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Abstract

DEVS is a popular formalism for modelling complex dynamistgyns using a discrete-event abstraction. At this ab&iract
level, a timed sequence of pertinent “events” input to aesystor internal, in the case of timeouts) cause instantameloanges
to the state of the system. Between events, the state doetanage, resulting in a a piecewise constant state trajedidain
advantages of DEVS are its rigorous formal definition, asgifpport for modular composition.

This chapter introduces the Classic DEVS formalism in adwottip fashion, using a simple traffic light example. The aynt
and operational semantics of Atomic (i.e., non-hiera@fimodels are intruced first. The semantics of Coupled dhikical)
models is then given by translation into Atomic DEVS modeis this formal “flattening” is not efficient, a modular abstra
simulator which operates directly on the coupled model $® gresented. This is the common basis for subsequent efficie
implementations. We continue to actual applications of 3EWodelling and simulation, as seen in performance andlysis
gueueing systems. Finally, we present some of the shortgmmin the Classic DEVS formalism, and show solutions to tirem
the form of variants of the original formalism.

1 Introduction

DEVS [17] is a popular formalism for modelling complex dynamist®ms using a discrete-event abstraction. At this ab&iract
level, a timed sequence of pertinent “events” input to aesyistause instantaneous changes to the state of the syst&se Th
events can be generated externdlly.(by another model) or internally.é., by the model itself due to timeouts). The next state of
the system is defined based on the previous state of the sgsithe event. Between events, the state does not changiénges

in a piecewise constant state trajectory. Simulation Kermaist only consider states at which events occur, skippieg all
intermediate points in time. This is in contrast with digereme models, where time is incremented with a fixed incraime
and only at these times is the state updated. Discrete evashitlmhave the advantage that their time granularity canrbec
(theoretically) unbounded, whereas time granularity isdiin discrete time models. Nonetheless, the added complerkes

it unsuited for systems that naturally have a fixed time step.

Main advantages dDEVS compared to other discrete event formalisms are its riggrarmal definition, and its support for
modular composition. Comparable discrete event formaliareDES andStatecharts, though significant differences exist.

Compared toDES, DEVS offers modularity which makes it possible to nest modelsdm®f components, thus generating
a hierarchy of models. This hierarchy necessitates cogpland (optionally) ports, which are used for all commuidcat
between two components. In contra3ES models can directly access other models and send them énehésform of method
invocation. AdditionalyDEVS offers a cleaner split between the simulation model andithalation kernel.

Compared tcstatecharts, DEVS offers a more rigorous formal definition and a different kofdnodularity. Statecharts leaves

a lot of room for interpretation, resulting in a wide varietf/interpretations [7,/6]. In contrasbEVS is completely formally
defined, and there is a reference algorithmm,(@n abstract simulator). While boltEVS andStatecharts are modular formalisms,
Statecharts creates hierarchies through composite states, whe@as uses composite models for this purpose. Both have their
distinct advantages, making both variants useful in pecacti

This chapter provides an introductory textD&Vs (often referred to a€lassic DEVS nowadays) through the use of a simple
example model in the domain of traffic lights. We start fronirapde autonomous traffic light, which is incrementally exded
up to a trafficlight with policeman interaction. Each inciemhserves to introduce a new component ofdE¥'S formalism and
the corresponding (informal) semantics. We start with atdiire., non-hierarchical) models in Sectibh 2, and introduce teaip
(i.e. hierarchical) models in Sectigh 3. An abstract simulatefining the reference algorithm, is covered in Sedfion 4ti&e3
moves away from the traffic light example and presents a maftekimple queueing system. Even thoufivs certainly has
its applications, several variants have spawned to tacktesf its shortcomings. These variants, together withiamake and
the differences, are discussed in Secfibn 6. Finally, 8e@isummarizes the chapter.
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Figure 1: Trace of the autonomous traffic light.

2 Atomic DEVS models

We commence our explanation DEVS with the atomic models. As their name suggests, atomic nsaaiel the indivisable
building blocks of a model.

Throughout this section, we build up the complete formakt#jmation of an atomic model, introducing new concepts &y th
become required. In each intermediate step, we show andiexpk concepts we introduce, how they are present in th@mgn
example, and how this influences the semantics. The domaivillwese as a running example throughout this chapter is plgim
traffic light.

2.1 Autonomous Model

The simplest form of a traffic light is an autonomous traffghli. Looking at it from the outside, we expect to see a travdai
to that of Figuré1L. Visually, Figuifd 2 presents an intuitigpresentation of a model that could generate this kindasktr

Trying to formally describe Figuffd 2, we distinguish theksments:

1. State Set §

The most obvious aspect of the traffic light is the state ihjsihich is indicated by the three different colours it cameha
These states amequential the traffic light can only be in one of these states at the sinmd. The set of states is not
limited to enumeration style as presented here, but caraicoah arbitrary number of attributes.

S: xS

2. Time Advance ta)

1in contrast to, say, Statecharts.



For each of the states just defined, we notice the timeoueimiiClearly, some states take longer to process than others.
For example, whereas we will stay in green and red a relgtioglg time, the time in the yellow state is only brief. This
function needs to be defined for each and every element otdle set, and needs to deterministically return a duration.
The duration can be any positive real number, including ze infinity. A negative time is disallowed, as this would
require simulation to go back in tim®EVS allows a time advance of exactly zero, even though this i©sgjble in real
life. Two use cases for this exist: the delay might be verylsamal irrelevant to the problem we are modelling, or theestat
is an artificial state, without any real-world equivalea, as part of a design pattern). Note th&VvS does not consider
time bases, despite the use of seconds in our visualizaBonulation time is just a real number, and the interpretatio
given to it is up to the user. Whether these units indicatersgs, years, or everi seconds, is completely up to the users,
as long as it is fixed throughout the simulation.

ta:S— RS 0

3. Internal Transition ( &nt)

With the states and timeouts defined, the final part is theitiefirof which is the next state from a given state. This is the
job of the internal transition function, which gives the hetate for each and every state. As it is a function, everg sta
has at most one next state, preventing any possible ampigldte that the function does not necessarily have to bg tota
nor injective: some states might not have a next siate if the time advance was specified-as), and some states have
the same state as next state. Up to now, only the internaiti@mfunction is described as changing the state. Thesefo
it is not allowed for other functions(g, time advance) to modify the state: their state access tsoaly.

Ont:S—S

4. Initial Total State (gjnit)

We also need to define the initial state of the system. Whikeishnot present in the original specification of the DEVS
formalism, we include it here as it is a vital element of thedelo But note that, instead of being an “initial stadgi()”, it

is a total state. This means that we not only select the Isiizde of the system, but also define how long we are already in
this state. Elapsed time is therefore added to the defirafitime initial total state, to allow more flexibility when melting

a system. To the simulator, it will seem as if the model hasaaly been in the initial state for some time.

Ginit : (S.€)|s€ S0<e<ta(s)
We describe the model in Figure 2 as a 4-tuple of these theseegits.

<S7 qinit7 antata>

S={GREEN,YELLOW, RED}
ginit = (GREEN,0.0)

Ot = {GREEN— YELLOW,
YELLOW — RED,
RED — GREEN}

ta= {GREEN — delayeen
YELLOW — delaygjiows
RED — delay.q4}

For this simple formalism, we define the semantics as in Allgoid. The model is initialized with simulation time set tpahd
the state set to the initial state.§, GREEN). Simulation updates the time with the returnvalue of theetadvance function, and
executes the internal transition function on the curreatestio get the new state.

2.2 Autonomous Model With Output

Recall thatDEVS was a modular formalism, with only the atomic model havingess to its internal state. This naturally raises
a problem for our traffic light: others have no way of knowitgydgurrent statei.¢., its colour).

We therefore want the traffic light to output its colour, ifstbase in the form of a string (and not as the element of an eraim
tion). For now, the output is tightly linked to the set of stabut this does not need to be the case: the possible valoesot
can be completely distinct from the set of states. Our degnace is shown in Figuld 3. We see that we now output events



Algorithm 1 DEVS simulation pseudo-code for autonomous models.
time«+ 0
current_state« initial _state
last time<« —initial _elapsed
while not termination_condition@o
time« last_time+ta(current_state
current_state« Jnt(current_state
last_time<« time
end while

indicating the start of the specified period. Recall, alsatDEVS is a discrete event formalism: the output is only a singleneve
indicating the time and is not a continuous signal. The xereif the event thus would have to store the event to knowuhent
state of the traffic light at any given point in time. Visuallje model is updated to Figure 4, using the exclamation roark
transition to indicate output generation.

Analysing the updated model, we see that two more concepteguired to allow for output.

1. Output Set (Y)

Similarly to defining the set of allowable states, we shousw alefine the set of allowable outputs. This set serves as
an interface to other components, defining the events thecexpo receive. Events can have complex attributes as well,
though we again limit ourself to simple events for now. Iffsare used, each port has its own output set.

Y: ><=:1Yi

2. Output Function (A)

With the set of allowable events defined, we still need a fioncto actually generate the events. Similar to the other
functions, the output function is defined on the state, andrdenistically returns an event (or no event). As seen @ th
Figure of the model, the event is generaedorethe new state is reached. This means that instead of the a&sy dte
output function still uses the old statee(, the one that is being left). For this reason, the outputtfionmeeds to be
invoked right before the internal transition function. hetcase of our traffic light, the output function needs torretbe
name of thenextstate, instead of the current state. For example, if theubdigmction receives the REEN state as input,

it needs to generateshow_yellovevent.

Similar to the time advance function, this function doesowiput a new state, and therefore state access is readftidy.
might require some workarounds: outputting an event ofeendome repercussions on the model state, such as removing
the event from a queue or increasing a counter. Since the catt be written to, these changes need to be remembered
and executed as soon as the internal transition is executed.

Note that it is possible for the output function not to retany output, in which case it returigs

A:S—=YU{e}

The model can be described as a 6-tuple.
(Y, S, Ainit » Oint, A, tay)
Y = {show_greeyshow_yellowshow_red
S= {GREEN, YELLOW, RED}
ginit = (GREEN,0.0)
Oint = {GREEN— YELLOW,
YELLOW — RED,
RED — GREEN}
A = {GREEN — show_yellow
YELLOW — show_red
RED — show_greeh
ta= {GREEN — delaycen,
YELLOW — delaygjiows
RED — delayeq}
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Figure 3: Trace of the autonomous traffic light with output.
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Figure 4: Model generating trace in Figlie 3.

The pseudo-code is slightly altered to include output gatiam, as shown in Algorithinl 2. Recall that output is geretdtefore
the internal transition is executed, so the method invoodtappens right before the transition.

Algorithm 2 DEVS simulation pseudo-code for autonomous models with output.

time<« 0
current st

ate« initial _state

last time« —initial _elapsed
while not termination_condition@o

time <«

last_time+ta(current state

out put(A (current state)
current_state<— dint (current_state
last time<« time

end while

2.3 Interruptable Model

Our current traffic light specification is still completelytanomous. While this is fine in most circumstances, poliggivant
to temporarily shut down the traffic lights, when they are aging traffic manually. To allow for this, our traffic light rau
process external incoming events: the event from the punkeeto shutdown and to start up again. Fidure 5 shows thewace
wish to obtain. A model generating this trace is shown in Fégfl using a question mark to indicate event reception.

We once more require two additional elements indiES specification.

1. Input Set (X)
Similar to the output set, we need to define the events we eipeeceive. This is again a definition of the interface, such
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Figure 5: Trace of the autonomous traffic light.

that others know which events are understood by this model.
X = x{L1%

2. External Transition ( Jex)

Similar to the internal transition function, the extermalrsition function is allowed to define the new state as vt
and foremost, the external transition function is still elegent on the current state, just like the internal tramsiinction.
The external transition function has access to two moreeglthe elapsed time, and the input event. €lagpsed time
indicates how long it has been for this atomic model sinceldbetransition (either internal or external). Whereas thi
number was implicitly known in the internal transition fdiom (i.e., the value of the time advance function), here it needs
to be passed explicitly. Elapsed time is a number in the réhga(s)], with s being the current state of the model. Note
that it is inclusive of both 0 anth(s): it is possible to receive an event exactly after a transitiappened, or exactly before
an internal transition happens. The combination of theernirstate and the elapsed time is often calleddks state(Q)

of the model. We have previously seen the total state, indhéet of the initial total state. The received event is thalfi
parameter to this function. A new state is deterministycditfined through the combination of these three parameters.
Since the external transition function takes multiple paeters, multiple external transitions might be defined fsingle
state.

Oext : QXX —S
Q={(se)lscS0<e<ta(s)}

While we now have all elements of theEVS specification for atomic models, we are not done yet. Whenngkide the
additional state MNUAL, we also need to send out an output message indicating thaatific light is off. But recall that an
output function was only invoked before an internal traasifunction, so not before an external transition functidio have
an output nonetheless, we need to make sure that an inteanaltion happens before we actually reach theNMAL state.
This can be done through the introduction of an artificiatintediate state, which times out immediately, and sendsheut
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Figure 7: Trace of the interrupt traffic light with correctadificial states.

show_blackevent. Instead of going to MNUAL upon reception of thenanualevent, we go to the artificial statedOM ANUAL .
The time advance of this state is set to 0, since it is only &ficéal state without any meaning in the domain under stutly.
output function will be triggered immediately due to the ¢iradvance of zero, and tlshow_blackoutput is generated while
transferring to MANUAL . Similarly, when we receive theutomaticevent, we need to go to an artificiabAUTOMATIC state to

generate thehow_redevent. A visualization of the corrected trace and corredpmnmodel is shown in Figufd 7 and Figlide 8
respectively.

Finally, we give the full specification of the traffic light as atomicDEVS model, defined by a 8-tuple.

(X,Y, S, tinit, Gint, Jext, A , ta)



X = {automaticmanua}
Y = {show_greershow_yellowshow_redshow_black
S= {GREEN, YELLOW, RED, TOMANUAL , TOAUTOMATIC, MANUAL }
ginit = (GREEN,0.0)
Gint = {GREEN— Y ELLOW,
YELLOW — RED,
RED — GREEN,
TOMANUAL — MANUAL,
TOAUTOMATIC — RED}
dext = {(GREEN,_,manua) — TOMANUAL
(YELLOW, ,manua) — TOMANUAL
(RED,_,manua) — TOMANUAL
(MANUAL ,_,automati¢ — TOAUTOMATIC}
A = {GREEN— show_yellow
YELLOW — show_red
RED — show_green
TOMANUAL — show_black
TOAUTOMATIC — show_red
ta= {GREEN — delaycen
YELLOW — delaygjiow,
RED — delayey,
MANUAL — oo,
TOMANUAL — O,
TOAUTOMATIC — 0}

Algorithm [3 presents the complete semantics of an atomicemiodpseudo-code. Similar to before, we still have the same
simulation loop, but now we can be interrupted externallye@ch time step, we need to determine whether an extereatupt

is scheduled before the internal interrupt. If that is na tase, we simply continue like before, by executing theriate
transition. If there is an external event that must go firgt,ewecute the external transition.

Algorithm 3 DEVS simulation pseudo-code for interruptable models.
time« 0
current_state« initial _state
last time« —initial _elapsed
while not termination_condition@o
next time<— last_time—ta(current state
if time_next event< next timethen
elapsed— time next event— last time
current_state« dex((current stateelapsed, next eveny
time« time_next event
else
time<« next time
output(A (current state)
current_state« dpn(current state
end if
last time< time
end while




3 Coupled DEVS models

While our traffic light example is able to receive and outpgrds, there are no other atomic models to communicate Viigh.
combine different atomic models together and have them aomizate, we now introduce coupled models. This will be done i
the context of our previous traffic light, which is connecte@ policeman. The details of the traffic light are exactg Ibefore;
the details of the policeman are irrelevant here, as long@agputsautomaticandmanualevents.

3.1 Basic Coupling

The first problem we encounter with coupling the traffic ligind policeman together is the structure: how do we define a set
of models and their interrelations? This is the core definitf a coupled model: it is merely a structural model thatpdes
models together. Contrary to the atomic models, them®ibehaviour whatsoeverssociated to a coupled model. Behaviour is
the responsibility of atomic models, and structure thatoefided models.

To define the basic structure, we need three elements.

1. Model instances D)
The set of model instances defines which models are includbawthis coupled model.

2. Model specifications {M;})

Apart from defining the different instances of submodelspwsst include the atomic model specification of these models.
For each element defined D, we include the 7-tuple specifying the atomic model. By d#fin, a submodel of the
coupledDEVS model always needs to be an atomic model. Later on, we willhesethis can be extended to support
arbitrarily hierarchies.

{{X%, Y5, S, Ginit.ii, Oint. i, Fexti» Ai t&y) |i € D}

3. Model influencees {l;})

Apart from defining the model instances and their specificatiwe need to define the connections between them. Connec-
tions are defined through the use of influencee sets: for éanti@model instance, we define the set of models influenced
by that model. There are some limitations on couplings, tkersure that inconsistent models cannot be created. The
following two constraints are imposed:

e A model should not influence itselfhis constraint makes sense, as otherwise it would be gedsiba model to
influence itself directly. While there is no significant platm with this in itself, it would cause the model to trigger
both its internal and external transition simultaneoudlyit is undefined which one should go first, this situation is
not allowed. In other words, a model should not be an elenmeitd bwn set of influencees.

VieD:igl

e Only links within the coupled model are allowedhis is another way of saying that connections should réspec
modularity. Models should not directly influence modelssidg of the current coupled model, nor models deeper
inside of other submodels at this level. In other words, tiliénced model should be a subset of the set of models
in this coupled model.

VieD:l;CD

Note that there is no explicit constraint on algebraic lofgs, a loop of models that have a time advance equal to zero,
preventing the progression of simulated time). If thisadion is not resolved, it is possible for simulation to getckt

at that specific point in time. The situation is only probl¢in# the circular dependency never gets resolved, causing
livelock of the simulation.

A coupled model can thus be defined as a 3-tuple.

(D, {Mi}, {li})
3.2 Input and Output

Our coupled model now couples two atomic models togethed While it is now possible for the policeman to pass the event
to the traffic light, we again lost the ability to send out thette of the traffic light. The events can't reach outside ef¢hrrent
coupled model. Therefore, we need to augment the couple@lnagth input and output events, which serve as the interface
the coupled model. This adds the compon&@ts andYse 1 to the tuple, respectively the set of input and output eveassilting
in a 5-tuple.

(Xself, Yself, D, {Mi}, {li})



The constraints on the couplings need to be relaxed to actat@éor the new capabilities of the coupled model: a modebea
influenced by the input events of the coupled model, and lieithe models can also influence the output events of thdedup
model. The previously defined constraints are relaxed toveibr sel f, the coupled model itself.

VieDU{self}:i¢l;
Vi e DU{self}:1; C DU{self}

3.3 Tie-breaking

Recall thatDEVS is considered a formal and precise formalism. But while athponents are precisely defined, their interplay
is not completely defined yet: what happens when the traffitt Ichanges its state at exactly the same time as the policema
performs its transition? Would the traffic light switch ontt® next state first and then process the policeman’s iterou
would it directly respond to the interrupt, ignoring theamal event? While it is a minimal difference in this case $ate
reached after the timeout might respond significantly diff to the incoming event.

DEVS solves this problem by definingtae-breaking function (selec). This function takes all conflicting models and returns
the one that gets priority over the others. After the executif that internal transition, and possibly the exterrasitions that

it caused elsewhere, it might be that the set of imminent risdikes changed. If multiple models are still imminent, weeap
the above procedure (potentially invoking thedectfunction again with the new set of imminent models).

select: 2° — D

This new addition changes the coupled model to a 6-tuple.
(Xself, Yself, D, {Mi}, {li},selec}

3.4 Translation Functions

Finally, in this case we had full control over both atomic ratstthat are combined. We might not always be that lucky, s it
possible to reuse atomic models defined elsewhere. Deppadithe application domain of the reused models, they migihkw
with different events. For example, if our policeman andfitdight were both predefined, with the policeman usgw to_work
andtake_brealand the traffic light listening tautomaticandmanua] it would be impossible to directly couple them together.
While it is possible to define wrapper blockse(, artificial atomic models that take an event as input andj vithe advance
equal to zero, output the translated versi@BysS provides a more elegant solution to this problem.

Connections are augmented withranslation function (Z; ;), specifying how the event that enters the connection istated
before it is handed over to the endpoint of the connectione flimction thus maps output events to input events, potbntia
modifying their content.

Zseitj  Xseit—Xj VjeD
Ziselt Yi—Ysqf VieD
Zi,j ZZi—>Xj Vi,jED

These translation functions are defined for each connedticlnding those between the coupled model’s input andudpents.
{Z; jlie DU{self},jeli}

The translation function is implicitly assumed to be thenidty function if it is not defined. In case an event needs &vdrse
multiple connections, all translation functions are cledim order of traversal.

With the addition of this final element, we define a coupled eled a 7-tuple.
<XselfaYseIfa Da {Mi}a {Ii}a {le },Selecb

3.5 Closure Under Coupling

Similar to atomic models, we need to formally define the sdioswof coupled models. But instead of explaining the semant
from scratch, by defining some pseudo-code, we map couplettlsito equivalent atomic models. Semantics of a coupled
model is thus defined in terms of an atomic model. In additiois,flattening removes the constraint of coupled modestttedr
submodels should be atomic models: if a coupled model is medbl, it can be flattened to an atomic model.

In essence, for any coupled model specified as

< Xself; Yselt, D, {Mi},{li},{Z.j } ,select>
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we define an equivalent atomic model specified as

< X7Y7 Sa Qinita dnta 56Xt7A 7ta >
Therefore, we have to define all the elements of the atomicefiaderms of elements of the coupled model. The input and
output variableX andY are easy, since they stay the same.
X = Xself
Y = Yelt
From an external point of view, the interface of the atomid anupled model is identical; it has the samen input and dutpu
events and expects the same kind of data on all of them.

The stateS encompasses the parallel composition of the states ofeaiubmodels, including their elapsed timies.(the total
stateQ, as defined previously):

S= XiepQj
with the total state®); previously defined as:
Q={(s,a)ls €S,0<e <ta(s)},VieD

The elapsed time is stored for each model separately, diecelapsed time of the new atomic model updates more frelguent
than each submodel’s elapsed time.

Similarly, the initial total state is seen as the set of alitotal states of all atomic models it contains.
Ginit = ((XieDinit,i), MiNicp{&|(S,6) € Ginit,i })
The time advance functiam then returns the minimum of all remaining times.
ta(s) = min{g; = taj(s) —eli € D}

The imminent component is chosen from the set of all modetls thie specified minimum remaining timéM). This set
contains all models whose remaining tin@g)(is identical to the time advance of the flattened mothl (Theselectfunction is
then used to reduce this set to a single elerient

IMM(s) = {i € D|gi =ta(s)}
i* = selec{IMM(s))
The output functiomt executes the output function dfand applies the translation function, but only if the modéliences the
flattened model directlyi.g., if the output ofi* is routed to the coupled model's output). If there is no catioe to the coupled

model’s outputi(e., i* is only coupled to other atomic models), no output functeimivoked here. We will see later on that these
events are still generated, but they are consumed intgrelabwhere.

A(s) = Z seif(Aie(s+))  if selfelis
le otherwise

Theinternal transition functions defined for each part of the state separately:

Snt(S) = (.., (5,€)),...)

With three kinds of models: (1) the modélitself, which just performs its internal transition furanti; (2) the models influenced
by i*, which perform their external transition based on the ouggmerated by*; (3) models unrelated tiF. In all cases, the
elapsed time is updated.

(Ont,j (s1),0) for j =i,
(S.€)) = (Fext((si. € +ta(9)), Zixj(Aix(s+))),0)  forjelis,
(sj,ej+ta(s)) otherwise

Note that the internal transition function includes exédmansition functions of submodels for those models imfagsl byi*.
As i* outputs events that are consumed internally, this all hapjydernally.

Theexternal transitiorfunction is similar to the internal transition function. Wawo types are distinguished: (1) models directly
connected to the input of the model, which perform their exdktransition; (2) models not directly connected to theuirof the
model, which only update their elapsed time.

Oext((5,€),X) = (..., (5,€),...)
(d,€) = { E5exu((s,a +€),Zseli(x)),0)  fori € lsels

S,6+e€) otherwise
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4 The DEVS Abstract Simulator

Up to now, the semantics of atomic models was defined throagiral language and high-level pseudo-code. Coupled model
were given semantics through a mapping to these atomic md8eth of these have their own problems. For atomic modwds, t
pseudo-code is not sufficiently specific to create a compbhaws simulator: a lot of details of the algorithm are left unsgieci
(e.g, where does the external event come from). For coupled rapiiha flattening procedure is elegant and formal, though it i
highly inefficient to perform this flattening at run-time.

To counter these problems, we will define a more elaboraté, fammal, simulation algorithm for both atomic and coupled
models. Atomic models get a more specific definition with aaclaterface, and coupled models get their own simulation
algorithm without flattening. Coupled models are thus giagerational semantics” instead of “translational seritaiit

This simulation algorithm, aabstract simulatoforms the basis for more efficient simulation algorithmsj aarves as a refer-
ence algorithm. Its goal is to formally define the semantidsoth models in a concise way, without caring about perforoesor
implementation issues. Adaptations are allowed, but tle fésult should be identical: simulation results are todraletely in-
dependent from the implementation. A direct implementeatibthe abstract simulator is inefficient, and actual impetations
therefore vary significantly.

We now elaborate on the abstract simulator algorithm. Foin atomic and coupled model, an instance is created of thectge
algorithm.

Table[1 shows the different variables used, their type, aoriedexplanation.

Table 1: Variables used in the abstract simulator.

name type explanation

f time  simulation time of last transition
th time  simulation time of next transition
t time  current simulation time

e time  elapsed time since last transition
s state  current state of the atomic model
X event incoming event

y event outgoing event

from  model source of the incoming message
parent model coupled model containing this model
sel f model current model

We furthermore distinguish five types of synchronizatiorsgages, as exchanged between the different abstract sinsulan
overview of messages is shown in Table 2.

Table 2: Types of synchronization messages.

type explanation

initialization of the simulation
transition in the model
input event for the model
output event from the model
one computation finished for a model

o X % -

First is the abstract simulation algorithm for atomic mad@resented in Algorithi 4. This algorithm consists of adugdi-
tional, depending on the message that is received. Atomaets@nly perform an operation upon reception of a messagee t

is no autonomous behaviour. This algorithm is invoked ewieng a synchronization message is received. Messagesstohsi
three components: the type of the message, the source oetbsage, and the simulation time. The conditional consistsee
options: On the reception of amessage, we perforiitialization of the simulation time.

Another option is the reception ofsamessage, triggeringteansition The message consists of both a sender and the time at
which the transition should happen. By definition, a traositan only happen at timg, so we assert this. After this check,
we have to perform the following steps: (1) generate the wui{2) send it out to the sender of themessage (our parent),
(3) perform the internal transition, (4) update our timehatihe time advance, and (5) indicate to our parent that wehials
processing the message, also passing along our time ofraasttton.

Finally, it is possible to receive anmessage, indicatingxternal input This can happen anytime between our last transition (
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and our scheduled transitioty), so we again assert the simulation time. Note that thesestine inclusive: due to treelect
function it is possible that another model comes right afitebbefore our own scheduled transition. We perform the ¥eithg
steps: (1) compute the elapsed tiregl{ased on the provided simulation tint§, (2) perform the external transition, (3) update
the simulation time of the next transition, and (4) indiceteur parent that we finished processing the message, adsinga
along our time of next transition.

Algorithm 4 DEVS atomic model abstract simulator.

if receive(i, from,t) messagehen
tt+—t—e
th <t +ta(s)
send(doneself,t,) to parent
else if receive(x, from,t) messagehen
if t =t then
y<A(s)
if y=# @ then
send(y,self,t) to parent
end if
S< int(S)
-t
th <t +ta(s)
send(doneself t,) to parent
end if
else if receive(x, from,t) messagehen
ifty <t <tythen
e—t—t
S« Jexi((S,€),X)
f -t
th <t +ta(s)
send(doneself,t,) to parent
else
error: bad synchronization
end if
end if

Recall that the abstract simulation algorithm didn’t haxag autonomous behaviour. This indicates that there is @nethtity
governing the progression of the simulation This simulagatity is the root coordinator, and it encodes the main Eition
loop. lIts algorithm is shown in Algorithinl 5. As long as simiida needs to continue, it sends out a message to the topmost
model in the hierarchy to perform transitions. When a replgecceived, simulation time is progressed to the time indiatay

the topmost model.

Algorithm 5 DEVS root coordinator.
send(i,main 0.0) to topmost coupled modebp
wait for (donetop,ty)
1+ 1tN
while not terminationConditioK) do
send(x, maint) to topmost coupled modéebp
wait for (donetop,ty)
t«—1tn

end while

Finally, while not completely necessary due to the exigtavicthe flattening algorithm, we also define a shortcut forsiheu-
lation of coupled models. The abstract simulation alganifbr coupled models is shown in Algoritim 6. Coupled models ¢
receive all five different types of synchronization message

First, thei message again indicatastialization. It merely forwards the message to all of its children andksa&ach child as
active. Every coupled model hagjaandt, variable as well, which is defined as the maximum, respdgtivinimum, of its
children. This is logical, as any transition of its childmsill also require an operation on the coupled model contajiit. \WWhen
a message is sent to a submodel, the submodel is marked\as attie use for this is shown in the processing of dioae
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message.

Second, thex message again indicatedransition Contrary to the atomic models, a coupled model is unablestfopm a
transition itself. Instead, it forwards the message to thminent submodel, found by executing teelectfunction for all
models that have that exact satpeOnly a single model will be selected, and enessage is sent to that model. Just like before,
the model is marked as active to make sure that we wait fobitgputation to finish.

Third, ay message indicates amutputmessage. The output message is output by the output furaft@subcomponent, and
needs to be routed through the coupled model. This part diitietion is responsible for routing the message to the inflees
of the model that sent out the message. Note that it is alssideshat one of the influenceessisl f, indicating that the message
needs to be routed externallyg(, to the output of the coupled model). In any case, the messaggs to be translated using the
translation function. The actual translation functiorttisanvoked depends on the source and destination of theagess

Fourth, ax message can be received, indicatingut This is mostly identical to the output messages, only nowwa also
handle messages that were received from our own parent.

Finally, adonemessage can be received, indicating that a submoddirisisedits computation. The submodel, which was
marked as an active child, will now be unmarked. Widememessages are received from all submodieds @ll children are
inactive), we determine our owtn andt, variables and send out the minimgalof all submodels. This time is then sent to the
parent.

The abstract simulator for coupled models can work with ang lof submodel, not necessarily atomic models. In dee@hier
chies, thedonemessage always propagates the minialpwards in the hierarchy. In the end, the root coordinattrakivays
receive the minimath, which is the time of the earliest next internal transition.

Algorithm 6 DEVS coupled model abstract simulator.
if receive(i, from,t) messagehen
foralldin D do
send(i,self,t) tod
active children<« active childrenu {d}
end for
else if receive(x, from,t) messagehen
ift =t, then
i« = select{M;.ty =t|i € D})
send(x,self,t) toix
active children<« active childrenu {i*}
end if
else if receive(y, from,t) messagehen
foralli € ltom\ {self} do
send(Zsom, (y), from,to) to i
active children« active childrenu {i}
end for
if self € lfomthen
Send(zfrom,self(y)asel f,t) to parent
end if
else if receive(x, from,t) messagehen
ift <t <tythen
foralli € lf,omdo
send(Zseit, (x),self,t) toi
active children« active childrenuU {i}
end for
end if
else if receive(done from;t) messagehen
active children<— active children\ { from}
if active children= @ then
f max{t|7d|d e D}
th <~ min{t,q/d € D}
send(doneself t,) to parent
end if
end if

14



finish
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event
Proc n

Figure 9: Queue system with a single generator, single q@aan processors.

5 Application to Queueing Systems

The usefulness dPEVS of course goes further than traffic lights. To present a meadistic model and highlight the potential
for performance analysis, we present a simple queueingrsysext. While a lot has been done in queueing theory, we prese
simulation as an alternative to the mathematical soluti@wen though the mathematical solutions have their adgastasim-
ulation offers more flexibility and doesn’t get that compléiis, however, necessarily limited to “sampling”: simtides will
only take samples and will therefore generally not find rama exceptional cases. Not taking them into account is fineanym
situations, as it is now in our example model.

In this section, we present a simple queueing problem. ¥aniaon this model — in either its behaviour, structure,angpneters
— are easy to do.

5.1 Problem Description

In this example we model the behaviour of a simple queue tbts served by multiple processors. Implementations of this
gueueing systems are widespread, such as for example attaggurity. Our model is parameterizable in several waxscan
define the random distribution used for event generatiordiand event size, the number of processors, performaneaebf e
individual processor, and the scheduling policy of the guehen selecting a processor. Clearly, it is easier to imetdrthis,
and all its variants, iIrDEVS than it is to model mathematically. For our performance ysia] we show the influence of the
number of processorg (g, metal detectors) on the average and maximal queueing fijpe®(e.g, travellers).

A model of this system can be shown in Figlire 9. Events (péapéegenerated by a generator using some distributioniumct
They enter the queue, which decides the processor that thielyeasent to. If multiple processors are available, it gicke
processor that has been idle for the longest; if no procesgeravailable, the eventis queued until a processor bexavadable.
The queue works First-In-First-Out (FIFO) in case multiplents are queueing. For a processor to signal that it isale; it
needs to signal the queue. The queue keeps track of availeditessors. When an event arrives at a processor, it isggede
for some time, depending on the size of the event and the npeaftce characteristics of the processor. After procestireg
processor signals the queue and sends out the event thatimgsipocessed.

5.2 Description in DEVS

While examples could be given purely in their formal degiwip, they would not be executable and would introduce aifign
icant amount of accidental complexity. We use the tool PMHDEVQ [13,[15] to implement th®EVS model and perform
simulations. In PythonPDEV®EVS models are implemented by defining methods that implemendifferent aspects of the
tuple. All code within these methods is just normal Pythodegdhough a minimal number of API calls is required in thescas
of a coupledDEVS model. Since mosDEVS tools work similarly, these examples could easily be trassp to otheDEVS
simulation tools. An overview of popular DEVS simulatiomt®is shown inl[14].

To specify this model, we first define the event exchangeddstvdifferent models: théoh A job is coded as a clagob. It

2Download:htt p: /7 msdl . ¢s. ncqi I 1. cal pr o] ect s/ DEVS/ Pyt honPDEVS
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class Job:
def __init__(self, size, creation_time):
# Jobs have a size and creation_tinme paraneter
self.size = size
self.creation_time = creation_time

Listing 1: PythonPDEVS code for thlob event.

has the attributesize(i.e., indicative of processing time) arteation time(i.e., for statistic gathering). Th&ob class definition
is shown in Listing L.

We now focus on each atomic model seperately, starting awvéet generator.

The generatoris defined as an atomic model using the cl@sger at or, shown in Listind2. Classes that represent an atomic
model inherit from theAt omi cDEVS class. They should implement methods that implement ea¢heddEVS components.
Default implementations are provided for a passivated maleh that unused functions don't need to be defined. In the
constructor, input and output ports are defined, as well adelqmarameters and the initial state. We see that the definiti

the generator is very simple: we compute the time remainirtg the next eventr(enai ni ng), and decrement the number of
events to send. The generator also keeps track of the csinenlation time, in order to set the creation time of evefite time
advance function returns the time remaining until the netarnal transition. Finally, the output function returnseav customer
event with a randomly defined size. The job has an attributéadaing the time at which it was generated. Recall, however
that the output function was invoked before the internaigition, so the current time has not yet been updated by teenial
transition. Therefore, the output function also has to dedkddition, without storing the result in the state (as itroat write to

the state).

Next up is the queue, which is the most interesting compoofethie simulation, as it is the part we wish to analyze. Theue
implementation is similar in structure to tiener at or. Of course, theDEVS parts get a different specification, as shown in
Listing[3. The queue takes a structural parameter, spagifiyie number of processors. This is needed since the quewmnha
output port for each processor. When an internal transhiEppens, the queue knows that it has just output an eveng firsh
idle processor. It thus marks the first idle processor as, sy removes the event it was currently processing. If theze
events remaining in the queue, and a processor is availalgeotess it, we process the first element from the queue and se
theremai ni ng_tine counter. In the external transition, we check the port weivet the event on. Either it is a signal of
the processor to indicate that it has finished, or else it isva @vent to queue. In the former case, we mark the processor th
sent the event as idle, and potentially process a queuedagessor this to work, the processor should include its IDhim t
event, as otherwise the queue has no idea who sent this reedsabe latter case, we either process the event immegliatel
there are idle processors, or we store it in the queue. Threedilwance merely has to return tresrai ni ng_t i me counter that is
managed in both transition functions. Finally in the outjouniction, the model outputs the first queued event to thedirailable
processor. Note that we can only read the events and prasgasd cannot modify these lists: state modification isrweskfor

the transition functions. An important consideration irsttnodel is the enai ni ng_ti ne counter, which indicates how much
time remains before the event is processed. We can’t simglyhg processing time of events in the time advance, ag it
could happen during this time. When an interrupt happergs @nother event arrives), the time advance is invoked agaith,
would return the total processing time, instead of the raingitime to process the event. To solve this problem, we tagi@a
counter that explicitly gets decremented when an extemetriupt happens.

The next atomic model is tH¥ ocessor class, shown in Listingl4. It merely receives an incomingeasd starts processing it.
Processing time, computed upon receiving an event in theFradttransition, is dependent on the size of the task, Bestato
account the processing speed and a minimum amount of piogekat needs to be done. After the task is processed, wgetrig
our output function and internal transition function. Weedd¢o send out two events: one containing the job that wasepsed,

and one to signal the queue that we have become availabl¢hiBptwo different ports are used. Note that the definitibthe
processor would not be this simple in case there was no quefoeetit. We can now make the assumption that when we get an
event, we are already idle and therefore don’t need to quewdntoming events first.

The processor finally sends the task to @oél ect or class, shown in Listingl5. The collector is an artificial campnt that is
not present in the system being modeled; it is only used &issics gathering. For each job, it stores the time in theugu

With all atomic models defined, we only have to couple thenetogr in a coupled model, as shown in Listiig 6. In this system
we instantiate a generator, queue, and collector, as walagable number of processors. The number of processeasizble,
but is still static during simulation. The couplings alsgpded on the number of processors, as each processor is tettethe
gueue and the collector.

Now that ourDEVS model is completely specified, we can start running simortetion it. Simulation requires axperiment
file though, which initializes the model with parameters datines the simulation configuration. An example experinagin
in Python, is shown in Listin@]l7. The experiment writes o thw queueing times to a Comma Seperated Value (CSV) file.

16



from pypdevs. DEVS i nport At om cDEVS
fromjob inport Job
import random

# Define the state of the generator as a structured object
class GeneratorState:
def __init__(self, gen_num:

# Current sinmulation time (statistics)
self.current_time = 0.0
# Remmining time until generation of new event
self.remaining = 0.0
# Counter on how many events to generate still
self.to_generate = gen_num

class Generator(Atom cDEVS):
def __init__(self, gen_param, size_param, gen_num:
Atomi cDEVS. __init__(self, "Generator")
# Qutput port for the event
sel f.out _event = self.addOutPort("out_event")
# Define the state
self.state = GeneratorState(gen_num

# Paraneters defining the generator’s behaviour
sel f. gen_param = gen_param
sel f.size_param = size_param

def intTransition(self):

# Update simulation time

self.state.current_time += self.timeAdvance()

# Updat e nunber of generated events

self.state.to_generate -= 1

if self.state.to_generate ==
# Already generated enough events, so stop
self.state.remaining = float('inf")

el se:
# Still have to generate events, so sanple for new duration
self.state.remaining = random. expovariate(self.gen_param

return self.state

def timeAdvance(self):
# Return remaining tinme; infinity when generated enough
return self.state.remaining

def outputFnc(self):
# Determi ne size of the event to generate
size = max(1, int(random gauss(self.size_param, 5)))
# Calculate current time (note the addition!)
creation = self.state.current_time + self.state.remaining
# Qutput the new event on the output port
return {self.out_event: Job(size, creation)}

Listing 2: PythonPDEVS code for the Generator atomic model.
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from pypdevs. DEVS i nport At om cDEVS

# Define the state of the queue as a structured object
class QueueState:

def

__init__(self, outputs):

# Keep a list of all idle processors

self.idle_procs = range(outputs)

# Keep a list that is the actual queue data structure
self.queue = []

# Keep the process that is currently being processed
sel f.processing = None

# Time remaining for this event

self.remaining_time = float("inf")

class Queue( At om cDEVS):

def

def

def

def

def

__init__(self, outputs):

Atomi cDEVS. __init__(self, "Queue")

# Fix the time needed to process a single event
self.processing_time = 1.0

self.state = QueueState(outputs)

# Create 'outputs’ output ports
# 'outputs’ is a structural paraneter!
self.out_proc = []
for i in range(outputs):
sel f. out _proc. append(self.addOutPort("proc_%" %i))

# Add the other ports: incomng events and finished event
self.in_event = self.addlnPort("in_event")
self.in_finish = self.addlnPort("in_finish")

intTransition(self):

# |s only called when we are outputting an event

# Pop the first idle processor and clear processing event

self.state.idle_procs. pop(0)

if self.state.queue and self.state.idle_procs:
# There are still queued el ements, so continue
self.state. processing = self.state.queue.pop(0)
self.state.remaining_time = self.processing_time

el se:
# No events left to process, so becone idle
self.state. processing = None
self.state.remaining_time = float("inf")

return self.state

ext Transition(self, inputs):
# Update the remaining tine of this job
self.state.remaining_time -= self.elapsed
# Several possibilities
if self.in_finishin inputs:
# Processing a "finished" event, so mark proc as idle
self.state.idle_procs.append(inputs[self.in_finish])
if not self.state.processing and self.state.queue:
# Process first task in queue
sel f.state. processing = self.state. queue. pop(0)
self.state.remaining_time = self.processing_time
elif self.in_event in inputs:
# Processing an inconing event
if self.state.idle_procs and not self.state.processing:
# Process when idle processors
self.state. processing = inputs[self.in_event]
self.state.remaining_time = self.processing_time
el se:
# No idle processors, so queue it
sel f.state. queue. append(inputs[self.in_event])
return self.state

ti meAdvance(self):
# Just return the remaining time for this event (or infinity else)
return self.state.remaining_time

out put Fnc(self):

# Qutput the event to the processor

port = self.out_proc[self.state.idle_procs[0]]
return {port: self.state.processing}

Listing 3: PythonPDEVS code for the Queue atomic model.
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from pypdevs. DEVS i nport Atom cDEVS

# Define the state of the processor as a structured object
class Processor State(object):
def __init__(self):
# State only contains the current event
self.evt = None

class Processor(Atom cDEVS):
def __init__(self, nr, proc_param:
Atomi cDEVS. __init__(self, "Processor_% " %nr)

self.state = ProcessorState()

self.in_proc = self.addlnPort("in_proc")
self.out_proc = self.addOutPort("out_proc")
self.out_finished = self.addOutPort("out_finished")

# Define the parameters of the nodel
self.speed = proc_param
self.nr = nr

def intTransition(self):
# Just clear processing event
self.state.evt = None
return self.state

def extTransition(self, inputs):
# Received a new event, so start processing it
self.state.evt = inputs[self.in_proc]
# Calculate howlong it will be processed
time = 20.0 + max(1.0, self.state.evt.size / self.speed)
sel f.state.evt.processing_time = time
return self.state

def timeAdvance(self):
if self.state.evt:
# Currently processing, so wait for that
return self.state.evt.processing_time
el se:
# ldle, so don't do anything
return float('inf")

def outputFnc(self):
# Qutput the processed event and signal as finished
return {self.out_proc: self.state.evt,
sel f.out_finished: self.nr}

Listing 4: PythonPDEVS code for the Processor atomic model.

from pypdevs. DEVS i nport Atom cDEVS

# Define the state of the collector as a structured object
class CollectorState(object):
def __init__(self):
# Contains received events and sinulation tine
sel f.events = []
self.current_time = 0.0

class Collector(Atom cDEVS):
def __init__(self):
Atomi cDEVS. __init__(self, "Collector")
self.state = CollectorState()
# Has only one input port

self.in_event = self.addlnPort("in_event")

def extTransition(self, inputs):
# Update simulation time
self.state.current_time += self.elapsed
# Calculate time in queue
evt = inputs[self.in_event]
time = self.state.current_time - evt.creation_time - evt.processing_time
inputs[self.in_event].queueing_time = max(0.0, time)
# Add incoming event to received events
sel f.state.events. append(inputs[self.in_event])
return self.state

# Don't define anything el se, as we only store events.
# Coll ector has no behaviour of its own.

Listing 5: PythonPDEVS code for the Collector atomic model.

19




from pypdevs. DEVS i nmport Coupl edDEVS

# Import all nodels to couple
from generator inport Generator
from queue inport Queue

from processor inport Processor
fromcollector inport Collector

class QueueSystem Coupl edDEVS):
def init__(self, mu, size, num, procs):

Coupl edDEVS. __init__(self, "QueueSystenl)

# Define all atomi c subnodels of which there are only one
generator = self.addSubModel (Generator(nmu, size, num))
queue = self.addSubModel (Queue(len(procs)))

collector = self.addSubModel (Coll ector())

self.connect Ports(generator. out_event, queue.in_event)

# Instantiate desired nunber of processors and connect
processors = []
for i, paramin enumerate(procs):
processors. append(self.addSubModel (
Processor(i, param)))
sel f.connect Ports(queue. out_proc[i],
processors[i].in_proc)

self.connect Ports(processors[i].out_finished,
queue. in_finish)
sel f.connect Ports(processors[i].out_proc,

collector.in_event)

# Make it accessible outside of our own scope
self.collector = collector

Listing 6: PythonPDEVS code for the System coupled model.

An experiment file often contains some configuration of teuation tool, which differs for each tool. For PythonPDEW%
documentatidﬁmrovides an overview of supported options.

5.3 Performance Analysis

After the definition of ouDEVS model and experiment, we of course still need to run the sitiar. Simply by executing the
experiment file, the CSV file is generated, and can be analyzadpreadsheet tool or plotting library. Depending on th&ad
stored during simulation, analysis can show the averageejng times, maximal queueing times, number of events,gasar
utilization, and so on.

Corresponding to our initial goal, we perform the simulatio order to find out the influence of opening multiple proces®n

the average and maximum queueing time. Figuite 10 shows thietien of the waiting time for subsequent clients. Figule 1
shows the same results, drawn using boxplots. These résditate that while two processors are able to handle the, loa
maximum waiting time is rather high: a median of 200 secomgdiscamaximum of around 470 seconds. When a single additional
processor is added, average waiting time decreases sagnificand the maximum waiting time also becomes tolerattie:
mean job is served immediately, with 75% of jobs being hashdlithin 25 seconds. Further adding processors still hasip®
effect on queueing times, but the effect might not warraetititcreased cost in opening processors: apart from sometexcs,

all customers are processed immediately starting fromgoocessors. Ideally, a cost function would be defined to trmthe
value (or dissatisfaction) of waiting jobs, and compars tbithe cost of adding additional processors. We can thémizgt
that cost function to find out the ideal balance between gaxgiore for additional processors and losing money due to long
job processing times. Of course, this ideal balance dependgveral factors, including our model configuration areddbst
function used.

6 Variants

Despite the success of the origim#tVs specification, as introduced throughout this chapter,tsboring were identified when
used in some domains. For these reasons, a lot of variangsreegntly spawned. In this section, we touch upon the thiest m
popular ones, with some remarks on other variants. Notenbahake the distinction between variants that further aung e
DEVS formalism {.e., make more constructs available), and those that restricei, prevent several cases). Both have their
reasons, mostly related to the implementation: augmethimDEVS formalism makes it easier for modellers to create models in
some domains, whereas limiting tb&VS formalism makes some operations, such as analysis, pessibhsier to implement.

Shttp://msdl. cs. mcgi | 1. cal proj ects/ DEVS/ Pyt honPDEVS/ document at | on/ ht il /1 ndex. ht
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from pypdevs. si mul ator inport Simulator
i mport random

# Import the nodel we experiment wth
from system inport QueueSystem

# Configuration:
# 1) nunber of custoners to sinmulate

num = 500

# 2) average tine between two custoners

time = 30.0

# 3) average size of custoner

size = 20.0

# 4) efficiency of processors (products/second)
speed = 0.5

# 5) maxi mum nunber of processors used
max_processors = 10
# End of configuration

# Store all results for output to file
values = []
# Loop over different configurations
for i in range(l, max_processors):
# Make sure each of them sinulates exactly the sane workl oad
random. seed(1)
# Set up the system
procs = [speed] * i
m = QueueSystem(mu=1.0/time, size=size, numEnum, procs=procs)

# Pyt honPDEVS specific setup and configuration
sim = Simulator(m

sim set Classi cDEVS()

sim simulate()

# Gather information for output
evt _list = mcollector.state.events
val ues. append([e. queueing_time for e in evt_list])

# Wite data to file

with open(’output.csv’', '"w) as f:
for i in range(num:
fowrite("u%" % i)
for j in range(len(values)):

fowrite(", 9%f" % (values[j][i]))
fowrite("\'n")

Listing 7: PythonPDEVS code for the experiment on the system
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Figure 10: Evolution of queueing times for subsequent Eigire 11: Boxplot of queueing times for varying number of
tomers. active processors.

6.1 Parallel DEVS

One of the main problems identified DEVS is related to performance: when multiple models are imntirteey are processed
sequentially. WhileDEVS does allow for some parallelisme.g, between simultaneous external transitions), multipterimal
transitions is a common occurence.

Parallel DEVS [@] was introduced as a variant of tB&VS formalism, in which parallel execution of internal traiit functions
is allowed. This changes the semantics of models though, remilires changes to the abstract simuldtbr [5]. The prexgbos
changes are therefore not just syntactic sugar: they étiplicodify the semantics of models.

Allowing for parallelism is, however, not a trivial task:\&al modifications are required, which we briefly mentiorehél'he
first logical change is the removal of teelectfunction: instead of selecting a model to go first, all imnritenodels are allowed
to transition simultaneously. Whether or not this happangarallel or not, as it might not necessarily be fadter [Blup to
the implementation. This creates some repercussionsghout the remainder of the formalism, as gwectfunction was
introduced for good reasons.

Since models can now perform their internal transition $iameously, output functions also happen simultaneoWshile this

is in itself not a problem, routing might cause the need fengs to be merged together, for example when two events getdo
to the same model. The abstract simulator was not desigméhispas an external transition was immediately invokeoluine
reception of an external event. SoRarallel DEVS, events are always encapsulatetays which can easily be merged. Bags,
or multisets, are a kind of set which can contain items migtines. This way, multiple bags can be trivially joined tlvaut
losing information. Note that order is undefined, as othsevii would depend on the synchronization between diffevatgut
functions: which one is executed before the other. Due ®d¢hange in interface, the external transition needs totbeedlto
operate on a bag of input events, and the output functionchgerierate a bag of output events.

Problems don't stop there, as internal and external tiansitight happen simultaneously. Recall thabigvs, self-loops were
not allowed for this exact purpose. Rarallel DEVS, however, two models can perform their internal transisonultaneously,
with one outputting an event for the other one. In that cdsentodel needs to process both its internal transition, tarekiernal
transition caused by the other model’s transition. Sineeels no priority defined between them (that was part of threqse

of the selectfunction), they should execute simultaneously. To allowtfis, a new kind of transition is defined: thenfluent
transition function This transition is only performed when both the internadl @xternal transition happen simultaneously.
Parallel DEVS leaves open what the semantics of this is, though a saneldsftr the internal transition to go first, followed by
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the external transition.

Thanks to the potential performance gains, many tools feeaillel DEVS overDEVS in their implementation. Some stick to
the elegance of the originBEVS formalism, despite the performance hit.

6.2 Dynamic Structure DEVS

Another shortcoming of theEVS formalism, also present iRarallel DEVS, is the lack of dynamic structure. Some systems
inherently require a dynamic structure to create, modifgedete models during the simulation. While possibleivs formal-

ism by defining the superset of all possible configuratiortsauativating only one of them, this has high accidental caxip,
and performance suffers. Furthermore, systems might grawraely big, making it practically impossible to createpassible
configurations statically.

To counter these issueBynamic Structure DEVS [[1] was devised as an extension@EVS. In Dynamic Structure DEVS, the
model configuration is seen as a part of the state, makingdifrable during simulation. Since the coupled model has atest
of its own, anetwork executivis added, which manages the structural state of a specifiesdtn a seperate phase, models can
send events to the network executive to request a struciuaalge.

This proposed extension is, however, only a mathematicaleinas to how it can be made possible. Similar to previous for-
malisms, an abstract simulator [3] is provided that is $tmexl that way. Real implementations, however, are fremf@ment
this however they want. The network executive might theeefmt even exist in the implementation, with all structunareging
messages being intercepted in the implementation.

Even though dynamic structure now becomes possitidews models, this formalism is not well suited to handle a hugewamo
of changes. The work to be done for a change, both for the ugkthe implementation, is just too time-consuming to execut
frequently. But even while highly dynamic models are notlflesuited, infrequent structural changes become vergiples

6.3 Cell-DEVS

Another variant oDEVS presented here is theell-DEVS formalism. Despite the elegance of tbeVvs formalism, it is still
difficult to use it in a variety of situations, specifically the context of cellular modelsCellular Automata [1€] are a popular
choice in the domain of cellular models, but contrary to tieerkte-event nature @EVS, Cellular Automata is discrete-time
based. While discrete-time is a good match with most modetlseé problem domain of cellular automata, some models would
profit from a discrete-event basis. While not frequently abfem, cellular models become restricted to the granylafithe
time step, resulting in low performance when the time stajt &good match with the model’s transition times.

Cell-DEVS was introduced as a combination@EVS andCellular Automata, combining the best of both worlds. Model speci-
fication is similar toCellular Automata models, but the underlying formalism used for simulatioadgtuallyDEVS. Due to this
change, models gain more control over the simulation timerthiermore, cellular models can now be coupled to other, not
necessarily cellulaDEVS models.

6.4 Other Variants

Apart from the formalisms introduced here, many more vasiaxist that tackle very specific problem€£3aVS. We don’t have
the space here to discuss all of them, though we wish to pe®dthe pointers to some other useful extensions. Examelesraar
solutions to the dynamic structure problebyGDEVS [12]), restrictions to mak®EVS models analyzable-0-DEVS [9]), and
extensions to allow for non-determinisiugzy DEVS [10]). Many of the previously proposed formalisms also hargmented
themselves with the changes madertoallel DEVS, resulting in a parallel version dfynamic Structure DEVS [2] and Cell-
DEVS [11].

7 Summary

In this chapter, we briefly presented the core ideas bebis, a popular formalism for the modelling of complex dynamic
systems using a discrete-event abstractix#Vs is primarily used for the simulation of queueing networksyhich an example
was given, and performance models. It is most applicabléhfi®@modelling of discrete event systems with componen¢dbas
modularity. It can, however, be used much more generallysisialation assembly language, or as a theoretical founl &
these formalisms.

Future learning directions dDEVS can be found in the BRTHER READING section, which provides a list of relevant extensions
onDEVS, as well as mentions of some of the problems currently beingd inDEVS.
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