
The JDEVS modelling and simulation environment

Filippi, J.B., Delhom,M. and Bernardi, F.

UMR CNRS 6134, University of Corsica, Quartier Grossetti 20250 Corte, France

Abstract: This paper describes the JDEVS modelling and simulation environment. JDEVS has been devel-
oped for over a year to serve as an experimental framework for natural systems modelling techniques. It enables
discrete-event, general purpose, object-oriented, component based, GIS connected, collaborative, visual sim-
ulation model development and execution. The sample models implementations shows that this experimental
environment might be used to solve any complex problems solvable by discrete-event simulation and is es-
pecially suited for natural system modelling and simulation. Already, hierarchical block (static) and cellular
models can be modelled and simulated within the environment. We are now extending those capabilities with
the development of a multi-layered modelling paradigm for spatially distributed systems (with vector and cel-
lular models) that will be implemented in the toolkit.

Keywords: Discrete Events Simulation; Modelling Environment; Artificial Neural Networks; Distributed mod-
elling; 3d visualization.

1 INTRODUCTION

The research in defining and creating a general pur-
pose modelling and simulation environment began
nine years ago at the UMR CNRS 6134 lab of the
University of Corsica. This research has resulted
in the definition of the Object Oriented Modelling
and Simulation formalism, Delhom [1997]. Del-
hom has also proven that this formalism, based on
DEVS, Zeigler [1976], can be used to solve any
problems that can be solved by discrete event sim-
ulation. OOMS can serve as a framework for any
kind of modelling environments. Nevertheless, it
needs to be refined to suit domain specific needs,
such as environmental modelling.

1.1 Environmental modelling specific problem

Our problematic is now to adapt the OOMS environ-
ment to the field of environmental modelling. A top-
down design approach has been used, first trying
to identify the needs from the literature to propose
an up to date software solution to these problems.
The JAVA language has been chosen in that purpose.
Several tools have been implemented around a java
simulation engine: A graphical modelling interface,
an easy to use models library, a cellular simulation
panel and a connection to a GIS (Geographic Infor-
mation System). The Neuro-DEVS methodology is
also proposed to easily implement Artificial Neural

Networks (ANN) into OO models. Neural networks
are widely used in the field of natural system mod-
elling since they can simulate systems that are not
well defined and when a large amount of empirical
data is available.

The different modules that composes the toolkit will
be presented after a brief identification of the fun-
damental requirements for an environmental mod-
elling software. Sample implementations of cellular
and component diagram models are also described
to illustrate the modelling process under the envi-
ronment. The toolkit is still under development, our
current research is the development of a topological
vector based modelling and simulation formalism
that will enable propagation of models in a differ-
ent manner than with cellular models and runtime
models cooperation.

1.2 OOMS environment

The OOMS (Object Oriented Modelling and Sim-
ulation) is based on the DEVS (Discrete EVents
system Specification) formalism defined by B.P
Ziegler. To be able to give the most general descrip-
tion of any system, the DEVS’s description hierar-
chy has been extended with two other concepts in
OOMS, the abstraction hierarchy, Oussalah [1989]
and time hierarchy, Euzenat [1994]. Currently
time and description hierarchy are implemented in
JDEVS. Integration of those concepts allows the au-

283



tomatic generation of a simulator from the model,
as defined in the DEVS formalism. Within the for-
malism are specified basic models (atomics models)
from which larger ones are built (coupled models)
and connection between them.

2 ENVIRONMENTAL MODELLING
SOFTWARE REQUIREMENTS

The massive amount of literature available on en-
vironmental modelling is reflecting strong needs in
this domain, and many software approaches like the
VSE from Balci et al. [1998], OOPM/RT from Lee
and Fishwick [1999], SME from Maxwell [1999]
or CD++ from Wainer and Giambiasi [2001] have
been developed to satisfy them. Fundamental re-
quirements have been raised from those different
approaches to serve as building blocks for this soft-
ware toolkit.

Environmental data storage and retrieval is a basic
requirement, like in other approaches, a GIS (Geo-
graphic Information System) is used in the toolkit.
But if the choice of using GIS seems obvious, the
main concern was how to perform the coupling to
keep the architecture as modular as possible. The
parsi-model Approach to Modular Simulation intro-
duced by Maxwell [1999] and implemented in the
SME demonstrate that environmental modelling is
a collaborative process that can be simplified by us-
ing a modular and hierarchical methodology. The
OOMS approach is quite similar in terms of models
abstraction. Distributed modelling is enabled by the
integration of a generic models database defined by
Bernardi et al. [2002].

As identified in Gimblett et al. [1995] environmen-
tal simulations, especially for geographically dis-
tributed models, are generating a heavy computer
load in terms of calculation and memory transfer,
consequently another requirements is the use of
high performance simulation. OOMS is satisfying
this need because it is based on discrete event sim-
ulation, the memory load is reduced since the sim-
ulator is only processing significant changes of the
model. Calculations can also be accelerated by the
use of parallel computer with no needs to redefine
the model thanks to the DEVS formalism. Gimblett
et al. [1995] also identified a need for interactive vi-
sualization, the use of java is simplifying the inte-
gration of 2d/3d runtime visualization. Another en-
vironmental modelling domain specific problem is
the lack of understanding of some natural systems.
This leads to the situation where self learning al-
gorithms, such as artificial neural networks (ANNs)

can offer better results than physical models. Due of
their ability to generalize from empirical data, ANN
are often used in the environmental modelling field.
One of the alternative software requirements is the
easy integration of ANN models for specific appli-
cations.

Our current research is now based on agent mod-
elling and topological displacement vector mod-
elling. This can be seen as a methodology that will
avoid splitting space into cellular models by offer-
ing to the modeler the ability to describe the be-
havior of a polygonal shape model (represented by
agents). Such dynamic models will also facilitates
runtime cooperation and will serve as a basis for
multi-layered modelling.

3 THE JAVA DEVS TOOLKIT

JDEVS toolkit is composed of five independent
modules. A simulation kernel, a graphical block
modelling interface, a models library, a connection
to a GIS and a cellular simulation panel. They can
interact with other modules that are already devel-
oped and some elements, including the java simu-
lation kernel, might be changed for better perfor-
mance. Figure 1 describe the architecture of the
toolkit and the interaction with the modelers.

Figure 1: JDEVS toolkit

The only programming task that the domain special-
ist has to do is the redefinition of the 4 methods of
an atomic model from the IDL interface. Once the
atom is created, it is stored in the library to be used
later in a federation (coupled model). In case of a
spatially distributed system, the federation is auto-
matic in the cellular panel, atom cells are instanti-
ated according to the raster property map exported
from the GIS. For a component diagram model, the
coupling between models is made graphically by the
modeller in the block diagram GUI, then stored in
XML into the library. The toolkit is developed by
the first author and available from the project web-
site at ”http://spe.univ-corse.fr/filippiweb/”.

284



3.1 Modelling and simulation kernel

The modelling and simulation kernel is a java im-
plementation of the DEVS formalism. Atomics and
coupled models are described as follow.

Atomic DEVS models definition. The DEVS
formalism is offering well defined interfaces for the
description of systems. The concept of model ab-
straction permits to use models that are coded in
various object oriented languages. Those models
are then accessed though a software interface spec-
ified in DEVS. JDEVS is a java toolkit. Modelling
atomic models directly in the toolkit can be done di-
rectly in this language. To help the modeler in this
task, the GUI generates a java skeleton, stores it in
the models library and compiles it. A formal DEVS
atomic model is described as:
M = < X,S, Y, δint, δext, λ, ta > With X is the in-
put events set,S is the state set, andY is the output
events set. There are also several functions:δint

manages internal transitions,δext external transi-
tions, λ the outputs, and ta the elapsed time. The
resulted code is a generated java skeleton for :

Atom=< X{in1}, Y {out1}, S{first}, δint, δext, λ, ta >

public class Atom extends AtomicModel{
Port in1 = new Port(this,”in1”,”IN”);
Port out1 = new Port(this,”out1”,”OUT”);

public Atom (){
super(”Atom”);
states.setProperty(”first”,””);}
EventVector outFunction(Message m){

return new EventVector();}
void intTransition(){}
EventVector extTransition(Message m){

return new EventVector();}
int advanceTime()return 1;}

External transition function is returning events that
are appended to the event queue.

Coupled models description in JDEVS. If the
user wants to interact directly with the simulation
engine, the coupling between models can be made
directly in a java file. However it is possible to
graphically construct the model structure with the
GUI and save it in XML. A DEVS coupled model
is defined as:
CM = < X,Y,D, {Mi}, {Ii}, {Zij} > Here,X is
the set of input events, andY is the set of output
events.D is an index of components, and for each
i ∈ D, M i is a basic DEVS model.I i is the set of
influences of model i. For each j∈ I i, Zij is the i
to j translation function. Part of the resulted XML
document type definition for a coupled model is:

<!ELEMENTMODEL(TY PE, NAME, BOUNDS?,

INPUT∗, OUTPUT∗, CHILD∗, EIC?, EOC?, IC?) >

With TYPE defining the kind of coupled model
(Cellular, kernel, coupled...), NAME the name of
the model, BOUNDS the position of the model on
the screen (used only by the GUI), INPUT the set
of input ports, OUTPUT the set of output ports,
CHILD the index for the components of the coupled
model (in a priority order), EIC is the external input
coupling, EOC the external output coupling and IC
the internal coupling. Each coupled model is stored
in a different XML file, the parser automatically in-
stantiates the models and creates the links during the
loading.

Neuro-DEVS, ANN models definition. Neuro-
Devs, introduced in Filippi et al. [2002] is a propo-
sition for an implementation of Neural Networks in
the DEVS formalism to satisfy the requirement of
self learning models integration. An interface is cre-
ated to separate the ANN from the modelling pro-
cess to manipulate it as a stand-alone object. Three
main applications have been identified for neuro-
DEVS models. The concurrent simulation can be
used to avoid an unexpected behavior of a neural
network by comparing the neural network output
with the output of a simple model to validate the
result. Adaptive models can be used to modify the
neural network runtime according to an error feed-
back (Difference between the model’s forecast and
the real world data collected afterwards). ANN as
a sub-component can be used if Neural Networks
provides better results for only a piece of the whole
system (like battery in an energetic system Jungst
et al. [2000] (see section 5 for sample application).
The ANN is separated of the model during the mod-
elling process, and is only accessed during the run
(through an object broker, or a link to a file). It is
up to the modeler to define how and where the neu-
ral network should be used. If the ANN object is
not used as an adaptive model, it should have al-
ready ”learned” the patterns, as initial weights must
be defined before the simulation starts.

3.2 Hierarchical block diagram modelling and
simulation interface

The graphical user interface is the modelling front-
end of the toolkit, using this front end, the user can
graphically create, compile, link and store atomic
and coupled models, debug the resulting model and
perform the simulation. Distributed modelling is
made using the GUI, if different modelers works on
sub-coupled models and store them in the same li-

285



brary, it is possible to federate those models in an-
other graphical modelling client. Figure 2 shows the
modelling and simulation interface.

Figure 2: JDEVS diagram M&S GUI.

At the left stands the models library (with atomic
and coupled models), with a mouse click the se-
lected model is added to the selected coupled model.
In the center stands the hierarchical block diagram
representation of the model, all components can be
moved with the mouse, the linking between mod-
els is performed by a click from the origin port to
the destination port. On the right stand the property
panel of the selected component. If it is an atomic
model, the user can edit and compile it from this
properties panel. At the bottom of the figure stands
the simulation panel, the user load the input events
from this panel and run the simulation to the screen
or to a file. To debug the model, it is possible to
track the simulation. In this mode, a chosen delay is
set between the processing of each event. The dia-
gram representation of the models is then displaying
the event queue and the states of the selected models
during the run.

3.3 Generic models library

A complete description of the library can be found
in Bernardi et al. [2002]. The implementation of
the library description in JDEVS is resulting in a
module in the GUI. This module presents models
according to its domain and sub-domain, all classi-
fied in a tree like architecture.

3.4 GIS interconnection

Brandmeyer [2000] have detailed various GIS cou-
pling methodologies. To keep the modular archi-

tecture of the toolkit, the connection to the GIS has
been be made through a loose coupling. In this kind
of coupling, the data is exported from the GIS to
the simulator, and results are imported back after
the simulation. Since no open formats like Open-
GIS or SEDRIS have yet became standards, sim-
ple ASCII files are used to transfer data from the
database to the simulation engine and back. To per-
form the coupling, the user has to select a zone in a
GIS, then rasterize the zone and export the resulting
map in an ASCII file. During the initialization of the
simulation the cellular simulation panels automati-
cally instantiates each cell using the attribute from
the file. To enable 3d visualization of the model, the
same cut has to be made in an elevation grid map
(at any resolution) then exported aside. As the sim-
ulation will eventually be displayed and imported
back in a GIS, the ASCII map can be refined with
a link to a background image, the cell size and the
absolute coordinates of the map; those data are sim-
ply stored in the header of the file and are not used
by the simulation engine. The simulation output is
a set of discrete events (containing the cell coordi-
nates, the cell new state, and when the change has
occurred). Those events are also flattened during
the run to recompose discrete time maps that can be
imported back to the GIS.

3.5 Cellular simulation panels

This module allows the user to perform (and debug)
simulation of a cellular model. The user can directly
interact with the mouse during the simulation run.
The general architecture shown in Figure 3 has been
adopted to model cellular systems.

Figure 3: Cellular models architecture.

It is composed of a distributor and cells in a cellular
coupled model. The general inputs are connected to
the inputs of the distributor, then the distributor will
send them to either all the cell or to the cell that
would have been selected by an event in its ”Se-
lect” port. All cells are connected to the general
output. During the initialization, the cellular cou-

286



pled model is loading the GIS generated file, cal-
culates the number of cells needed (width*height)
and then instantiates and performs the coupling for
every cell. The modelling is a straight forward pro-
cess, to describe a model the user only need to de-
fine the java class that implements the characteris-
tic functions of a cell-model according to the DEVS
formalism. Using this tool, the user can interact dur-
ing the run with the simulation, with a click on the
map it is possible to select a cell and send a specific
event. The main panel offers a 2d representation but
a 3D simulation panel (figure 4) has also been devel-
oped to enable a better visualization of phenomena.

4 APPLICATION : CELLULAR POLLUTION

MODEL WITH 3D VISUALIZATION

To manage natural resources such as water, it is nec-
essary to model the phenomena that alter those nat-
ural resources in order to quantify and qualify them.
Some models, like pollution dispersion models or
water flow models require 3d visualization since
they represent 3d data. Figure 4 shows a model that
is currently tested to quantify phosphates pollution
in catchments basins. Like any other atomic model,
this cellular pollution model is described in one file,
the atom cell description file.

Figure 4: Pollution model in the 3D panel

The behavior is described in programming code, ei-
ther in Java or in C++. The skeleton for the file is
generated from an IDL interface, it contains the four
functions of the atomic model as well as the follow-
ing state set :

<X{N, S, E, W, in},Y{N, S, E, W, out},S{poros, elev, pollut}>
(N,S,E,W corresponds to the North, South, East and
West ports of their neighborhood).

In this model, theλ function (output) is sending to
the neighboring cells its elevation and quantity of
pollutant. This function is called by the simulator in
case of an activation.

The δext function (input) is receiving the quantity
of pollutant and altitude from the neighboring cells,
and send and activation message if it’s elevation is
significantly lower than the elevation of the neigh-
boring cell.

The δint function (internal) is called when the cell
receive an activation. It updates the states (here the
quantity of pollutant) according to the quantity re-
ceived and the porosity of the ground.

Finally the ta function (time advance) defines the
time to the next self-activation of the cell according
to the quantity of pollutant (thus defining the flow
speed). Here is the Java transcription of the output
function as a code example:

EventVector outFunction(Message m){
e = new EventVector();
e.add(new Event(N,”Elev”,”Pollut”));
e.add(new Event(S,”Elev”,”Pollut”));
e.add(new Event(E,”Elev”,”Pollut”));
e.add(new Event(W,”Elev”,”Pollut”));
return e;}

Those four functions are the only code that the spe-
cialist has to implement in order to have his model
working. The program is in Java or C++ code, thus
it is possible to define subroutines in the description
file (eg. to send the same event to all ports). Once
the behavior of the atomic cell model is described,
the only work that has to be done is in the data pre-
processing into the GIS to generate raster ascii maps
of the initial states (here three files for porosity, el-
evation and quantity of pollutant). The GIS con-
nector is then loading the maps, automatically in-
stantiates the right number of cells and perform the
coupling. Once the model is created, it is sent to the
simulator that performs the simulation. The 3d sim-
ulation panel serves for the visualization of the sim-
ulation of these phenomena, it uses Java3D in order
to paint the outputs of 2d or 3d cellular models. The
elevation map exported from the GIS permits to re-
construct a 3d world and the 3d panel enables here
the visualizations of the polluted zones. To interact
with the model, it is possible to click on the map
during the simulation run and set a pollution point.

5 APPLICATION : A DIAGRAM MODEL WITH

ANN: PHOTOVOLTAIC POWER PLANT

The solar power plant (known as the Photo-
voltaic(PV) system) is composed of solar power
cells, a battery and a switch. The resulted coupled
model is composed of four atomic models. The so-
lar panel is modelled using the physical description
provided). The battery is modelled like an electric

287



power tank, with charge and throughput efficiency.
The damage model use a neural network to decrease
the battery maximum capacity runtime according to
the deepness and duration of the discharges. Finally
the switch is responding to the power demand.

The benefits of using JDEVS for the modelling of
this model is clear, the structure of the model is
quickly created with the GUI. The neural network is
directly included in the atomic damage model and
data (for the solar radiation) is imported from the
GIS. Also, the neural-net can be trained with dif-
ferent experimental data to model different brand
of batteries. Figure 5 shows the experiment results
by JDEVS. For every experiment with any initial
states, an HTML page is generated showing graphs
and analysis of the simulation results.

Figure 5: Experiment result page

This model can be used as it is to perform cost via-
bility studies for PV system. Simulation time for 3
years of hourly solar data and consumption is about
20 seconds on a Pentium 4 1.6 Ghz.

6 CONCLUSION

This paper has presented all the features already im-
plemented in the JDEVS toolkit. The tool saves
modelling and simulation time in the field of en-
vironmental modelling. It has been successfully
used in different applications showing its versatil-
ity, and the flexibility of the toolkit. It also satisfies
the fundamental requirements that has been identi-
fied from other approaches in environmental mod-
elling software. We are now extending those fea-
tures by the development of polygonal agents mod-
els methodology to allow the description of models
using dynamic polygons and displacement vectors
rather than with cells. This method will also serve
as a basis for multi-layered models runtime cooper-
ation during simulation.

REFERENCES

Balci, O., I. Anders, C. Bertelrud, M. Esterbrook,
and R. E. Nance. Visual simulation environment.
Proceedings of the 1998 Winter Simulation Con-
ference, 1:279–287, 1998.

Bernardi, F., E. De-Gentili, and J. Santucci.
Reusable models integration in a devs-based
modeling and simulation environment.Proceed-
ings of the SCS ESS 2002 conference on simula-
tion in industry, 1:644, 2002.

Brandmeyer, J.E. Karimi, H. Coupling method-
ologies for environmental models.Environmen-
tal Modelling and Software, 15(5):479–488, July
2000.

Delhom, M. Modélisation et Simulation Orientées
Objet, Contributionà l’Etude du Comportement
Hydrologique d’un Bassin Versant. PhD thesis,
University of Corsica, 1997.

Euzenat, J. Granularité dans les repréentations
spatio-temporelles. Technical Report 2242, IN-
RIA Rhône-Alpes, 1994.

Filippi, J., P. Bisgambiglia, and M. Delhom. Neuro-
devs, an hybrid methodology to describe complex
systems.Proceedings of the SCS ESS 2002 con-
ference on simulation in industry, 1:647, 2002.

Gimblett, R., G. Ball, V. Lopes, B. Zeigler,
B. Sanders, and M. Marefat. Massively paral-
lel simulations of complex, large scale, high res-
olution ecosystem models.Complexity Interna-
tional, 2, april 1995.

Jungst, R., A. Urbina, and T. Paez. Stochastic mod-
eling of rechargeable battery life in a photovoltaic
power system. Technical Report 1541C, Sandia
national laboratories, 2000.

Lee, K. and P. Fishwick. Oopm/rt: A multimodel-
ing methodology for real-time simulation.ACM
Transactions on Modeling and Computer Simula-
tion, 9:141–170, 1999.

Maxwell, T. Parsi-model approach to modular sim-
ulation. Environmental Modeling and Software,
14:511–517, 1999.

Oussalah, C. A framework for modeling and linking
the structure and the behavior of a system.Artifi-
cial Intelligence in Scientific Computation, 1989.

Wainer, G. and N. Giambiasi. Application of the
cell-devs paradigm for cell spaces modelling and
simulation.Simulation, January 2001.

Zeigler, B. Theory of Modeling and Simulation.
Academic Press, 1976.

288


