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RESEARCH ARTICLE

Cloud DEVS-based computation of UAVs trajectories for search and rescue 
missions
Juan Bordón-Ruiz, Eva Besada-Portas and José A. López-Orozco

Department of Computer Architecture and Automation, Universidad Complutense de Madrid, Madrid, Spain

ABSTRACT
This paper presents a new Cloud-deployable DEVS-based framework for optimising UAV 
trajectories and sensor strategies in target-search missions. DEVS provides it with a well- 
established, flexible, and verifiable modelling strategy to include different models for the 
UAV, sensor, and target dynamics; the target and sensor uncertainty; and the optimising 
process. Its Cloud deployability speeds up the evaluations/simulations required to optimise 
this NP-hard problem, which involves computationally heavy models when solving real-world 
missions. The framework, designed to handle different types of target-search missions, cur
rently optimises, using a multi-objective Genetic Algorithm, free-shape trajectories of multiple 
UAVs,eqquiped with several static/movable sensors to detect a target within a search area. It is 
implemented in xDEVS and deployable over a set of containers in the Google Cloud Platform. 
The results show that our deployment policy speeds up the computation up to 3.35 times, 
letting the operator simultaneously optimise several search strategies for agiven scenario.
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1. Introduction
Unmanned Aerial Vehicles (UAVs) and their sensor
ial systems are useful mobile platforms to gather infor
mation in large-scale environments of real-world 
applications. Examples include wildlife monitoring, 
area patrolling, persistent surveillance, tactical recon
naissance, fire fighting, and search and rescue missions 
(Ivić et al., 2020; Linchant et al., 2015; Nigam, 2014; 
Shakhatreh et al., 2019; Skorobogatov et al., 2020; 
Yeong et al., 2015; Yuan et al., 2015). How to deter
mine the best way of proceeding, i.e., how to compute 
the best UAV trajectory and sensing strategy for 
a given application, is an open question, answered by 
the research community by providing new 
approaches, algorithms, and heuristics that take 1) 
into account different aspects of each problem and 2) 
advantage of the computation advances and capabil
ities of their moment. In this regard, this paper focuses 
on developing a new framework, for optimising UAV- 
based search and rescue operations that considers 
realistic features of the mission and the computational 
opportunities that Model-Based System Engineering 
(MBSE) and Cloud Computing currently offer.

Search and rescue operations can be formulated, at 
least partially, as target detection problems where the 
object or person under search is located in an unknown 
location within a given area, moves randomly, and is 
observable from imperfect sensors on board UAVs. 
Moreover, the UAVs and sensor trajectories can be 
obtained by optimising probabilistic utility functions 
that simultaneously handle the uncertainty in the target 

(location and movements) and sensor (observations). 
Examples of these functions and of works that present 
strategies to optimise them, are the entropy (Yang et al., 
2002), the information gain (Carpin et al., 2013; 
Grocholsky et al., 2006; Hu et al., 2014), the probability 
of detection (Delle Fave et al., 2010; Fedorov, 2019; 
Kratzke et al., 2010; Lanillos et al., 2014; Li et al., 2021; 
Saadaoui et al., 2018; Tisdale et al., 2009; Wang et al., 
2017; Wong et al., 2005; Yao et al., 2017, 2019) and the 
expected time of detection (Lanillos et al., 2013; Perez- 
Carabaza et al., 2017, 2016; Pérez-Carabaza, Besada- 
Portas et al., 2019; Pérez-Carabaza, Scherer et al., 
2019; Riehl et al., 2011). The last two utility functions 
are especially interesting in missions where: a) it is 
possible to know and exploit a probability distribution 
of the initial target location and b) critical to detect the 
target as soon as possible.

Sometimes, the optimiser also considers other cri
teria associated with mission constraints and objec
tives. In this regard, some works take into account the 
existence of non-flying zones, UAV collisions, com
munication requirements, the UAV fuel consumption, 
the length or smoothness of the UAV trajectories, and/ 
or the area coverage (Carpin et al., 2013; Li et al., 2021; 
Perez-Carabaza et al., 2017, 2016; Pérez-Carabaza, 
Besada-Portas et al., 2019; Pérez-Carabaza, Scherer 
et al., 2019; Yang et al., 2002). Alternatively, and in 
order to shorten the gap between the solutions (UAVs 
and sensor trajectories) proposed by the optimiser and 
its application to real-world search and rescue mis
sions, a few optimisers include the UAV and sensor 
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dynamical motion models (Delle Fave et al., 2010; 
Lanillos et al., 2014; Perez-Carabaza et al., 2017, 
2016; Pérez-Carabaza, Besada-Portas et al., 2019; 
Tisdale et al., 2009; Wong et al., 2005; Yao et al., 
2019) or non-ideal/non-constant likelihood functions 
to model the observations uncertainty within the sen
sor footprint (Delle Fave et al., 2010; Kratzke et al., 
2010; Lanillos et al., 2014; Perez-Carabaza et al., 2017, 
2016; Pérez-Carabaza, Besada-Portas et al., 2019; Riehl 
et al., 2011; Wong et al., 2005). These additional func
tions and models bring realism to the optimisers, 
usually at the expenses of hardening the evaluation 
and optimisation of the UAVs and sensor trajectories.

In any case, the detection problem, even just with 
the probability-based utility functions, is already NP- 
hard for a single UAV (Trummel & Weisinger, 1986) 
and can become NEXP-Complete for multiples ones 
(Yang et al., 2002). Hence, the optimisers are often 
any-time iterative suboptimal algorithms (e.g., gradi
ent-descendent, Evolutionary Algorithms, Cross- 
Entropy or Ant Colony Optimisation). Furthermore, 
they usually reduce the space of possible solutions to 
the problem by setting up only a few target-search 
strategies (e.g., with one or two UAVs or pre-fixing 
the sensors onboard) over a given mission or by low
ering the scale of the search area. Hence, to tackle 
a more significant number of alternatives and bigger 
scale environments efficiently, this paper proposes 
a new framework for solving target-search problems 
that eases the inclusion of new possibilities and that 
can be straightforwardly deployed, without editing the 
source code of the model under test and accordingly to 
their computation requirements, in a Personal 
Computer (PC) or the Cloud.

The framework presented in this paper has been 
developed using the Model-Based System Engineering 
(MBSE, Wymore, 2018) methodology and the Discrete 
Event System Specification formalism (DEVS, Zeigler 
et al., 2018). On the one hand, MBSE provides our 
framework with a clear separation between the (high- 
level) specifications of the models and their final (com
putational) implementation. This improves the under
standing of the system behaviour and favours the 
incremental design and refinement of its models. On 
the other hand, DEVS supports multi-resolution and 
the integration of the different types of models (e.g., 
probabilistic and deterministic, continuous and dis
crete, synchronous, and asynchronous) required by 
the framework. Both paradigms also help us to debug, 
verify, and validate the framework, and facilitate its 
scalability, maintainability, and reusability. Last but 
not least, xDEVS, which is the DEVS engine where 
the framework is implemented, provides profiling 
tools and support for Cloud simulation. We require 
both capabilities to detect the most consuming models 
of the framework and to distribute their computation in 
the Cloud (Mittal et al., 2017; Risco-Martín et al., 2017).

The distributed simulation capabilities of xDEVS 
have been exploited as they provide a good trade-off 
between scalability and cost. Besides, xDEVS makes 
use of a straightforward distributed architecture, based 
on client/server patterns and standard sockets, that 
streamlines the distribution task and that is most 
suitable for our problem than other distributed 
DEVS implementations, such as DEVS/SOA (Mittal 
et al., 2009) or CD++ (Al-Zoubi & Wainer, 2009), 
which are based on the concept of Simulation as 
a Service (SaaS) with stateless models, and PyPDEVS 
(Van Tendeloo & Vangheluwe, 2015), which requires 
the user to slightly modify the model source code to 
distribute the simulation.

Finally, in this work, distributed simulations have 
been preferred to parallel simulations, because the last 
ones, typically faster, demand monolithic computer 
platforms, at prohibitive costs when the computation 
requirements are increased.

At this point, it is worth noting that several works 
use DEVS for problems related to ours. The closest 
contribution, by Bordón-Ruiz et al. (2021), intro
duces the evaluator for UAV-based target-search 
strategies that is used by the optimiser presented in 
this paper to determine which UAV and sensor tra
jectories are the best for a given scenario. Also related 
to the target-search problem are the works by 
Holman et al. (2010) and by Happe and Berger 
(2010). The first work models the target-search pro
blem with Cell-DEVS and cellular automata that 
combine diffusion rules to update the probability 
map and high-climbing algorithms to optimise the 
UAV search-pattern. In contrast, the second one 
introduces a multi-UAV cooperative search path 
planner focused on coordination strategies and infor
mation-sharing policies. Our approach is different 
from both since it is intended to provide a common 
Cloud-deployable framework for determining the 
best UAV/sensor strategies for different types of tar
get-search problems. In other words, within our fra
mework we are planning to support different variants 
of target search problems and to efficiently compute 
the best UAV/sensor strategies for them, by taking 
advantage of xDEVS modelling flexibility and distri
bution capabilities. In addition, Hall (1997) intro
duces a simulator to evaluate the effectiveness of 
military missions involving autonomous vehicles; 
Moreno, de la Torre, Risco-Martin, Besada-Portas, 
Aranda et al. (2011) model the evaluation of UAV 
trajectories in hostile environments; Zeigler and Kim 
(2019) tackle multi-resolution modelling for explora
tory analysis of complex and adaptive UAV service 
systems; and Pecker-Marcosig et al. (2020) present 
a unified DEVS-based platform to model and simu
late hybrid control systems which is tested in mission 
involving UAVs. Hence, they are focused on other 
types or aspects of problems involving UAVs, while 
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this work is focused on presenting a distributable 
framework for target search missions. Finally, and 
as our DEVS-based framework also implements the 
optimisation of the UAV and sensor trajectories, we 
want to mention a few works that have successfully 
used DEVS to optimise problems of other fields of 
research (Cárdenas et al., 2020; Moreno, de la Torre, 
Risco-Martin, Besada-Portas, Aranda et al., 2011; 
Ntaimo et al., 2008; Pérez, 2017; Risco et al., 2008; 
Zeigler et al., 1996). This last group of works already 
shows how implementing the optimiser within DEVS 
is helpful to unify the modelling and implementation 
under the same paradigm.

After all this discussion, we want to highlight the 
main contributions of this work:

• A new DEVS-based framework for optimizing different 
types of UAV and sensor strategies for different variants 
of target-search problems in large-scale realistically- 
modeled scenarios. Although to test the framework, 
we have had to select a particular variant of the pro
blem and implement specific behaviors for the sensors, 
UAVs and targets, the framework is designed to easily 
incorporate other behaviors and elements in the future.

• A framework deployable in PCs or the Cloud, without 
needing to modify its hierarchical structure or re-code 
the couplings and behaviors of its models. Hence, it 
can be used, depending on the computational require
ments of the involved models, in different platforms.

• A flexible and straightforward distribution allocation 
policy, based on DEVS microservices and containeriza
tion paradigms. While the use-case is specific, this policy 
can be generalized to support the Cloud containeriza
tion and simulated of other complex systems modelled 
in DEVS.

The organisation of this paper is the following. This 
first section has introduced the paper and conducted 
a review of the state of the art related to it. Section 2 
introduces the technologies that support the distribu
tion of DEVS-based models in the Cloud. Section 3 
describes the architectural and behavioural specifica
tions of the framework. Section 4 presents the tools 
and policy followed to deploy the framework in the 
Cloud. Section 5 analyzes the results obtained by the 
framework over a realistically modelled scenario and 
the computational speedup associated with its Cloud 
distribution. Finally, Section 6 draws the conclusions 
and introduces future lines of research.

2. Foundational technologies

Our framework must be able to execute simulations and 
optimisations in a distributed environment. To this end, 
we have selected a container-based distributed architec
ture due to its potential and configuration simplicity. In 
this section, we describe the technologies involved in 
performing distributed simulations based on microser
vices, containerisation paradigms, and DEVS.

2.1. Microservices paradigm

A microservice is a basic element that results from 
the architectural decomposition of an application 
into loosely coupled patterns that consist of self- 
contained services, which communicate with each 
other primarily through asynchronous event-driven 
mechanisms. To do it, they use a standard commu
nication protocol and a set of well-defined 
Application Programming Interfaces (APIs) inde
pendent of any vendor, product, or technology 
(Mittal et al., 2017).

Moreover, any microservices-based architecture 
has to address two fundamental issues: distributed 
data management (to store the state of the microser
vice locally) and shared event processing (to facilitate 
the information exchange between stateless microser
vices). Finally, to execute their inherent business logic, 
the information from the local data and the event 
processing inside the microservice are used together.

2.2. Containerisation paradigm

A container is an independent self-sufficient runtime 
environment for a software application. It wraps a piece 
of software in a complete file-system that contains every
thing needed to run. Relevant features of these containers 
are: (1) lightweight; (2) sharing the same OS kernel, 
common files and layering; (3) based on open standards; 
(4) running on all major Operating Systems (OS) and on 
top of any infrastructure; (5) isolating applications from 
others and from the underlying infrastructure; (6) com
posable; and (5) predictable (opensource.com, 2021).

The architectural approach of containerisation is 
different from that of virtual machines. The differences 
are illustrated in Figure 1. In particular, Figure 1a shows 
how a virtual machine stores the whole Operating 
System (OS), libraries, needed binaries and applications, 
requiring a huge memory space in the host machine. 
Figure 1b shows how a container is composed by 
libraries, required binaries and applications; and how 
all the containers share the same OS kernel. This makes 
containers a lightweight and flexible tool for packaging, 
delivering, and deploying software and applications.

2.3. DEVS distributed architecture
The parallel Discrete Event System Specification 
(DEVS) is a modular and hierarchical formalism for 
discrete event system modelling based on set theory 
(Zeigler et al., 2018). It includes two types of models, 
atomic and coupled, which have an interface consist
ing of input (X) and output (Y) ports to communicate 
with other models. Additionally, in atomic models, 
every model state (S) is associated with the time 
advance function ta, which determines the duration 
in which the state remains unchanged. Once the time 
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assigned to the state has passed, an internal transition 
function (δint : S! S) is fired and an internal transi
tion is triggered, producing a local state change 
(δintðsÞ ¼ s0). At that moment, the model execution 
results are spread through the model’s output ports 
by activating an output function (λ). Furthermore, 
input external events (received from other models) 
are collected in the input ports. An external transition 
function (δext : S� e� X ! S) specifies how to react 
to those inputs, using the current state (s), the elapsed 
time since the last event (e) and the input value (x) 
(δextððs; eÞ; xÞ ¼ s0). Parallel DEVS introduces 
a confluent function (δconððs; taðsÞÞ; xÞ ¼ s0), which 
decides the next state in cases of collision between 
external and internal events. Coupled models are the 
aggregation/composition of two or more models 
(atomic and/or coupled), connected by explicit cou
plings. This makes DEVS closed under coupling and 
allows to use networks of systems as components in 
larger coupled models, leading to hierarchical and 
modular constructions. Overall, DEVS provides 
a framework for information modelling that has sev
eral advantages to analyse and design complex sys
tems: completeness, verifiability, extensibility, and 
maintainability.

Once a system is described according to DEVS 
theory, it can be easily implemented using one of the 
many DEVS Modelling and Simulation (M&S) 
engines that have come into existence in the last dec
ades. All of them offer a programmer-friendly API to 
define new models using a high-level language, but 
only a few provide a user-friendly API for parallel or 
distributed model simulation. Among them, xDEVS 
(Mittal et al., 2017) offers a good alternative to paral
lelise or distribute simulations in the Cloud, following 
the microservices architecture and containerisation 
detailed above. As a result, any DEVS model can be 

parallelised or distributed by assigning resources 
(threads or processes) to different transition and out
put functions as parallel or distributed functional 
programming.

The microservices-based DEVS simulation execu
tion is explained with the help of the classic 
Experimental Frame – Processor (EF-P) model. This 
model, represented in Figure 2a, contains two compo
nents: the Experimental Frame (EF) coupled model 
and the Processor (P) atomic model. In order to simu
late it in the Cloud, this hierarchical model is auto
matically flattened by xDEVS, removing all the 
coupled models, in order to obtain the Generator – 
Processor – Transducer (GPT) equivalent model 
depicted in Figure 2b. Next, and according to 
Figure 2c, each model in GPT is mapped to a DEVS 
container following the instructions of a simulation 
configuration file. Moreover, one container can allo
cate one or more DEVS atomic models with their 
corresponding local states. In the example illustrated 
in Figure 2c, a different container/simulator is created 
for each atomic model of the GPT, and one of the 
containers is designated as the root coordinator 
responsible of driving the whole simulation. 
Furthermore, models’ state transitions and output 
events are always managed by their corresponding 
simulators, and model output events are propagated 
to their neighbours using socket communication 
between model-simulator pairs. Finally, note that 
since the distributed architecture is implemented at 
the simulation layer of xDEVS, any xDEVS model can 
be simulated in the Cloud without changing its code. 
Finally, it is worth mentioning that although the par
allelisation or distribution is oriented to transition or 
output functions, DEVS closure-under-coupling 
property allows us to easily rearrange parallel or dis
tributed layouts. Following the EF-P example, the EF 

Figure 1. Graphical representation of (a) virtual machine and (b) docker container architectures.

4 J. BORDÓN-RUIZ ET AL.



coupled model could be transformed into a single 
atomic using the Coupled2Atomic xDEVS wrapper, 
which allows us to parallelise the EF transition or 
output functions as a whole, instead of as two atomic 
function sets.

3. Models description
This section presents the main characteristics of the 
models of our framework from a bottom-up perspec
tive. As the framework incorporates the modules of 
the evaluation process already presented in 
Bordón-Ruiz et al. (2021), the descriptions in 
Sections 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 are lighter, 
while the descriptions in Sections 3.7 and 3.8 of the 
new modules required to optimise the UAV and sen
sor trajectories are deeper.

3.1. Sensor Model (SM)

In the target-search problem, sensors on board 
UAVs are used to obtain information from the 
search area Ω, which is discretised in a grid G of 
wx x wy rectangular cells. The detection 

capabilities of the sensor are defined by the like
lihood model pðDjct; stm

u;kÞ, which states how prob
able is to observe the target placed at cell ct at 
time t from the UAV location and sensor pose stm

u;k 
at measuring time tm. Additionally, to describe the 
behaviour of moving sensors (e.g., a gimballed 
camera), a deterministic motion model st

u;k ¼

gðst
u; s

t� Tu;k
u;k ; at� Tu;k

u;k ;Tu;k;2
t� Tu;kÞ obtains the new sen

sor pose st
u;k based on its UAV location st

u, its 

previous pose st� Tu;k
u;k , its control signal at� Tu;k

u;k and 
duration Tu;k, and the environment condi
tion 2t� Tu;k .

The specification of each sensor is represented by 
the Sensor coupled Model (SM) of Figure 3a, while its 
internal structure is depicted in Figure 3b and 
described below:

• The Sensor Payload atomic model (SP) computes 
pðDjct; stm

u;kÞ and returns its complementary function 
pðDjct; stm

u;kÞ at every measuring time tm of the sensor.
• The Sensor Motion atomic model (SMM) exe

cutes gð�Þ at the time lapses defined by the user to 
output the new sensor poses st

u;k.

Figure 2. DEVS containers within microservices and containerisation paradigms. adapted from (Mittal et al., 2017).
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• The Sensor Control atomic model (SC) han
dles the sensor moving control list, receives every 
new st

u;k, and wraps them into the sensor pose 
trajectory traySen that is output when the simula
tion ends.

In addition, as static sensors do not require motion 
models and control lists, their SM models are simpli
fied into SP models.

Eventually, it is worth noting that evaluating 
pðDjct; stm

u;kÞ for realistically modelled sensors is often 
more computationally demanding than calculating 
gð�Þ. In particular, the camera likelihood in this 
paper is high-time consuming (because it evaluates 
pðDjct; stm

u;kÞ in many points within the sensor footprint 
for every sensor measurement), the radar likelihood is 
lighter (as it reuses the likelihoods of previous time 
steps, displaced to the new sensor observation area), 
the camera motion gð�Þ computation time is negligi
ble, and the radar motion ignored.

3.2. UAV Model (UM)

UAVs overfly Ω looking for the target. Their motion 
dynamics are summarised in 2t� Tu;k , which allow to 
obtain the new UAV location st

u from its previous one 
st� Tu

u , its control signals at� Tu
u and durations Tu, 

and 2t� Tu .
Each UAV in the scenario creates an instance of the 

UAV coupled model (UM). Its inputs are, according 
to Figure 4a, the search area Ω, the environmental 
state 2 and the encapsulated UAV definition uav. 
Its outputs are the simulated UAV trajectory 
trayUAV, which includes traySensor of its moving 
sensors, and pðDjct; stm

u;kÞ. Its internal structure, in 
Figure 4b, includes two atomic models: UAV 
Control (UC) and UAV Motion (UMM), conceptually 
equivalent to the sensor SC and SMM models. 
Additionally, it aggregates as many SM models as 
detection sensors have the UAV.

Figure 3. Sensor coupled model (SM).

Figure 4. UAV coupled model (UM).

6 J. BORDÓN-RUIZ ET AL.



Finally, the computational requirements of f ð�Þ are 
highly dependent on the complexity of the UAV dyna
mical modelled within it. In particular, in this paper 
f ð�Þ implements a 4th Order Runge Kutta to integrate 
a lightweight model with streamlined dynamics for the 
UAV height, speed, and lateral displacements.

3.3. Flight Simulator (FS)

The Flight Simulator coupled model (FS) is defined, as 
Figure5 shows, by aggregating as many UM models as 
UAVs. It computes all UAV trajectories and sensor 
likelihoods, and inherits the computational require
ments of its components (UAVs and sensors).

3.4. Target Model (TM)

The uncertainty about the target location is modelled 
by a probability map or belief bðctÞ over each cell 
ct 2 G. The initial belief bðc0Þ is known and the target 
evolution is computed using the prediction and assim
ilation step of the Recursive Bayesian Filters (RBF, 
Bourgault et al. (2004)) over the “remaining or unob
served probability” pðctÞ, related to 
bðctÞ ¼ pðctÞ=

P
g2G pðct ¼ gÞ. In particular, the pre

diction pðctÞ  
P

ct� T2G pðctjct� TτÞpðct� TτÞ considers 
the target uncertainty motion model pðctjct� TτÞ, 
while the assimilation pðctÞ  pðDjct; stm

u;kÞ � pðc
tÞ

incorporates the computed likelihoods.
The operations are carried out by the Target 

coupled model (TM) of Figure 6a, which contains 
the two atomic models of Figure 6b:

• The Target Control (TC) updates pðctÞ by: a) 
performing the assimilation step integrating the 
receive pðDjct; stm

u;kÞ in pðctÞ, or b) receiving the pðctÞ

predicted by the Target Motion model. It also wraps 
pðctÞ into the encapsulated target evaluation eTarget.

• The Target Motion (TMM) performs the prediction 
step, applying the target motion model. It is only used 
by dynamic targets and removed with its correspond
ing couplings for static targets.

The computational demands of these models grow 
with the resolution (number of cells in G) of the search 
space, the number of sensors and measurements 
taken, and the number of target displacements.

3.5. Evaluator Function (EF)

To evaluate the simulated UAV trajectories and sensor 
poses, different utility functions are used. They are 
computed in the Evaluator Function atomic model 
(EF), which receives the simulated trayUAV and 
eTarget, and calculates the probability of target detec
tion (PdðtÞ ¼ 1 �

P
ct2G pðctÞ), the Expected Time of 

detection (ETðtÞ ¼
P

l¼1:1:t=Tτ
ð1 � Pdðl � TτÞÞTτ), the 

number of Non-Flying Zones overflights 
(NFZ ¼

PT
t¼1
PU

u¼1 WithinNFZðst
uÞ), the number of 

UAV collisions 
(COL ¼

PT
t¼1
PU

u¼1
PU

l¼kþ1 Collisionðst
u; st

l ; dCOLÞ) 
and the MYOpia criterium at certain times of the 
simulation (MYOðtÞ ¼

P
ct2G lðct; st

1:U;1:KÞpðctÞ with 
lðct; st

1:U;1:KÞ ¼
Q

u¼1:U;k¼1:S hðct; st
u;kÞÞ and hðct; st

u;kÞ

a radial monotonically increasing function in [0,1], 
whose minimum is centred at st

u;k and whose purpose 
is to inform how good are the final UAV and sensor 
locations for collecting the remaining pðctÞ).

At last, note that the computational requirements 
of this module are moderated, as it just performs some 
final operations over the results provided by the Flight 
Simulator and Target Model.

3.6. Evaluator (EV)

The Evaluator coupled model (EV) encapsulates the 
TM and EF models, as Figure 7 shows, inheriting their 
computational requirements (especially those of TM). Figure 5. Flight Simulator coupled model (FS).

Figure 6. Target coupled model (TM).
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In short, it is where the target and utility functions are 
evaluated. Finally, it returns the encapsulated result of 
the evaluation (eUAV and eTarget).

3.7. Optimiser (OP)

The Optimiser coupled model (OP) introduced in 
this paper extends the capabilities of the evaluation 
framework of UAV strategies for target-search sce
narios by Bordón-Ruiz et al. (2021), built over the 
coupling of the Flight Simulator (FS) and Evaluator 
Function (FC) models. The new OP model is in 
charge of automatically constructing the UAV and 
sensor trajectories, by implementing the steps of an 
iterative population-based optimisation algorithm 
capable of handling the complexity of target- 
search problems.

The OP model, depicted in Figure 8, encapsulates 
the generic steps of the optimiser in the Algorithm 
Controller atomic model (AC), while the UAV- 
strategy target-search evaluation process is performed 
by the FS and EV models. In particular, at every itera
tion of the algorithm implemented within AC, 
a population of Npop solutions (UAV and sensor 

trajectories) is generated and sent to the aggregation 
of Npop FS and EV models, which in pair carry out the 
evaluation of each solution.

In addition, the outer loop of the current version of 
OP works as the receding horizon-controller in Pérez- 
Carabaza, Besada-Portas et al. (2019), which a) opti
mises all the control signals to be applied to the UAVs 
and sensors during the decision horizon TDH , and b) 
considers the final pðctÞ, stu and st

u;k of each trajectory 
section, the initial values of the next. This philosophy, 
commonly used in target-search, breaks down the 
problem into smaller pieces that are optimised 
sequentially, reducing the space of possible solutions.

Finally, note that there is not a direct feedback among 
EV and FS (or between the UM within FS), since their 
purpose is to evaluate the solutions proposed by the 
optimisation approach implemented within AC. 
Besides, our approach consists in including the optimiser 
within the model-based framework, as it helps us unify 
all the process in DEVS and distribute it in the Cloud.

3.8. Algorithm Controller (AC)

The AC model receives the scenario specification, 
which includes the definition of every element of the 
mission (e.g., Ω dimensions; target probability models; 
number, initial location/pose and models of the 
UAVs/sensors, and mission duration tend

mission).
Besides, it receives the optimiser specification, 

which includes the type and parameters of the optimi
sation algorithms, the optimisation and feasibility cri
teria to be used (ET, PdðtÞ, MYO, NFZ and COL), and 
the decision horizon parameters (TDH , number of 
iterations and computation time for each trajectory 
section). At last, when TDH < tend

mission, the AC model 
optimises the UAV and sensor trajectory by 
sequences, and MYO should be included to determine 
how well the search can continue from the final state 
of the current trajectory section.

Figure 7. Evaluator coupled model (EV).

Figure 8. Optimiser coupled model.
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The AC behaviour is described in Figure 9. Initially, 
the model waits for the scenario and optimisation 
definitions in a passive state. At their reception, AC 
prepares the initial sequence by analysing the scenario 
specification and determining the trajectories of which 
UAVs and sensors should be optimised already. Next, 
for each UAV u and sensor uk included in the current 
section, AC generates Npop solutions, consistent on the 
list of random reference signals (UAV orientation, 
height and speed, and sensor azimuth and elevation 
angles respect the UAV body-axes) to be applied per
iodically (at a fixed rate) or at the time-steps randomly 
generated by AC. When this last behaviour is enabled, 
each solution of the population can have a different 
number of decision variables. Once the first set of Npop 

solutions is ready, a δext transition takes AC to the 
evaluation state, where an instant δint transition is 
programmed to output via the λ function the Npop 

solutions to be evaluated by their FS and EV models. 
Next, AC remains in a waiting state until the all the 
evaluation results are received. At this stage, AC 
checks if the maximal number of iterations and execu
tion time of the current decision horizon has been 
reached. If it has not, AC iterates the operations of 
the optimisation algorithm to produce another group 
Npop solutions, sends them to be evaluated and waits 
for the results. Otherwise, AC terminates the optimi
sation of the current sequence, stores the best solution 
so far, and uses it to obtain the initial state of the next 
sequence. When the optimisation of the last sequence 
is finished, AC transitions to its end state, outputting 
the whole best solution via the λ function.

The previous behaviour is designed to operate as 
a receding controller capable of incorporating the 
optimisation steps of different population-based algo
rithms. For this paper, it uses a Genetic Algorithm 
(GA) that implements: 1) binary tournament selec
tion, 2) a crossover that determines the cutting point 
of each parent based on the crossing time (selected 
from a uniform probability between the times of the 
decision horizon), 3) a two-level mutation (consisting 

of two Gaussian increments of the decision variables, 
the first in a few uniformly-randomly selected decision 
variables and the second one – with smaller variance – 
in all of them), and 4) the recombination step of 
NSGA-II (Deb et al., 2002). Further details of steps 
(1), (3) and (4) are presented in (Pérez-Carabaza, 
Besada-Portas et al., 2019), while the new step (2) is 
conceptually similar to the ones in (Andres-Toro et al., 
2004; Kiam et al., 2021). In addition, within our frame
work, step (4) is implemented before step (1), because 
the optimisation step iterates every time the whole set 
of Npop solutions is received.

Finally, note that the computational requirements 
of the AC model are low, as the evaluation process is 
performed by the FS and EV models placed outside it. 
Moreover, as AC requests the Npop FS and EV coupled 
models to evaluate the partial solutions at each itera
tion of the optimisation of each segment of the UAV 
and sensor trajectories, the overall computational cost 
of FS and EV grows proportionally to the number of 
segments and optimisation iterations within them.

4. Cloud simulation deployment

This section describes the Cloud deployment architec
ture. Broadly speaking, the original DEVS model is 
flattened, next each atomic model is allocated into 
a Cloud container, and finally, the simulation is exe
cuted into a container-based distributed infrastruc
ture. In the following, we detail how this procedure, 
summarised in Figure 10, is carried out over our 
framework, which has been developed using the 
xDEVS simulation engine (Risco-Martín et al., 2017).

First, an XML description of a flattened version of 
the original model is generated with xDEVS. This XML 
file contains all the atomic models and coupling rela
tions that are obtained after rearranging the connec
tions of the coupled models, which are removed 
because they accumulate deployment difficulties in dis
tributed simulations (Risco et al., 2008). Next, the user 
must edit this XML file to configure the allocation of all 

Figure 9. Algorithm Controller States.
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the atomic models. This step is important because it 
decides the distributed simulation structure. Although 
each atomic model can be allocated into a single con
tainer, this option is not operative since a DEVS model 
can contain hundreds of atomic models, many of them 
computational light in terms of CPU cycles. Thus, it is 
better to group several atomic models per container. 
Figure 10 shows the 2-level allocation policy followed 
in this paper, consistent of n containers, placed at level 
1 (L1), reserved for those atomic models with high 
computational demands; plus m containers, placed at 
level 2 (L2), reserved for the others. In general, n> >m 
in order to follow a coarse-grain allocation policy that 
a) exploits the modeller knowledge about which atomic 
models consume more CPU, and b) avoids 
a computing-intensive profiling phase.

Second, once the allocation policy is described 
inside the XML file, a script (specific for the cloud 
platform where the distributed model is going to be 
simulated) is generated with an XML parser. In 
a xDEVS distributed simulation, each atomic 
model is executed inside its simulator as an isolated 
process, while the coordinator marks the beginning 
and end of the simulation, as described in Figure 2. 
The communication between simulators is made 
using sockets. As a result, any distributed architec
ture is possible (e.g., using a set of computers, a set 
of containers, a set of virtual machines, or 
a combination of all of them). For this particular 
work, we have developed a parser that generates 
the script to deploy a distributed simulation over 
a set of containers in the Google Cloud Platform 
(GCP), using the Google Kubernetes Engine (GKE).

Third, the script is executed against the selected 
cloud platform, and the model is deployed using the 
selected allocation policy. In this step, every container 

stores the whole flattened atomic model. Still, each con
tainer will run one or more distributed xDEVS simula
tors, each one with its corresponding atomic model as 
defined in the XML file. Besides, one particular con
tainer runs the distributed xDEVS root coordinator, and 
for simplicity, even between the simulators executed in 
the same container, messages are passed using sockets.

Finally, once the simulation ends, the results are 
stored in a distributed way, as each atomic model can 
have a different mechanism to save data. Our recom
mendation is to have a Transducer atomic model (Zeigler 
et al., 2018) to collect the relevant information to store it, 
if necessary, in the container where it was allocated.

To anticipate the dimensions of the four strategies 
simulated in this work (named S1, S2, S3, and S4 here 
after) and understand how they are distributed among 
the containers, Table 1 shows the number (#) of 
atomic models instantiated in the xDEVS model and 
the percentage (%) of the accumulated execution time 
of all the atomic models that belong to each class. It 
also shows that Target Control and Radar Sensor 

Figure 10. Cloud deployment scheme.

Table 1. Percentage of execution time/scenario and atomic 
class.

Atomic Class S1 S2 S3 S4

# % # % # % # %

Radar Sensor Payload (SP) 50 26 50 6 50 6 50 5
Camera Sensor Payload 

(SP)
NA NA 100 34 100 35 100 35

Camera Sensor Control 
(SC)

NA NA 100 0 100 0 100 0

Camera Sensor Motion 
(SMM)

NA NA 100 1 100 1 100 1

UAV Control (UC) 50 1 100 1 100 1 100 1
UAV Motion (UMM) 50 2 100 1 100 1 100 1
Target Motion (TMM) 50 10 50 2 50 2 50 2
Target Control (TC) 50 55 50 50 50 52 50 52
Evaluator Function (EV) 50 6 50 5 50 2 50 3
Algorithm Controller (AC) 1 0 1 0 1 0 1 0
TOTAL 301 100 701 100 701 100 701 100
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Payload assume more than 75 % of the total execution 
time for S1, while Camera Sensor Payload and Target 
Control do something similar for the others. Based on 
this information, we have decided to add all the atomic 
models that belong to these three classes to level L1 of 
our allocation policy, and the remaining atomic mod
els to L2. In the following section, we will see that 
adding containers to L1 has a high impact on the 
execution time, while adding more containers to L2 
has almost no effect.

Finally, note that the previous statistics have been 
calculated using the Coordinator named 
CoordinatorProfile in xDEVS, which registers the 
execution times for each DEVS function and atomic 
model. However, to distribute larger models quickly, 
we recommend to follow a coarse grain classification 
of atomic classes as we are applying in this example 
because the simulation of these models can take sev
eral hours, but the modeller usually knows (as can be 
observed in Section 3) which classes are more CPU 
demanding.

5. Results

The simulations conducted in this paper are focused on 
demonstrating the benefits of deploying complex simula
tion models in the Cloud. To do it, we optimise different 
strategies over a real-world inspired scenario and com
pare the simulation time required by distributing their 
models over different numbers of containers. We have 
also executed fully parallel simulations on two different 
shared memory machines to compare performance and 
cost against the proposed distributed approach.

5.1. Scenario

The scenario is inspired by a search and rescue mis
sion at the sea, where a boat is missing within a search 
area of 60 × 60 km2, discretised into 200 × 200 cells of 
300 x 3002.

The initial target bðc0Þ is presented in Figure 11 
(a), while its displacement towards the north-east is 
modelled with a pðctjct� Tτ Þ applicable every Tτ ¼

150 s. The effects of the target displacement after 
tend
mission ¼ 3000 s are represented in Figure 11(b), 

although difficult to appreciate as the target barely 
moves 6 km.

Two UAVs are available to carry out the mis
sion. Their main characteristics are summarised in 
Table 2. Their motion model is described in (Pérez- 
Carabaza, Besada-Portas et al., 2019) and integrated 
every 1 s.

Regarding the sensors, UAV1 is equipped with 
a continuous-wave radar and UAV2 has two high- 
resolution cameras. Its first camera is static and 
placed at the UAV noise pointing ahead with 
a fixed elevation (from the aircraft longitudinal 
axis) of 30 deg, while the second one is mounted 
at the UAV bottom on a gimbal, whose motion 
model is integrated with a 4th Order Runge-Kutta 
every 2 s, has a maximal slew rate of 5 deg/s at an 
azimuth range of 360 deg, and a fixed elevation of 
70 deg. Their pðDjτt; st

uÞ depends, as Figure 12 
shows, on the distance between τt and st

u and, in 
the camera case, on the sensor footprint that is 
modifiable by the sensor field of view (fixed at 
7.5deg), UAV height and sensor pose.

5.2. Search strategies and optimiser setup

In order to determine the best UAV and sensor tra
jectories for the previous scenario, we set up the fol
lowing four strategies:

• Strategy 1 (S1) uses only UAV1, a decision hor
izon TDH ¼ 1000s and a mission duration tend

mission ¼

3000s.
• Strategy 2 (S2) incorporates also UAV2 to the 

mission and makes TDH ¼ 500 s.
• Strategy 3 (S3) is similar to S2, but with TDH ¼

1500 s.

Figure 11. Mission Belief.
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• Strategy 4 (S4) is similar to S3, but with TDH = 
1000 s and tend

mission ¼ 4000 s.
In short, we set up S1 to see how well UAV1 can 

accomplish the mission on its own, and the other 
strategies to see the effect of TDH in the quality of the 
solutions, and if increasing TDH and tend

mission in S4 
allows to obtain a better PdðtÞ and ET.

The remaining parameters of the optimiser, com
mon for all the strategies, are:

• The decision variables of the optimiser are:

° The headings of both UAVs, defined as aperiodic 
incremental control variables within [−30, +30]deg.

° The camera azimuth, defined as a control signal with 
absolute value within [−90, +90]deg that changes 
every 10s.

• The constraint is COL and the optimisation criteria 
(in the given preference order for deciding which is 
the best final solution of each decision horizon) are 
MYO, ET and Pd.

• The GA properties in Table 3.

5.3. Computation cost analysis

The analysis in this section is based on the contain
ers distribution explained in Section 4. Likewise, the 
optimisation of the four strategies is carried out 
on GKE.

To determine how the Cloud deployment affects 
the computational time, an incremental container 
strategy is followed by 1) increasing the number of 
L1 containers from 1 to 100 using a single L2 container 
and 2) fixing 100 containers in L1 while increasing L2 

from 1 to 100. We increase first the containers of L1 

because the models with higher computational costs 
are placed in that layer. Besides, these distributed 
simulations have been performed using a Kubernetes 
cluster with 16 Intel(R) Xeon(R) CPU @ 2.30 GHz and 
4 GiB RAM nodes.

To compare the distributed simulations against 
parallel ones, we have simulated the same scenarios 
in parallel, using 8 and 16 Intel(R) Xeon(R) CPU @ 
2.30 GHz shared memory machines, with 32 and 64 
GiB of RAM, respectively. Hence, the 16 CPU 
machine was set up to have as many CPUs and the 
same total RAM as the sum of the resources distrib
uted in the cluster.

Figure 13 illustrates the results of the analysis (further 
detailed in Table 4) using each row of graphics for 
a different strategy, the left column for the Wall-Clocks 
(WCs) and the right one for the Speed-Up (SU). The 
ordinate axis of the graphics at the left show that the WC 
of S2, S3, and S4 is significantly higher than those of S1, 
since the last three cases require computing the like
lihoods and target updates of the two cameras. Besides, 
within each graphic, the first two bars (labelled Prf. and 
Seq.) correspond to regular/sequential simulations, exe
cuted in GKE without exploiting its distribution possibi
lities, respectively, using a) xDEVS CoordinatorProfile to 
perform a profiling of the simulation, and b) xDEVS 
Coordinator to obtain the reference to compute the 
speedup. For the following bars, named Dixj with i ¼
ContainersInðL1Þ and j ¼ ContainersInðL2Þ, the simula
tion is executed using xDEVS CoordinatorDistributed. 
The last two bars, labelled Parx8 and Parx16, show the 
results of the fully parallel simulations in 8 and 16 CPUs, 
respectively, both using xDEVS CoordinatorParallel 
class, which takes the root coupled model, flattens it 
and parallelises the executions of its transition and out
put functions, similarly as in the distributed simulation 
but using the available threads, with no levels.

Within the group of distributed simulations Dixj, 
we can observe that as soon as the containers in L1 
grows, the WCs are significantly reduced and the SU 
increased. The improvements associated with increas
ing L1 containers stop when the communication 
workload of the distributed models becomes signifi
cant. The optimal configuration with a single con
tainer in L2 happens when there are 10/20/20/15 

Table 2. UAVs characterisation.
Description UAV1 UAV2

Flying height range (ft) 3000 3048
Flying speed range (kts) 77.8 87.5
Operating range (nm) 135 80
Flying autonomy 

(hours)
15 6.5

Motion Model Runge-Kutta 
(1s)

Runge-Kutta (1s)

Payload Radar (4s) Camera 1 (1s), Camera 2 
(4s)

Figure 12. Sensor Likelihoods.

Table 3. GA characterisation per decision horizon.
Parameter Configuration

Population Size (NpopÞ 50
Iterations 100
Crossover Probability px = 0.8
Mutation Probabilities pmut¼ 1=#Decision Variables, σ1 ¼ 200, σ2 ¼ 1
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containers in L1 for S1/S2/S3/S4. Beyond this point, 
there are no benefits in increasing L1 containers with
out increasing L2 containers. Nevertheless, increasing 
L2 containers only improves the performance slightly 
in S1 and S2, as the benefits of distributing models of 
low computational costs cannot compensate for their 
communication workload. As a result, complex 

models can be straightforwardly distributed, simulat
ing all of them simultaneously and with a significant 
speedup.

When comparing the distributed and parallel simu
lations, we observe that the SU of the best distributed 
one within each strategy is greater than the SU of 
Parx8 and lower than the SU of Parx16. However, if 

Figure 13. Computational analysis.
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we include in the comparison the cost/month of each 
setup (calculated as 208.32, 338.36, and 416.63 
$/month for the 8 parallel, 16 distributed, and 16 

parallel CPUs), the distributed simulations offer 
a good trade-off between flexibility, performance, 
and cost.

Table 4. Computational analysis: numerical results.
Coordinator S1 S2 S3 S4

time (s) speedup time (s) speedup time (s) speedup time (s) speedup
Prf. 1406.49 0.91 6401.21 0.92 6209.55 0.91 8346.38 0.91
Seq. 1273.69 1.00 5879.81 1.00 5632.22 1.00 7603.96 1.00
D1x1 1451.47 0.88 6516.46 0.90 6250.44 0.90 8383.01 0.91
D2x1 953.38 1.34 4007.62 1.47 3784.46 1.49 5074.52 1.50
D3x1 787.52 1.62 3233.41 1.82 2911.95 1.93 3876.61 1.96
D4x1 713.15 1.79 2659.70 2.21 2520.25 2.23 3375.57 2.25
D5x1 642.62 1.98 2401.46 2.45 2155.08 2.61 2997.17 2.54
D6x1 621.28 2.05 2271.72 2.59 2055.88 2.74 2791.12 2.72
D7x1 603.33 2.11 2175.13 2.70 1944.79 2.90 2645.47 2.87
D8x1 593.08 2.15 2062.93 2.85 1889.53 2.98 2557.97 2.97
D9x1 586.99 2.17 2012.30 2.92 1836.91 3.07 2512.61 3.03
D10x1 561.93 2.27 1974.12 2.98 1786.98 3.15 2426.67 3.13
D15x1 563.92 2.26 1913.23 3.07 1740.03 3.24 2336.78 3.25
D20x1 564.99 2.25 1902.99 3.09 1680.77 3.35 2387.37 3.19
D25x1 575.37 2.21 1952.92 3.01 1729.27 3.26 2435.62 3.12
D50x1 598.46 2.13 2062.30 2.85 1844.93 3.05 2526.40 3.01
D75x75 614.60 2.07 2080.47 2.83 1913.82 2.94 2582.20 2.94
D100x1 621.85 2.05 2141.94 2.75 1939.52 2.90 2684.79 2.83
D100x5 509.85 2.50 1886.62 3.12 1823.49 3.09 2492.32 3.05
D100x10 486.24 2.62 1850.94 3.18 1860.35 3.03 2431.53 3.13
D100x15 471.03 2.70 1860.30 3.16 1852.52 3.04 2526.93 3.01
D100x20 476.60 2.67 1837.65 3.20 1825.77 3.08 2495.45 3.05
D100x25 475.34 2.68 1857.40 3.17 1788.84 3.15 2490.98 3.05
D100x50 490.88 2.59 1821.82 3.23 1841.74 3.06 2528.78 3.01
D100x75 502.07 2.54 1946.98 3.02 1859.59 3.03 2556.95 2.97
D100x100 532.36 2.39 1927.30 3.05 1889.01 2.98 2535.17 3.00
Parx8 639.39 1.99 2229.97 2.64 2010.73 2.80 2812.17 2.70
Parx16 426.43 2.99 1714.44 3.43 1621.26 3.47 2229.91 3.41

Figure 14. Representative solutions of the optimised strategies.
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5.4. Representative solutions

To illustrate the importance of optimising multiple 
strategies, we show a representative solution for each 
of them and its associated ET in Figure 14, and their 
corresponding PdðtÞ curves in Figure 15. In general 
terms, the solution obtained for S2 is the best, as it 
reaches the lowest ET and the highest Pd at t = 3000s. 
This happens because using two UAVs is often better 
than using only one, and because S2 TDH lets the 
optimiser handle the correct number of decision vari
ables within each section for this scenario. Besides, the 
longer tend

mission of S4 lets it reach a slightly higher Pd 
1000 s later, worsening the ET of S2 solution.

As determining before-hand the best strategy to 
optimise is not straightforward (even for experienced 
UAV operators in target-search scenarios), our frame
work and its Cloud-deployment is useful to speed up 
the simulations, launch several simulations in 
a streamlined way, and efficiently perform systemati
cal analysis of the parameters, behaviours, and struc
tures of the models.

6. Conclusions

This paper presents a new DEVS-based framework, 
available in (Juan et al., 2022), that extends the cap
abilities of the evaluation framework by Bordón-Ruiz 
et al. (2021), by 1) adding an optimiser module to 
automate the generation of UAV and sensors search- 
strategies for target-search problems, and by 2) sup
porting its straightforward Cloud deployment due to 
its xDEVS distributed implementation (Mittal et al., 
2017). This has a direct impact on the computational 
cost of the optimisation framework, where hundreds 
of UAV trajectories and sensor strategies are evaluated 
to find the best solution. The results show that the 
Cloud deployment allows speedups up to 3.35. This is 
very useful when complex models characterise the 

behaviour of the target-search elements, to increase 
the simulation realism and make the framework 
applicable in real-world scenarios. Moreover, cloud- 
computing also allows to simultaneously launch sev
eral optimisations (under different search strategies/ 
parameterisations), providing operators with different 
solutions and a deeper insight into each mission.

Finally, taking advantage of the MBSE methodol
ogy and DEVS formalism, we plan to extend our 
framework capabilities by: 1) incorporating other 
probability models for the target (e.g., particle fil
ters), 2) optimising other types of UAV trajectories 
(e.g., Dubin curves), 3) incorporating other optimisers 
in the framework to build a generalised Island model 
(Izzo et al., 2012), and 4) exploring new Cloud deploy
ment policies.
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