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Abstract

DEVS is a popular formalism for modelling complex dynamic systems using a discrete-event abstraction. At this abstraction
level, a timed sequence of pertinent “events” input to a system (or internal, in the case of timeouts) cause instantaneous changes
to the state of the system. Between events, the state does notchange, resulting in a a piecewise constant state trajectory. Main
advantages of DEVS are its rigorous formal definition, and its support for modular composition.

This chapter introduces the Classic DEVS formalism in a bottom-up fashion, using a simple traffic light example. The syntax
and operational semantics of Atomic (i.e., non-hierarchical) models are intruced first. The semantics of Coupled (hierarchical)
models is then given by translation into Atomic DEVS models.As this formal “flattening” is not efficient, a modular abstract
simulator which operates directly on the coupled model is also presented. This is the common basis for subsequent efficient
implementations. We continue to actual applications of DEVS modelling and simulation, as seen in performance analysisfor
queueing systems. Finally, we present some of the shortcomings in the Classic DEVS formalism, and show solutions to themin
the form of variants of the original formalism.

1 Introduction

DEVS [17] is a popular formalism for modelling complex dynamic systems using a discrete-event abstraction. At this abstraction
level, a timed sequence of pertinent “events” input to a system cause instantaneous changes to the state of the system. These
events can be generated externally (i.e., by another model) or internally (i.e., by the model itself due to timeouts). The next state of
the system is defined based on the previous state of the systemand the event. Between events, the state does not change, resulting
in a piecewise constant state trajectory. Simulation kernels must only consider states at which events occur, skippingover all
intermediate points in time. This is in contrast with discrete time models, where time is incremented with a fixed increment,
and only at these times is the state updated. Discrete event models have the advantage that their time granularity can become
(theoretically) unbounded, whereas time granularity is fixed in discrete time models. Nonetheless, the added complexity makes
it unsuited for systems that naturally have a fixed time step.

Main advantages ofDEVS compared to other discrete event formalisms are its rigorours formal definition, and its support for
modular composition. Comparable discrete event formalisms areDES andStatecharts, though significant differences exist.

Compared toDES, DEVS offers modularity which makes it possible to nest models inside of components, thus generating
a hierarchy of models. This hierarchy necessitates couplings and (optionally) ports, which are used for all communication
between two components. In contrast,DES models can directly access other models and send them eventsin the form of method
invocation. Additionaly,DEVS offers a cleaner split between the simulation model and the simulation kernel.

Compared toStatecharts, DEVS offers a more rigorous formal definition and a different kindof modularity.Statecharts leaves
a lot of room for interpretation, resulting in a wide varietyof interpretations [7, 6]. In contrast,DEVS is completely formally
defined, and there is a reference algorithm (i.e., an abstract simulator). While bothDEVS andStatecharts are modular formalisms,
Statecharts creates hierarchies through composite states, whereasDEVS uses composite models for this purpose. Both have their
distinct advantages, making both variants useful in practice.

This chapter provides an introductory text toDEVS (often referred to asClassic DEVS nowadays) through the use of a simple
example model in the domain of traffic lights. We start from a simple autonomous traffic light, which is incrementally extended
up to a trafficlight with policeman interaction. Each increment serves to introduce a new component of theDEVS formalism and
the corresponding (informal) semantics. We start with atomic (i.e., non-hierarchical) models in Section 2, and introduce coupled
(i.e., hierarchical) models in Section 3. An abstract simulator,defining the reference algorithm, is covered in Section 4. Section 5
moves away from the traffic light example and presents a modelof a simple queueing system. Even thoughDEVS certainly has
its applications, several variants have spawned to tackle some of its shortcomings. These variants, together with a rationale and
the differences, are discussed in Section 6. Finally, Section 7 summarizes the chapter.
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Figure 1: Trace of the autonomous traffic light.
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Figure 2: Model generating trace in Figure 1.

2 Atomic DEVS models

We commence our explanation ofDEVS with the atomic models. As their name suggests, atomic models are the indivisable
building blocks of a model.

Throughout this section, we build up the complete formal specification of an atomic model, introducing new concepts as they
become required. In each intermediate step, we show and explain the concepts we introduce, how they are present in the running
example, and how this influences the semantics. The domain wewill use as a running example throughout this chapter is a simple
traffic light.

2.1 Autonomous Model

The simplest form of a traffic light is an autonomous traffic light. Looking at it from the outside, we expect to see a trace similar
to that of Figure 1. Visually, Figure 2 presents an intuitiverepresentation of a model that could generate this kind of trace.

Trying to formally describe Figure 2, we distinguish these elements:

1. State Set (S)

The most obvious aspect of the traffic light is the state it is in, which is indicated by the three different colours it can have.
These states aresequential: the traffic light can only be in one of these states at the sametime1. The set of states is not
limited to enumeration style as presented here, but can contain an arbitrary number of attributes.

S:×n
i=1Si

2. Time Advance (ta)

1In contrast to, say, Statecharts.

2



For each of the states just defined, we notice the timeout in them. Clearly, some states take longer to process than others.
For example, whereas we will stay in green and red a relatively long time, the time in the yellow state is only brief. This
function needs to be defined for each and every element of the state set, and needs to deterministically return a duration.
The duration can be any positive real number, including zeroand infinity. A negative time is disallowed, as this would
require simulation to go back in time.DEVS allows a time advance of exactly zero, even though this is impossible in real
life. Two use cases for this exist: the delay might be very small and irrelevant to the problem we are modelling, or the state
is an artificial state, without any real-world equivalent (e.g., as part of a design pattern). Note thatDEVS does not consider
time bases, despite the use of seconds in our visualization.Simulation time is just a real number, and the interpretation
given to it is up to the user. Whether these units indicate seconds, years, or evenπ seconds, is completely up to the users,
as long as it is fixed throughout the simulation.

ta : S→R
+
0,+∞

3. Internal Transition ( δint )

With the states and timeouts defined, the final part is the definition of which is the next state from a given state. This is the
job of the internal transition function, which gives the next state for each and every state. As it is a function, every state
has at most one next state, preventing any possible ambiguity. Note that the function does not necessarily have to be total,
nor injective: some states might not have a next state (i.e., if the time advance was specified as+∞), and some states have
the same state as next state. Up to now, only the internal transition function is described as changing the state. Therefore,
it is not allowed for other functions (e.g., time advance) to modify the state: their state access is read-only.

δint : S→ S

4. Initial Total State ( qinit )

We also need to define the initial state of the system. While this is not present in the original specification of the DEVS
formalism, we include it here as it is a vital element of the model. But note that, instead of being an “initial state (sinit )”, it
is a total state. This means that we not only select the initial state of the system, but also define how long we are already in
this state. Elapsed time is therefore added to the definitionof the initial total state, to allow more flexibility when modelling
a system. To the simulator, it will seem as if the model has already been in the initial state for some time.

qinit : (s,e)|s∈ S,0≤ e≤ ta(s)

We describe the model in Figure 2 as a 4-tuple of these three elements.

〈S,qinit ,δint , ta〉

S= {GREEN,YELLOW,RED}

qinit = (GREEN,0.0)

δint = {GREEN→ YELLOW,

YELLOW→ RED,

RED→ GREEN}

ta= {GREEN→ delaygreen,

YELLOW→ delayyellow,

RED→ delayred}

For this simple formalism, we define the semantics as in Algorithm 1. The model is initialized with simulation time set to 0, and
the state set to the initial state (e.g., GREEN). Simulation updates the time with the returnvalue of the time advance function, and
executes the internal transition function on the current state to get the new state.

2.2 Autonomous Model With Output

Recall thatDEVS was a modular formalism, with only the atomic model having access to its internal state. This naturally raises
a problem for our traffic light: others have no way of knowing its current state (i.e., its colour).

We therefore want the traffic light to output its colour, in this case in the form of a string (and not as the element of an enumera-
tion). For now, the output is tightly linked to the set of state, but this does not need to be the case: the possible values tooutput
can be completely distinct from the set of states. Our desired trace is shown in Figure 3. We see that we now output events

3



Algorithm 1 DEVS simulation pseudo-code for autonomous models.
time← 0
current_state← initial _state
last_time←−initial _elapsed
while not termination_condition()do

time← last_time+ ta(current_state)
current_state← δint(current_state)
last_time← time

end while

indicating the start of the specified period. Recall, also, thatDEVS is a discrete event formalism: the output is only a single event
indicating the time and is not a continuous signal. The receiver of the event thus would have to store the event to know the current
state of the traffic light at any given point in time. Visually, the model is updated to Figure 4, using the exclamation markon a
transition to indicate output generation.

Analysing the updated model, we see that two more concepts are required to allow for output.

1. Output Set (Y)

Similarly to defining the set of allowable states, we should also define the set of allowable outputs. This set serves as
an interface to other components, defining the events the expects to receive. Events can have complex attributes as well,
though we again limit ourself to simple events for now. If ports are used, each port has its own output set.

Y :×l
i=1Yi

2. Output Function (λ )

With the set of allowable events defined, we still need a function to actually generate the events. Similar to the other
functions, the output function is defined on the state, and deterministically returns an event (or no event). As seen in the
Figure of the model, the event is generatedbeforethe new state is reached. This means that instead of the new state, the
output function still uses the old state (i.e., the one that is being left). For this reason, the output function needs to be
invoked right before the internal transition function. In the case of our traffic light, the output function needs to return the
name of thenextstate, instead of the current state. For example, if the output function receives the GREEN state as input,
it needs to generate ashow_yellowevent.

Similar to the time advance function, this function does notoutput a new state, and therefore state access is read-only.This
might require some workarounds: outputting an event often has some repercussions on the model state, such as removing
the event from a queue or increasing a counter. Since the state can’t be written to, these changes need to be remembered
and executed as soon as the internal transition is executed.

Note that it is possible for the output function not to returnany output, in which case it returnsφ .

λ : S→Y∪{φ}

The model can be described as a 6-tuple.

〈Y,S,qinit ,δint ,λ , ta〉
Y = {show_green,show_yellow,show_red}

S= {GREEN,YELLOW,RED}

qinit = (GREEN,0.0)

δint = {GREEN→ YELLOW,

YELLOW→ RED,

RED→ GREEN}

λ = {GREEN→ show_yellow,

YELLOW→ show_red,

RED→ show_green}

ta= {GREEN→ delaygreen,

YELLOW→ delayyellow,

RED→ delayred}
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Figure 3: Trace of the autonomous traffic light with output.
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Figure 4: Model generating trace in Figure 3.

The pseudo-code is slightly altered to include output generation, as shown in Algorithm 2. Recall that output is generated before
the internal transition is executed, so the method invocation happens right before the transition.

Algorithm 2 DEVS simulation pseudo-code for autonomous models with output.
time← 0
current_state← initial _state
last_time←−initial _elapsed
while not termination_condition()do

time← last_time+ ta(current_state)
out put(λ (current_state))
current_state← δint(current_state)
last_time← time

end while

2.3 Interruptable Model

Our current traffic light specification is still completely autonomous. While this is fine in most circumstances, police might want
to temporarily shut down the traffic lights, when they are managing traffic manually. To allow for this, our traffic light must
process external incoming events: the event from the policeman to shutdown and to start up again. Figure 5 shows the tracewe
wish to obtain. A model generating this trace is shown in Figure 6, using a question mark to indicate event reception.

We once more require two additional elements in theDEVS specification.

1. Input Set (X)

Similar to the output set, we need to define the events we expect to receive. This is again a definition of the interface, such

5



Figure 5: Trace of the autonomous traffic light.
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Figure 6: Naive model that should generate
the trace in Figure 5 (but doesn’t).

that others know which events are understood by this model.

X =×m
i=1Xi

2. External Transition ( δext)

Similar to the internal transition function, the external transition function is allowed to define the new state as well.First
and foremost, the external transition function is still dependent on the current state, just like the internal transition function.
The external transition function has access to two more values: the elapsed time, and the input event. Theelapsed time
indicates how long it has been for this atomic model since thelast transition (either internal or external). Whereas this
number was implicitly known in the internal transition function (i.e., the value of the time advance function), here it needs
to be passed explicitly. Elapsed time is a number in the range[0, ta(s)], with s being the current state of the model. Note
that it is inclusive of both 0 andta(s): it is possible to receive an event exactly after a transition happened, or exactly before
an internal transition happens. The combination of the current state and the elapsed time is often called thetotal state(Q)
of the model. We have previously seen the total state, in the context of the initial total state. The received event is the final
parameter to this function. A new state is deterministically defined through the combination of these three parameters.
Since the external transition function takes multiple parameters, multiple external transitions might be defined for asingle
state.

δext : Q×X→ S

Q= {(s,e)|s∈ S,0≤ e≤ ta(s)}

While we now have all elements of theDEVS specification for atomic models, we are not done yet. When we include the
additional state MANUAL , we also need to send out an output message indicating that the traffic light is off. But recall that an
output function was only invoked before an internal transition function, so not before an external transition function. To have
an output nonetheless, we need to make sure that an internal transition happens before we actually reach the MANUAL state.
This can be done through the introduction of an artificial intermediate state, which times out immediately, and sends outthe
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Figure 7: Trace of the interrupt traffic light with correctedartificial states.
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Figure 8: Model generating trace in Figure 7.

show_blackevent. Instead of going to MANUAL upon reception of themanualevent, we go to the artificial state TOMANUAL .
The time advance of this state is set to 0, since it is only an artificial state without any meaning in the domain under study.Its
output function will be triggered immediately due to the time advance of zero, and theshow_blackoutput is generated while
transferring to MANUAL . Similarly, when we receive theautomaticevent, we need to go to an artificial TOAUTOMATIC state to
generate theshow_redevent. A visualization of the corrected trace and corresponding model is shown in Figure 7 and Figure 8
respectively.

Finally, we give the full specification of the traffic light asan atomicDEVS model, defined by a 8-tuple.

〈X,Y,S,qinit ,δint ,δext,λ , ta〉
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X = {automatic,manual}

Y = {show_green,show_yellow,show_red,show_black}

S= {GREEN,YELLOW,RED,TOMANUAL ,TOAUTOMATIC,MANUAL }

qinit = (GREEN,0.0)

δint = {GREEN→ YELLOW,

YELLOW→ RED,

RED→ GREEN,

TOMANUAL →MANUAL ,

TOAUTOMATIC→ RED}

δext = {(GREEN,_,manual)→ TOMANUAL

(YELLOW,_,manual)→ TOMANUAL

(RED,_,manual)→ TOMANUAL

(MANUAL ,_,automatic)→ TOAUTOMATIC}

λ = {GREEN→ show_yellow,

YELLOW→ show_red,

RED→ show_green,

TOMANUAL → show_black,

TOAUTOMATIC→ show_red}

ta= {GREEN→ delaygreen,

YELLOW→ delayyellow,

RED→ delayred,

MANUAL →+∞,

TOMANUAL → 0,

TOAUTOMATIC→ 0}

Algorithm 3 presents the complete semantics of an atomic model in pseudo-code. Similar to before, we still have the same
simulation loop, but now we can be interrupted externally. At each time step, we need to determine whether an external interrupt
is scheduled before the internal interrupt. If that is not the case, we simply continue like before, by executing the internal
transition. If there is an external event that must go first, we execute the external transition.

Algorithm 3 DEVS simulation pseudo-code for interruptable models.
time← 0
current_state← initial _state
last_time←−initial _elapsed
while not termination_condition()do

next_time← last_time+ ta(current_state)
if time_next_event≤ next_timethen

elapsed← time_next_event− last_time
current_state← δext((current_state,elapsed),next_event)
time← time_next_event

else
time← next_time
out put(λ (current_state))
current_state← δint(current_state)

end if
last_time← time

end while

8



3 Coupled DEVS models

While our traffic light example is able to receive and output events, there are no other atomic models to communicate with.To
combine different atomic models together and have them communicate, we now introduce coupled models. This will be done in
the context of our previous traffic light, which is connectedto a policeman. The details of the traffic light are exactly like before;
the details of the policeman are irrelevant here, as long as it outputsautomaticandmanualevents.

3.1 Basic Coupling

The first problem we encounter with coupling the traffic lightand policeman together is the structure: how do we define a set
of models and their interrelations? This is the core definition of a coupled model: it is merely a structural model that couples
models together. Contrary to the atomic models, there isno behaviour whatsoeverassociated to a coupled model. Behaviour is
the responsibility of atomic models, and structure that of coupled models.

To define the basic structure, we need three elements.

1. Model instances (D)

The set of model instances defines which models are included within this coupled model.

2. Model specifications ({Mi})

Apart from defining the different instances of submodels, wemust include the atomic model specification of these models.
For each element defined inD, we include the 7-tuple specifying the atomic model. By definition, a submodel of the
coupledDEVS model always needs to be an atomic model. Later on, we will seehow this can be extended to support
arbitrarily hierarchies.

{〈Xi ,Yi ,Si ,qinit ,i ,δint,i ,δext,i ,λi , tai〉|i ∈ D}

3. Model influencees ({Ii})

Apart from defining the model instances and their specifications, we need to define the connections between them. Connec-
tions are defined through the use of influencee sets: for each atomic model instance, we define the set of models influenced
by that model. There are some limitations on couplings, to make sure that inconsistent models cannot be created. The
following two constraints are imposed:

• A model should not influence itself.This constraint makes sense, as otherwise it would be possible for a model to
influence itself directly. While there is no significant problem with this in itself, it would cause the model to trigger
both its internal and external transition simultaneously.As it is undefined which one should go first, this situation is
not allowed. In other words, a model should not be an element in its own set of influencees.

∀i ∈ D : i /∈ Ii

• Only links within the coupled model are allowed.This is another way of saying that connections should respect
modularity. Models should not directly influence models outside of the current coupled model, nor models deeper
inside of other submodels at this level. In other words, the influenced model should be a subset of the set of models
in this coupled model.

∀i ∈ D : Ii ⊆ D

Note that there is no explicit constraint on algebraic loops(i.e., a loop of models that have a time advance equal to zero,
preventing the progression of simulated time). If this situation is not resolved, it is possible for simulation to get stuck
at that specific point in time. The situation is only problematic if the circular dependency never gets resolved, causinga
livelock of the simulation.

A coupled model can thus be defined as a 3-tuple.
〈D,{Mi},{Ii}〉

3.2 Input and Output

Our coupled model now couples two atomic models together. And while it is now possible for the policeman to pass the event
to the traffic light, we again lost the ability to send out the state of the traffic light. The events can’t reach outside of the current
coupled model. Therefore, we need to augment the coupled model with input and output events, which serve as the interfaceto
the coupled model. This adds the componentsXsel f andYsel f to the tuple, respectively the set of input and output events, resulting
in a 5-tuple.

〈Xsel f,Ysel f,D,{Mi},{Ii}〉
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The constraints on the couplings need to be relaxed to accomodate for the new capabilities of the coupled model: a model can be
influenced by the input events of the coupled model, and likewise the models can also influence the output events of the coupled
model. The previously defined constraints are relaxed to allow for sel f, the coupled model itself.

∀i ∈ D∪{sel f} : i /∈ Ii
∀i ∈ D∪{sel f} : Ii ⊆ D∪{sel f}

3.3 Tie-breaking

Recall thatDEVS is considered a formal and precise formalism. But while all components are precisely defined, their interplay
is not completely defined yet: what happens when the traffic light changes its state at exactly the same time as the policeman
performs its transition? Would the traffic light switch on tothe next state first and then process the policeman’s interrupt, or
would it directly respond to the interrupt, ignoring the internal event? While it is a minimal difference in this case, the state
reached after the timeout might respond significantly different to the incoming event.

DEVS solves this problem by defining atie-breaking function (select). This function takes all conflicting models and returns
the one that gets priority over the others. After the execution of that internal transition, and possibly the external transitions that
it caused elsewhere, it might be that the set of imminent models has changed. If multiple models are still imminent, we repeat
the above procedure (potentially invoking theselectfunction again with the new set of imminent models).

select: 2D→D

This new addition changes the coupled model to a 6-tuple.

〈Xsel f,Ysel f,D,{Mi},{Ii},select〉

3.4 Translation Functions

Finally, in this case we had full control over both atomic models that are combined. We might not always be that lucky, as itis
possible to reuse atomic models defined elsewhere. Depending on the application domain of the reused models, they might work
with different events. For example, if our policeman and traffic light were both predefined, with the policeman usinggo_to_work
andtake_breakand the traffic light listening toautomaticandmanual, it would be impossible to directly couple them together.
While it is possible to define wrapper blocks (i.e., artificial atomic models that take an event as input and, with time advance
equal to zero, output the translated version),DEVS provides a more elegant solution to this problem.

Connections are augmented with atranslation function (Zi, j ), specifying how the event that enters the connection is translated
before it is handed over to the endpoint of the connection. The function thus maps output events to input events, potentially
modifying their content.

Zsel f, j : Xsel f→ Xj ∀ j ∈ D
Zi,sel f : Yi →Ysel f ∀i ∈D
Zi, j : Zi → Xj ∀i, j ∈ D

These translation functions are defined for each connection, including those between the coupled model’s input and output events.

{Zi, j |i ∈ D∪{sel f}, j ∈ Ii}

The translation function is implicitly assumed to be the identity function if it is not defined. In case an event needs to traverse
multiple connections, all translation functions are chained in order of traversal.

With the addition of this final element, we define a coupled model as a 7-tuple.

〈Xsel f,Ysel f,D,{Mi},{Ii},{Zi, j},select〉

3.5 Closure Under Coupling

Similar to atomic models, we need to formally define the semantics of coupled models. But instead of explaining the semantics
from scratch, by defining some pseudo-code, we map coupled models to equivalent atomic models. Semantics of a coupled
model is thus defined in terms of an atomic model. In addition,this flattening removes the constraint of coupled models that their
submodels should be atomic models: if a coupled model is a submodel, it can be flattened to an atomic model.

In essence, for any coupled model specified as

< Xsel f,Ysel f,D,{Mi},{Ii},{Zi, j},select>

10



we define an equivalent atomic model specified as

< X,Y,S,qinit ,δint ,δext,λ , ta>

Therefore, we have to define all the elements of the atomic model in terms of elements of the coupled model. The input and
output variablesX andY are easy, since they stay the same.

X = Xsel f

Y =Ysel f

From an external point of view, the interface of the atomic and coupled model is identical: it has the samen input and output
events and expects the same kind of data on all of them.

The stateSencompasses the parallel composition of the states of all the submodels, including their elapsed times (i.e., the total
stateQ, as defined previously):

S=×i∈DQi

with the total statesQi previously defined as:

Qi = {(si ,ei)|si ∈ Si,0≤ ei ≤ tai(si)},∀i ∈D

The elapsed time is stored for each model separately, since the elapsed time of the new atomic model updates more frequently
than each submodel’s elapsed time.

Similarly, the initial total state is seen as the set of initial total states of all atomic models it contains.

qinit = ((×i∈Dqinit ,i),mini∈D{ei|(si ,ei) ∈ qinit ,i})

The time advance functionta then returns the minimum of all remaining times.

ta(s) = min{σi = tai(si)−ei|i ∈D}

The imminent component is chosen from the set of all models with the specified minimum remaining time (IMM). This set
contains all models whose remaining time (σi) is identical to the time advance of the flattened model (ta). Theselectfunction is
then used to reduce this set to a single elementi∗.

IMM(s) = {i ∈ D|σi = ta(s)}

i∗ = select(IMM(s))

The output functionλ executes the output function ofi∗ and applies the translation function, but only if the model influences the
flattened model directly (i.e., if the output ofi∗ is routed to the coupled model’s output). If there is no connection to the coupled
model’s output (i.e., i∗ is only coupled to other atomic models), no output function is invoked here. We will see later on that these
events are still generated, but they are consumed internally elsewhere.

λ (s) =
{

Zi∗,sel f(λi∗(si∗)) if sel f ∈ Ii∗
φ otherwise

The internal transition functionis defined for each part of the state separately:

δint(s) = (. . . ,(s′j ,e
′
j), . . . )

With three kinds of models: (1) the modeli∗ itself, which just performs its internal transition function; (2) the models influenced
by i∗, which perform their external transition based on the output generated byi∗; (3) models unrelated toi∗. In all cases, the
elapsed time is updated.

(s′j ,e
′
j) =







(δint, j (sj),0) for j = i∗,
(δext, j ((sj ,ej + ta(s)),Zi∗, j(λi∗(si∗))),0) for j ∈ Ii∗ ,
(sj ,ej + ta(s)) otherwise

Note that the internal transition function includes external transition functions of submodels for those models influenced byi∗.
As i∗ outputs events that are consumed internally, this all happens internally.

Theexternal transitionfunction is similar to the internal transition function. Now two types are distinguished: (1) models directly
connected to the input of the model, which perform their external transition; (2) models not directly connected to the input of the
model, which only update their elapsed time.

δext((s,e),x) = (. . . ,(s′i ,e
′
i), . . . )

(s′i ,e
′
i) =

{

(δext,i((si ,ei +e),Zsel f,i(x)),0) for i ∈ Isel f

(si ,ei +e) otherwise
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4 The DEVS Abstract Simulator

Up to now, the semantics of atomic models was defined through natural language and high-level pseudo-code. Coupled models
were given semantics through a mapping to these atomic models. Both of these have their own problems. For atomic models, the
pseudo-code is not sufficiently specific to create a compliant DEVS simulator: a lot of details of the algorithm are left unspecified
(e.g., where does the external event come from). For coupled models, the flattening procedure is elegant and formal, though it is
highly inefficient to perform this flattening at run-time.

To counter these problems, we will define a more elaborate, and formal, simulation algorithm for both atomic and coupled
models. Atomic models get a more specific definition with a clear interface, and coupled models get their own simulation
algorithm without flattening. Coupled models are thus given“operational semantics” instead of “translational semantics”.

This simulation algorithm, anabstract simulatorforms the basis for more efficient simulation algorithms, and serves as a refer-
ence algorithm. Its goal is to formally define the semantics of both models in a concise way, without caring about performance or
implementation issues. Adaptations are allowed, but the final result should be identical: simulation results are to be completely in-
dependent from the implementation. A direct implementation of the abstract simulator is inefficient, and actual implementations
therefore vary significantly.

We now elaborate on the abstract simulator algorithm. For each atomic and coupled model, an instance is created of the respective
algorithm.

Table 1 shows the different variables used, their type, and abrief explanation.

Table 1: Variables used in the abstract simulator.

name type explanation

tl time simulation time of last transition
tn time simulation time of next transition
t time current simulation time
e time elapsed time since last transition
s state current state of the atomic model
x event incoming event
y event outgoing event
f rom model source of the incoming message
parent model coupled model containing this model
sel f model current model

We furthermore distinguish five types of synchronization messages, as exchanged between the different abstract simulators. An
overview of messages is shown in Table 2.

Table 2: Types of synchronization messages.

type explanation

i initialization of the simulation
∗ transition in the model
x input event for the model
y output event from the model
done computation finished for a model

First is the abstract simulation algorithm for atomic models, presented in Algorithm 4. This algorithm consists of a bigcondi-
tional, depending on the message that is received. Atomic models only perform an operation upon reception of a message: there
is no autonomous behaviour. This algorithm is invoked everytime a synchronization message is received. Messages consist of
three components: the type of the message, the source of the message, and the simulation time. The conditional consists of three
options: On the reception of ani message, we performinitialization of the simulation time.

Another option is the reception of a∗ message, triggering atransition. The message consists of both a sender and the time at
which the transition should happen. By definition, a transition can only happen at timetn, so we assert this. After this check,
we have to perform the following steps: (1) generate the output, (2) send it out to the sender of the∗ message (our parent),
(3) perform the internal transition, (4) update our time with the time advance, and (5) indicate to our parent that we finished
processing the message, also passing along our time of next transition.

Finally, it is possible to receive anx message, indicatingexternal input. This can happen anytime between our last transition (tl ),
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and our scheduled transition (tn), so we again assert the simulation time. Note that these times are inclusive: due to theselect
function it is possible that another model comes right afteror before our own scheduled transition. We perform the following
steps: (1) compute the elapsed time (e) based on the provided simulation time (t), (2) perform the external transition, (3) update
the simulation time of the next transition, and (4) indicateto our parent that we finished processing the message, also passing
along our time of next transition.

Algorithm 4 DEVS atomic model abstract simulator.

if receive(i, f rom, t) messagethen
tl ← t−e
tn← tl + ta(s)
send(done,sel f, tn) to parent

else if receive(∗, f rom, t) messagethen
if t = tn then

y← λ (s)
if y 6= φ then

send(y,sel f, t) to parent
end if
s← δint(s)
tl ← t
tn← tl + ta(s)
send(done,sel f, tn) to parent

end if
else if receive(x, f rom, t) messagethen

if tl ≤ t ≤ tn then
e← t− tl
s← δext((s,e),x)
tl ← t
tn← tl + ta(s)
send(done,sel f, tn) to parent

else
error: bad synchronization

end if
end if

Recall that the abstract simulation algorithm didn’t have any autonomous behaviour. This indicates that there is another entity
governing the progression of the simulation This simulation entity is the root coordinator, and it encodes the main simulation
loop. Its algorithm is shown in Algorithm 5. As long as simulation needs to continue, it sends out a message to the topmost
model in the hierarchy to perform transitions. When a reply is received, simulation time is progressed to the time indicated by
the topmost model.

Algorithm 5 DEVS root coordinator.
send(i,main,0.0) to topmost coupled modeltop
wait for (done, top, tN)
t← tN
while not terminationCondition() do

send(∗,main, t) to topmost coupled modeltop
wait for (done, top, tN)
t← tN

end while

Finally, while not completely necessary due to the existence of the flattening algorithm, we also define a shortcut for thesimu-
lation of coupled models. The abstract simulation algorithm for coupled models is shown in Algorithm 6. Coupled models can
receive all five different types of synchronization messages.

First, thei message again indicatesinitialization. It merely forwards the message to all of its children and marks each child as
active. Every coupled model has atl andtn variable as well, which is defined as the maximum, respectively minimum, of its
children. This is logical, as any transition of its childrenwill also require an operation on the coupled model containing it. When
a message is sent to a submodel, the submodel is marked as active. The use for this is shown in the processing of thedone
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message.

Second, the∗ message again indicates atransition. Contrary to the atomic models, a coupled model is unable to perform a
transition itself. Instead, it forwards the message to the imminent submodel, found by executing theselect function for all
models that have that exact sametn. Only a single model will be selected, and a∗message is sent to that model. Just like before,
the model is marked as active to make sure that we wait for its computation to finish.

Third, ay message indicates anoutputmessage. The output message is output by the output functionof a subcomponent, and
needs to be routed through the coupled model. This part of thefunction is responsible for routing the message to the influencees
of the model that sent out the message. Note that it is also possible that one of the influencees issel f, indicating that the message
needs to be routed externally (i.e., to the output of the coupled model). In any case, the messageneeds to be translated using the
translation function. The actual translation function that is invoked depends on the source and destination of the message.

Fourth, ax message can be received, indicatinginput. This is mostly identical to the output messages, only now can we also
handle messages that were received from our own parent.

Finally, adonemessage can be received, indicating that a submodel hasfinishedits computation. The submodel, which was
marked as an active child, will now be unmarked. Whendonemessages are received from all submodels (i.e., all children are
inactive), we determine our owntl andtn variables and send out the minimaltn of all submodels. This time is then sent to the
parent.

The abstract simulator for coupled models can work with any kind of submodel, not necessarily atomic models. In deep hierar-
chies, thedonemessage always propagates the minimaltn upwards in the hierarchy. In the end, the root coordinator will always
receive the minimaltn, which is the time of the earliest next internal transition.

Algorithm 6 DEVS coupled model abstract simulator.

if receive(i, f rom, t) messagethen
for all d in D do

send(i,sel f, t) to d
active_children← active_children∪{d}

end for
else if receive(∗, f rom, t) messagethen

if t = tn then
i∗= select({Mi .tn = t|i ∈D})
send(∗,sel f, t) to i∗
active_children← active_children∪{i∗}

end if
else if receive(y, f rom, t) messagethen

for all i ∈ I f rom\ {sel f} do
send(Zf rom,i(y), f rom, to) to i
active_children← active_children∪{i}

end for
if sel f ∈ I f rom then

send(Zf rom,sel f(y),sel f, t) to parent
end if

else if receive(x, f rom, t) messagethen
if tl ≤ t ≤ tn then

for all i ∈ I f rom do
send(Zsel f,i(x),sel f, t) to i
active_children← active_children∪{i}

end for
end if

else if receive(done, f rom, t) messagethen
active_children← active_children\ { f rom}
if active_children= φ then

tl ←max{tl ,d|d ∈ D}
tn←min{tn,d|d ∈ D}
send(done,sel f, tn) to parent

end if
end if
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Figure 9: Queue system with a single generator, single queue, andn processors.

5 Application to Queueing Systems

The usefulness ofDEVS of course goes further than traffic lights. To present a more realistic model and highlight the potential
for performance analysis, we present a simple queueing system next. While a lot has been done in queueing theory, we present
simulation as an alternative to the mathematical solutions. Even though the mathematical solutions have their advantages, sim-
ulation offers more flexibility and doesn’t get that complex. It is, however, necessarily limited to “sampling”: simulations will
only take samples and will therefore generally not find rare and exceptional cases. Not taking them into account is fine in many
situations, as it is now in our example model.

In this section, we present a simple queueing problem. Variations on this model — in either its behaviour, structure, or parameters
— are easy to do.

5.1 Problem Description

In this example we model the behaviour of a simple queue that gets served by multiple processors. Implementations of this
queueing systems are widespread, such as for example at airport security. Our model is parameterizable in several ways:we can
define the random distribution used for event generation times and event size, the number of processors, performance of each
individual processor, and the scheduling policy of the queue when selecting a processor. Clearly, it is easier to implement this,
and all its variants, inDEVS than it is to model mathematically. For our performance analysis, we show the influence of the
number of processors (e.g., metal detectors) on the average and maximal queueing time of jobs (e.g., travellers).

A model of this system can be shown in Figure 9. Events (people) are generated by a generator using some distribution function.
They enter the queue, which decides the processor that they will be sent to. If multiple processors are available, it picks the
processor that has been idle for the longest; if no processors are available, the event is queued until a processor becomes available.
The queue works First-In-First-Out (FIFO) in case multipleevents are queueing. For a processor to signal that it is available, it
needs to signal the queue. The queue keeps track of availableprocessors. When an event arrives at a processor, it is processed
for some time, depending on the size of the event and the performance characteristics of the processor. After processing, the
processor signals the queue and sends out the event that was being processed.

5.2 Description in DEVS

While examples could be given purely in their formal description, they would not be executable and would introduce a signif-
icant amount of accidental complexity. We use the tool PythonPDEVS2 [13, 15] to implement theDEVS model and perform
simulations. In PythonPDEVS,DEVS models are implemented by defining methods that implement the different aspects of the
tuple. All code within these methods is just normal Python code, though a minimal number of API calls is required in the case
of a coupledDEVS model. Since mostDEVS tools work similarly, these examples could easily be transposed to otherDEVS
simulation tools. An overview of popular DEVS simulation tools is shown in [14].

To specify this model, we first define the event exchanged between different models: theJob. A job is coded as a classJob. It

2Download:http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS

15

http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS


class Job:
def __init__(self , size , creation_time):

# Jobs have a size and creation_time parameter
self.size = size
self.creation_time = creation_time

Listing 1: PythonPDEVS code for theJob event.

has the attributessize(i.e., indicative of processing time) andcreation time(i.e., for statistic gathering). TheJob class definition
is shown in Listing 1.

We now focus on each atomic model seperately, starting at theevent generator.

Thegeneratoris defined as an atomic model using the classGenerator, shown in Listing 2. Classes that represent an atomic
model inherit from theAtomicDEVS class. They should implement methods that implement each ofthe DEVS components.
Default implementations are provided for a passivated model, such that unused functions don’t need to be defined. In the
constructor, input and output ports are defined, as well as model parameters and the initial state. We see that the definition of
the generator is very simple: we compute the time remaining until the next event (remaining), and decrement the number of
events to send. The generator also keeps track of the currentsimulation time, in order to set the creation time of events.The time
advance function returns the time remaining until the next internal transition. Finally, the output function returns anew customer
event with a randomly defined size. The job has an attribute containing the time at which it was generated. Recall, however,
that the output function was invoked before the internal transition, so the current time has not yet been updated by the internal
transition. Therefore, the output function also has to do this addition, without storing the result in the state (as it cannot write to
the state).

Next up is the queue, which is the most interesting componentof the simulation, as it is the part we wish to analyze. TheQueue
implementation is similar in structure to theGenerator. Of course, theDEVS parts get a different specification, as shown in
Listing 3. The queue takes a structural parameter, specifying the number of processors. This is needed since the queue has an
output port for each processor. When an internal transitionhappens, the queue knows that it has just output an event to the first
idle processor. It thus marks the first idle processor as busy, and removes the event it was currently processing. If thereare
events remaining in the queue, and a processor is available to process it, we process the first element from the queue and set
the remaining_time counter. In the external transition, we check the port we received the event on. Either it is a signal of
the processor to indicate that it has finished, or else it is a new event to queue. In the former case, we mark the processor that
sent the event as idle, and potentially process a queued message. For this to work, the processor should include its ID in the
event, as otherwise the queue has no idea who sent this message. In the latter case, we either process the event immediately if
there are idle processors, or we store it in the queue. The time advance merely has to return theremaining_time counter that is
managed in both transition functions. Finally in the outputfunction, the model outputs the first queued event to the firstavailable
processor. Note that we can only read the events and processors, and cannot modify these lists: state modification is reserved for
the transition functions. An important consideration in this model is theremaining_time counter, which indicates how much
time remains before the event is processed. We can’t simply put the processing time of events in the time advance, as interrupts
could happen during this time. When an interrupt happens (e.g., another event arrives), the time advance is invoked again,and
would return the total processing time, instead of the remaining time to process the event. To solve this problem, we maintain a
counter that explicitly gets decremented when an external interrupt happens.

The next atomic model is theProcessor class, shown in Listing 4. It merely receives an incoming event and starts processing it.
Processing time, computed upon receiving an event in the external transition, is dependent on the size of the task, but takes into
account the processing speed and a minimum amount of processing that needs to be done. After the task is processed, we trigger
our output function and internal transition function. We need to send out two events: one containing the job that was processed,
and one to signal the queue that we have become available. Forthis, two different ports are used. Note that the definition of the
processor would not be this simple in case there was no queue before it. We can now make the assumption that when we get an
event, we are already idle and therefore don’t need to queue new incoming events first.

The processor finally sends the task to theCollector class, shown in Listing 5. The collector is an artificial component that is
not present in the system being modeled; it is only used for statistics gathering. For each job, it stores the time in the queue.

With all atomic models defined, we only have to couple them together in a coupled model, as shown in Listing 6. In this system,
we instantiate a generator, queue, and collector, as well asa variable number of processors. The number of processors isvariable,
but is still static during simulation. The couplings also depend on the number of processors, as each processor is connected to the
queue and the collector.

Now that ourDEVS model is completely specified, we can start running simulations on it. Simulation requires anexperiment
file though, which initializes the model with parameters anddefines the simulation configuration. An example experiment, again
in Python, is shown in Listing 7. The experiment writes out the raw queueing times to a Comma Seperated Value (CSV) file.
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from pypdevs.DEVS import AtomicDEVS
from job import Job
import random

# Define the state of the generator as a structured object
class GeneratorState:

def __init__(self , gen_num):
# Current simulation time (statistics)
self.current_time = 0.0
# Remaining time until generation of new event
self.remaining = 0.0
# Counter on how many events to generate still
self.to_generate = gen_num

class Generator(AtomicDEVS):
def __init__(self , gen_param , size_param , gen_num):

AtomicDEVS.__init__(self , "Generator")
# Output port for the event
self.out_event = self.addOutPort("out_event")
# Define the state
self.state = GeneratorState(gen_num)

# Parameters defining the generator’s behaviour
self.gen_param = gen_param
self.size_param = size_param

def intTransition(self):
# Update simulation time
self.state.current_time += self.timeAdvance()
# Update number of generated events
self.state.to_generate -= 1
if self.state.to_generate == 0:

# Already generated enough events, so stop
self.state.remaining = float(’inf’)

else:
# Still have to generate events, so sample for new duration
self.state.remaining = random.expovariate(self.gen_param)

return self.state

def timeAdvance(self):
# Return remaining time; infinity when generated enough
return self.state.remaining

def outputFnc(self):
# Determine size of the event to generate
size = max(1, int(random.gauss(self.size_param , 5)))
# Calculate current time (note the addition!)
creation = self.state.current_time + self.state.remaining
# Output the new event on the output port
return {self.out_event: Job(size , creation)}

Listing 2: PythonPDEVS code for the Generator atomic model.
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from pypdevs.DEVS import AtomicDEVS

# Define the state of the queue as a structured object
class QueueState:

def __init__(self , outputs):
# Keep a list of all idle processors
self.idle_procs = range(outputs)
# Keep a list that is the actual queue data structure
self.queue = []
# Keep the process that is currently being processed
self.processing = None
# Time remaining for this event
self.remaining_time = float("inf")

class Queue(AtomicDEVS):
def __init__(self , outputs):

AtomicDEVS.__init__(self , "Queue")
# Fix the time needed to process a single event
self.processing_time = 1.0
self.state = QueueState(outputs)

# Create ’outputs’ output ports
# ’outputs’ is a structural parameter!
self.out_proc = []
for i in range(outputs):

self.out_proc.append(self.addOutPort("proc_%i" % i))

# Add the other ports: incoming events and finished event
self.in_event = self.addInPort("in_event")
self.in_finish = self.addInPort("in_finish")

def intTransition(self):
# Is only called when we are outputting an event
# Pop the first idle processor and clear processing event
self.state.idle_procs.pop(0)
if self.state.queue and self.state.idle_procs:

# There are still queued elements, so continue
self.state.processing = self.state.queue.pop(0)
self.state.remaining_time = self.processing_time

else:
# No events left to process, so become idle
self.state.processing = None
self.state.remaining_time = float("inf")

return self.state

def extTransition(self , inputs):
# Update the remaining time of this job
self.state.remaining_time -= self.elapsed
# Several possibilities
if self.in_finish in inputs:

# Processing a "finished" event, so mark proc as idle
self.state.idle_procs.append(inputs[self.in_finish])
if not self.state.processing and self.state.queue:

# Process first task in queue
self.state.processing = self.state.queue.pop(0)
self.state.remaining_time = self.processing_time

elif self.in_event in inputs:
# Processing an incoming event
if self.state.idle_procs and not self.state.processing:

# Process when idle processors
self.state.processing = inputs[self.in_event]
self.state.remaining_time = self.processing_time

else:
# No idle processors, so queue it
self.state.queue.append(inputs[self.in_event])

return self.state

def timeAdvance(self):
# Just return the remaining time for this event (or infinity else)
return self.state.remaining_time

def outputFnc(self):
# Output the event to the processor
port = self.out_proc[self.state.idle_procs[0]]
return {port: self.state.processing}

Listing 3: PythonPDEVS code for the Queue atomic model.
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from pypdevs.DEVS import AtomicDEVS

# Define the state of the processor as a structured object
class ProcessorState(object):

def __init__(self):
# State only contains the current event
self.evt = None

class Processor(AtomicDEVS):
def __init__(self , nr, proc_param):

AtomicDEVS.__init__(self , "Processor_%i" % nr)

self.state = ProcessorState()
self.in_proc = self.addInPort("in_proc")
self.out_proc = self.addOutPort("out_proc")
self.out_finished = self.addOutPort("out_finished")

# Define the parameters of the model
self.speed = proc_param
self.nr = nr

def intTransition(self):
# Just clear processing event
self.state.evt = None
return self.state

def extTransition(self , inputs):
# Received a new event, so start processing it
self.state.evt = inputs[self.in_proc]
# Calculate how long it will be processed
time = 20.0 + max(1.0, self.state.evt.size / self.speed)
self.state.evt.processing_time = time
return self.state

def timeAdvance(self):
if self.state.evt:

# Currently processing, so wait for that
return self.state.evt.processing_time

else:
# Idle, so don’t do anything
return float(’inf’)

def outputFnc(self):
# Output the processed event and signal as finished
return {self.out_proc: self.state.evt,

self.out_finished: self.nr}

Listing 4: PythonPDEVS code for the Processor atomic model.

from pypdevs.DEVS import AtomicDEVS

# Define the state of the collector as a structured object
class CollectorState(object):

def __init__(self):
# Contains received events and simulation time
self.events = []
self.current_time = 0.0

class Collector(AtomicDEVS):
def __init__(self):

AtomicDEVS.__init__(self , "Collector")
self.state = CollectorState()
# Has only one input port
self.in_event = self.addInPort("in_event")

def extTransition(self , inputs):
# Update simulation time
self.state.current_time += self.elapsed
# Calculate time in queue
evt = inputs[self.in_event]
time = self.state.current_time - evt.creation_time - evt.processing_time
inputs[self.in_event].queueing_time = max(0.0, time)
# Add incoming event to received events
self.state.events.append(inputs[self.in_event])
return self.state

# Don’t define anything else, as we only store events.
# Collector has no behaviour of its own.

Listing 5: PythonPDEVS code for the Collector atomic model.
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from pypdevs.DEVS import CoupledDEVS

# Import all models to couple
from generator import Generator
from queue import Queue
from processor import Processor
from collector import Collector

class QueueSystem(CoupledDEVS):
def __init__(self , mu, size , num, procs):

CoupledDEVS.__init__(self , "QueueSystem")

# Define all atomic submodels of which there are only one
generator = self.addSubModel(Generator(mu, size , num))
queue = self.addSubModel(Queue(len(procs)))
collector = self.addSubModel(Collector())

self.connectPorts(generator.out_event , queue.in_event)

# Instantiate desired number of processors and connect
processors = []
for i, param in enumerate(procs):

processors.append(self.addSubModel(
Processor(i, param)))

self.connectPorts(queue.out_proc[i],
processors[i].in_proc)

self.connectPorts(processors[i].out_finished ,
queue.in_finish)

self.connectPorts(processors[i].out_proc ,
collector.in_event)

# Make it accessible outside of our own scope
self.collector = collector

Listing 6: PythonPDEVS code for the System coupled model.

An experiment file often contains some configuration of the simulation tool, which differs for each tool. For PythonPDEVS, the
documentation3 provides an overview of supported options.

5.3 Performance Analysis

After the definition of ourDEVS model and experiment, we of course still need to run the simulation. Simply by executing the
experiment file, the CSV file is generated, and can be analyzedin a spreadsheet tool or plotting library. Depending on the data
stored during simulation, analysis can show the average queueing times, maximal queueing times, number of events, processor
utilization, and so on.

Corresponding to our initial goal, we perform the simulation in order to find out the influence of opening multiple processors on
the average and maximum queueing time. Figure 10 shows the evolution of the waiting time for subsequent clients. Figure 11
shows the same results, drawn using boxplots. These resultsindicate that while two processors are able to handle the load,
maximum waiting time is rather high: a median of 200 seconds and a maximum of around 470 seconds. When a single additional
processor is added, average waiting time decreases significantly, and the maximum waiting time also becomes tolerable:the
mean job is served immediately, with 75% of jobs being handled within 25 seconds. Further adding processors still has a positive
effect on queueing times, but the effect might not warrant the increased cost in opening processors: apart from some exceptions,
all customers are processed immediately starting from fourprocessors. Ideally, a cost function would be defined to quantize the
value (or dissatisfaction) of waiting jobs, and compare this to the cost of adding additional processors. We can then optimize
that cost function to find out the ideal balance between paying more for additional processors and losing money due to long
job processing times. Of course, this ideal balance dependson several factors, including our model configuration and the cost
function used.

6 Variants

Despite the success of the originalDEVS specification, as introduced throughout this chapter, shortcoming were identified when
used in some domains. For these reasons, a lot of variants have recently spawned. In this section, we touch upon the three most
popular ones, with some remarks on other variants. Note thatwe make the distinction between variants that further augment the
DEVS formalism (i.e., make more constructs available), and those that restrict it (i.e., prevent several cases). Both have their
reasons, mostly related to the implementation: augmentingtheDEVS formalism makes it easier for modellers to create models in
some domains, whereas limiting theDEVS formalism makes some operations, such as analysis, possible or easier to implement.

3http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS/documentation/html/index.html
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from pypdevs.simulator import Simulator
import random

# Import the model we experiment with
from system import QueueSystem

# Configuration:
# 1) number of customers to simulate
num = 500
# 2) average time between two customers
time = 30.0
# 3) average size of customer
size = 20.0
# 4) efficiency of processors (products/second)
speed = 0.5
# 5) maximum number of processors used
max_processors = 10
# End of configuration

# Store all results for output to file
values = []
# Loop over different configurations
for i in range(1, max_processors):

# Make sure each of them simulates exactly the same workload
random.seed(1)
# Set up the system
procs = [speed] * i
m = QueueSystem(mu=1.0/time , size=size , num=num, procs=procs)

# PythonPDEVS specific setup and configuration
sim = Simulator(m)
sim.setClassicDEVS()
sim.simulate()

# Gather information for output
evt_list = m.collector.state.events
values.append ([e.queueing_time for e in evt_list])

# Write data to file
with open(’output.csv’, ’w’) as f:

for i in range(num):
f.write("%s" % i)
for j in range(len(values)):

f.write(", %5f" % (values[j][i]))
f.write("\n")

Listing 7: PythonPDEVS code for the experiment on the system.
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6.1 Parallel DEVS

One of the main problems identified inDEVS is related to performance: when multiple models are imminent, they are processed
sequentially. WhileDEVS does allow for some parallelism, (e.g., between simultaneous external transitions), multiple internal
transitions is a common occurence.

Parallel DEVS [4] was introduced as a variant of theDEVS formalism, in which parallel execution of internal transition functions
is allowed. This changes the semantics of models though, so it requires changes to the abstract simulator [5]. The proposed
changes are therefore not just syntactic sugar: they explicitly modify the semantics of models.

Allowing for parallelism is, however, not a trivial task: several modifications are required, which we briefly mention here. The
first logical change is the removal of theselectfunction: instead of selecting a model to go first, all imminent models are allowed
to transition simultaneously. Whether or not this happens in parallel or not, as it might not necessarily be faster [8], is up to
the implementation. This creates some repercussions throughout the remainder of the formalism, as theselect function was
introduced for good reasons.

Since models can now perform their internal transition simultaneously, output functions also happen simultaneously.While this
is in itself not a problem, routing might cause the need for events to be merged together, for example when two events get routed
to the same model. The abstract simulator was not designed for this, as an external transition was immediately invoked upon the
reception of an external event. So inParallel DEVS, events are always encapsulated inbags, which can easily be merged. Bags,
or multisets, are a kind of set which can contain items multiple times. This way, multiple bags can be trivially joined, without
losing information. Note that order is undefined, as otherwise it would depend on the synchronization between differentoutput
functions: which one is executed before the other. Due to this change in interface, the external transition needs to be altered to
operate on a bag of input events, and the output function has to generate a bag of output events.

Problems don’t stop there, as internal and external transition might happen simultaneously. Recall that inDEVS, self-loops were
not allowed for this exact purpose. InParallel DEVS, however, two models can perform their internal transitionsimultaneously,
with one outputting an event for the other one. In that case, the model needs to process both its internal transition, and its external
transition caused by the other model’s transition. Since there is no priority defined between them (that was part of the purpose
of theselectfunction), they should execute simultaneously. To allow for this, a new kind of transition is defined: theconfluent
transition function. This transition is only performed when both the internal and external transition happen simultaneously.
Parallel DEVS leaves open what the semantics of this is, though a sane default is for the internal transition to go first, followed by
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the external transition.

Thanks to the potential performance gains, many tools favorParallel DEVS overDEVS in their implementation. Some stick to
the elegance of the originalDEVS formalism, despite the performance hit.

6.2 Dynamic Structure DEVS

Another shortcoming of theDEVS formalism, also present inParallel DEVS, is the lack of dynamic structure. Some systems
inherently require a dynamic structure to create, modify, or delete models during the simulation. While possible inDEVS formal-
ism by defining the superset of all possible configurations and activating only one of them, this has high accidental complexity,
and performance suffers. Furthermore, systems might grow extremely big, making it practically impossible to create all possible
configurations statically.

To counter these issues,Dynamic Structure DEVS [1] was devised as an extension ofDEVS. In Dynamic Structure DEVS, the
model configuration is seen as a part of the state, making it modifiable during simulation. Since the coupled model has no state
of its own, anetwork executiveis added, which manages the structural state of a specific scope. In a seperate phase, models can
send events to the network executive to request a structuralchange.

This proposed extension is, however, only a mathematical model as to how it can be made possible. Similar to previous for-
malisms, an abstract simulator [3] is provided that is structured that way. Real implementations, however, are free to implement
this however they want. The network executive might therefore not even exist in the implementation, with all structure changing
messages being intercepted in the implementation.

Even though dynamic structure now becomes possible inDEVS models, this formalism is not well suited to handle a huge amount
of changes. The work to be done for a change, both for the user and the implementation, is just too time-consuming to execute
frequently. But even while highly dynamic models are not ideally suited, infrequent structural changes become very possible.

6.3 Cell-DEVS

Another variant ofDEVS presented here is theCell-DEVS formalism. Despite the elegance of theDEVS formalism, it is still
difficult to use it in a variety of situations, specifically inthe context of cellular models.Cellular Automata [16] are a popular
choice in the domain of cellular models, but contrary to the discrete-event nature ofDEVS, Cellular Automata is discrete-time
based. While discrete-time is a good match with most models in the problem domain of cellular automata, some models would
profit from a discrete-event basis. While not frequently a problem, cellular models become restricted to the granularity of the
time step, resulting in low performance when the time step isn’t a good match with the model’s transition times.

Cell-DEVS was introduced as a combination ofDEVS andCellular Automata, combining the best of both worlds. Model speci-
fication is similar toCellular Automata models, but the underlying formalism used for simulation isactuallyDEVS. Due to this
change, models gain more control over the simulation time. Furthermore, cellular models can now be coupled to other, not
necessarily cellular,DEVS models.

6.4 Other Variants

Apart from the formalisms introduced here, many more variants exist that tackle very specific problems inDEVS. We don’t have
the space here to discuss all of them, though we wish to provide some pointers to some other useful extensions. Examples are other
solutions to the dynamic structure problem (DynDEVS [12]), restrictions to makeDEVS models analyzable (FD-DEVS [9]), and
extensions to allow for non-determinism (Fuzzy DEVS [10]). Many of the previously proposed formalisms also haveaugmented
themselves with the changes made toParallel DEVS, resulting in a parallel version ofDynamic Structure DEVS [2] and Cell-
DEVS [11].

7 Summary

In this chapter, we briefly presented the core ideas behindDEVS, a popular formalism for the modelling of complex dynamic
systems using a discrete-event abstraction.DEVS is primarily used for the simulation of queueing networks, of which an example
was given, and performance models. It is most applicable forthe modelling of discrete event systems with component-based
modularity. It can, however, be used much more generally as asimulation assembly language, or as a theoretical foundation for
these formalisms.

Future learning directions onDEVS can be found in the FURTHER READING section, which provides a list of relevant extensions
on DEVS, as well as mentions of some of the problems currently being faced inDEVS.
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