
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

Journal of Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsm20

Cloud DEVS-based computation of UAVs
trajectories for search and rescue missions

Juan Bordón-Ruiz, Eva Besada-Portas & José A. López-Orozco

To cite this article: Juan Bordón-Ruiz, Eva Besada-Portas & José A. López-Orozco (2022):
Cloud DEVS-based computation of UAVs trajectories for search and rescue missions, Journal of
Simulation, DOI: 10.1080/17477778.2022.2053311

To link to this article: https://doi.org/10.1080/17477778.2022.2053311

Published online: 05 Apr 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20
https://www.tandfonline.com/loi/tjsm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2022.2053311
https://doi.org/10.1080/17477778.2022.2053311
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2022.2053311
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2022.2053311
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2053311&domain=pdf&date_stamp=2022-04-05
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2053311&domain=pdf&date_stamp=2022-04-05

RESEARCH ARTICLE

Cloud DEVS-based computation of UAVs trajectories for search and rescue
missions
Juan Bordón-Ruiz, Eva Besada-Portas and José A. López-Orozco

Department of Computer Architecture and Automation, Universidad Complutense de Madrid, Madrid, Spain

ABSTRACT
This paper presents a new Cloud-deployable DEVS-based framework for optimising UAV
trajectories and sensor strategies in target-search missions. DEVS provides it with a well-
established, flexible, and verifiable modelling strategy to include different models for the
UAV, sensor, and target dynamics; the target and sensor uncertainty; and the optimising
process. Its Cloud deployability speeds up the evaluations/simulations required to optimise
this NP-hard problem, which involves computationally heavy models when solving real-world
missions. The framework, designed to handle different types of target-search missions, cur-
rently optimises, using a multi-objective Genetic Algorithm, free-shape trajectories of multiple
UAVs,eqquiped with several static/movable sensors to detect a target within a search area. It is
implemented in xDEVS and deployable over a set of containers in the Google Cloud Platform.
The results show that our deployment policy speeds up the computation up to 3.35 times,
letting the operator simultaneously optimise several search strategies for agiven scenario.

ARTICLE HISTORY
Received 30 April 2021
Accepted 19 February 2022

KEYWORDS
Simulation in Cloud; Discrete
Event System Specification;
Model-Based Systems
Engineering; Bayesian
Search; Multi-Objective Path
Planning

1. Introduction
Unmanned Aerial Vehicles (UAVs) and their sensor-
ial systems are useful mobile platforms to gather infor-
mation in large-scale environments of real-world
applications. Examples include wildlife monitoring,
area patrolling, persistent surveillance, tactical recon-
naissance, fire fighting, and search and rescue missions
(Ivić et al., 2020; Linchant et al., 2015; Nigam, 2014;
Shakhatreh et al., 2019; Skorobogatov et al., 2020;
Yeong et al., 2015; Yuan et al., 2015). How to deter-
mine the best way of proceeding, i.e., how to compute
the best UAV trajectory and sensing strategy for
a given application, is an open question, answered by
the research community by providing new
approaches, algorithms, and heuristics that take 1)
into account different aspects of each problem and 2)
advantage of the computation advances and capabil-
ities of their moment. In this regard, this paper focuses
on developing a new framework, for optimising UAV-
based search and rescue operations that considers
realistic features of the mission and the computational
opportunities that Model-Based System Engineering
(MBSE) and Cloud Computing currently offer.

Search and rescue operations can be formulated, at
least partially, as target detection problems where the
object or person under search is located in an unknown
location within a given area, moves randomly, and is
observable from imperfect sensors on board UAVs.
Moreover, the UAVs and sensor trajectories can be
obtained by optimising probabilistic utility functions
that simultaneously handle the uncertainty in the target

(location and movements) and sensor (observations).
Examples of these functions and of works that present
strategies to optimise them, are the entropy (Yang et al.,
2002), the information gain (Carpin et al., 2013;
Grocholsky et al., 2006; Hu et al., 2014), the probability
of detection (Delle Fave et al., 2010; Fedorov, 2019;
Kratzke et al., 2010; Lanillos et al., 2014; Li et al., 2021;
Saadaoui et al., 2018; Tisdale et al., 2009; Wang et al.,
2017; Wong et al., 2005; Yao et al., 2017, 2019) and the
expected time of detection (Lanillos et al., 2013; Perez-
Carabaza et al., 2017, 2016; Pérez-Carabaza, Besada-
Portas et al., 2019; Pérez-Carabaza, Scherer et al.,
2019; Riehl et al., 2011). The last two utility functions
are especially interesting in missions where: a) it is
possible to know and exploit a probability distribution
of the initial target location and b) critical to detect the
target as soon as possible.

Sometimes, the optimiser also considers other cri-
teria associated with mission constraints and objec-
tives. In this regard, some works take into account the
existence of non-flying zones, UAV collisions, com-
munication requirements, the UAV fuel consumption,
the length or smoothness of the UAV trajectories, and/
or the area coverage (Carpin et al., 2013; Li et al., 2021;
Perez-Carabaza et al., 2017, 2016; Pérez-Carabaza,
Besada-Portas et al., 2019; Pérez-Carabaza, Scherer
et al., 2019; Yang et al., 2002). Alternatively, and in
order to shorten the gap between the solutions (UAVs
and sensor trajectories) proposed by the optimiser and
its application to real-world search and rescue mis-
sions, a few optimisers include the UAV and sensor

CONTACT Juan Bordón-Ruiz jubordon@ucm.es Universidad Complutense de Madrid, Madrid, Spain

JOURNAL OF SIMULATION
https://doi.org/10.1080/17477778.2022.2053311

© 2022 The Operational Research Society

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2053311&domain=pdf&date_stamp=2022-04-04

dynamical motion models (Delle Fave et al., 2010;
Lanillos et al., 2014; Perez-Carabaza et al., 2017,
2016; Pérez-Carabaza, Besada-Portas et al., 2019;
Tisdale et al., 2009; Wong et al., 2005; Yao et al.,
2019) or non-ideal/non-constant likelihood functions
to model the observations uncertainty within the sen-
sor footprint (Delle Fave et al., 2010; Kratzke et al.,
2010; Lanillos et al., 2014; Perez-Carabaza et al., 2017,
2016; Pérez-Carabaza, Besada-Portas et al., 2019; Riehl
et al., 2011; Wong et al., 2005). These additional func-
tions and models bring realism to the optimisers,
usually at the expenses of hardening the evaluation
and optimisation of the UAVs and sensor trajectories.

In any case, the detection problem, even just with
the probability-based utility functions, is already NP-
hard for a single UAV (Trummel & Weisinger, 1986)
and can become NEXP-Complete for multiples ones
(Yang et al., 2002). Hence, the optimisers are often
any-time iterative suboptimal algorithms (e.g., gradi-
ent-descendent, Evolutionary Algorithms, Cross-
Entropy or Ant Colony Optimisation). Furthermore,
they usually reduce the space of possible solutions to
the problem by setting up only a few target-search
strategies (e.g., with one or two UAVs or pre-fixing
the sensors onboard) over a given mission or by low-
ering the scale of the search area. Hence, to tackle
a more significant number of alternatives and bigger
scale environments efficiently, this paper proposes
a new framework for solving target-search problems
that eases the inclusion of new possibilities and that
can be straightforwardly deployed, without editing the
source code of the model under test and accordingly to
their computation requirements, in a Personal
Computer (PC) or the Cloud.

The framework presented in this paper has been
developed using the Model-Based System Engineering
(MBSE, Wymore, 2018) methodology and the Discrete
Event System Specification formalism (DEVS, Zeigler
et al., 2018). On the one hand, MBSE provides our
framework with a clear separation between the (high-
level) specifications of the models and their final (com-
putational) implementation. This improves the under-
standing of the system behaviour and favours the
incremental design and refinement of its models. On
the other hand, DEVS supports multi-resolution and
the integration of the different types of models (e.g.,
probabilistic and deterministic, continuous and dis-
crete, synchronous, and asynchronous) required by
the framework. Both paradigms also help us to debug,
verify, and validate the framework, and facilitate its
scalability, maintainability, and reusability. Last but
not least, xDEVS, which is the DEVS engine where
the framework is implemented, provides profiling
tools and support for Cloud simulation. We require
both capabilities to detect the most consuming models
of the framework and to distribute their computation in
the Cloud (Mittal et al., 2017; Risco-Martín et al., 2017).

The distributed simulation capabilities of xDEVS
have been exploited as they provide a good trade-off
between scalability and cost. Besides, xDEVS makes
use of a straightforward distributed architecture, based
on client/server patterns and standard sockets, that
streamlines the distribution task and that is most
suitable for our problem than other distributed
DEVS implementations, such as DEVS/SOA (Mittal
et al., 2009) or CD++ (Al-Zoubi & Wainer, 2009),
which are based on the concept of Simulation as
a Service (SaaS) with stateless models, and PyPDEVS
(Van Tendeloo & Vangheluwe, 2015), which requires
the user to slightly modify the model source code to
distribute the simulation.

Finally, in this work, distributed simulations have
been preferred to parallel simulations, because the last
ones, typically faster, demand monolithic computer
platforms, at prohibitive costs when the computation
requirements are increased.

At this point, it is worth noting that several works
use DEVS for problems related to ours. The closest
contribution, by Bordón-Ruiz et al. (2021), intro-
duces the evaluator for UAV-based target-search
strategies that is used by the optimiser presented in
this paper to determine which UAV and sensor tra-
jectories are the best for a given scenario. Also related
to the target-search problem are the works by
Holman et al. (2010) and by Happe and Berger
(2010). The first work models the target-search pro-
blem with Cell-DEVS and cellular automata that
combine diffusion rules to update the probability
map and high-climbing algorithms to optimise the
UAV search-pattern. In contrast, the second one
introduces a multi-UAV cooperative search path
planner focused on coordination strategies and infor-
mation-sharing policies. Our approach is different
from both since it is intended to provide a common
Cloud-deployable framework for determining the
best UAV/sensor strategies for different types of tar-
get-search problems. In other words, within our fra-
mework we are planning to support different variants
of target search problems and to efficiently compute
the best UAV/sensor strategies for them, by taking
advantage of xDEVS modelling flexibility and distri-
bution capabilities. In addition, Hall (1997) intro-
duces a simulator to evaluate the effectiveness of
military missions involving autonomous vehicles;
Moreno, de la Torre, Risco-Martin, Besada-Portas,
Aranda et al. (2011) model the evaluation of UAV
trajectories in hostile environments; Zeigler and Kim
(2019) tackle multi-resolution modelling for explora-
tory analysis of complex and adaptive UAV service
systems; and Pecker-Marcosig et al. (2020) present
a unified DEVS-based platform to model and simu-
late hybrid control systems which is tested in mission
involving UAVs. Hence, they are focused on other
types or aspects of problems involving UAVs, while

2 J. BORDÓN-RUIZ ET AL.

this work is focused on presenting a distributable
framework for target search missions. Finally, and
as our DEVS-based framework also implements the
optimisation of the UAV and sensor trajectories, we
want to mention a few works that have successfully
used DEVS to optimise problems of other fields of
research (Cárdenas et al., 2020; Moreno, de la Torre,
Risco-Martin, Besada-Portas, Aranda et al., 2011;
Ntaimo et al., 2008; Pérez, 2017; Risco et al., 2008;
Zeigler et al., 1996). This last group of works already
shows how implementing the optimiser within DEVS
is helpful to unify the modelling and implementation
under the same paradigm.

After all this discussion, we want to highlight the
main contributions of this work:

• A new DEVS-based framework for optimizing different
types of UAV and sensor strategies for different variants
of target-search problems in large-scale realistically-
modeled scenarios. Although to test the framework,
we have had to select a particular variant of the pro-
blem and implement specific behaviors for the sensors,
UAVs and targets, the framework is designed to easily
incorporate other behaviors and elements in the future.

• A framework deployable in PCs or the Cloud, without
needing to modify its hierarchical structure or re-code
the couplings and behaviors of its models. Hence, it
can be used, depending on the computational require-
ments of the involved models, in different platforms.

• A flexible and straightforward distribution allocation
policy, based on DEVS microservices and containeriza-
tion paradigms. While the use-case is specific, this policy
can be generalized to support the Cloud containeriza-
tion and simulated of other complex systems modelled
in DEVS.

The organisation of this paper is the following. This
first section has introduced the paper and conducted
a review of the state of the art related to it. Section 2
introduces the technologies that support the distribu-
tion of DEVS-based models in the Cloud. Section 3
describes the architectural and behavioural specifica-
tions of the framework. Section 4 presents the tools
and policy followed to deploy the framework in the
Cloud. Section 5 analyzes the results obtained by the
framework over a realistically modelled scenario and
the computational speedup associated with its Cloud
distribution. Finally, Section 6 draws the conclusions
and introduces future lines of research.

2. Foundational technologies

Our framework must be able to execute simulations and
optimisations in a distributed environment. To this end,
we have selected a container-based distributed architec-
ture due to its potential and configuration simplicity. In
this section, we describe the technologies involved in
performing distributed simulations based on microser-
vices, containerisation paradigms, and DEVS.

2.1. Microservices paradigm

A microservice is a basic element that results from
the architectural decomposition of an application
into loosely coupled patterns that consist of self-
contained services, which communicate with each
other primarily through asynchronous event-driven
mechanisms. To do it, they use a standard commu-
nication protocol and a set of well-defined
Application Programming Interfaces (APIs) inde-
pendent of any vendor, product, or technology
(Mittal et al., 2017).

Moreover, any microservices-based architecture
has to address two fundamental issues: distributed
data management (to store the state of the microser-
vice locally) and shared event processing (to facilitate
the information exchange between stateless microser-
vices). Finally, to execute their inherent business logic,
the information from the local data and the event
processing inside the microservice are used together.

2.2. Containerisation paradigm

A container is an independent self-sufficient runtime
environment for a software application. It wraps a piece
of software in a complete file-system that contains every-
thing needed to run. Relevant features of these containers
are: (1) lightweight; (2) sharing the same OS kernel,
common files and layering; (3) based on open standards;
(4) running on all major Operating Systems (OS) and on
top of any infrastructure; (5) isolating applications from
others and from the underlying infrastructure; (6) com-
posable; and (5) predictable (opensource.com, 2021).

The architectural approach of containerisation is
different from that of virtual machines. The differences
are illustrated in Figure 1. In particular, Figure 1a shows
how a virtual machine stores the whole Operating
System (OS), libraries, needed binaries and applications,
requiring a huge memory space in the host machine.
Figure 1b shows how a container is composed by
libraries, required binaries and applications; and how
all the containers share the same OS kernel. This makes
containers a lightweight and flexible tool for packaging,
delivering, and deploying software and applications.

2.3. DEVS distributed architecture
The parallel Discrete Event System Specification
(DEVS) is a modular and hierarchical formalism for
discrete event system modelling based on set theory
(Zeigler et al., 2018). It includes two types of models,
atomic and coupled, which have an interface consist-
ing of input (X) and output (Y) ports to communicate
with other models. Additionally, in atomic models,
every model state (S) is associated with the time
advance function ta, which determines the duration
in which the state remains unchanged. Once the time

JOURNAL OF SIMULATION 3

assigned to the state has passed, an internal transition
function (δint : S! S) is fired and an internal transi-
tion is triggered, producing a local state change
(δintðsÞ ¼ s0). At that moment, the model execution
results are spread through the model’s output ports
by activating an output function (λ). Furthermore,
input external events (received from other models)
are collected in the input ports. An external transition
function (δext : S� e� X ! S) specifies how to react
to those inputs, using the current state (s), the elapsed
time since the last event (e) and the input value (x)
(δextððs; eÞ; xÞ ¼ s0). Parallel DEVS introduces
a confluent function (δconððs; taðsÞÞ; xÞ ¼ s0), which
decides the next state in cases of collision between
external and internal events. Coupled models are the
aggregation/composition of two or more models
(atomic and/or coupled), connected by explicit cou-
plings. This makes DEVS closed under coupling and
allows to use networks of systems as components in
larger coupled models, leading to hierarchical and
modular constructions. Overall, DEVS provides
a framework for information modelling that has sev-
eral advantages to analyse and design complex sys-
tems: completeness, verifiability, extensibility, and
maintainability.

Once a system is described according to DEVS
theory, it can be easily implemented using one of the
many DEVS Modelling and Simulation (M&S)
engines that have come into existence in the last dec-
ades. All of them offer a programmer-friendly API to
define new models using a high-level language, but
only a few provide a user-friendly API for parallel or
distributed model simulation. Among them, xDEVS
(Mittal et al., 2017) offers a good alternative to paral-
lelise or distribute simulations in the Cloud, following
the microservices architecture and containerisation
detailed above. As a result, any DEVS model can be

parallelised or distributed by assigning resources
(threads or processes) to different transition and out-
put functions as parallel or distributed functional
programming.

The microservices-based DEVS simulation execu-
tion is explained with the help of the classic
Experimental Frame – Processor (EF-P) model. This
model, represented in Figure 2a, contains two compo-
nents: the Experimental Frame (EF) coupled model
and the Processor (P) atomic model. In order to simu-
late it in the Cloud, this hierarchical model is auto-
matically flattened by xDEVS, removing all the
coupled models, in order to obtain the Generator –
Processor – Transducer (GPT) equivalent model
depicted in Figure 2b. Next, and according to
Figure 2c, each model in GPT is mapped to a DEVS
container following the instructions of a simulation
configuration file. Moreover, one container can allo-
cate one or more DEVS atomic models with their
corresponding local states. In the example illustrated
in Figure 2c, a different container/simulator is created
for each atomic model of the GPT, and one of the
containers is designated as the root coordinator
responsible of driving the whole simulation.
Furthermore, models’ state transitions and output
events are always managed by their corresponding
simulators, and model output events are propagated
to their neighbours using socket communication
between model-simulator pairs. Finally, note that
since the distributed architecture is implemented at
the simulation layer of xDEVS, any xDEVS model can
be simulated in the Cloud without changing its code.
Finally, it is worth mentioning that although the par-
allelisation or distribution is oriented to transition or
output functions, DEVS closure-under-coupling
property allows us to easily rearrange parallel or dis-
tributed layouts. Following the EF-P example, the EF

Figure 1. Graphical representation of (a) virtual machine and (b) docker container architectures.

4 J. BORDÓN-RUIZ ET AL.

coupled model could be transformed into a single
atomic using the Coupled2Atomic xDEVS wrapper,
which allows us to parallelise the EF transition or
output functions as a whole, instead of as two atomic
function sets.

3. Models description
This section presents the main characteristics of the
models of our framework from a bottom-up perspec-
tive. As the framework incorporates the modules of
the evaluation process already presented in
Bordón-Ruiz et al. (2021), the descriptions in
Sections 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 are lighter,
while the descriptions in Sections 3.7 and 3.8 of the
new modules required to optimise the UAV and sen-
sor trajectories are deeper.

3.1. Sensor Model (SM)

In the target-search problem, sensors on board
UAVs are used to obtain information from the
search area Ω, which is discretised in a grid G of
wx x wy rectangular cells. The detection

capabilities of the sensor are defined by the like-
lihood model pðDjct; stm

u;kÞ, which states how prob-
able is to observe the target placed at cell ct at
time t from the UAV location and sensor pose stm

u;k
at measuring time tm. Additionally, to describe the
behaviour of moving sensors (e.g., a gimballed
camera), a deterministic motion model st

u;k ¼

gðst
u; s

t� Tu;k
u;k ; at� Tu;k

u;k ;Tu;k;2
t� Tu;kÞ obtains the new sen-

sor pose st
u;k based on its UAV location st

u, its

previous pose st� Tu;k
u;k , its control signal at� Tu;k

u;k and
duration Tu;k, and the environment condi-
tion 2t� Tu;k .

The specification of each sensor is represented by
the Sensor coupled Model (SM) of Figure 3a, while its
internal structure is depicted in Figure 3b and
described below:

• The Sensor Payload atomic model (SP) computes
pðDjct; stm

u;kÞ and returns its complementary function
pðDjct; stm

u;kÞ at every measuring time tm of the sensor.
• The Sensor Motion atomic model (SMM) exe-

cutes gð�Þ at the time lapses defined by the user to
output the new sensor poses st

u;k.

Figure 2. DEVS containers within microservices and containerisation paradigms. adapted from (Mittal et al., 2017).

JOURNAL OF SIMULATION 5

• The Sensor Control atomic model (SC) han-
dles the sensor moving control list, receives every
new st

u;k, and wraps them into the sensor pose
trajectory traySen that is output when the simula-
tion ends.

In addition, as static sensors do not require motion
models and control lists, their SM models are simpli-
fied into SP models.

Eventually, it is worth noting that evaluating
pðDjct; stm

u;kÞ for realistically modelled sensors is often
more computationally demanding than calculating
gð�Þ. In particular, the camera likelihood in this
paper is high-time consuming (because it evaluates
pðDjct; stm

u;kÞ in many points within the sensor footprint
for every sensor measurement), the radar likelihood is
lighter (as it reuses the likelihoods of previous time
steps, displaced to the new sensor observation area),
the camera motion gð�Þ computation time is negligi-
ble, and the radar motion ignored.

3.2. UAV Model (UM)

UAVs overfly Ω looking for the target. Their motion
dynamics are summarised in 2t� Tu;k , which allow to
obtain the new UAV location st

u from its previous one
st� Tu

u , its control signals at� Tu
u and durations Tu,

and 2t� Tu .
Each UAV in the scenario creates an instance of the

UAV coupled model (UM). Its inputs are, according
to Figure 4a, the search area Ω, the environmental
state 2 and the encapsulated UAV definition uav.
Its outputs are the simulated UAV trajectory
trayUAV, which includes traySensor of its moving
sensors, and pðDjct; stm

u;kÞ. Its internal structure, in
Figure 4b, includes two atomic models: UAV
Control (UC) and UAV Motion (UMM), conceptually
equivalent to the sensor SC and SMM models.
Additionally, it aggregates as many SM models as
detection sensors have the UAV.

Figure 3. Sensor coupled model (SM).

Figure 4. UAV coupled model (UM).

6 J. BORDÓN-RUIZ ET AL.

Finally, the computational requirements of f ð�Þ are
highly dependent on the complexity of the UAV dyna-
mical modelled within it. In particular, in this paper
f ð�Þ implements a 4th Order Runge Kutta to integrate
a lightweight model with streamlined dynamics for the
UAV height, speed, and lateral displacements.

3.3. Flight Simulator (FS)

The Flight Simulator coupled model (FS) is defined, as
Figure5 shows, by aggregating as many UM models as
UAVs. It computes all UAV trajectories and sensor
likelihoods, and inherits the computational require-
ments of its components (UAVs and sensors).

3.4. Target Model (TM)

The uncertainty about the target location is modelled
by a probability map or belief bðctÞ over each cell
ct 2 G. The initial belief bðc0Þ is known and the target
evolution is computed using the prediction and assim-
ilation step of the Recursive Bayesian Filters (RBF,
Bourgault et al. (2004)) over the “remaining or unob-
served probability” pðctÞ, related to
bðctÞ ¼ pðctÞ=

P
g2G pðct ¼ gÞ. In particular, the pre-

diction pðctÞ
P

ct� T2G pðctjct� TτÞpðct� TτÞ considers
the target uncertainty motion model pðctjct� TτÞ,
while the assimilation pðctÞ pðDjct; stm

u;kÞ � pðc
tÞ

incorporates the computed likelihoods.
The operations are carried out by the Target

coupled model (TM) of Figure 6a, which contains
the two atomic models of Figure 6b:

• The Target Control (TC) updates pðctÞ by: a)
performing the assimilation step integrating the
receive pðDjct; stm

u;kÞ in pðctÞ, or b) receiving the pðctÞ

predicted by the Target Motion model. It also wraps
pðctÞ into the encapsulated target evaluation eTarget.

• The Target Motion (TMM) performs the prediction
step, applying the target motion model. It is only used
by dynamic targets and removed with its correspond-
ing couplings for static targets.

The computational demands of these models grow
with the resolution (number of cells in G) of the search
space, the number of sensors and measurements
taken, and the number of target displacements.

3.5. Evaluator Function (EF)

To evaluate the simulated UAV trajectories and sensor
poses, different utility functions are used. They are
computed in the Evaluator Function atomic model
(EF), which receives the simulated trayUAV and
eTarget, and calculates the probability of target detec-
tion (PdðtÞ ¼ 1 �

P
ct2G pðctÞ), the Expected Time of

detection (ETðtÞ ¼
P

l¼1:1:t=Tτ
ð1 � Pdðl � TτÞÞTτ), the

number of Non-Flying Zones overflights
(NFZ ¼

PT
t¼1
PU

u¼1 WithinNFZðst
uÞ), the number of

UAV collisions
(COL ¼

PT
t¼1
PU

u¼1
PU

l¼kþ1 Collisionðst
u; st

l ; dCOLÞ)
and the MYOpia criterium at certain times of the
simulation (MYOðtÞ ¼

P
ct2G lðct; st

1:U;1:KÞpðctÞ with
lðct; st

1:U;1:KÞ ¼
Q

u¼1:U;k¼1:S hðct; st
u;kÞÞ and hðct; st

u;kÞ

a radial monotonically increasing function in [0,1],
whose minimum is centred at st

u;k and whose purpose
is to inform how good are the final UAV and sensor
locations for collecting the remaining pðctÞ).

At last, note that the computational requirements
of this module are moderated, as it just performs some
final operations over the results provided by the Flight
Simulator and Target Model.

3.6. Evaluator (EV)

The Evaluator coupled model (EV) encapsulates the
TM and EF models, as Figure 7 shows, inheriting their
computational requirements (especially those of TM). Figure 5. Flight Simulator coupled model (FS).

Figure 6. Target coupled model (TM).

JOURNAL OF SIMULATION 7

In short, it is where the target and utility functions are
evaluated. Finally, it returns the encapsulated result of
the evaluation (eUAV and eTarget).

3.7. Optimiser (OP)

The Optimiser coupled model (OP) introduced in
this paper extends the capabilities of the evaluation
framework of UAV strategies for target-search sce-
narios by Bordón-Ruiz et al. (2021), built over the
coupling of the Flight Simulator (FS) and Evaluator
Function (FC) models. The new OP model is in
charge of automatically constructing the UAV and
sensor trajectories, by implementing the steps of an
iterative population-based optimisation algorithm
capable of handling the complexity of target-
search problems.

The OP model, depicted in Figure 8, encapsulates
the generic steps of the optimiser in the Algorithm
Controller atomic model (AC), while the UAV-
strategy target-search evaluation process is performed
by the FS and EV models. In particular, at every itera-
tion of the algorithm implemented within AC,
a population of Npop solutions (UAV and sensor

trajectories) is generated and sent to the aggregation
of Npop FS and EV models, which in pair carry out the
evaluation of each solution.

In addition, the outer loop of the current version of
OP works as the receding horizon-controller in Pérez-
Carabaza, Besada-Portas et al. (2019), which a) opti-
mises all the control signals to be applied to the UAVs
and sensors during the decision horizon TDH , and b)
considers the final pðctÞ, stu and st

u;k of each trajectory
section, the initial values of the next. This philosophy,
commonly used in target-search, breaks down the
problem into smaller pieces that are optimised
sequentially, reducing the space of possible solutions.

Finally, note that there is not a direct feedback among
EV and FS (or between the UM within FS), since their
purpose is to evaluate the solutions proposed by the
optimisation approach implemented within AC.
Besides, our approach consists in including the optimiser
within the model-based framework, as it helps us unify
all the process in DEVS and distribute it in the Cloud.

3.8. Algorithm Controller (AC)

The AC model receives the scenario specification,
which includes the definition of every element of the
mission (e.g., Ω dimensions; target probability models;
number, initial location/pose and models of the
UAVs/sensors, and mission duration tend

mission).
Besides, it receives the optimiser specification,

which includes the type and parameters of the optimi-
sation algorithms, the optimisation and feasibility cri-
teria to be used (ET, PdðtÞ, MYO, NFZ and COL), and
the decision horizon parameters (TDH , number of
iterations and computation time for each trajectory
section). At last, when TDH < tend

mission, the AC model
optimises the UAV and sensor trajectory by
sequences, and MYO should be included to determine
how well the search can continue from the final state
of the current trajectory section.

Figure 7. Evaluator coupled model (EV).

Figure 8. Optimiser coupled model.

8 J. BORDÓN-RUIZ ET AL.

The AC behaviour is described in Figure 9. Initially,
the model waits for the scenario and optimisation
definitions in a passive state. At their reception, AC
prepares the initial sequence by analysing the scenario
specification and determining the trajectories of which
UAVs and sensors should be optimised already. Next,
for each UAV u and sensor uk included in the current
section, AC generates Npop solutions, consistent on the
list of random reference signals (UAV orientation,
height and speed, and sensor azimuth and elevation
angles respect the UAV body-axes) to be applied per-
iodically (at a fixed rate) or at the time-steps randomly
generated by AC. When this last behaviour is enabled,
each solution of the population can have a different
number of decision variables. Once the first set of Npop

solutions is ready, a δext transition takes AC to the
evaluation state, where an instant δint transition is
programmed to output via the λ function the Npop

solutions to be evaluated by their FS and EV models.
Next, AC remains in a waiting state until the all the
evaluation results are received. At this stage, AC
checks if the maximal number of iterations and execu-
tion time of the current decision horizon has been
reached. If it has not, AC iterates the operations of
the optimisation algorithm to produce another group
Npop solutions, sends them to be evaluated and waits
for the results. Otherwise, AC terminates the optimi-
sation of the current sequence, stores the best solution
so far, and uses it to obtain the initial state of the next
sequence. When the optimisation of the last sequence
is finished, AC transitions to its end state, outputting
the whole best solution via the λ function.

The previous behaviour is designed to operate as
a receding controller capable of incorporating the
optimisation steps of different population-based algo-
rithms. For this paper, it uses a Genetic Algorithm
(GA) that implements: 1) binary tournament selec-
tion, 2) a crossover that determines the cutting point
of each parent based on the crossing time (selected
from a uniform probability between the times of the
decision horizon), 3) a two-level mutation (consisting

of two Gaussian increments of the decision variables,
the first in a few uniformly-randomly selected decision
variables and the second one – with smaller variance –
in all of them), and 4) the recombination step of
NSGA-II (Deb et al., 2002). Further details of steps
(1), (3) and (4) are presented in (Pérez-Carabaza,
Besada-Portas et al., 2019), while the new step (2) is
conceptually similar to the ones in (Andres-Toro et al.,
2004; Kiam et al., 2021). In addition, within our frame-
work, step (4) is implemented before step (1), because
the optimisation step iterates every time the whole set
of Npop solutions is received.

Finally, note that the computational requirements
of the AC model are low, as the evaluation process is
performed by the FS and EV models placed outside it.
Moreover, as AC requests the Npop FS and EV coupled
models to evaluate the partial solutions at each itera-
tion of the optimisation of each segment of the UAV
and sensor trajectories, the overall computational cost
of FS and EV grows proportionally to the number of
segments and optimisation iterations within them.

4. Cloud simulation deployment

This section describes the Cloud deployment architec-
ture. Broadly speaking, the original DEVS model is
flattened, next each atomic model is allocated into
a Cloud container, and finally, the simulation is exe-
cuted into a container-based distributed infrastruc-
ture. In the following, we detail how this procedure,
summarised in Figure 10, is carried out over our
framework, which has been developed using the
xDEVS simulation engine (Risco-Martín et al., 2017).

First, an XML description of a flattened version of
the original model is generated with xDEVS. This XML
file contains all the atomic models and coupling rela-
tions that are obtained after rearranging the connec-
tions of the coupled models, which are removed
because they accumulate deployment difficulties in dis-
tributed simulations (Risco et al., 2008). Next, the user
must edit this XML file to configure the allocation of all

Figure 9. Algorithm Controller States.

JOURNAL OF SIMULATION 9

the atomic models. This step is important because it
decides the distributed simulation structure. Although
each atomic model can be allocated into a single con-
tainer, this option is not operative since a DEVS model
can contain hundreds of atomic models, many of them
computational light in terms of CPU cycles. Thus, it is
better to group several atomic models per container.
Figure 10 shows the 2-level allocation policy followed
in this paper, consistent of n containers, placed at level
1 (L1), reserved for those atomic models with high
computational demands; plus m containers, placed at
level 2 (L2), reserved for the others. In general, n> >m
in order to follow a coarse-grain allocation policy that
a) exploits the modeller knowledge about which atomic
models consume more CPU, and b) avoids
a computing-intensive profiling phase.

Second, once the allocation policy is described
inside the XML file, a script (specific for the cloud
platform where the distributed model is going to be
simulated) is generated with an XML parser. In
a xDEVS distributed simulation, each atomic
model is executed inside its simulator as an isolated
process, while the coordinator marks the beginning
and end of the simulation, as described in Figure 2.
The communication between simulators is made
using sockets. As a result, any distributed architec-
ture is possible (e.g., using a set of computers, a set
of containers, a set of virtual machines, or
a combination of all of them). For this particular
work, we have developed a parser that generates
the script to deploy a distributed simulation over
a set of containers in the Google Cloud Platform
(GCP), using the Google Kubernetes Engine (GKE).

Third, the script is executed against the selected
cloud platform, and the model is deployed using the
selected allocation policy. In this step, every container

stores the whole flattened atomic model. Still, each con-
tainer will run one or more distributed xDEVS simula-
tors, each one with its corresponding atomic model as
defined in the XML file. Besides, one particular con-
tainer runs the distributed xDEVS root coordinator, and
for simplicity, even between the simulators executed in
the same container, messages are passed using sockets.

Finally, once the simulation ends, the results are
stored in a distributed way, as each atomic model can
have a different mechanism to save data. Our recom-
mendation is to have a Transducer atomic model (Zeigler
et al., 2018) to collect the relevant information to store it,
if necessary, in the container where it was allocated.

To anticipate the dimensions of the four strategies
simulated in this work (named S1, S2, S3, and S4 here
after) and understand how they are distributed among
the containers, Table 1 shows the number (#) of
atomic models instantiated in the xDEVS model and
the percentage (%) of the accumulated execution time
of all the atomic models that belong to each class. It
also shows that Target Control and Radar Sensor

Figure 10. Cloud deployment scheme.

Table 1. Percentage of execution time/scenario and atomic
class.

Atomic Class S1 S2 S3 S4

% # % # % # %

Radar Sensor Payload (SP) 50 26 50 6 50 6 50 5
Camera Sensor Payload

(SP)
NA NA 100 34 100 35 100 35

Camera Sensor Control
(SC)

NA NA 100 0 100 0 100 0

Camera Sensor Motion
(SMM)

NA NA 100 1 100 1 100 1

UAV Control (UC) 50 1 100 1 100 1 100 1
UAV Motion (UMM) 50 2 100 1 100 1 100 1
Target Motion (TMM) 50 10 50 2 50 2 50 2
Target Control (TC) 50 55 50 50 50 52 50 52
Evaluator Function (EV) 50 6 50 5 50 2 50 3
Algorithm Controller (AC) 1 0 1 0 1 0 1 0
TOTAL 301 100 701 100 701 100 701 100

10 J. BORDÓN-RUIZ ET AL.

Payload assume more than 75 % of the total execution
time for S1, while Camera Sensor Payload and Target
Control do something similar for the others. Based on
this information, we have decided to add all the atomic
models that belong to these three classes to level L1 of
our allocation policy, and the remaining atomic mod-
els to L2. In the following section, we will see that
adding containers to L1 has a high impact on the
execution time, while adding more containers to L2
has almost no effect.

Finally, note that the previous statistics have been
calculated using the Coordinator named
CoordinatorProfile in xDEVS, which registers the
execution times for each DEVS function and atomic
model. However, to distribute larger models quickly,
we recommend to follow a coarse grain classification
of atomic classes as we are applying in this example
because the simulation of these models can take sev-
eral hours, but the modeller usually knows (as can be
observed in Section 3) which classes are more CPU
demanding.

5. Results

The simulations conducted in this paper are focused on
demonstrating the benefits of deploying complex simula-
tion models in the Cloud. To do it, we optimise different
strategies over a real-world inspired scenario and com-
pare the simulation time required by distributing their
models over different numbers of containers. We have
also executed fully parallel simulations on two different
shared memory machines to compare performance and
cost against the proposed distributed approach.

5.1. Scenario

The scenario is inspired by a search and rescue mis-
sion at the sea, where a boat is missing within a search
area of 60 × 60 km2, discretised into 200 × 200 cells of
300 x 3002.

The initial target bðc0Þ is presented in Figure 11
(a), while its displacement towards the north-east is
modelled with a pðctjct� Tτ Þ applicable every Tτ ¼

150 s. The effects of the target displacement after
tend
mission ¼ 3000 s are represented in Figure 11(b),

although difficult to appreciate as the target barely
moves 6 km.

Two UAVs are available to carry out the mis-
sion. Their main characteristics are summarised in
Table 2. Their motion model is described in (Pérez-
Carabaza, Besada-Portas et al., 2019) and integrated
every 1 s.

Regarding the sensors, UAV1 is equipped with
a continuous-wave radar and UAV2 has two high-
resolution cameras. Its first camera is static and
placed at the UAV noise pointing ahead with
a fixed elevation (from the aircraft longitudinal
axis) of 30 deg, while the second one is mounted
at the UAV bottom on a gimbal, whose motion
model is integrated with a 4th Order Runge-Kutta
every 2 s, has a maximal slew rate of 5 deg/s at an
azimuth range of 360 deg, and a fixed elevation of
70 deg. Their pðDjτt; st

uÞ depends, as Figure 12
shows, on the distance between τt and st

u and, in
the camera case, on the sensor footprint that is
modifiable by the sensor field of view (fixed at
7.5deg), UAV height and sensor pose.

5.2. Search strategies and optimiser setup

In order to determine the best UAV and sensor tra-
jectories for the previous scenario, we set up the fol-
lowing four strategies:

• Strategy 1 (S1) uses only UAV1, a decision hor-
izon TDH ¼ 1000s and a mission duration tend

mission ¼

3000s.
• Strategy 2 (S2) incorporates also UAV2 to the

mission and makes TDH ¼ 500 s.
• Strategy 3 (S3) is similar to S2, but with TDH ¼

1500 s.

Figure 11. Mission Belief.

JOURNAL OF SIMULATION 11

• Strategy 4 (S4) is similar to S3, but with TDH =
1000 s and tend

mission ¼ 4000 s.
In short, we set up S1 to see how well UAV1 can

accomplish the mission on its own, and the other
strategies to see the effect of TDH in the quality of the
solutions, and if increasing TDH and tend

mission in S4
allows to obtain a better PdðtÞ and ET.

The remaining parameters of the optimiser, com-
mon for all the strategies, are:

• The decision variables of the optimiser are:

° The headings of both UAVs, defined as aperiodic
incremental control variables within [−30, +30]deg.

° The camera azimuth, defined as a control signal with
absolute value within [−90, +90]deg that changes
every 10s.

• The constraint is COL and the optimisation criteria
(in the given preference order for deciding which is
the best final solution of each decision horizon) are
MYO, ET and Pd.

• The GA properties in Table 3.

5.3. Computation cost analysis

The analysis in this section is based on the contain-
ers distribution explained in Section 4. Likewise, the
optimisation of the four strategies is carried out
on GKE.

To determine how the Cloud deployment affects
the computational time, an incremental container
strategy is followed by 1) increasing the number of
L1 containers from 1 to 100 using a single L2 container
and 2) fixing 100 containers in L1 while increasing L2

from 1 to 100. We increase first the containers of L1

because the models with higher computational costs
are placed in that layer. Besides, these distributed
simulations have been performed using a Kubernetes
cluster with 16 Intel(R) Xeon(R) CPU @ 2.30 GHz and
4 GiB RAM nodes.

To compare the distributed simulations against
parallel ones, we have simulated the same scenarios
in parallel, using 8 and 16 Intel(R) Xeon(R) CPU @
2.30 GHz shared memory machines, with 32 and 64
GiB of RAM, respectively. Hence, the 16 CPU
machine was set up to have as many CPUs and the
same total RAM as the sum of the resources distrib-
uted in the cluster.

Figure 13 illustrates the results of the analysis (further
detailed in Table 4) using each row of graphics for
a different strategy, the left column for the Wall-Clocks
(WCs) and the right one for the Speed-Up (SU). The
ordinate axis of the graphics at the left show that the WC
of S2, S3, and S4 is significantly higher than those of S1,
since the last three cases require computing the like-
lihoods and target updates of the two cameras. Besides,
within each graphic, the first two bars (labelled Prf. and
Seq.) correspond to regular/sequential simulations, exe-
cuted in GKE without exploiting its distribution possibi-
lities, respectively, using a) xDEVS CoordinatorProfile to
perform a profiling of the simulation, and b) xDEVS
Coordinator to obtain the reference to compute the
speedup. For the following bars, named Dixj with i ¼
ContainersInðL1Þ and j ¼ ContainersInðL2Þ, the simula-
tion is executed using xDEVS CoordinatorDistributed.
The last two bars, labelled Parx8 and Parx16, show the
results of the fully parallel simulations in 8 and 16 CPUs,
respectively, both using xDEVS CoordinatorParallel
class, which takes the root coupled model, flattens it
and parallelises the executions of its transition and out-
put functions, similarly as in the distributed simulation
but using the available threads, with no levels.

Within the group of distributed simulations Dixj,
we can observe that as soon as the containers in L1
grows, the WCs are significantly reduced and the SU
increased. The improvements associated with increas-
ing L1 containers stop when the communication
workload of the distributed models becomes signifi-
cant. The optimal configuration with a single con-
tainer in L2 happens when there are 10/20/20/15

Table 2. UAVs characterisation.
Description UAV1 UAV2

Flying height range (ft) 3000 3048
Flying speed range (kts) 77.8 87.5
Operating range (nm) 135 80
Flying autonomy

(hours)
15 6.5

Motion Model Runge-Kutta
(1s)

Runge-Kutta (1s)

Payload Radar (4s) Camera 1 (1s), Camera 2
(4s)

Figure 12. Sensor Likelihoods.

Table 3. GA characterisation per decision horizon.
Parameter Configuration

Population Size (NpopÞ 50
Iterations 100
Crossover Probability px = 0.8
Mutation Probabilities pmut¼ 1=#Decision Variables, σ1 ¼ 200, σ2 ¼ 1

12 J. BORDÓN-RUIZ ET AL.

containers in L1 for S1/S2/S3/S4. Beyond this point,
there are no benefits in increasing L1 containers with-
out increasing L2 containers. Nevertheless, increasing
L2 containers only improves the performance slightly
in S1 and S2, as the benefits of distributing models of
low computational costs cannot compensate for their
communication workload. As a result, complex

models can be straightforwardly distributed, simulat-
ing all of them simultaneously and with a significant
speedup.

When comparing the distributed and parallel simu-
lations, we observe that the SU of the best distributed
one within each strategy is greater than the SU of
Parx8 and lower than the SU of Parx16. However, if

Figure 13. Computational analysis.

JOURNAL OF SIMULATION 13

we include in the comparison the cost/month of each
setup (calculated as 208.32, 338.36, and 416.63
$/month for the 8 parallel, 16 distributed, and 16

parallel CPUs), the distributed simulations offer
a good trade-off between flexibility, performance,
and cost.

Table 4. Computational analysis: numerical results.
Coordinator S1 S2 S3 S4

time (s) speedup time (s) speedup time (s) speedup time (s) speedup
Prf. 1406.49 0.91 6401.21 0.92 6209.55 0.91 8346.38 0.91
Seq. 1273.69 1.00 5879.81 1.00 5632.22 1.00 7603.96 1.00
D1x1 1451.47 0.88 6516.46 0.90 6250.44 0.90 8383.01 0.91
D2x1 953.38 1.34 4007.62 1.47 3784.46 1.49 5074.52 1.50
D3x1 787.52 1.62 3233.41 1.82 2911.95 1.93 3876.61 1.96
D4x1 713.15 1.79 2659.70 2.21 2520.25 2.23 3375.57 2.25
D5x1 642.62 1.98 2401.46 2.45 2155.08 2.61 2997.17 2.54
D6x1 621.28 2.05 2271.72 2.59 2055.88 2.74 2791.12 2.72
D7x1 603.33 2.11 2175.13 2.70 1944.79 2.90 2645.47 2.87
D8x1 593.08 2.15 2062.93 2.85 1889.53 2.98 2557.97 2.97
D9x1 586.99 2.17 2012.30 2.92 1836.91 3.07 2512.61 3.03
D10x1 561.93 2.27 1974.12 2.98 1786.98 3.15 2426.67 3.13
D15x1 563.92 2.26 1913.23 3.07 1740.03 3.24 2336.78 3.25
D20x1 564.99 2.25 1902.99 3.09 1680.77 3.35 2387.37 3.19
D25x1 575.37 2.21 1952.92 3.01 1729.27 3.26 2435.62 3.12
D50x1 598.46 2.13 2062.30 2.85 1844.93 3.05 2526.40 3.01
D75x75 614.60 2.07 2080.47 2.83 1913.82 2.94 2582.20 2.94
D100x1 621.85 2.05 2141.94 2.75 1939.52 2.90 2684.79 2.83
D100x5 509.85 2.50 1886.62 3.12 1823.49 3.09 2492.32 3.05
D100x10 486.24 2.62 1850.94 3.18 1860.35 3.03 2431.53 3.13
D100x15 471.03 2.70 1860.30 3.16 1852.52 3.04 2526.93 3.01
D100x20 476.60 2.67 1837.65 3.20 1825.77 3.08 2495.45 3.05
D100x25 475.34 2.68 1857.40 3.17 1788.84 3.15 2490.98 3.05
D100x50 490.88 2.59 1821.82 3.23 1841.74 3.06 2528.78 3.01
D100x75 502.07 2.54 1946.98 3.02 1859.59 3.03 2556.95 2.97
D100x100 532.36 2.39 1927.30 3.05 1889.01 2.98 2535.17 3.00
Parx8 639.39 1.99 2229.97 2.64 2010.73 2.80 2812.17 2.70
Parx16 426.43 2.99 1714.44 3.43 1621.26 3.47 2229.91 3.41

Figure 14. Representative solutions of the optimised strategies.

14 J. BORDÓN-RUIZ ET AL.

5.4. Representative solutions

To illustrate the importance of optimising multiple
strategies, we show a representative solution for each
of them and its associated ET in Figure 14, and their
corresponding PdðtÞ curves in Figure 15. In general
terms, the solution obtained for S2 is the best, as it
reaches the lowest ET and the highest Pd at t = 3000s.
This happens because using two UAVs is often better
than using only one, and because S2 TDH lets the
optimiser handle the correct number of decision vari-
ables within each section for this scenario. Besides, the
longer tend

mission of S4 lets it reach a slightly higher Pd
1000 s later, worsening the ET of S2 solution.

As determining before-hand the best strategy to
optimise is not straightforward (even for experienced
UAV operators in target-search scenarios), our frame-
work and its Cloud-deployment is useful to speed up
the simulations, launch several simulations in
a streamlined way, and efficiently perform systemati-
cal analysis of the parameters, behaviours, and struc-
tures of the models.

6. Conclusions

This paper presents a new DEVS-based framework,
available in (Juan et al., 2022), that extends the cap-
abilities of the evaluation framework by Bordón-Ruiz
et al. (2021), by 1) adding an optimiser module to
automate the generation of UAV and sensors search-
strategies for target-search problems, and by 2) sup-
porting its straightforward Cloud deployment due to
its xDEVS distributed implementation (Mittal et al.,
2017). This has a direct impact on the computational
cost of the optimisation framework, where hundreds
of UAV trajectories and sensor strategies are evaluated
to find the best solution. The results show that the
Cloud deployment allows speedups up to 3.35. This is
very useful when complex models characterise the

behaviour of the target-search elements, to increase
the simulation realism and make the framework
applicable in real-world scenarios. Moreover, cloud-
computing also allows to simultaneously launch sev-
eral optimisations (under different search strategies/
parameterisations), providing operators with different
solutions and a deeper insight into each mission.

Finally, taking advantage of the MBSE methodol-
ogy and DEVS formalism, we plan to extend our
framework capabilities by: 1) incorporating other
probability models for the target (e.g., particle fil-
ters), 2) optimising other types of UAV trajectories
(e.g., Dubin curves), 3) incorporating other optimisers
in the framework to build a generalised Island model
(Izzo et al., 2012), and 4) exploring new Cloud deploy-
ment policies.

Acknowledgments

This work is supported by the Spanish Ministry of Science
and Innovation (MICINN) under AMPBAS (RTI2018-
098962- B-C21) and by the Madrid Regional Government
under IA-GES-BLOOM-CM (Y2020/TCS-6420). The com-
putation has been supported by the Google Cloud Research
Credits programme with award GCP19980904.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Al-Zoubi, K., & Wainer, G. (2009). Performing distributed
simulation with RESTful webservices. In Proceedings of the
2009 winter simulation conference. (WSC), 1323–1334.

Andres-Toro, B., Giron-Sierra, J. M., Fernandez-Blanco, P.,
Lopez-Orozco, J. A., & Besada- Portas, E. (2004).
Multiobjective optimization and multivariable control of
the beer fermentation process with the use of evolution-
ary algorithms. Journal of Zhejiang University- ScienceA,
5(4), 378–389. https://doi.org/10.1631/jzus.2004.0378

Bordón-Ruiz, J. B., Besada-Portas, E., Risco-Martín, J. L., &
López-Orozco, J. A. (2021). DEVS-based evaluation of
UAVs-based target-search strategies in realistically-modeled
missions. ACM SIGSIM Conference on Principles of Advanced.
discrete simulation (PADS).

Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2004).
Decentralized Bayesian negotiation for cooperative
search. In IEEE/RSJ international conference on intelligent
robots and systems (IROS) (Vol. 3, pp. 2681–2686). IEE.

Cárdenas, R., Arroba, P., Blanco, R., Malagón, P., Risco-
Martín, J. L., & Moya, J. M. (2020). Mercury:
A modeling, simulation, and optimization framework
for data stream-oriented IoT applications. Simulation
Modelling Practice and Theory, 101, 102037. https://doi.
org/10.1016/j.simpat.2019.102037

Carpin, S., Burch, D., Basilico, N., Chung, T. H., &
Kölsch, M. (2013). Variable resolution search with quad-
rotors: Theory and practice. Journal of Field Robotics, 30
(5), 685–701. https://doi.org/10.1002/rob.21468

Figure 15. PdðtÞ of the representative solutions

JOURNAL OF SIMULATION 15

https://doi.org/10.1631/jzus.2004.0378
https://doi.org/10.1016/j.simpat.2019.102037
https://doi.org/10.1016/j.simpat.2019.102037
https://doi.org/10.1002/rob.21468

Deb, K., Pratap, A., Agrawal, S., & Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary.
Computing, 6, 182–197. doi:10.1109/4235.996017.
https://ieeexplore.ieee.org/document/996017

Delle Fave, F., Xu, Z., Rogers, A., & Jennings, N. R. (2010).
Decentralised coordination of unmanned aerial vehicles
for target search using the max-sum algorithm. In
Proceedings of the workshop on agents in real time and.
environment, 35–44.

Fedorov, A. (2019). Path planning for uav search using
growing area algorithm and clustering. In Fourth
Conference on Software Engineering and Information
Management.

Grocholsky, B., Keller, J., Kumar, V., & Pappas, G. (2006).
Cooperative air and ground surveillance. IEEE Robotics &
Automation Magazine / IEEE Robotics & Automation
Society, 13(3), 16–25. https://doi.org/10.1109/MRA.2006.
1678135

Hall, S. (1997). A DEVS based simulation architecture for
analysis of multi-vehicle interactions. In Proceedings of
SPIE - the International Society for Optical Engineering,
287–294.

Happe, J., & Berger, J. (2010). CoUAV: A multi-UAV coop-
erative search path planning simulation environment. In
Summer computer simulation. conference, 86–93.

Holman, K., Kuzub, J., & Wainer, G. (2010). UAV search
strategies using Cell-DEVS. In Spring simulation
multiconference.

Hu, J., Xie, L., Xu, J., & Xu, Z. (2014). Multi-agent coopera-
tive target search. Sensors, 14(6), 9408–9428. https://doi.
org/10.3390/s140609408

Ivić, S., Crnković, B., Arbabi, H., Loire, S., Clary, P., &
Mezić, I. (2020). Search strategy in a complex and
dynamic environment: The MH370 case. SciRep, 10.

Izzo, D., Rucinski, M., & Biscani, F. (2012). The generalized
Island model.

Juan, B., Bordón-Ruiz, José, A. López-Orozco & Eva Besada
Portas. (2022). DEVS/SAR: DEVS Search And Rescue M
\&S\&O framework. https://github.com/iscar-ucm/devs-
sar/releases/tag/2022-jos

Kiam, J. J., Besada-Portas, E., & Schulte, A. (2021).
Hierarchical mission planning with a GA-optimizer for
unmanned high altitude pseudo-satellites. Electronics, 21
(5), 36.

Kratzke, T., Stone, L., & Frost, J. R. (2010). Search and
rescue optimal planning system. In 13th international
conference on information fusion.

Lanillos, P., Gan, S., Besada-Portas, E., Pajares, G., &
Sukkarieh, S. (2014). Multi-UAV target search using
decentralized gradient-based negotiation with expected
observation. Information Science, 282, 92–110. https://
doi.org/10.1016/j.ins.2014.05.054

Lanillos, P., Yañez-Zuluaga, J., Ruz, J., & Besada-Portas, E.
(2013). A Bayesian approach for constrained multi-agent
minimum time search in uncertain dynamic domains. In
The genetic and evolutionary computation. conference,
391–398.

Li, L., Zhang, X., Yue, W., & Liu, Z. (2021). Cooperative
search for dynamic targets by multiple UAVs with com-
munication data losses. ISA. Transactions

Linchant, J., Lisein, J., Semki, J., Lejeune, P., &
Vermeulen, C. (2015). Are unmanned aircraft systems
(UAS) the future of wildlife monitoring? a review of
accomplishments and challenges. Mammal Review, 45
(4), 4. https://doi.org/10.1111/mam.12046

Mittal, S., Risco-Martín, J. L., Masuda, T., & Mittal, S. K. (2017).
DEVSML 3.0 stack: Rapid deployment of DEVS farm in
distributed cloud environment using microservices and
containers. In Spring simulation multiconference
(SpringSim 2017). Diseases of the Esophagus: Official
Journal of the International Society for Diseases of the
Esophagus, 30(6), 1–19. https://doi.org/10.1093/dote/
dox048

Mittal, S., Risco-Martín, J. L., & Zeigler, B. P. (2009). DEVS/
SOA: A cross-platform framework for net-centric model-
ing and simulation in devs unified process.
SIMULATION, 85(7), 419–450. https://doi.org/10.1177/
0037549709340968

Moreno, A., de la Torre, L., Risco-Martin, J. L., Besada-
Portas, E., & Aranda, J. (2011). DEVS-based validation
of UAV path planning in hostile environments. In The
International Defense and Homeland Security Simulation
Workshop (p. 135–140).

Moreno, A., de la Torre, L., Risco-Martin, J. L., Besada-
Portas, E., Aranda, J., & Ayala, J. L. (2011). DEVS-
based parallel framework for multi-objective evolu-
tionary algortithms. In The Fourth International
Workshop on Parallel Architectures and Bioinspired
Algorithms.

Nigam, N. (2014). The multiple unmanned air vehicle per-
sistent surveillance problem: A review. Machines, 2(1),
13–72. https://doi.org/10.3390/machines2010013

Ntaimo, L., Hu, X., & Sun, Y. (2008). DEVS-FIRE: Towards
an integrated simulation environment for surface wildfire
spread and containment. Simulation, 84(4), 137–155.
https://doi.org/10.1177/0037549708094047

opensource.com. (2021). What is docker? https://open
source.com/resources/what-docker. (Accessed April. 30,
2021)

Pecker-Marcosig, E., Zudaire, S., Garrett, M., Uchitel, S., &
Castro, R. (2020). Unified DEVS- based platform for
modelling and simulation of hybrid control systems.
Winter Simulation Conference, 1051–1162.

Pérez, E. (2017). Integrating mathematical optimization in
DEVS for nuclear medicine patient and resource
scheduling. Winter Simulation Conference, 398–407.

Perez-Carabaza, S., Bermudez-Ortega, J., Besada-Portas, E.,
Lopez-Orozco, J. A., & de la Cruz, J. M. (2017). A
multi-UAV minimum time search planner based on
ACOR. In Proceedings of the genetic and evolutionary
computation. conference, 35–42.

Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A.,
& de la Cruz, J. M. (2016). A real world multi-UAV
evolutionary planner for minimum time target detection.
In Proceedings of the genetic and evolutionary computa-
tion conference 2016. 981–988.

Pérez-Carabaza, S., Besada-Portas, E., López-Orozco, J., &
Pajares, G. (2019). Minimum time search in real-world
scenarios using multiple UAVs with onboard orientable
cameras. Journal of Sensors, 2019, 22. https://doi.org/10.
1155/2019/7673859

Pérez-Carabaza, S., Scherer, J., Rinner, B., López-Orozco, J.,
& Besada-Portas, E. (2019). UAV trajectory optimization
for minimum time search with communication con-
straints and collision avoidance. Engineering
Applications of Artificial Intelligence, 85, 357–371.
https://doi.org/10.1016/j.engappai.2019.06.002

Riehl, J. R., Collins, G. E., Hespanha, J. P., Xie, Q., Li, P.,
Chen, J., & Yao, S. (2011). Cooperative search by UAV
teams: A model predictive approach using dynamic
graphs. IEEE Transactions on Aerospace and Electronic

16 J. BORDÓN-RUIZ ET AL.

https://doi.org/10.1109/4235.996017
https://ieeexplore.ieee.org/document/996017
https://doi.org/10.1109/MRA.2006.1678135
https://doi.org/10.1109/MRA.2006.1678135
https://doi.org/10.3390/s140609408
https://doi.org/10.3390/s140609408
https://github.com/iscar-ucm/devs-sar/releases/tag/2022-jos
https://github.com/iscar-ucm/devs-sar/releases/tag/2022-jos
https://doi.org/10.1016/j.ins.2014.05.054
https://doi.org/10.1016/j.ins.2014.05.054
http://Transactions
https://doi.org/10.1111/mam.12046
https://doi.org/10.1093/dote/dox048
https://doi.org/10.1093/dote/dox048
https://doi.org/10.1177/0037549709340968
https://doi.org/10.1177/0037549709340968
https://doi.org/10.3390/machines2010013
https://doi.org/10.1177/0037549708094047
https://opensource.com/resources/what-docker
https://opensource.com/resources/what-docker
https://doi.org/10.1155/2019/7673859
https://doi.org/10.1155/2019/7673859
https://doi.org/10.1016/j.engappai.2019.06.002

Systems. Chemical Communications (Cambridge,
England), 47(4), 2637–2656. https://doi.org/10.1039/
c0cc05188h

Risco-Martín, J. L., Mittal, S., Fabero, J. C., Zapater, M., &
Hermida, R. (2017). Reconsidering the performance of
DEVS modeling and simulation environments using the
DEVStone benchmark. Simulation, 93(6), 459–476.
https://doi.org/10.1177/0037549717690447

Risco, J. L., Mittal, S., Atienza, D., Hidalgo, J. I., &
Lanchares, J. (2008). Optimization of dynamic data
types in embedded systems using DEVS/SOA-based
modeling and simulation. In Proceedings of the 3rd inter-
national icst conference on scalable information. Systems
2009, 1–11.

Saadaoui, H., El Bouanani, F., Dobson, F. S., Saadaoui, H.,
Viblanc, V. A., & Bize, P. (2018). Information sharing
based on local PSO for UAVs cooperative search of
unmoved targets. In International conference on advanced
communication technologies and networking. Ecology and
Evolution, 8(2), 1084–1095. https://doi.org/10.1002/ece3.
3677

Shakhatreh, H., SawalMeh, A. H., Al-Fuqaha, A., Dou, Z.,
Almaita, E., Khalil, I., . . . Guizan, M. (2019). Unmanned
aerial vehicles (UAVs): A survey on civil applications and
key research challenges. IEEE Access .

Skorobogatov, G., Barrado, C., & Salami, E. (2020). Multiple
UAV systems: A survey. Unmanned Systems, 8(2),
149–169. https://doi.org/10.1142/S2301385020500090

Tisdale, J., Kim, Z., & Hedrick, J. K. (2009). Autonomous
UAV path planning and estimation. IEEE Robotics
Automation Magazine, 16(2), 35–42. https://doi.org/10.
1109/MRA.2009.932529

Trummel, K. E., & Weisinger, J. R. (1986). The complexity
of the optimal searcher path problem. Operational
Research, 34(2), 324–327. https://doi.org/10.1287/opre.
34.2.324

Van Tendeloo, Y., & Vangheluwe, H. (2015).
PythonPDEVS: A distributed parallel DEVS simulator.
Springsim (TMS-DEVS), 844–851.

Wang, Y., Zhang, M. X., & Zheng, Y. J. (2017). A
hyper-heuristic method for UAV search planning. In
International conference on swarm intelligence.

Wong, E., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle
Bayesian search for multiple lost targets. In IEEE interna-
tional conference on robotics and automation (pp.
3169–3174).

Wymore, A. W. (2018). Model-based systems engineering
(Vol. 3). CRC press.

Yang, Y., Minai, A., & Polycarpou, M. (2002). Decentralized
cooperative search in UAV’s using opportunistic learning. In
AIAA guidance, navigation, and control conference and
exhibit.

Yao, P., Want, H., & Ji, H. (2017). Gaussian mixture model
and receding horizon control for multiple UAV search in
complex environment. Nonlinear Dynamics, 88(2),
903–919. https://doi.org/10.1007/s11071-016-3284-1

Yao, P., Xie, Z., & Ren, P. (2019). Optimal UAV route planning
for coverage search of stationary target in river. IEEE
Transactions on Control Systems Technology, 27(2),
822–829. https://doi.org/10.1109/TCST.2017.2781655

Yeong, S. P., King, L. M., & Dol, S. S. (2015). A review on
marine search and rescue operations using unmanned
aerial vehicles. International Journal of Marine and
Environmental Sciences, 9(2).

Yuan, C., Zhang, Y., Liu, Z., Zhang, Y., & Liu, Z. (2015).
A survey on technologies for automatic forest fire mon-
itoring, detection and fighting using UAVs and remote
sensing techniques. Canadian Journal of Forest Research,
45(7), 783–792. https://doi.org/10.1139/cjfr-2014-0347

Zeigler, B. P., & Kim, D. (2019). Multi-resolution modeling
for adaptive UAV service systems. In Proceedings of
spring simulation. conference, 1–12.

Zeigler, B. P., Moon, Y., Lopes, V. L., & Kim, J. (1996).
DEVS approximation of infiltration using genetic algo-
rithm optimization of a fuzzy system. Mathematical and
Computer Modelling, 23(11–12), 215–228. https://doi.
org/10.1016/0895-7177(96)00074-X

Zeigler, B. P., Muzy, A., & Kofman, E. (2018). Theory of
modeling and simulation: Discrete event & iterative system
computational foundations. Academic press.

JOURNAL OF SIMULATION 17

https://doi.org/10.1039/c0cc05188h
https://doi.org/10.1039/c0cc05188h
https://doi.org/10.1177/0037549717690447
https://doi.org/10.1002/ece3.3677
https://doi.org/10.1002/ece3.3677
http://Access
https://doi.org/10.1142/S2301385020500090
https://doi.org/10.1109/MRA.2009.932529
https://doi.org/10.1109/MRA.2009.932529
https://doi.org/10.1287/opre.34.2.324
https://doi.org/10.1287/opre.34.2.324
https://doi.org/10.1007/s11071-016-3284-1
https://doi.org/10.1109/TCST.2017.2781655
https://doi.org/10.1139/cjfr-2014-0347
https://doi.org/10.1016/0895-7177(96)00074-X
https://doi.org/10.1016/0895-7177(96)00074-X

	Abstract
	1. Introduction
	2. Foundational technologies
	2.1. Microservices paradigm
	2.2. Containerisation paradigm
	2.3. DEVS distributed architecture

	3. Models description
	3.1. Sensor Model (SM)
	3.2. UAV Model (UM)
	3.3. Flight Simulator (FS)
	3.4. Target Model (TM)
	3.5. Evaluator Function (EF)
	3.6. Evaluator (EV)
	3.7. Optimiser (OP)
	3.8. Algorithm Controller (AC)

	4. Cloud simulation deployment
	5. Results
	5.1. Scenario
	5.2. Search strategies and optimiser setup
	5.3. Computation cost analysis
	5.4. Representative solutions

	6. Conclusions
	Acknowledgments
	Disclosure statement
	References

