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ABSTRACT 

Markov Modeling is among the most commonly used forms of model expression and Markov concepts of 

states and state transitions are fully compatible with the DEVS characterization of discrete event systems.  

Besides their general usefulness, the Markov concepts of stochastic modeling are implicitly at the heart of 

most forms of discrete event simulation and are a natural basis for the extended and integrated Markov 

modeling facility discussed in this paper.  DEVS Markov models are full-fledged DEVS models and can  

be coupled with other DEVS components in hierarchical compositions. Due to their explicit transition and 

time advance structure, DEVS Markov models can be individualized with specific transition probabilities 

and transition times/rates which can be changed during model execution for dynamic structural change. 

This paper presents the formal concepts underlying DEVS Markov models and how they are implemented 

in MS4 Me, also discussing how the facilities differ from other Markov M&S tools. 

Keywords: Markov Modeling, MS4 Me, DEVS Markov Model, Stochastic Modeling, State Designer, 

DEVS Natural Language 

1 INTRODUCTION 

Markov Modeling is among the most commonly used forms of model expression and many classes have 

been studied, including Markov Chains (Feller 1966), Continuous Time Markov (CTM) Processes(Kemeny 

and Snell 1960), Discrete Time Markov (DTM), Semi-Markov Processes (Barbu and Limnios 2008), 

Generalized  Semi-Markov Processes (Glynn 1989;Younes and Simmons 2004), Markov Decision 

Processes (Rachelson, E. et al. 2008;Puterman 1994), and Hidden Markov Models (Barbu  and Limnios 

2008). DEVS Markov Models, as a subclasss of Stochastic DEVS (Castro et al 2010), can represent 

complex systems at the level of individual subsystems and actors. In this guise, each system or actor can be 

represented as a component with states and transitions as well as inputs and outputs that enable it to interact 

as atomic models within coupled models using coupling in the usual way.  Briefly stated, these atomic and 

coupled models are useful because:  
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• The Parallel DEVS (PDEVS) substrate supports coupled models with concurrent atomic model 

interaction.  

• The PDEVS simulator provides a Monte Carlo layer that generates stochastic sample space behav-

ior simulator. 

• DEVS Markov models can express probabilistic agent-type alternative decisions and conse-

quences,  generate and analyze both transient and steady state behavior. 

• Together with experimental frames, DEVS Markov models support a wide range of performance 

metrics (including the usual queueing related ones such as waiting times, throughput, losses.)  

Aggregations of such models, state-transition matrix models, are computationally much faster because they 

employ deterministic computation of probabilities interpreted as frequencies of state occupation of the 

corresponding DEVS Markov models. Such models add to the modeling capability because: 

• They yield probabilities  for ergodic behaviors in steady state  

• They yield probabilities models that reach absorbing states 

• They support computation of state-to-state traversal times for models where time consumption is 

of essential interest 

• They provide simplifications that are accurate for answering certain questions and can be composed 

to yield good approximations to compositions of DEVS Markov models. 

To implement DEVS Markov modeling and simulation, MS4 Me (Seo et al. 2013; Zeigler et al. 2017) was 

upgraded to support designing DEVS Markov models using its State Designer with states and probabilistic 

transitions. DEVS Markov models further augment this version by graphically supporting specification of 

distributions functions that are required to randomly select transition times. For this purpose, Markov sup-

porting packages were added to the MS4 Me environment. A Markov design can be generated using the 

state diagram which generates a DEVS Natural Language (DNL) file and an XML document containing 

state transition probability and time information for each transition. MS4 Me also automatically generates 

a state-transition Matrix Model (MM) from the XML document.  

In the rest of the paper, section 2 characterizes the variety of DEVS Markov Models using a System Entities 

Structure (SES). Section 3 illustrates the formalization of DEVS Markov models with a simple example. 

Details of the MS4 Me environment and implementation of DEVS Markov models appear in section 4.  Dis-

cussion of DEVS Markov models in relation to other implementations are in the section 5 with conclusions 

in section 6. 

2 DEVS MARKOV MODELS 

Integrating Markov modeling into DEVS opens up a wide variety of model types that can be incorporated 

within the same framework. It helps to organize such models into classes that relate both to the traditional 

ones encountered in the mathematics and applications literature as well as to the structural features that 

characterize all DEVS models (Zeigler, Muzy, and Kofman 2018; Hwang and Zeigler 2009) as 

specifications of input/output dynamic systems. In the following, we employ a System Entity Structure 

(Zeigler and Hammonds 2007;Zeigler et al. 2013) to provide such an organization. It sees a DEVS Markov 

model specification as composed of a time base, phase set, external event set and transition function 

mapping with specializations for each component.  Classes and sub-classes of such models then can be 

formed by choice of elements within some of specializations, perhaps leaving others unspecified. The 

broader the class, the fewer elements of the SES are fixed. Conversely, the narrower the class, the greater 

are the number of selections made. 



Seo, Zeigler and Kim 

2.1 SES for DEVS Markov Models 

The specializations in our SES for DEVS Markov models shown in Figure 1 are; 

• Time Base – can be discrete or continuous. Most of our concentration will be on continuous time 

but simplifying properties of discrete time make it useful at times. 

• Phase Set – this is the state set typically referred to in math expositions. The reason we refer to it 

as the phase set  is that the state of a DEVS will include sigma, the explicit representation of the 

time advance. In addition, the global state of DEVS includes the elapsed time. We focus mostly on 

finite phase (Markov state) sets, however, much of the approach will extend to infinite state sets. 

• External Event Set – this is the external interface including the input and output sets. Sometimes, 

it is convenient to consider only the transition portion of the DEVS structure, which omits the 

external event set related elements, and will be called the core of the structure. On the other hand, 

the external interface is needed for including model types such as hidden Markov and Markov 

Decision Processes that interact with the environment and other agents.  

Also not shown 

• External Transition Function – models can disallow the elapsed time since the last event to influ-

ence the effect of an input. This restriction is in effect for DTM and CTM as will be shown. 

• Transition Function Mapping – this will help us to understand the differences in the varieties of 

Markov models in the literature, e.g., semi-Markov, GSMP(Nielsen 1998), hidden Markov, etc. 

 

Figure 1: System Entity Structure for DEVS Markov Models 

The kernel of the Markov implementation in DEVS is the Transition Function Mapping. At every internal 

transition the current phase and sigma together with the transition probabilities or rates that characterize the 

model together a random number input select a next phase and sigma (which play the roles of Markov state 

and sojourn or transition time, respectively.) 

The flow chart in Figure 2 illustrates the control flow for the internal transitions for an atomic DEVS 

Markov model based on a pair of Probability Transition Structure (PTS) and Time Transition Structure 

(TTS). 

Subclasses of Markov models can be characterized by pruning operations on the overall SES. The DEVS 

Semi-Markov model employs the most flexible transition mechanism which uses the current phase and 

sigma to select the next phase and sigma. When composed into coupled models such a models include the 

Generalized Sequential Markov Process (GSMP) (Glynn 1989; Rachelson et al. 2008). For example, the 

Discrete Time Markov (DTM) model class is generated where the time base is discrete with finite state set. 

The transition specification employs transitions from phases to phases which take a fixed time step also 

called a cycle length. In contrast the Continuous Time Markov (CTM) employs a continuous time base and 

a transition specification that employs only the current phase to determine both the next phase and the 
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transition time (Figure 3). It can so because the transition probabilities are interpreted as rates in exponential 

distributions for transition times. That is all transition times are based on the same type of distribution 

(exponential) while in the more general case, a time distribution can be associated with each non-self-

transition pair (phase, phase’).  

 

 

Figure 2: Flow chart to illustrate DEVS Markov atomic model 

 

Figure 3: Selection of next phase and sigma for CTM 

3 FORMALIZATION OF DEVS MARKOV MODELS 

3.1 Probability Core DEVS 

We introduce two probabilistic structures that will provide the basis for specifying the DEVS Markov 

formalism that will formalize the Transition Function Mapping of Figure 1. First, we define a Probability 

Transition Structure (PTS)  in set-theoretic form to be given in a moment. It often takes on the familiar 

form of a matrix of probability values. For example, the matrix [
𝑝00 𝑝01

𝑝10 𝑝11
] is represented by the structure: 

< {0,1}, 𝑃𝑟 >  where 𝑃𝑟: {0,1} × {0,1} → [0,1]  such that Pr(𝑖, 𝑗) = 𝑝𝑖𝑗  . Formally, a Probability 

Transition Structure is a structure 𝑃𝑇𝑆 = < 𝑆, 𝑃𝑟 > where 𝑃𝑟: 𝑆 × 𝑆 → [0,1] and 𝑃 𝑟(𝑠, 𝑠′) = 𝑣, 0 ≤ 𝑣 ≤
1. As a relation Pr contains triples of the form (𝑠, 𝑠′, 𝑣) which stands for state s transitions to state 𝑠′ with 

probability v. For each 𝑠 ∈ 𝑆, define the restriction of Pr to s, Pr | 𝑠 ∶ 𝑆 → [0,1] defined by Pr | 𝑠 (𝑠′) =
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𝑃𝑟 (𝑠, 𝑠′). Then Pr is subject to the constraint that it is fully defined (every transition has a probability) and 

the probabilities of transitions out of every state sum to 1. That is, for each 𝑠 ∈ 𝑆, 

∑ 𝑃𝑟 |𝑠(𝑠′) = 1

𝑠′∈𝑆

 

The set-theoretic representation of the usual matrix supports manipulations equivalent to data structure 

operations that render it more convenient to create and manage derived DEVS models.  

3.2 Markov Chain 

The basic interpretation of a PTS is of a Markov chain, i.e., a set of states that generate sequences 

determined by the probability structure. The probabilities of the ensemble of all such state sequences can 

be described by a vector representing probabilities of being in the states and iterative application of the 

associated matrix. In a very abbreviated summary of Markov chain theory (Dayar 2013; Banisch  2015), 

we have the state vector in equilibrium reached at step 𝑛∗ is defined by 𝑝(𝑛 + 1) = 𝑝(𝑛), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛∗ 

which implies that 𝑝(𝑛∗) ∙ 𝑃 = 𝑝(𝑛∗) and 𝑝∗ = 𝑝(𝑛∗) is the equilibrium vector where a unique solution 

exists. 

The second structure to be introduced allows us to work with the times of the transitions. These can be 

referred to variously and equivalently as sojourn times, transition times, time advances, elapsed times, or 

residence times depending on the context. 

Time Transition Structure : 𝑇𝑇𝑆 =< 𝑆, 𝜏 > where 𝜏: 𝑆 × 𝑆 → 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 such that 

the time for transition from s to s’ is selected from 𝜏(𝑠, 𝑠′): 𝑅0,∞
+ → [0,1]. 

[
𝜏00 𝜏01

𝜏10 𝜏11
] is represented by the structure:<{0,1}, 𝜏> where 𝜏: {0,1} × {0,1} → [0,1] such that 𝜏(𝑖, 𝑗) = 𝜏𝑖𝑗 

and 𝜏𝑖𝑗  is a pdf (probability distribution function) 𝜏: 𝑅0,∞
+ → [0,1]. For example, 𝜏𝑖𝑗(𝑡) = 𝑒−𝑡 represents 

the exponential pdf for selecting a time for transition from i to j.  

The pair (PTS, TTS) specifies a DEVS Markov core as follows: 

Probability Transition Structure : PTS = <S, Pr> and Time Transition Structure : TTS = <S, 𝜏> 

gives rise to a DEVS Markov Core 𝑀𝐷𝐸𝑉𝑆 =< 𝑆𝐷𝐸𝑉𝑆, 𝛿𝑖𝑛𝑡, 𝑡𝑎 > where 𝑆𝐷𝐸𝑉𝑆 = 𝑆 × [0,1]𝑆 ×
[0,1]𝑆  with typical element (𝑠, 𝛾1, 𝛾2)  with 𝛾1: 𝑆 → [0,1], 𝑖 = 1,2  where 𝛿𝑖𝑛𝑡: 𝑆𝐷𝐸𝑉𝑆 → 𝑆𝐷𝐸𝑉𝑆  is 

given by: 𝑠′ = 𝛿𝑖𝑛𝑡(𝑠, 𝛾1, 𝛾2) = (𝑆𝑒𝑙𝑒𝑐𝑡𝑃ℎ𝑎𝑠𝑒𝑃𝑇𝑆(𝑠, 𝛾1), 𝛾1
′ , 𝛾2

′ )  and 𝑡𝑎: 𝑆𝐷𝐸𝑉𝑆 → 𝑅0,∞
+  is given 

by : 𝑡𝑎(𝑠, 𝛾1, 𝛾2) = 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑖𝑔𝑚𝑎𝑇𝑇𝑆(𝑠′, 𝛾2)  where note that s’ is a function of s, and 𝛾𝑖
′ =

ℾ(𝛾𝑖), 𝑖 = 1, 2. 

3.3 Example of DEVS Markov Core 

 
Figure 4: Markov Model Example:  Baseball scenario 
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Consider the situation depicted in Figure 4 in which a fielder has a probability of catching or fumbling a 

ball. In contrast to the CTM approach depicted in the figure, using DEVS Markov formulation, we can 

separately account for the probability of one or the other eventuality as well as the times taken in each case. 

Let the phases be coded by integers as follows : 𝐻𝑖𝑡 = 0, 𝐼𝑛𝐴𝑖𝑟 = 1, 𝐶𝑎𝑡𝑐ℎ = 2, 𝑀𝑖𝑠𝑠 = 3. Then the PTS 

and TTS can be represented by matrices :  

The non-zero probability elements are : 𝑝01 = 1, 𝑝12 = 0.1,
𝑝13 = 0.9, 𝑝20 = 1, 𝑝32 = 1 . Note that a transition that is the 

only outgoing one from a phase gets a probability of 1. Now let 

the elements of the TTS be distributions for transition times with 

mean values as follows : 𝜏01𝑚𝑒𝑎𝑛 = 1, 𝜏12𝑚𝑒𝑎𝑛 = 2,
𝜏13𝑚𝑒𝑎𝑛 = 10, 𝜏20𝑚𝑒𝑎𝑛 = 20, 𝜏32𝑚𝑒𝑎𝑛 = 3 . With time 

units as seconds, these values assert that the ball is in the air for one sec., and if it is caught it takes 10 sec. 

to recover and be in a position to return it to the catcher. Using exponential pdfs we need only specify these 

values as parameters while other distributions might require specifying more parameters.  

The conversion of the pair (PTS,TTS) into a 

DEVS Markov Core model is the formal 

equivalent of the flow chart in Figure 2. We 

see that to make a transition, first we randomly 

select a next phase based on PTS which 

specifies a transition pair. We then randomly 

select a sigma for the time of this transition. 

The random selections are performed by the 

functions SelectPhase and SelectSigma,  

respectively. 

The sequential dependence of transition time 

selection dependence on probability selection 

and its evolution over time are illustrated in 

Figure 5 a) and b) respectively. A state 

trajectory can be visualized as starting in an 

initial phase such as S2, and advancing with 

variable time steps determined by the 

successive states. For example, the transition from S2 to S4 is selected based on transition probabilities out 

of S2 and then the transition time TS2->S4 is selected from its distribution. This sequential dependence allows 

us to use the representation in Figure 5 a) where the successive selection of probabilities is considered as a 

Markov chain as front component with the time advance mapping as back component. Thus if we are only 

interested in the probabilities of states at transitions (and not in the timing of the transitions) then we can 

consult the Markov chain interpretation of the PTS, In particular for an ergodic chain, the steady state 

probabilities can be computed using the Markov Matrix model.  Having these probabilities we can then 

compute the expected sojourn times using the TTS distributions. 

3.4 Closure Under Coupling 

It can be shown that the DEVS Markov class is closed under coupling. However, the smaller class DEVS 

CTM (and DTM to which it is equivalent) is not closed under coupling. Further, closure of the DEVS CTM 

class can be proved when dependence on elapsed time is not allowed. Closure under coupling provides 

assurance that the class under consideration is well-defined and enables checking for the correct functioning 

of feedback coupled models. Absence of closure is also informative as it begs for characterizing the  

smallest closed class that includes the class. Here it can be shown that the smallest such class is the DEVS 

Markov class itself.  

Figure 5: State trajectories for DEVS Markov core model 

and sequential decomposition 
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4 DEVS MODELING AND SIMULATION ENVIRONMENT  

4.1 Review of MS4 Me 

A review of the MS4 Me environment will help to provide some essential background for the design and 

implementation of the DEVS Markov modeling and simulation.  MS4 Me is an environment to design 

general systems as well as Systems of Systems (SoS) based on Discrete EVent System specification(DEVS) 

modeling and simulation theory (Zeigler, Muzy, and Kofman 2018; Hwang and Zeigler 2009).  MS4 Me 

supports collaboration of domain experts and modelers in both top down and bottom up system 

construction. To do so, it provides tools such as the state diagram designer,  sequence diagrammer, and 

System Entity Structure (SES) pruning GUI, to generate DEVS atomic and coupled models. Top down 

design can start with an SES which describes the overall system as a tree structure, which comprises entities 

(which refer to components of the system) with relations (such as decomposition, specialization, and multi-

aspect). To generate a specific coupled model (one instance from the SES),  a pruning process (tailoring 

the system) needs to be done with a script containing pruning information.  After transformation, entities 

become either atomic models (leaf nodes) or coupled models (middle nodes) recreated from existing Java 

classes. For bottom up design, atomic models are first developed and then the whole system is constructed 

with an SES. In this process, modelers can use a customized text editor to express atomic models using the 

DEVS Natural Language (DNL), a restricted form of natural language. Alternatively, the state diagram 

designer supports graphical specification of atomic models. Eventually, the state diagram is automatically 

(and reversibly) converted to a DNL file and a Java atomic model class is compiled to execute in the MS4 

Me execution environment. Of course, alternation between top down and bottom up processes and iteration 

of elements in the workflow are also encouraged.  

4.1.1 DEVS Natural Language (DNL) 

The DNL focuses on the description of the DEVS model structure but also includes program language 

specific information in a structured modular manner. An atomic DEVS model can be constructed within 

natural language for DEVS constructs such as time advance for each state, input/output ports, state 

transitions, internal transitions, external transitions, and output specification. However, a model expressed 

with limited natural language cannot specify a function's detailed behavior. To overcome this problem, the 

DNL file introduces tag blocks which enclose actual computer code to be inserted in specific locations 

within the Java class file, e.g., within the characteristic functions of the DEVS Java model. Thus the tag 

blocks allow a DNL file to include programming specific information so as to enjoy full computer language 

expressive power.  

4.1.2 State Designer 

MS4 Me supports several types of DEVS atomic models which can be constructed with a state diagram to 

help users visualize states and transitions comprising the model. A normal DNL file is converted to general 

DEVS Java Model which contains required variables and functions for the DEVS formalism, together with 

users’ added variables and functions. The State Designer enables state transitions for a general DEVS model 

to be characterized using the designations of Input Port, Output Port, No Output, and Probability as 

described in Table 1.  

Table 1.  State Designer User Specifications of Transition Types 

Type User Specifies Effect 

Input Port name and type of message 

received 

Enables an external event tag block for code handling 

of the messages received to implement the transition 
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Output Port name and type of message 

generated 

Enables an output event tag block for code generating 

the messages  

No Output N/A Enables an internal event tag block for code 

implementing the transition 

Probability Probability of transition Described in text 

 

4.1.3 Probability Transition Specification 

The Probability type is used to dynamically pick a next state among successor states with specified 

probabilities. In addition to  having an input field to enter a probability value, the Probability type works 

similarly to the No Output type in that it enables an internal event tag block for code to implement the 

actions associated with the transition (called Finite Probability DEVS (FPDEVS)(Seo et al. 2015)).  

The state diagram displays a different (dotted) line for a Probability type to distinguish it from other 

transition types (solid lines). Likewise, the DNL file needs to have two capabilities such as saving 

probability values for transitions and implementing a random selection for probability transitions. To 

preserve the probability values for transitions in a DNL file, the tag block in the internal transition function 

includes an XML document (Figure 6,)  The document describes triples of the form (start state, end state, 

and probability value). To select a next state from such a specification, a function called 

internalTransitionForFPDEVS is placed in the tag block and defined in an additional code section in which 

customized function definitions can be inserted. The function is called in the internal transition function if 

the current state has Probability type transitions. 

 

Figure 6: XML and state diagram of FPDEVS 

The TransitionInfo tag shows each Probability type Transition whose information comprises start state, end 

state, and probability value recorded in StartState, EndState, and ProbValue tags, respectively. 

Figure 6 illustrates a state diagram for FPDEVS and XML document containing Probability type 

transitions’ information. Three dotted lines with probability values represent Probability type transitions 

from the state0. Solid lines show normal transition lines with question marks(?) and exclamation marks(!) 

before port names. The question mark is for an Input Port transition, and the exclamation mark for an Output 

Port transition. A shape having two rectangles represents the initial state in the state diagram. A state 

displays the name of the state and time advance (ta). The state diagram is converted to a DNL file which 

can later be restored in the state designer. For this purpose, the DNL file contains information of FPDEVS, 

especially Probability transition information in an associated XML document. The entries in the associated 

tags are used to construct Probability type transitions for the selected DNL file in the state diagram. 
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4.2 Constructing DEVS Markov Models in MS4 Me 

With this background, we proceed to describe how state designer can be extended to support construction 

of Markov model types such as Continuous Time Markov (CTM), Discrete Time Markov(DTM), and 

Markov Matrix(MM). A Markov model is designed with Probability type transitions in the state diagram. 

A probability matrix from the Markov model is a key piece of information to execute the model in the MS4 

Me environment. Each Markov type DEVS model has its own additional required variables, codes, and 

functions to execute its behaviors. For example, a CTM model decides its next state using probability values 

and sojourning time of the next state using a default or assigned distribution function. A DTM uses a fixed 

sojourning time for the current state, and a MM utilizes the probability matrix to calculate the equilibrium 

state vector. In contrast to a normal DEVS model, the Markov design in the state diagram is transformed to 

an XML document and a DNL file.   Figure 7 illustrates how to create three Markov DEVS models using 

the state designer. To generate a CTM or DTM model, users first  

 

 

Figure 7: Markov Model Creation 

construct a Markov transition model in the state diagram. Then on the first time through the process, they 

select Continuous Time Markov or Discrete Time Markov in the Create Markov Model dialog window. 

The Markov state designer generates an XML document which contains Probability type information, and 

a DNL file with supporting variables, codes, and functions for a  CTM or DTM DEVS model. Subsequent 

modifications of the models only require incremental inputs which are saved to the created files. Once a 

probability matrix exists in an XML file, users can create a Markov Matrix model using it with the Create 

Markov Model dialog window. 

4.2.1 Extended DEVS Markov Model 

In a DEVS Markov model, a GUI to set time information for each transition is added to enable users’ 

specification of transition time distribution functions.  

 

Figure 8: Generation of Time Information on Transition 
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Figure 8 shows how information in a TransitionInfo tag is created from the state diagram. As with FPDEVS, 

a transition displays a probability value but adds as additional information the mean value of the distribution 

function assigned by the user. The state diagram provides a Time Info Dialog window as seen in the right 

side of the Figure 8 to select five distribution functions with the None type as a default. (showing a transition 

line with N/S (Not Specified)). Each distribution function needs to have on or more parameters. For 

example, the Uniform distribution function requires upper and lower bounds as parameters, and Exponential 

distribution function requires only a mean value.  The Time Info Dialog enables entry of parameter value(s) 

by selecting a distribution function type.  The XML document is parsed to generate a list of TransitionInfo 

instances in the ContinuousTimeMarkov class which contains utility functions to perform the functions 

described in Section 3.2.  

4.2.2 Packages for DEVS Markov Modeling and Simulation 

MS4Me provides three packages to support Markov DEVS models 

as seen in Figure 9. The ContinuousTimeMarkov class contains 

instances of other classes in the com.ms4systems.devs.markov 

package to hold all transition information and associated time 

information from an XML document. The TransitionInfo class has 

an instance of the SampleFromDistribution class which is a super 

class for all classes in the com.ms4systems.devs.analytics package. 

Based on a distribution type in a TimeInfo class, the TransitionInfo 

class can have instances of the five distribution types. For example, 

if a TimeInfo class has a Normal distribution type, the 

TransitionInfo class generates the instance of the 

SampleFromNormal class with the mean value from the TimeInfo 

instance. Each distribution class has a function to generate a random 

value which is used for transition time to a next state. If None 

distribution type is selected, the SampleFromExponential class is 

used as a default. The TimeInState class accumulates residence time 

in each state during simulation runs. The MarkovMat class is used 

in DEVS Markov Matrix models to calculate probability matrices.  

DEVS Markov models have functions to help  execute each Markov type. A CTM DEVS model uses an 

internalTransitionForMarkov function to sample a next state and transition time. The function is called 

whenever internal events occur in the CTM model. A DTM DEVS model has  an 

internalTransitionForDiscreteMarkov function to compute a next state whenever internal transitions are 

triggered in the DTM DEVS model. In Markov Matrix, the internalTransitionForMatrix function is 

executed at each internal event. 

5 DISCUSSION 

5.1 Implementation of GSMP 

Nielsen (1998) proposed a compositional GSMP modeling methodology, GMSim implemented in C++. Its 

close relation to the underlying mathematical structure facilitates coherent modeling and efficient 

implementation. Although claimed to be completely generic and extendible, the claim is based on the 

implementation software rather than on the explicit systems-theory framework provided by DEVS. 

Rachelson et al ( 2008)  pointed out the need for including time as a basic variable in the formulation of 

Markov Decision Processes and emphasized the advantage of their implementation of GSMP within the 

DEVS-based Virtual Lab Environment (VLE).  We note that the presented MS4 Me implementation has 

the same or more representation power as the VLE DEVS implementation of GSMP.  Briefly put, the DEVS 

Markov coupled model is the resultant of coupling of atomic components with PDEVS semantics. (When 

Figure 9: Packages for DEVS 

Markov Model 
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an atomic is imminent it picks a new state and a time from a distribution just like GSMP. It can send outputs 

to others atomics to change them. Unaffected atomics retain their time lefts just as GSMP clocks do.) 

Moreover the MS4 Me implementation is generic while the one in VLE is specific to the MDP problem 

addressed. 

5.2 Computation of Behaviors 

Simulation environments, including GMSim, VLE, and MS4 Me, generate the behavior of the resultant 

system  (DEVS coupled model) based on the interaction of its components. In contrast, analytic approaches 

work with the state transition-rate-matrix of the resultant as the object of computation. (In MS4 Me, the 

Markov Matrix is  automatically constructed in the state designer for atomic, but not for, coupled models.) 

In a well-known phenomenon, the  state transition-rate-matrix of the resultant frequently explodes through 

the cross product of component state sets. Analytic computational methods have been developed that at-

tempt to avoid such explosion (Bobbio et al 2016; Dayar 2013; Deavors and Sanders 1997; Banisch 2015). 

However, by not explicitly constructing the resultant matrix, simulation models are subject to linear, rather 

than exponential, growth. Moreover, they can employ parallel and distributed methods directly to coordi-

nate computation of the model components and their message exchange. Finally, while analytic methods 

typically address performance metrics that can be computed from steady state solutions, simulations support 

a wide range of transient and steady state behaviors. Particularly, the full integration of DEVS Markov 

models with DEVS models of other classes, enables exploration of a virtually unlimited range of metrics 

and behaviors. 

6 CONCLUSION 

This paper has presented the concepts underlying DEVS Markov Modeling and Simulation and their 

implementation in MS4 Me. The Markov concepts of states and state transitions are fully compatible with 

the DEVS characterization of discrete event systems. They present a natural basis for the integrated Markov 

modeling facility built by extending the MS4 Me state designer and related concepts such as the DEVS 

natural language and its tag block feature. DEVS Markov atomic models are informed by probability and 

time transition structures which let them randomly pick next states and times of transition according to 

modeler specifications. Moreover, their inherited input/output capabilities (ports, external transition 

functions, output functions) establish them  as full-fledged DEVS models able to be coupled with other 

DEVS components to construct complex hierarchical models. Also, due to their explicit transition and time 

advance structure, DEVS Markov models can be individualized with specific transition probabilities and 

transition times/rates which can be changed during model execution for dynamic structural change.  

REFERENCES 

Castro, R., Kofman E., and Wainer, G (2010) A Formal Framework for Stochastic DEVS Modeling and  

 Simulation, Simulation J., Volume: 86 issue: 10, page(s): 587-611 

Zeigler, B.P., Muzy, A., and Kofman, E. 2018.Theory of Modeling and Simulation: Discrete Event & Iterative Sys 

tem Computational Foundations, 3rd Ed., Elsevier Publisher, NY. 

       Zeigler, B.P. and P.E. Hammonds. 2007. Modeling & Simulation-Based Data Engineering: Introducing 

 Pragmatics into Ontologies for Net-Centric Information Exchange.  

 M.H. Hwang and B.P. Zeigler. 2009. Reachability Graph of Finite and Deterministic DEVS Networks. IEEE  

  Transactions on Automation Science and Engineering, Volume 6, Issue 3, pp.454-467.  

 Feller, W. 1966. "An introduction to probability theory and its applications", 1–2, Wiley. 

  Kemeny, J.G. and J.L. Snell, 1960, Finite Markov Chains, v. Nostrand. 

 Barbu V.S. and Limnios N. 2008. Semi-Markov Chains and Hidden Semi-Markov Models towards  Applications, 

 pp.1-10 et 45-61. 



Seo, Zeigler and Kim 

 Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. 2008. A Simulation-based Approach for Solving 

 Generalized Semi-Markov Decision Processes. In European Conference on Artificial Intelligence.  

 Glynn, P. 1989. A GSMP Formalism for Discrete Event Systems. Proc. of the IEEE, 77. 

  Zeigler B. P., and Sarjoughian, H. S. 2017.  “Guide to Modeling and Simulation of Systems of Systems”. 

 Springer; 2nd edition. 

 Bernard P. Zeigler, Chungman Seo, Robert Coop and Doohwan Kim. 2013. Creating Suites of Models with 

 System Entity Structure: Global Warming Example. SpringSim (TMS-DEVS). 

 Chungman Seo, Bernard P. Zeigler, Robert Coop and Doohwan Kim. 2013. DEVS Modeling and  Simulation  

  Methodology with MS4Me Software Tool. SpringSim (TMS-DEVS). 

 Bobbio, A., et al. 2016 Markovian Agent Models: A Dynamic Population of Independent Markovian  Agents. In  

  Seminal Contributions to Modeling and Simulation, Eds: K. Al-Begain and A. Bargiela, Springer. 

Dayar, T. 2013. Analyzing Markov Chains using Kronecker Products: Theory and Applications, Springer, 

Briefs in Mathematics, Berlin, Germany, DOI: 10.1007/978-1-4614-4190-86. 

Banisch Sven. 2015. Markov Chain Aggregation for Agent-Based Models. pp 35-55. in Agent- 

BasedModels as Markov Chains Springer. 

Nielsen F. 1998. GMSim: a tool for compositionnal GSMP modeling. In Winter Simulation  

Conference.  

D.D. Deavours ; W.H. Sanders. 1997."On-the-fly" solution techniques for stochastic Petri nets and exten- 

sions ,Proceedings of the Seventh International Workshop on Petri Nets and Performance Models. 

Puterman M. 1994. Markov Decision Processes. John Wiley & Sons, Inc.  

Younes H. K: Simmons R. 2004. Solving generalized semi-markov decision processes using continu- 

ous phase-type distributions. In AAA I.  

Seo, C., Zeigler, B.P., Kim, D. and Duncan, K. 2015. “Integrating Web-based Simulation on IT Systems with Finite 

Probabilistic DEVS”, In Proceeding of the Symposium on TMS: DEVS Integrative M&S Symposium (TMS-

DEVS). 

Zeigler, B.P., Seo, C. and Kim, D. 2013. System Entity Structures for Suites of Simulation Models, International 

Journal of Modeling, Simulation, and Scientific computing, Volume 04, Issue 03. 

AUTHOR BIOGRAPHIES 

Chungman Seo is a senior research engineer at RTSync Company and a member of Arizona Center for 

Integrative Modeling & Simulation (ACIMS). He received his Ph.D. in Electrical and 

Computer Engineering from The University of Arizona in 2009. His research includes DEVS based web 

service integration, DEVS/SOA based distributed DEVS simulation, and DEVS simulator interoperability. 

His email address is cseo@rtsync.com.  

Bernard P. Zeigler is  Chief Scientist at RTSync Corp., Professor Emeritus of Electrical and Computer 

Engineering at the University of Arizona, Tucson and co-Director of the Arizona Center for Integrative 

Modeling and Simulation. His email address is zeigler@rtsync.com.  

Doohwan Kim is the founder and president of RTSync and MS4 Systems. He is the first to introduce the 

commercial innovation of the DEVS modeling and simulation software toolsets and Cloud based model 

store environment. He received his Ph.D. in Electrical and Computer Engineering from 

the University of Arizona in 1996. His email address is dhkim@rtsync.com. 

 


