
Distributed Discrete Event Simulation Architecture with Connectors

İsmet Özgür Çolpankan1,2 Ahmet Kara2 Halit Og̃uztüzün1

1Department of Computer Engineering
Middle East Technical University

Ankara, Turkey

2TÜBİTAK BİLGEM İLTAREN
Ankara, Turkey

{ozgur.colpankan, ahmet.kara}@tubitak.gov.tr, oguztuzn@ceng.metu.edu.tr

Keywords: DEVS, SiMA, Distributed DEVS, Connectors

Abstract
Distributed Discrete Event System Specification (DEVS) en-
vironments developed with various computing, networking
and implementation language options. We propose a dis-
tributed approach to the Simulation Modeling Architecture
(SiMA), the DEVS-based modeling and simulation frame-
work, with software connectors. We employ Windows Com-
munication Foundation (WCF) as the middleware technol-
ogy. A connector is a first class entity which performs in-
teraction among components, thus, plays an important role in
a component-based architecture. We claim that using a con-
nector instead of modifying an already developed model in-
creases the model reusability. We also compare this approach
with the existing distributed DEVS approaches in terms of
base formalism, network layer technology, model partition-
ing, remote node synchronization scheme and message ex-
change pattern.

1. INTRODUCTION
Complex model hierarchy, high level of detail in models

and large simulations cause the processor and memory of a
computer to become insufficient to run a simulation in a rea-
sonable time. Therefore, the need to use diverse resources
dispersed over a network for a scalable performance leads
to development of parallel and distributed simulation sys-
tems. Distributed DEVS idea was launched in 1985 by Zei-
gler [19] and until today several distributed DEVS appli-
cations have been developed, including: DEVS/CLUSTER
[10], DEVS/RMI [20], DEVS/P2P [6], DEVS/REST [1] and
DEVS/SOA [13].

In this paper, we propose a distributed approach to enable
Simulation Modeling Architecture (SiMA) to execute in a
distributed environment. SiMA is a DEVS-based modeling
and simulation framework developed in TÜBİTAK BİLGEM
İLTAREN. It implements the SiMA-DEVS formalism which
is an extended version of Parallel DEVS formalism. Our ap-
proach is using Windows Communication Foundation (WCF)
[5] as an underlying middleware technology. WCF offers a set

of APIs in the .NET framework [12] for establishing service-
oriented applications [5]. Core simulation engine of SiMA
was developed in .NET framework, hence WCF might be at-
tuned to SiMA easily. Furthermore, in a WCF-to-WCF appli-
cation the fastest message encoding formatting and transfer
protocol methods can be utilized considering the other facili-
ties that WCF offers.

Our approach is also integrating the concept of software
connectors for adaptation of distributed nodes and models.
The increase in modeling complexity leads to utilization of al-
ready developed reusable models. Furthermore, model reuse
saves developers development effort and time, and more im-
portantly regression tests to verify and validate the mod-
ified model. However, it is not always feasible to use a
legacy model in a new simulation scenario in terms of de-
tail of computation and data types for communication among
models. Connectors engage at this point by providing inter-
actions among components by transferring control or data,
and playing the gluing role in component-based architec-
tures. Besides, DEVS formalism is highly appropriate for a
component-based framework design when each model is con-
sidered as a component. Therefore, in our implementation we
have adopted connectors as introduced by Kara [9] for Dis-
tributed DEVS environments to perform data conversions and
data marshalling/unmarshalling.

Novelty of our approach is the explicit use of connectors
for adaptation of distributed nodes and models via favorable
WCF features in a distributed DEVS environment.

The rest of the paper is organized as follows: Section 2
provides an overview of the background of our research, Sec-
tion 3 provides distributed DEVS approaches related to our
research, Section 4 explains our approach in detail, Section 5
presents a case study using our implementation and our dis-
cussions about the importance of our approach, and finally
Section 6 includes our resultant comments.

2. BACKGROUND
2.1. SiMA

SiMA [8] is a modeling and simulation framework that is
built on DEVS formalism [18]. For complex model construc-

tion it uses a formalism which extends the Parallel DEVS for-
malism [7]. SiMA has two extensions to the parallel DEVS
formalism; strongly-typed inter model connection environ-
ment and direct feed through transition function. In port def-
initions of models there are constraints that makes port types
type-safe. Moreover, the new transition function provides that
in the same simulation time a model can receive data, make
computation on it, and send the modified data without any
state change. It has its own port type, direct feed through
port, in order to process incoming events and send them in
the same simulation time. To avoid deadlocks, an application
independent loop-breaking logic is defined in this port type.

2.2. Connectors
Connectors are the architectural building blocks that man-

age the interactions among components [3]. Some examples
of interactions are procedure calls, method invocations, data
flow, communication protocol, and pipelines. Mehta and his
colleagues [11] proposes eight connector types; procedure
call, event, data access, linkage, stream, arbitrator, adap-
tor, and distributor. In our study, we take the classification
of Mehta into account.

3. RELATED WORK
This section summarizes of some Distributed DEVS ap-

proaches.
DEVS/P2P [6] is a distributed DEVS implementation that

proposes a peer-to-peer (P2P) simulation protocol to oper-
ate a DEVS simulation on a distributed and parallel com-
puting environment. The proposed protocol uses advantage
of P2P infrastructure, in which inter-connected peers share
resources with each other without using any centralized ad-
ministrative system, to gain optimal performance compared
to existing protocols. As middleware it uses JXTA [16] tech-
nology which is a P2P network system implementation.

DEVS/GRID [14] uses Grid computing infrastructure for
DEVS modeling and simulation activities. DEVS/GRID pro-
poses new functionalities to the existing DEVS M&S frame-
works as mentioned by Seo [14]: ”cost-based hierarchical
model partitioning, dynamic coupling restructuring, auto-
matic model deployment, remote simulator activation, self-
communication setup, M&S name and directory service, etc.”
As middleware, Globus Toolkit which is widely used in grid
computing is used.

DEVS/CLUSTER [10] transforms hierarchical DEVS
model structure into a non-hierarchical one to ease the syn-
chronization of remote models. DEVS/CLUSTER utilizes
CORBA as a communication system which is designed to
perform collaboration between heterogeneous platforms, dif-
ferent programming languages and operating systems.

DEVS/RMI [20] focuses mostly the reconfiguration of the
simulation structure dynamically in runtime unlike other ap-

proaches. Its underlying communication technology is Java
RMI.

DEVS/SOA [13] provides a solution to cross-platform dis-
tributed M&S in a client-server architecture using SOA. It
uses Java for the implementation. Messages between remote
nodes are serialized with SOAP.

DEVS/PyRo [15] is designed to make quantitative analysis
of reliability and performance of different simulator designs
with detection of failures in computational and network re-
sources. It is implemented in Python. PyRO which is an RMI-
based python implementation is used in middleware layer.

4. DISTRIBUTED SIMA
Distributed SiMA is a framework that enables SiMA to

execute in a distributed environment. It also aims to in-
crease model reusability by bringing software connector no-
tion to distributed DEVS environment. Connectors in Dis-
tributed SiMA assist inter node communication and adapta-
tion of models in terms of port data types. Distinctively from
other distributed DEVS approaches Windows Communica-
tion Foundation is adopted as an underlying middleware tech-
nology. Like SiMA core engine Distributed SiMA has been
implemented in .NET C#. Besides, WCF is convenient to
adapt two .NET products with each other in terms of perfor-
mance. In Distributed SiMA many WCF features are bene-
fited such as service oriented development environment for
simplicity, request/reply message exchange pattern for syn-
chronization, binary encoding over TCP transportation for
performance and customized service behavior for object seri-
alization.

4.1. Connectors in Distributed SiMA
Distributed SiMA uses connectors which play important

roles in simulation execution. Connectors in Distributed
SiMA are the specialized atomic models. There are two kinds
of connectors in terms of the tasks they carry out: mar-
shaller/unmarshaller connector and data conversion connec-
tor.

4.1.1. Marshaller/Unmarshaller Connector
It consists of two built-in atomic models used in commu-

nication among remote models. If there is a port coupling
between two models (coupled or atomic) located at differ-
ent nodes, a marshaller/unmarshaller connector is placed be-
tween the models in order to serialize and deserialize the port
data. The marshaller part of the connector is placed in the
source node, and the source model’s output port is connected
to its input port. Similarly the unmarshaller part of the con-
nector is placed in the target node, and its output port is con-
nected to the target model’s input port. A port coupling of two
models in Figure 1a can be transformed for a distributed en-

Model 1 Model 2

Type1

Type2

(a) Located in the same node

Model 1

Marshaller 1

Marshaller 2 Unmarshaller 2

Unmarshaller 1

Network

Model 2

Type1 Type1

Type2 Type2

Serialized object

Serialized object

Marshaller/Unmarshaller Connector

Marshaller/Unmarshaller Connector

(b) Located in remote nodes

Figure 1: Marshaller/Unmarshaller Connectors

vironment as in Figure 1b with marshaller/unmarshaller con-
nectors.

Conceptually, there is a one connector that performs
marshalling and unmarshalling, in addition to network-
ing chores. In terms of implementation, it is composed
of two atomic DEVS models (one for marshalling, the
other for unmarshalling), and the underlying network. Mar-
shalling/Unmarshalling connector uses direct feed through
transition port. Therefore there is no simulation time step loss
between remote models despite the connectors between them.
Model 1 sends data to Marshaller 1. In the same simulation
time step Marshaller 1 serializes the data and sends it through
network to Unmarshaller 1. Unmarshaller 1 deserializes the
data and sends it to the Model 2. With the help of WCF there
is no need for an extra synchronization while sending port
data through network.

4.1.2. Data Conversion Connectors
Model continuity is a profitable characteristic when huge

simulation projects are considered. Already implemented
atomic models can be used in other projects without modi-
fications. Modelers might not want to break the integrity of
already developed models since the verification and valida-
tion time of the modified model may take more time than
developing a new model. However, data types processed by
the legacy models might not match the data types of the new
models. Evidently, composable models may reflect the same
real world entities and facts; however, they might have non-
identical data representations. These models have to commu-
nicate with each other but port data types they are using are
not the same. Data conversion connectors [9] accomplish this
bridging task. They receive a data packet in Type1, apply con-
version to it, and send it in Type2 like in Figure 2. They are
implemented by the model developers as atomic models. Dis-
tributed SiMA provides a base class for the developers to de-
velop connector models that utilize DFT ports for conversion
routines.

Model 1

Type1 to Type2
Data Conversion

Connector

Model 2

Type2 to Type1
Data Conversion

Connector

Type1

Type1

Type2

Type2

Figure 2: Data Conversion Connectors

4.1.3. Connector Roles According to Mehta Classifi-
cation

Mehta and his colleagues stated eight connector types men-
tioned in Section 2.2. A connector may have more than one
type among them.

Marshaller/Unmarshaller connectors are procedure call
connectors since they make remote procedure calls. They are
also linkage connectors as they are not defined as a simulation
entity before simulation construction, but they are inserted to
simulation when a remote model port data transportation is
needed. They establish the WCF communication protocol and
serializes data to be sent over network, so they are adaptor
connectors.

Data conversion connectors are mostly adaptor connec-
tors, because they provide data conversion service among
components. They also form binding between different typed
models and this makes them linkage connectors.

4.2. Distributed SiMA Architecture
We used the existing SiMA implementation as a basis

to develop Distributed SiMA. We added new packages, ex-
tended the core classes, and modified some classes for the dis-
tributed version. There is a Master Node managing the whole
system by deploying models, building simulation, and exe-
cuting simulation. Other remote nodes joining the simulation
execution are called Slave Nodes.

Distributed SiMA could be examined in two main phases
with respect to distributed simulation execution: model de-
ployment, and simulation build and run as illustrated in Fig-
ure 3.

4.2.1. Model Deployment
This phase covers identifying slave nodes, establishing

connections, deploying and testing of models in them. Before
all of these, slave nodes must be ready for the model deploy-
ment. For the model deployment slave nodes need starting the
Model Deployment Server and creating a service listener for
the connection. We use Windows services that operate in the
background, and are managed by the operating system. We
developed a Windows service to instantiate the Deployment
Service.

User initializes model
deployment and test

Models are deployed
Deployed models are
tested in each node

Deployment process
finishes and user is
notified

User initializes the
simulation build
process

Model instances are
created in each node and
port couplings are
established

Simulation building
process finishes and user
is notified

User initializes the
simulation run

Simulation runs in
distributed environment

User interaction Master and Slave nodes

Not working properly

Working properly

M
o

d
el

 D
ep

lo
ym

en
t

Si
m

u
la

ti
o

n
 B

u
ild

 a
n

d
 R

u
n

Simulation finishes and
user is notified

User collects the
simulation output

Figure 3: General System Flow Diagram

Distributed
Scenario
Analyzer

Distributed
Scenario

Document

Data Type
Mapping Rules

XSLT

Distributed
Model
Linker

Distributed
Model
Builder

KODO

Port Type
Mapping Rules

XML XML

KODO Data Type
Definitions

XML

Code Generation
Rules

XSLT

Port Data
Structures

Simulation Models
in Distributed
Environment

Distributed Simulator

Figure 4: Distributed SiMA Simulation Construction Pipeline

Slave nodes behave like servers after these steps and start
to listen via Deployment Service port for the connection re-
quests. This service is used in the deployment phase of Dis-
tributed SiMA. User initializes the model deployment process
with the distributed scenario definition document which con-
sists of model definition, coupling information, initialization
parameters of models, and endpoint addresses of slave nodes
added to coupled or atomic model definitions.

4.2.2. Simulation Build and Run
Model Deployment guarantees that all simulation models

are dispatched over the network and tested on the correspond-
ing slave nodes. In this phase distributed simulation will be
built and run. Distributed SiMA employs basic SiMA simu-
lation construction pipeline as a base and extends it to build
distributed simulation. Again master node maintains the sys-
tem building process. The distributed version of the SiMA
simulation construction pipeline is in Figure 4.

Distributed Scenario Analyzer starts the distributed sim-
ulation construction pipeline. In Distributed SiMA, Scenario
Document is modified as Distributed Scenario Document that
includes the definition of the partition plan. User writes De-
ployment Service endpoint address of a slave node inside the
definition of the model (atomic or coupled) he wants to work
as remote. This modification on scenario document is enough
to make a basic SiMA scenario distributed. Distributed Sce-
nario Analyzer takes a Distributed Scenario Document file
as an input and creates an intermediary data for Distributed
Model Linker. The Distributed Scenario Document consists
of model definition, model coupling information with remote
node endpoint addresses, and initialization data of the mod-
els.

Distributed Model Linker is the core component among
the others taking role in the pipeline. It prepares the dis-
tributed simulation structure to be built. The intermediary
scenario received from Distributed Scenario Analyzer is sep-
arated into two files in this component. One of the files is
the distributed model link map file including the coupling
information, model definitions, and port connection defini-
tions using a hierarchical style. The other file is the dis-
tributed simulation configuration file consisting of initializa-
tion data of the atomic models. User specifies the required
data conversion connectors; however, the document does not
include marshaller/unmarshaller connector definitions. Dis-
tributed Model Linker inserts them where they are required.

Distributed Model Builder is the constructor of the Dis-
tributed SiMA. It manages the creation of instances of model
classes. It establishes one root coupled model by combin-
ing the instances according to hierarchical structure for each
node. This hierarchical structure is obtained from the dis-
tributed model link map file produced by Distributed Model
Linker. For the models to be run in master node, it builds them
locally. And for the remote models it commands the slave
nodes to build the remote coupled models via Remote Simu-
lation Service. There are also remote model proxies located
in the master node for each remote coupled model. Their task
is to provide a communication setup in order to communicate
with Remote Simulation Service. They are images of the re-
mote coupled models in master node. Distributed Simulator
manages the distributed simulation on master node as if it is
local. It thinks that all models are located in one computer.
Actually remote model proxies create this illusion.

Figure 5 illustrates the configuration of an example system.
There is a Master Node and two slave nodes. Slave Node 2
has two sessions to manage different remote models. Remote
model proxies in Master Node connect Remote Simulation
Services (RSSs) in slave nodes. Marshaller modules of Mar-
shallar/Unmarshaller Connector (MCs) connect the related
Unmarshaller modules of Marshallar/Unmarshaller Connec-
tor (UMCs) through Port Services (PSs).

Coupled0

Coupled1

Atomic1

Atomic2 Coupled2

Atomic3 Atomic4

Atomic5

Coupled3

Atomic6 Atomic7

Atomic8 Atomic9

Remote1_1 Remote2_1 Remote2_2

MASTER
NODE

Remote1_1_Proxy

Remote2_1_Proxy Remote2_2_Proxy

UMC1 MC2

MC1 UMC2

MC3 UMC4

UMC3 MC4

MC5 UMC6

UMC5 MC6

SLAVE
NODE 1

SLAVE
NODE 2

RSS RSS RSS PS

PS

PS

PS

PS

PS

Figure 5: Distributed Simulation Structure Example
Overview

KODO is not adjusted to distributed SiMA since the port
and initial data classes generated are used as they are. Actu-
ally in WCF user specifies the port data classes transported
through network by tagging them with Data Contract prop-
erty. The .NET framework detects that the class will be serial-
ized by WCF. However, we did not develop a new distributed
version of KODO or modify the generated classes. Because it
brings some work load and also ruins the easiness of making
an already developed SiMA scenario distributed. One would
have to run the new distributed KODO to add Data Contract
property to all generated classes. We resolved this problem by
changing the Port Service data serialization behavior. In de-
fault WCF expects to serialize only Data Contracts. With the
changing service serialization behavior, all port data classes
can be serialized into the object class which is the base class
of all classes in .NET. This feature of WCF serialization be-
havior can be used because of WCF-to-WCF communication.
There is not a cross-platform communication and we can use
the benefits of WCF-to-WCF communication in both data
transport optimization and serialization.

Distributed Simulator maintains the centralized view of
simulation execution as in SiMA. However, it is distributed
since there are remote model proxies in place of the actual
models. At the management level Parallel DEVS protocol
is applied. Simulation execution is synchronized in terms of
simulation time management as a default because of its cen-
tral architecture and request/reply feature in remote procedure
calls of WCF. There is no need for an extra global or local
simulation time synchronization among remote nodes.

5. CASE STUDY
This section includes a case study to demonstrate Dis-

tributed SiMA. The scenario used in the case study is a wire-
less ad hoc sensor network [17]. There are two kinds of sen-
sor models in the scenario: detailed sensor model and regu-
lar sensor model. There is also a sink model gathering sensor
information. A logger model is used to trace the local and

Platform
Model

Logger Model

Sink Model

Regular Sensor Info

Detailed Platform Info

Sensor Model
Sensor Model

Sensor Model
Sensor Model Regular

Sensor Model

Detailed
Sensor Model Detailed

Sensor Model Detailed
Sensor Model Detailed

Sensor Model Detailed
Sensor Model

Regular Platform Info

Detailed Sensor Info

Connector

Connector

Connector

Detailed Sensor Info

Regular Sensor Info

Figure 6: Models in the Case Study Scenario

distributed models’ activities. A platform model is used as a
target to be detected by sensors and make them send detec-
tion information to the sink model. Moreover, there are con-
nectors; RegularToDetailedSensorInfo and DetailedToRegu-
larSensorInfo connector between regular sensor models and
detailed sensor models, and DetailedToRegularPlatformInfo
connector between platform and regular sensor models. All
scenario models and relations between them are observed
from Figure 6. As the aim of this case study is not a WSN
evaluation, the implementation of models does not reflect the
exact calculations needed to be done in a real wireless ad hoc
sensor network.

Distributed SiMA was tested with 2 slave nodes. Parti-
tion plan of the models is shown in Figure 7. Slave Node 1
has 25 Detailed Sensor Models, one Sink Model, one Log-
ger Model and one RegularToDetailedSensorInfo Connec-
tor Model. Slave Node 2 has 25 Regular Sensor Models,
one DetailedToRegularSensorInfo Connector Model and one
DetailedToRegularPlatformInfo Connector Model. Addition-
ally, Master Node runs one Platform Model.

5.1. Discussion
To handle component interactions the use of connectors is

the most flexible approach [2]. There are also some studies
for the definitions of connector roles in a component-based
architecture, for example Balek’s study [4]. Our data conver-
sion connectors are the adaptors that tie two or more atomic
model components designed to interoperate. However, it can
be considered that adding new models to a scenario brings
burden to the simulator and slows down the simulation exe-
cution. Moreover, one has to develop the new data conversion
connector model.

In our example, there are two already developed and tested
scenarios. The first one uses Detailed Sensor Models and the
second one uses Regular Sensor Models. In a new scenario we

Detailed Sensor
Model 1

Sink Model Logger Model

RegularToDetailedSensorInfo
Connector Model

x25 << slave node 1 >>

Regular Sensor
Model 1

DetailedToRegularSensorInfo
Connector Model

x25

DetailedToRegularPlatformInfo
Connector Model

Platform Model

<< slave node 2 >>

<< master node >>

Figure 7: Partition Plan Overview of Case Study Scenario

want to use both sensor models. There are two ways in order
to prepare a scenario like this: modifying one type of sensor
model to convert the received data when it is making calcu-
lations and again convert the calculated data back to send, or
developing data conversion connectors. We implemented the
case study scenario without data conversion connectors. We
removed all the data conversion connectors and modified the
Regular Sensor Model to adapt the new environment. Input
and output port data types changed to detailed ones. Required
conversions are done before calculations and before sending
the calculated data. By doing this we achieved two results:

1. We executed the simulation with and without data con-
version connectors and the simulation execution time
did not change. Thus, a connector is not a burden to the
simulator.

2. The Regular Sensor Model had 182 lines at first. After
the modification 18 lines were changed and 26 new lines
are added. As a ratio 10% of code lines is modified and
14% of code lines is added. Thus, when atomic models
consist of massive data and calculations are considered,
modifying them for the adaptation to the new scenario
models costs developer more than anticipated.

5.2. Evaluation
We have conducted some tests on the case study scenario

and obtained the data shown in Figure 8. The scenario is
executed both with data conversion connectors as DCC and
without them. The X axis of the chart shows the number of
Detailed Sensor Model as DS and Regular Sensor Model as
RS in the scenario. The Y axis of the chart shows the wall
clock time of simulation execution in seconds. The result
data shows that when number of sensor models in the sce-
nario increases, Distributed SiMA executes faster than SiMA.
Moreover, in distributed simulation execution, the effect of

data conversion connectors is unremarkable with only 0.5%
increase in execution time. There is an unanticipated result:
in the scenario with 50DS-50RS SiMA executed, simulation
is executed faster with data conversion connectors. Because
with data conversion connectors 200 port connections are es-
tablished between Detailed Sensor Models and Regular Sen-
sor Models. However, when data conversion connectors are
removed 5000 port connections are established and this slows
down the execution.

6. CONCLUSION
We have proposed a distributed approach for SiMA via

WCF. WCF takes charge in communication and transporta-
tion among distributed nodes. Moreover, our approach use
connectors which provide adaptation of distributed nodes
and models and increase model reuse. Compared to other
distributed DEVS implementations Distributed SiMA brings
novelty in these three points:

1. Distributed SiMA uses SiMA-DEVS formalism
2. In order to increase model reusability, and distributed

node and model adaptation, connectors are used
3. WCF is adopted in the network communication and data

transportation layer

In Section 3 we have described various distributed DEVS
approaches. And the Table 1 is summing up those information
with the Distributed SiMA approach.

A data conversion connector increases model reusability
by placing between a new and a legacy model. This also hin-
ders developers from applying regression tests for the vali-
dation and verification. If a data conversion connector was
not placed, the legacy model would have to be modified to
be compatible with the new scenario models. Benefits of con-
nectors in the distributed DEVS setting can be listed as:

0

100

200

300

400

500

600

700

800

900

10 DS - 10 RS 25 DS - 25 RS 50 DS - 50 RS

Local

Local without DCC

Distributed

Distributed without DCC

139 138 141 140

699 703

842

355

825

356
398 403

W
al

l C
lo

ck
 T

im
e

 in
 S

e
co

n
d

s

Number of Sensor Models
DS: Detailed Sensor, RS: Regular Sensor

Figure 8: Case Study Scenario Test Results

Formalism Middleware
Technology

Partitioning Synchronization
Scheme

Message Exchange

DEVS/CLUSTER DEVS CORBA hierarchical to non-hierarchical structure optimistic CORBA remote method invocations
DEVS/GRID DEVS Globus cost-based hierarchical partitioning conservative GIIS
DEVS/P2P DEVS JXTA autonomous hierarchical model partitioning conservative JXTA message format
DEVS/RMI DEVS JAVA/RMI applying built-in partition algorithm conservative JAVA serializable object
DEVS/PyRO DEVS PyRO/RMI user specified or automatic conservative serialized objects
DEVS/SOA Parallel

DEVS
GIG/SOA user specified conservative JAVA serialization

Distributed SiMA SiMA WCF user specified conservative .NET binary serialized objects

Table 1: Comparing Different Distributed DEVS Approaches

1. Modularity and object-oriented design approach usage
which is supported strongly by the DEVS [18] increases
when connectors are used [9].

2. Development time is decreased since developing a new
atomic model is faster than modifying an already devel-
oped atomic model. The existing atomic model would
be implemented by another person, so it may be hard to
understand the code and change it. Also the model may
have a lot of lines of code and again this increases the
changing time.

3. When we change an existing atomic model, we disrupt
the code integrity. It was a verified atomic model when
it was used in previous scenario. Therefore, the modified
atomic model needs to be verified, and unit and regres-
sion tests have to be done. Connectors save developer
from these issues.

4. Since we do not change the existing model and use it as
it is, model reusability is promoted.

According to the statistics given in Section 5.1, this situa-
tion causes 10% of code lines to be modified and 14% of code
lines to be added for our case. In addition, modification to
the code requires the related validation and verification work
to be redone. Moreover, it is easier to develop a data con-
version connector in a shorter time. On the other hand, mar-
shaller/unmarshaller connector facilitates the port data serial-
ization/deserialization operations along the network. For ex-
ample, if a marshaller part of the connector was not placed at
the source node, connection with the corresponding unmar-
shaller part of the connector would have to be made and the
data serialization operation would have to be done in source
model. When a marshaller part and an unmarshaller part of a
connector are placed mutually at remote nodes, client/server
connection is automatically done in Distributed SiMA. This
procedure has to be implemented in model if marshaller or
unmarshaller part of the connector is removed.

In Distributed SiMA most of the WCF features are utilized.
These features and utilization ways are given as:

1. Service oriented development environment: This pro-
vides a simple development environment. It presents a
service interface in a server and a client makes remote
procedure calls after connecting the service. In service
interface since data type to be sent and received is spec-
ified, no extra data type transport definition is needed.

2. Request/reply message exchange pattern: This feature
plays the most important role in simulation execution
in a distributed environment. When a client makes a re-
mote procedure call, it waits for a reply from the server.
With the help of this no extra synchronization mecha-
nism needs to be implemented. It ensures that the dis-
tributed simulation execution is always in sync.

3. Binary encoding over TCP transportation: This feature
is used since all distributed nodes run a WCF applica-
tion. The main benefit of it is the fastest way of commu-
nication among WCF-to-WCF applications.

4. Extensibility: In order to make explicit use of binary
encoding possible, we customized the service behav-
ior. Thus, a .NET serialized object can be transported
through network.

REFERENCES
[1] Khaldoon Al-Zoubi and Gabriel Wainer. Performing

Distributed Simulation with RESTful Web-services. In
Winter Simulation Conference, WSC ’09, pages 1323–
1334. Winter Simulation Conference, 2009. ISBN 978-
1-4244-5771-7.

[2] Robert Allen. A Formal Approach to Software Architec-
ture. PhD thesis, Carnegie Mellon, School of Computer
Science, January 1997. Issued as CMU Technical Re-
port CMU-CS-97-144.

[3] Abdelkrim Amirat, Mourad Oussalah, et al. Reusable
Connectors in Component-Based Software Architec-
ture. In Proceedings of the ninth international sympo-
sium on programming and systems,(ISPS 2009), pages
28–35, 2009.

[4] Dusan Bálek and Frantisek Plasil. Software Connectors
and Their Role in Component Deployment. In Proceed-

ings of the IFIP TC6 / WG6.1 Third International Work-
ing Conference on New Developments in Distributed
Applications and Interoperable Systems, pages 69–84,
Deventer, The Netherlands, 2001. Kluwer, B.V. ISBN
0-7923-7481-9.

[5] Steven Cheng. Microsoft Windows Communication
Foundation 4.0 Cookbook for Developing SOA Appli-
cations. Packt Publishing Ltd, 2010.

[6] Saehoon Cheon, Chungman Seo, Sunwoo Park, and
Bernard P. Zeigler. Design and implementation of dis-
tributed DEVS simulation in a peer to peer network sys-
tem. Advanced Simulation Technologies Conference–
Design, Analysis, and Simulation of Distributed Systems
Symposium. Arlington, USA, 2004.

[7] Alex Chung Hen Chow and Bernard P. Zeigler. Par-
allel DEVS: A Parallel, Hierarchical, Modular, Model-
ing Formalism. In Proceedings of the 26th Conference
on Winter Simulation, WSC ’94, pages 716–722, San
Diego, CA, USA, 1994. Society for Computer Simula-
tion International. ISBN 0-7803-2109-X.

[8] Ahmet Kara, Fatih Deniz, Doruk Bozağaç, and
M. Nedim Alpdemir. Simulation Modeling Architec-
ture (SiMA), a DEVS Based Modeling and Simulation
Framework. In Proceedings of the 2009 Summer Com-
puter Simulation Conference, SCSC ’09, pages 315–
321, Vista, CA, 2009. Society for Modeling & Simu-
lation International.

[9] Ahmet Kara, Halit Oguztüzün, and M. Nedim Alpdemir.
Heterogeneous DEVS Simulations with Connectors and
Reo Based Compositions. In Proceedings of the Sym-
posium on Theory of Modeling & Simulation - DEVS
Integrative, DEVS ’14, pages 1:1–1:6, San Diego, CA,
USA, 2014. Society for Computer Simulation Interna-
tional.

[10] Ki-Hyung Kim and Won-Seok Kang. CORBA-based,
multi-threaded distributed simulation of hierarchical
DEVS models: transforming model structure into a non-
hierarchical one. In Computational Science and Its
Applications–ICCSA 2004, pages 167–176. Springer,
2004.

[11] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep
Phadke. Towards a taxonomy of software connectors.
In Proceedings of the 22Nd International Conference on
Software Engineering, ICSE ’00, pages 178–187, New
York, NY, USA, 2000. ACM. ISBN 1-58113-206-9.

[12] Jose Luis Latorre Millas. Microsoft .Net Framework 4.5
Quickstart Cookbook. Packt Publishing Ltd, 2013.

[13] Saurabh Mittal, José L. Risco-Martı́n, and Bernard P.
Zeigler. DEVS/SOA: A Cross-Platform Framework for
Net-centric Modeling and Simulation in DEVS Unified
Process. Simulation, 85(7):419–450, July 2009. ISSN
0037-5497.

[14] Chungman Seo, Sunwoo Park, Byounguk Kim, Sae-
hoon Cheon, and Bernard P. Zeigler. Implementation of
distributed high-performance DEVS simulation frame-
work in the Grid computing environment. 2004.

[15] Eugene Syriani, Hans Vangheluwe, and Amr Al Mal-
lah. Modelling and Simulation-based Design of a Dis-
tributed DEVS Simulator. In Proceedings of the Win-
ter Simulation Conference, WSC ’11, pages 3007–3021.
Winter Simulation Conference, 2011.

[16] Brendon J. Wilson. JXTA. Pearson Education, 2002.
ISBN 0735712344.

[17] Jennifer Yick, Biswanath Mukherjee, and Dipak
Ghosal. Wireless sensor network survey. Comput.
Netw., 52(12):2292–2330, August 2008. ISSN 1389-
1286.

[18] Bernard P. Zeigler. Theory of Modelling and Simu-
lation. A Wiley-Interscience Publication. John Wiley,
1976. ISBN 9780471981527.

[19] Bernard P. Zeigler. Discrete Event Formalism For
Model Based Distributed Simulation. In SCS Conf. Dis-
tributed Simulation, pages 3–7, 1985.

[20] Ming Zhang, Bernard P. Zeigler, and Phillip Ham-
monds. DEVS/RMI-An Auto-Adaptive and Reconfig-
urable Distributed Simulation Environment for Engi-
neering Studies. ITEA Journal, 2005.

