 2015). Th DEVS formalism is well adapted to build models at low levels of abstraction, and therefore
allows formalizing precise, low-level description or implementation of a system. This level of abstraction
gives a good accuracy of the simulations, thus allowing qualitative and quantitative measures of the model.
Nonetheless, as DEVS models are deterministic, high-level specifications cannot be modeled (Dacharry and
Giambiasi 2005) and the verification of the model depends greatly on the scenarios tested.

Formal methods are one of the most efficient approaches for the V&V of software and electronic systems,
or even systems in a broader sense, thanks to the use of rigorous logical reasoning and mathematical proof
techniques. Formal methods are a set of formal notation and tools allowing strict and rigorous description
of the system under study, with formal semantics and a proof mechanism. These methods are divided
into two families: theorem proving and model checking. In this paper, we will focus on the latter one.
Introduced by Clarke and Emerson (1981), on the one hand, and Queille and Sifakis (1982), on the other
hand, model checking techniques exhaustively explore a system’s state space and demonstrate its validity
regarding temporal specifications, expressed by means of logical formulas such as Linear Temporal Logic
(LTL) or Computation Tree Logic (CTL). Unlike M&S, model checking is not relative to execution. This
is why non-deterministic models are not a problem and even necessary. Indeed, the strong assumption is
that, as all the state space will be explored, all the scenarios will be covered. This can be achieved only
if several alternative computations are allowed on the same input. Model checking is a formal analysis
technique that has been developed to automatically validate functional properties of a system and has been
implemented in both academic and industrial automated-verification tools. The Simple Promela INterpreter
(SPIN) (Holzmann 1997, Holzmann 2003) is one of the most powerful and most widely used verification
tools. In SPIN, specifications are expressed through a PROtocol MEta LAnguage (PROMELA) (Holzmann
2003), which describes the behavior of the model by defining the system specification, and the properties to
verify on the model by LTL formulas.

The point is that formal methods are inefficient, and even inapplicable to complex systems, such as time
or discrete event systems. Indeed, the model checking techniques face problems of complexity and com-
binatorial explosion due to the complexity of the system’s components interactions (Clarke et al. 2012).
To overcome these problems and to allow a resolution in a reasonable time, formal methods require build-
ing models at high levels of abstraction in order to ignore some elements that do not appear indispensable
in the description of the system. Therefore, these methods represent the system as a non-deterministic fi-
nite automaton (NFA) to generalize the model and remove implementation-level details (Holzmann 2003,
Dacharry and Giambiasi 2005).

This paper presents a new approach to combine both methods of discrete event simulation and model check-
ing. Indeed, simulation provides quantitative and qualitative measures of the behavior of the model that
cannot be obtained via a query of the NFA. Therefore, a simulation can be used to identify — by means of
conditions using quantitative measures — a subset of states where a property is more likely to be unfulfilled.
Thereby, a simulation can allow the model checking procedure to focus on a subset of the total state space,
thus limiting the well-known state explosion problem.

The rest of paper is organized as follows: in Section 2, we establish some notation and recall some definitions
pertinent to the study of DEVS simulations and model checking. In Section 3, a body of literature is
reviewed and discussed. In Section 4, the approach and its underlying assumptions are fully described.
The experimentation, results and a comparison between the proposed approach and classical ad hoc model
checker are presented in Section 5. Finally, Section 6 concludes on the paper and highlights future work.
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2 DEFINITIONS

2.1 Formal verification

In order to verify correctness properties of systems, model checking and more generally formal verification
methods have to express the system and the properties as mathematical models. Usually the system model
is given as a non-deterministic finite automaton.

Definition 1. A Non-deterministic Finite Automaton (NFA) is a tuple (Q,Σ,∆,Q0,F) where Q is a finite set
of states Σ is a finite alphabet ∆ : Q×Σ → 2Q is a transition function Q0 ⊂ Q is the set of initial states F ⊂ Q
is the set of final accepting states.

Definition 2. A finite run of an automaton A on a finite word ω of Σ∗ is a sequence π = q0 · q1 · · ·qn such
that ∀i, i ∈ [1,n] =⇒ qi ∈ ∆(qi−1,σi). The run is said to be accepting if qn ∈ F.

The classical notion of acceptance given above applies only to finite runs. However, as we consider dynamic
systems with possible infinite runs, we give a notion of acceptance that can be applied to both infinite and
finite runs of an automaton, a Büchi acceptance criterion.

Definition 3. An infinite run of an automaton A on an infinite word of Σω is a sequence π = q0 · q1, · · ·
such that ∀i, i > 0 =⇒ qi ∈ ∆(qi−1,σi). A run is said to be Büchi accepting if it contains infinitely many
accepting states.

The properties are given using temporal logic formulas (Pnueli 1977, Huth and Ryan 2004) such as LTL or
CTL that allows reasoning on causal and temporal relations of the NFA runs.

2.2 DEVS Formalism

In the classical DEVS formalism, systems or models are described as a collection of one or more compo-
nents. There are two types of components: atomic (or behavioral) components and coupled (or structural)
components. An atomic component defines a simple system that has a state, accepts inputs, produces out-
puts, and whose behavior depends on external events, the current state, and the time that the system has
already spent in the current state.

Definition 4. A DEVS atomic A is a tuple (X ,Y,S,s0, ta,δext ,δint ,λ ) where X is a set of input events, Y is a set
of output events, S is a set of states, s0 ∈ S is the initial state, ta : S→R+

0,∞ is the time advance function, where
R+

0,∞ =R+
0 ∪{∞}, δext : Q×X → S is the external transition function, where Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}

denotes the total states set and e is the elapsed time since the last event, δint : S → S is the internal transition
function, λ : S → Y φ is the output function, where Y φ = Y ∪{ /0} and /0 /∈ Y is the unobservable event.

Informally, the operational semantics of a DEVS atomic model is as follows: the model starts in its initial
state s0, and will remain in any given state s ∈ S until one of the two following cases occurs: (a) an external
input x ∈ X is received, or (b) when the lifespan of s given by ta(s) expires (i.e., the elapsed time e reaches
ta(s)). In this last case, an output y ∈ Y is generated as specified by λ (s).

Definition 5. A DEVS coupled B is a tuple (X ,Y,D,M,Cxx,Cyx,Cyy,Select) where X is a set of input events,
Y is a set of output events, D is a set of unique subcomponent names or labels, M is the set of subcomponents
(atomic or coupled models) indexed by D, Cxx ⊆ X ×

⋃
i∈D Xi is the set of external input couplings, Cyx ⊆⋃

i∈DYi×
⋃

j∈D X j is the set of internal couplings, Cyy ⊆
⋃

i∈DYi×Y is the external output coupling function;
Select : 2D → D is the tie-breaking function that selects the event from the set of simultaneous events.
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Generally, the behavior of a DEVS model is given by a simulator that “implements” the model. However,
to formally reason about the behavior and properties of a DEVS model, we will use the formal notion of
executions or simulation runs of DEVS models, and its traces as defined in (Dacharry and Giambiasi 2005),
as an alternative way to formally specify the full behavior implied by DEVS models.

Definition 6. A finite simulation run of a DEVS model M, is a sequence ζ = υ0
x1−→ υ1

x2−→ ·· · υn−1
xn−→ υn.

Where each υi is a function from the real interval Ii = [0, ti] to the set of total states of M, such that
∀ j, j′ ∈ Ii| j < j′, if υ j = (s,e) then υ j′ = (s,e+ j′− j). Each xi is an input or output event, and if (s,e) =
υi−1(sup(Ii−1)),(s′,0) = υi(in f (Ii)), one of the following conditions hold: (1) xi ∈YM,δint(s) = s′, ta(s) = e,
and λ (s) = xi; (2) xi ∈ XM,δext(s,e,xi) = s′, and e < ta(s). We note states(ζ ) = s0 · s1 · · ·sn the sequence of
states taken by the finite run ζ of M, and f inal(ζ ) the final state reached by ζ .

3 RELATED WORKS

In this section, we will briefly discuss related works that combine formal verification and simulation and
show how the proposed approach differentiates itself from these approaches. The idea of combining sim-
ulation and formal verification methods has been extensively investigated. In (Goldberg 2008), the author
points out that simulation and formal verification are complementary and shows how simulation can be used
for verifying sequential circuit by building a sufficient test set. The aim of this type of method is to use
formal methods in order to overcome the shortcomings of simulation by building a set of scenarios that will
be used to validate the system through simulations. In the opposite, our aim is to use the simulation in order
to overcome the shortcomings of the model checking.

Many authors have studied the translation of DEVS models into verifiable models. Previous studies have de-
veloped the translation of DEVS model into Timed Automata (Dacharry and Giambiasi 2005, Dacharry and
Giambiasi 2007, Inostrosa-Psijas et al. 2016). Other studies (Hwang and Zeigler 2009) reduce the DEVS
model into a finite and deterministic model and apply model checking techniques. In (Trojet, Frydman, and
Hamri 2009), the authors proposed an approach to verify properties like determinism and completeness by
encoding some structural properties of the DEVS model into Z specifications. In a similar way, recent work
(Yacoub et al. 2017) combines formal methods and simulation by conceiving a language, Dev-PROMELA,
for system specification which is able to model the concept described in DEVS and PROMELA. It is then
possible to extract both a DEVS model and a PROMELA model from the Dev-PROMELA model. The
interesting point of this study is that the authors gave proof about the relation of the two obtained model.

In quite a similar way to our approach, Stuart et al. (2001) define a new analysis methodology called
simulation verification. In this approach, the system under study is specified with one formalism, Modechart,
a hierarchical graphical specification language for real-time systems. The obtained model is then simulated
to generate a simulation prefix. This simulation prefix is then used to constrain the generation of the model
computation graph. When deciding which transitions can give rise to successors of a point in the graph, the
computation prefix is used to exclude all of the events other than the next transition in the prefix. Thus, only
the path corresponding to the simulation prefix is explored. Then, the computation graph is expanded from
the end of the simulation path to a frontier, which limits the size of the graph generated. Finally, queries are
performed against the generated graph using a Real Time Logic formula. Although this seems quite similar
to the proposed approach, there are some differences. In (Stuart et al. 2001), the approach is considered
using one formalism, Modechart, which is used to perform both the simulation and the verification phase.
On the contrary, we use two formalism, DEVS for the simulation and PROMELA for the verification. In
the proposed approach, simulation is performed in order to lead the system to a so-called critical state from
which all reachable states are more likely to contain an erroneous state with regard to the property to be
verified. Moreover, the type of property that we seek to guarantee is not the same as the one proposed by
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the simulation-verification approach. Indeed, they seek to verify timing properties of real-time systems,
whereas we want to guarantee some liveness and safety properties.

4 COMBINED APPROACH: DEVS AND MODEL-CHECKING

In this section, we will introduce in detail the different parts of the developed approach. This paper aims
at combining both approaches of simulation and model checking. As a simulation provides quantitative or
qualitative measures of the model’s behavior that cannot be obtained via a query of the NFA, it can enable the
model checking procedure to focus on a subset of the state space, thus limiting the state explosion problem.

To guarantee that a system meets a given property, the ad hoc model checking approach models the system
using an NFA, then specifies the property using a logical formula and finally checks whether the property
is satisfied for all possible executions of the modeled system. As previously mentioned, the model check-
ing objective is to explore the total state space of a given model. Nevertheless, as this state space grows
exponentially with the number of components, the widespread approach is to make abstractions and then
to explore the reduced state space. The search stops when a path π = σ0 ·σ1 ·σ2 · · ·σn does not satisfy the
property, or when the full state space has been explored. However, with this approach, the combinatorial
state explosion problem arises for realistic complex systems. Thus, the full state space exploration will be
unmanageable due to the considerable size of the state space and the model checker will exhaust all its re-
sources (e.g., memory, time) before providing any answer. However, to verify a property, the designer can
make the following assumption: among the set of all possible executions of the system, there is a subset
for which the likelihood of the property being unsatisfied is more significant. This idea that a system has
better chances of encountering an error in the boundaries of its operating domains is well known in software
system verification and testing (Whittaker 2000, Myers, Sandler, and Badgett 2011). An important question
is how to identify this set of state. Assigning a value to every state variable in such a way that this valua-
tion corresponds to an actual possible configuration of the real system is a complicated task. Obviously, in
the case of a simple system, the modeler can directly initialize the model in one of these “critical” states.
However, when considering a complex system with a number important of variables evolving in a dependent
way, this task can be extremely difficult or even impossible. It is precisely here that the simulation can play
an advantageous role. Indeed, if the system to be verified is modeled and simulated, then the user does not
need to know all the variable values of the system when it is in a critical state, but only a scenario that leads
the system to a critical state. The overall approach can be summarized in four phases: (a) the modeling
phase, in which both the NFA and the DEVS model are specified; (b) the simulation phase, where a critical
state is identified; (c) the projection phase, where the identified critical state is “projected” as the initial state
of the NFA; and (d) the verification phase, in which model checking is performed on the NFA resulting from
the previous phase.

4.1 Modeling Phase

The first phase of the approach is the modeling phase. In this phase, the discrete event simulation model
and the model checking model of the system are built. Here, the simulation model is specified with the
DEVS formalism and the model checking model is specified with the modeling language of the SPIN model
checker, PROMELA. However, the approach can be considered with any discrete event simulation and any
model checker. A strong assumption of the approach is that both models represent the same behavior. We
do not give here a systematic procedure to guarantee that both models represent the same model and the
same behavior. Nonetheless, a growing body of literature has examined the proof of behavioral equivalence
between DEVS and PROMELA models (Yacoub et al. 2017, Yacoub, Hamri, and Frydman 2017) and more
generally between two formalisms (Zeigler 2018, Zeigler et al. 2019).
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Now, let S be a real system, MP be the PROMELA model of S and P a property that all states of MP have to
meet. We then denote MD as the DEVS model of S. As we consider dynamic systems, simulation runs can
be infinite, therefore we want the simulation to stop on the first critical state reached during a run.

Definition 7. Let M be a DEVS model. A stop condition Ccritical : QM → {true, f alse}, is a function that
maps each element of QM to a truth value, where QM is the total state set of M.

Giving the stop condition, we then define the set of critical states regarding a condition C as follows:

Definition 8. The set of critical states of a DEVS model M and a condition Ccritical , is given by
critical(M,Ccritical) = {s|s ∈ QM,C(s) = true}, where QM is the total state set of M.

The state set SMD of the DEVS model MD can be defined as ×n
i=0(dom(vi)), where n is the number of

variables defining a state, and dom(vi) denotes the domain of the variable vi, the condition Ccritical is then:

Ccritical(s) =
{

true, if vi > threshold
f alse, otherwise.

Where vi is a variable defining the system state and threshold ∈ dom(vi) is a value in the domain of vi. One
can also express a more elaborate condition by defining it over a set of variable. However, considerable
attention must be paid when defining the condition. Indeed, the variable vi is not chosen randomly. The
variable is selected because it has a direct or indirect impact on the property P that we want to verify later on
the PROMELA model, in the verification phase. It is interesting to note that, as the observed variable vi is
part of the simulation model, vi can be dependent on the time which cannot be the case in the untimed formal
verification model. The utility of such information available during the simulation is therefore highlighted,
as it can serve the model checking. Also note that, |critical(MD,Ccritical)|> 0. Otherwise, if there is no state
identified as critical, the simulation continues indefinitely. This modeling phase sets the stage for the next
step, the simulation phase.

4.2 Simulation Phase

In this phase, the simulation of the DEVS models MD is executed by a simulator in order to reach a critical
state s ∈ critical(MD,Ccritical). In order to run the simulation, an important question is: how to get the
scenario that will lead the simulation run to a critical state? Indeed, if the scenario does not lead to a critical
state, the simulation could continue indefinitely and the model checking will never run. Two possibilities
can be considered. The first one is that when the expert expresses the condition Ccritical that defines the set of
critical states, he also gives scenarios that will lead to a critical state. The other interesting possibility can be
considered in the case of systems for which historical data are available. For these systems, one could use the
recorded data that has previously led the system to a state that does not meet the condition Ccritical and use one
of these scenarios to perform the simulation. During the simulation run, the system state is checked before
each event transition (internal and external) and stopped when the simulation run reaches a critical state.
Thus, the simulation results in a run ζ = υ0

x1−→ υ1
x2−→ ·· ·υn−1

xn−→ υn, where f inal(ζ )∈ critical(MD,Ccritical)
is the first critical state in states(ζ ). As soon as these phases have been carried out, the approach proceeds
with the projection phase.

4.3 Projection Phase

The aim of this phase is to project the critical state f inal(ζ ) of the simulation run ζ as the initial state of
the PROMELA model MP. This phase is closely related to the modeling phase where the two models were
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built. Indeed, the assumption was that the two models are equivalent in their behavior. However, as the
DEVS model is more detailed than the PROMELA model, for a given DEVS model state there is only one
equivalent state in the NFA represented by the PROMELA model. Note that the reverse is not true.

Definition 9. A projection from a state of a DEVS model M to a state of a PROMELA model P is a function
pro jection : QM → QP, such that ∀s ∈ QM,∃q ∈ QP, pro jection(s) = q

The projection maps a state of the DEVS model to a state of the NFA represented by the PROMELA model.
An idealized illustration of the projection phase is given in Figure 1, where a one-to-one mapping between
the state space of the DEVS model and the PROMELA model is assumed. However, in order to perform
the projection, several points must be considered. The first point is that we have to take into account that
variables defined in PROMELA models must take their values in a predefined restricted range. Another point
is that all variables that are time-dependent in the simulation model are abstracted away when performing
the projection. The same goes for all variables that have a real number domain. For all other variables,
a one-to-one variable mapping is performed. At the end of the projection step, the initial state q0 of the
PROMELA model is defined as q0 = pro jection( f inal(ζ )).

4.4 Verification Phase

In the last step of the approach, the obtained PROMELA model from the previous phase, and the property P
are provided as inputs to the model checker. From there, three possibilities must be considered: (a) the model
checker finds an execution of the system for which the property is not verified; (b) the formal verification
ends without finding a state that does not respect the property, which means that the system meets the
property; and, (c) the model checking exhausts all the resources allocated to it without concluding, in which
case the approach does not allow to conclude on the fact that the property is always satisfied. In the first
two cases, with the proposed approach, the model checker is able to terminate, which may not have been the
case if the ad hoc model checking method was performed directly. Even though the ad hoc model checking
would have been performed directly and terminated, we argue that, in the best case, the proposed approach
would have explored fewer states and transitions than the ad hoc model checking approach, and the same
number of states and transitions in the worst case. Indeed, when considering dynamic systems with infinite
runs, it is possible that the model checking procedure will eventually explore the total state space, due to
the presence of cycles. For example, if the system eventually returns to the initial state of the DEVS model,
the entire state space will be explored, and the performance of the proposed approach will be the same as
the classical model checking approach. However, with the proposed approach, the exploration will have
started on a subset that is more likely to contain an error, and if no error was found on this subset, the model
checking procedure will continue, as usual, to explore the state space.

The previous sections have introduced the related works and detailed the developed approach. In the next
section, we will introduce a case study using the developed approach and compare it to the classical ad hoc
model checking approach based on the SPIN model checker.

5 NETWORK-ON-CHIP, A USE CASE

In this section, we will consider a Network-On-Chip (NoC) system in order to illustrate the proposed ap-
proach. We will first present some NoC concepts. Then, we will compare the proposed approach to the
classical ad hoc model checking procedure. Lastly, We will make a conclusion and provide some opportu-
nities for future research.
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Figure 1: Illustration of the state space exploration with the combined approach

5.1 The NoC Concepts

A NoC is a communication subsystem on an integrated circuit (chip), usually between Intellectual Property
(IP) cores in a system on a chip. In order to overcome typical bus limitations (e.g., scalability), NoCs have
been developed to be more scalable as they provide a much larger amount of communication resources.
The NoCs consist typically of nodes (IP cores), routers, network interfaces and connections. Routers direct
the data according to the protocol selected. Connections are channels of data transmission between the
elements to the network. Finally, network interfaces make the logic connection between the IP cores and
the network. The way in which routers, network adapters and connections are organized is determined by a
given topology, the most commonly used one is the 2D mesh topology as illustrated in Figure 2. Interested
readers may refer to (Cota et al. 2012) for a more detailed and comprehensive description of NoC concepts.
Numerous properties can be verified using a formal model, like performance evaluation or communication
correctness. Here, we will consider NoC correctness properties such as deadlock freedom.
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Figure 2: A 3×3 2D mesh network-on-chip

The NoCs used in this example (the source code of each model can be found at https://github.com/
khemiriabdelhak/NetworkOnChip) are a 2× 2 and a 3× 3, mesh network as illustrated in Figure 2. The
routing strategy is a deterministic X-Y algorithm. Each router input port has a dedicated buffer. A round-

https://github.com/khemiriabdelhak/NetworkOnChip
https://github.com/khemiriabdelhak/NetworkOnChip


Khemiri, Hamri, Frydman, and Pinaton

robin policy is performed to select the next input port. If not mentioned otherwise, the detailed atomic and
coupled model used here are the same as the one in (Ahmadinejad, Refan, and Sarjoughian 2011). The
simulator used to perform the simulation is the FwkDEVS, and we used the model checker SPIN Version
6.4.8 for deadlock safety property. In order to test the correctness of the approach, a fault was added in
both of the PROMELA and DEVS model by modeling defective IP. The objective is to find if, given a set of
messages, it exists an execution of the system leading to a deadlock situation and thus to a complete system
failure. Two (resp. three) messages are send in the 2×2 (resp. 3×3) NoC. For the 2×2 NoC, message M1
is sent from router 3 to router 0 and M2 is sent from router 1 to router 2. In the 3×3 NoC, M1 goes from
router 8 to router 0, M2 from router 1 to router 7, and M3 from router 2 to router 8.

The PROMELA model is obtained by the following rules: Each router is modeled with a process. Each
process consists of two variables : flit which holds the current flit, and cur_id that corresponds to the current
channel index from which flits are received. The process begins in a check state, where the current input
channel is checked for incoming flits. If there are no incoming flits in the current channel, the next input
channel is selected. Otherwise, if there are an input flits, the first (i.e., the header) flit is routed with an X-Y
routing algorithm to the appropriated channel, then all the subsequent incoming flits from the channel are
routed, until the last flit (i.e., the tail) is routed. Links between nodes are modeled with channels. As IPs
are just passive components, they are abstracted away. A defective IP is modeled as a channel that is never
read. Flits are represented by a user-defined data type (i.e., msg_flit ) that hold the type of the flit (header,
payload, tail), a value that represent the data, and the destination IP. Note that a flit stands for FLow control
unIT, a part of a packet. In the PROMELA model, for each message, a cyclic process is added to send the
message’s flits over the network and terminates when all the message’s flits are sent. In the DEVS model,
for each message ,a generator is added to send the message’s flits over the network.

To set the condition Ccritical that will define the set of all critical states it is interesting to note that for this
example, the more the network is congested, the higher are the odds of being in deadlock situations. Hence,
it would be interesting to check with the model checker only the subset of executions where the network
is congested. In order to define the set of critical state, two conditions are possible: (a) a weak condition,
which identifies the states where there is one buffer that contains N−1 elements; and (b) a strong condition,
which corresponds to the states where all buffers contains N − 1 element. Where N is the capacity of the
buffer. In this example we will only consider the weak condition. Ccritical is then defined as:

Ccritical(s) =

 true, if
k∨

i=0
(size(bu fi) == capacity(bu fi)−1)

f alse, otherwise.

Where, k is the total number of buffers, bu fi is the i th buffer and
∨

the logical or operator. At the end of the
simulation of the DEVS model M, the resulting simulation run is ζ = q0

t0−→ q1
t1−→ q1 · · ·

tn−→ qc such that, the
state f inal(ζ ) ∈ critical(MD,Ccritical) is a critical state, (i.e., a buffer contains N − 1 elements). The state
f inal(ζ ) is "projected" as the initial state of the NFA used by the model checking procedure. The obtained
PROMELA model is then given to the SPIN model checker and the results are compared to the ad hoc model
checking procedure of the initial PROMELA model.

5.2 Results

We performed a comparison between the proposed approach and the ad hoc classical model checking ap-
proach with the SPIN model checker. The experiments were performed on a computer with 2.6 GHz Intel
Core processor, and 8 GB RAM. The two approaches are compared regarding the number of visited states,
the number of transitions performed, the memory used and the total time of the search. For each model, the
experiments were performed with a depth-first-search exhaustive exploration, and the partial order reduction
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enabled. The physical memory available was set to 5120 MB, the maximum search depth was set to 106 and
it was never reached. The results are summarized in Table 1.

Table 1: Comparison of the combined approach with the ad hoc Model Checking (MC)

2×2 NoC 3×3 NoC

ad hoc MC Combined approach ad hoc MC Combined approach

Error Found None(Not finished) Deadlock Found None (Not Finished) Deadlock Found
States 4 293 012 606 1 655 692 1 870
Transitions 7 870 814 618 3 362 026 1 936
Memory Usage (MB) 5 119.940 129.511 5 119.687 188.047
Time (s) 29.3 ~ 0 14.3 0.01

In the two considered NoCs, the ad hoc model checking was unable to conclude whether the property holds
or not, and exhausted all resources. However, with the proposed approach, the model checking was able
to detect a deadlock situation. Indeed, with the ad hoc model checking, the model checker has to consider
all possible interleaving between the processes and find which one lead to a situation where all processes
are blocked. For the 2× 2 NoC, the ad hoc model checking explored more than 4 million unique states,
performed about 7 million transitions in 29 seconds and reached the limit of 5GB of memory without
finding an error. In the combined approach, a simulation is performed and stopped when a buffer size
is equal to N − 1. The state of all buffers and variables are then set in the PROMELA model as initial
state and the model checking is performed. With the combined approach, a deadlock was found in less
than one second with less than 1000 unique states explored, less than 1000 transitions performed and 129
MB of used memory. For the 3× 3 NoC, the ad hoc model checking exhausted all resources and did not
find an error before stopping the search. The search was stopped after 14.3 seconds and 5GB of memory
used, corresponding to 1 655 692 unique states explored and 3 362 026 transitions performed. The ad hoc
model checking is outperformed by the combined approach that did find a deadlock. Indeed, the combined
approach used less than 190 MB of memory, performed 1936 transitions and reached 1870 unique states
in less than one second. As expected, the experiments show that in both considered models, the combined
approach avoided the state space explosion of the ad hoc model checking and thus successfully detected a
deadlock situation.

6 CONCLUSION AND DISCUSSIONS

In this paper, we proposed an approach combining model checking and simulation in order to avoid the
well-known state space explosion shortcoming of model checking. Simulation, which provides quantitative
and qualitative measures, can be used to identify a subset of states where a given property is more likely
to be unfulfilled, thus allowing the model checking procedure to focus on a subset of the total state space.
Results so far have been very promising and show that the approach can lead to large savings in terms of
computation time, number of transitions performed, visited states and memory used. Besides, it is interesting
to note that the verification of models that are close to the implementation is a difficult task for the model
checking method. Although considerable progress has been made in order to overcome the shortcomings of
model checking, we believe that the proposed method could be helpful for complex systems where expert
knowledge can be used to identify from which states of the system a specific property is more likely to
be unfulfilled. Up to now, we did not focus on the validity of equivalence relationship between designed
models (formal and simulation models). Indeed, the modeling phase and consequently the overall approach,
relies on the strong assumption that both the DEVS and PROMELA models are assumed to represent the
same behavior. The literature on model transformations provides relevant works on this topic. Thus, we will
concentrate very soon our future work on this issue.
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