DEVS and Distributed DEVS for Formalized System Design
Azzedine Boukerche1, Ming Zhang1, Bernard P. Zeigler2
1Paradise Research Lab

School of Information Technology and Engineering (SITE)

University of Ottawa

Ottawa, Ontario, Canada, K1N 6N5

{boukerch, mizhang }@site.ottawa.ca

2Arizona Center of Integrative Modeling & Simulation

The Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ 85721

zeigler@ece.arizona.edu

Keywords: DEVS, system design, formalization.

Abstract

System design is a broad topic that has been addressed by many researchers. Most recently, the advance of modeling and simulation techniques greatly promotes the system design approach in terms of more effective and more reliable system design for large-scale and complex systems. In this paper, we demonstrate how DEVS can aid system design in a very flexible and efficient manner. As a step further, we propose to use distributed DEVS to aid the design of distributed real-time systems because distributed DEVS models can better represent the real systems, thus, simulating distributed DEVS design models can provide a more accurate picture for identifying the design defects as well as capturing the key design parameters that need to be effectively manipulated. We believe that DEVS and distributed DEVS will continue to be one of the most powerful tools for aiding complex system designs, in particular, the real-time distributed system including virtual environment based systems.

1. Introduction

Efficient system design, especially for real-time distributed systems, virtual environment based systems, or hybrid systems, requires a sounding framework which can address the ease of design modeling, the ease of simulating design models, the flexible of testing or simulating design alternatives, and many more. Traditional approach for system design is non-formalized and is based on accumulated domain knowledge which often results in an inefficient design. Therefore, formal methods have been widely used for system design in recent years, and such efforts have been verified to be very effective for large-scale and complex systems. Among these formal approaches, it worth noting that model based system design has been proved to be one of the most efficient methods to address most of the common problems faced in complex system design. Indeed, the model based design approach uses formal language to describe system design models, which are then simulated under designated conditions that represent the real-world scenarios. The closer these scenarios are to the real world, the better the experimental results tend to be. In particular, the model based formal design using Discrete Event System Specification (DEVS) differentiates it with all other approaches due to its using a unique framework than can address most of the issues faced in complex system design.

As a matter of fact, DEVS formalism [1] is one of the most important components of the modeling and simulation theory. It provides a conceptual framework and an associated computational approach for solving methodological problems in Modeling and Simulation (M&S) communities. This computational approach is based on the mathematical theory of systems including the hierarchy of system specifications and specification morphisms. It manipulates a framework of elements to determine their logical relationships. As a formal system specification language, DEVS formalism and its associated modeling and simulation environment is a very useful tool for helping with complex system design and verification. Therefore, DEVS can be applied for precisely modeling the system components and their interactions, and are therefore ideal for the design and evaluation of real-time dynamic software or embedded systems. Moreover, the recent advance of distributed DEVS opens up new potentials for more efficient system design for real-time distributed systems including QoS-aware systems.

The rest of this paper is organized as follows: Section 2 introduces DEVS foundational theories and how it works as a sounding tool to aid system design; Section 3 further discusses the potential for using distributed DEVS for more efficient system design support; Section 4 concludes this paper followed by the suggested future work presented in Section 5.

2. DEVS as a Design Formalization Tool

2.1 DEVS and Real-Time DEVS

Discrete Event System Specification (DEVS) [1] is a mathematical formalism originally developed for specifying the discrete event systems. DEVS is a well-known theoretical approach to modeling and simulation, and has attracted many researchers for reliable and efficient system modeling and simulation. The key idea of DEVS is to use “atomic” model to express individual component’s behavior, and to use “coupled” model to represent the interactions between the components in a system. DEVS modeling framework fundamentally supports the reusability of individual models and also provides an efficient methodology for hierarchical model construction, which in turn can provide maximum flexibility for system modeling and simulation. As a pioneering formal modeling and simulation methodology, DEVS provides a concrete simulation theoretical foundation, which promotes fully object-oriented modeling and simulation techniques for solving today’s complex modeling and simulation problems.

As we have just mentioned, the standard and basic DEVS formalism has two fold: formalisms for atomic model and coupled model. The atomic DEVS is expressed as follows:
Atomic Model (AM) = <X, S, Y, δint, δext, λ, ta>

X:
set of external input events,

S:
set of sequential states,

Y:
set of outputs,

δint:
S  S: internal transition function,

δext:
Q * Xb  S: external transition function

Where
 Q = {(s, e) | s
[image: image1.wmf]Î

S, 0 ≤ e ≤ ta(s)}

λ:
S  Yb: output function,

ta:
time advance function.

As a matter of fact, the atomic model is a building block for a more complex coupled model, which defines a new model constructed by connecting basic model components. Two major activities involved in coupled models are specifying its component models and defining the couplings which create the desired communication networks. Therefore, A DEVS coupled model is defined as follows:

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>

where,

 X : set of external input events;

 Y : a set of outputs;

 D : a set of components names;

for each i in D,

Mi is a component model

Ii is the set of influencees for i

 for each j in Ii,

 Zi,j is the i-to-j output translation function

Moreover, Real-Time DEVS extends the aforementioned basic DEVS for real-time modeling and simulation applications, which differentiates it with basic DEVS in that an activity set A and its associated mapping function ψ are added to the existing atomic DEVS to provide the real time interaction capabilities for DEVS models in their environments. Thus, different model components in a real time system can be encapsulated uniformly by this new formalism. Indeed, Real Time DEVS (RT-DEVS) formalism aims to solve the discrete event based system problems incurred from real time, and is able to specify real time distributed systems as DEVS models. The RT-DEVS formalism is defined by Hong [2], and an atomic RT-DEVS model can be expressed as follows:
Real Time Atomic Model (RTAM) = <X, S, Y, δint, δext, λ, ta, A, ψ>
X:
set of external input events,

S:
set of sequential states,

Y:
set of outputs,

δint:
S  S: internal transition function,

δext:
Q * Xb  S: external transition function

Where
Q = {(s, e) | s
[image: image2.wmf]Î

S, 0 ≤ e ≤ ta(s)}

Xb is a set of bags over elements in X,

λ:
S  Yb: output function,

Yb:
is a set of bags over elements in Y,

ta:
time advance function (advances in real-time),

A:
set of activities with the constraints,

Ψ:
S  A: an activity mapping function.

2.2 DEVS as a Formalized Aid to System Design

[image: image3.jpg]Generate DEVS
Design Models

System under
Design

Modify the
System Design

DEVS Models for
Design and Design
Alternatives

Simulate Design
Models

DEVS
Simulator

Experimentation

Discover Design Defects
and Optimal Design in
terms of DEVS Model

Figure 1. DEVS Model Based Approach for System Design
Traditionally, design of systems, such as software, embedded systems, is based on accumulated practical knowledge from domain experts. Such practices have been proved to be error-prone and time-consuming, and in most cases, not efficient for designing today’s complex systems. As a matter of fact, it is actually impractical to use such non-formalized design for large-scale and real-time dynamic systems since these systems generally require stage-by-stage realizations, verifications, and a final integration. Design formalization becomes a necessity for designing large-scale and complex dynamic systems, especially real-time distributed systems, where time constraints need to be considered carefully at a very early stage. Therefore, a lot of research has focused on using formalized approaches to provide more efficient system design. For instance, UML [3], Timed Automata [4], Petri-Nets [5] and State-Charts [6] have all been used for formal system design specifications, however, these formal languages have been proved to be not very efficient for large-scale and complex system’s design due to the lack of effective model driven engines (simulators), reusable model repository, flexible model composition, and etc.

Distinguished itself with these formalized system design approach, DEVS can provide a more efficient system design modeling framework in which design alternatives can be easily constructed and simulated, as shown in Figure 1. Indeed, DEVS model based design has been used by many researchers for solving complex system design problems. For instance, Schulz and Rozenblit [7] have proposed a co-design approach that uses DEVS as a formal specification language to describe embedded systems. In addition, Hu [8] proposed a DEVS model based methodology to be applied in designing dynamic distributed real-time systems with a particular focus on model continuity.
2.2.1 Design Aid For Virtual Environment Based System

Virtual Environment (VE) based system is attracting more and more attentions in recent years due to its widely use in gaming, interactive training, E-learning, and etc. Therefore, the efficient design for complex VE system has been a major concern for VE researchers. As a matter of fact, the general approach for VE design follows two steps: designing world objects and implementing the behavioral rules to these visual objects. The virtual world objects can be directly manipulated by many visual modeling tools such as 3ds Max [9], AC3D [10], etc. However, the design of the behaviors of these visual objects is difficult due to the complexity of the behaviors themselves and their interactions. Indeed, with the increasing complexities of VE system, formalized designs have to be considered in order to build more reliable and efficient VE applications. Therefore, some formalized design approaches are used including state-transition diagrams [11], FlowNet [12], HyNet [13], Tufts [14], Petri-Nets [5] and State-Charts [6]. However, the disadvantages of these formalisms are also gradually recognized. For instance, FlowNet uses the graphic notation to specify the components' behaviors which results in the specifications using FlowNet becomes difficult to understand and to manage when the designed VE becomes large and complex, Also, the mapping of the specification created by these formalisms to the implemented visual objects is not a trivial task. In contrast, DEVS provides a more efficient design aid for VE based system by effectively constructing/reconstructing hierarchical system model, and then simulating the model to discover the optimal design or validate the existing design. In our recent research as presented in [15], we discussed a model based approach using DEVS to validate the X3D components’ behavior of our design of a web based E-learning virtual environment, a virtual hospital, and we also use DEVS to further aid to discover an optimized design through simulating the design alternatives. Our research has demonstrated that DEVS is a very efficient formalized system design aiding tool for virtual environment based software system.
2.2.2 Design Aid and Verification for Real-Time Distributed System

Indeed, virtual environment based system is not the only suitable area for using DEVS as an efficient system design aid. Moreover, real-time distributed systems, including QoS-aware systems, can also benefit from DEVS formalization because DEVS framework can provide a very close mapping of real-world system with a design model. Meanwhile, the flexibility of simulating the design model and design alternative models can help quickly identify the design inefficiency in a complex real-time distributed system.

As an example, in our recent research [16], we used DEVS to validate our novel Real-Time HLA/RTI [17] system design. As we know, a RT-RTI system generally needs the participating simulation components to be deterministic, while DEVS formalism is ideal for expressing the deterministic model behaviors to satisfy the requirements of the RT-RTI system because it is able to do low level system specification in very detail for components behaviors and their interactions in run-time. Consequently, DEVS was used to realize our novel design to a representative DEVS model. Meanwhile, the original HLA/RTI was also easily mapped to a DEVS model by taking the advantage of model reusability of DEVS. We then compared our design with original HLA/RTI design by simulating both design models under different experimental frame (EF). The experimental results verified that our novel design outperformed the original RTI system in terms of providing better task serving rate in a real-time simulation scenario. We did see that DEVS component based formalized design approach can discover and predict some of the key design factors before the design is realized; or can further validate and consolidate realized RT-RTI designs.

As another example, we also made some efforts on applying DEVS formalization technique towards aiding our design of QoS-aware distributed real-time system. Such effort has been demonstrated in our research in [18], in which we use Real-Time DEVS (RT-DEVS) to validate our design of a QoS-aware distributed real-time system. Similarly, we created DEVS design models for both a tree-based and a flat-based service management systems that correspond to our real-world designs of QoS-aware service management systems. We then simulated both models in a real-time fashion, and found that the tree-based service management outperforms the flat-based service management in term of task-serving and task-success rates. We also further validated the states and state transitions of each component in our designed tree-based framework by unit and integrated tests. Based upon these very recent research efforts, we believe that DEVS and/or RT-DEVS can potentially be a very powerful design aiding tool for our future endeavor to find an optimal design for complex and large-scale QoS-aware distributed real-time systems.
3. Distributed DEVS as A Novel Approach to System Design

With the success stories for aforementioned DEVS approach for aiding complex system designs, in this section, we propose a more efficient approach for design aid by using distributed DEVS, especially for the design of real time distributed system including QoS-aware real-time system, distributed virtual reality based E-learning system.

As we have discussed in the previous sections, DEVS and RT-DEVS have been used in our study as a model based system design tool to increase the efficiency of complex system design. However, considering some of the hard-to-predict parameters for real-time distributed systems, simulating the design model in a distributed fashion can provide a more accurate guide for the design of real-time distributed system design. Therefore, a flexible and transparent distributed DEVS tool is necessary to extend our previous work to the next level. Indeed, there exists quite a bit distributed DEVS tools including ADEVS[19], PCD++ [20], DEVS/GRID [21], DEVS/P2P[22], DEVS/Web [23], however, all these tools are not flexible enough for transparent model development for the purpose of system design aid. As a matter of fact, they lack the transparency for model reuse when migrating one processor’s simulation to multiple processors across network environment.

In contrast, DEVS/RMI [24], a distributed DEVS tool implemented in Java, provides a simulation framework which can easily scale a single machine's simulation to multiple distributed processors. It can transparently distribute simulation entities (models and/or simulators) to cluster of machines, which greatly reduces the difficulties of mapping partitioned models to computing processors. Thus, DEVS/RMI is extremely suitable for simulating system design model in a distributed fashion that can best represent the real-world distributed systems. Indeed, we have made our initial effort to verify the feasibility and effectiveness of using DEVS/RMI to support our design of a grid-based distributed simulation framework. We believe that it could be a very powerful system design aiding tool, especially for integrated system design because DEVS/RMI extends all the capabilities of basic DEVS, parallel DEVS, real-time DEVS.
4. Conclusion

In this paper, we demonstrate that DEVS can serve as a very efficient system design tool for many of today’s complex systems. Compared with other formalized approaches, DEVS shows many advantages with its unique features including fast hierarchical model construction/reconstruction, model reusability, ease of model validation. Furthermore, the flexible modeling and simulation frameworks that DEVS provides can help on discovering optimal system design quickly as well as validating existing designs.

As a step further, we propose to use distributed DEVS to aid the design of distributed real-time systems because distributed DEVS models can better represent the real systems, thus, simulating distributed DEVS design models can provide a more accurate picture for identifying the design defects and capturing the key design parameters that need to be effectively manipulated. In particular, we propose to use DEVS/RMI, a very efficient and flexible distributed DEVS implementation, to push the research in this area further.

5. Future Work
For the future work, we plan to use distributed DEVS to help our current design for a grid-based large-scale distributed simulation framework, which also focus on real-time distributed simulation. We would also investigate how DEVS and distributed DEVS can be a unified approach for integrated system design tool.

Reference

[1]. B.P. Zeigler, T.G. Kim, H. Praehofer, “Theory of Modeling and Simulation”, 2 ed. New York: Academic Press; 2000.

[2]. J.S. Hong, T.G. Kim, “Real-time Discrete Event System Specification Formalism for Seamless Real-time Software Development”, Discrete Event Dynamic Systems: Theory and Applications 1997; 7: 355-375.

[3]. UML 2.0 Superstructure Specification, 2003 August, Available from OMG Adopted Specification.

[4]. R. Alur and D.L. Dill, “A Theory of Timed Automata”, Theoretical Computer Science 126, 183-235, 1994.
[5]. W.R. van Bilion, “Extending petri-nets for specifying man-machine dialogue”, International Journal of Man-machine Studies 28, 437–455, 1988.
[6]. D. Harel, “Statecharts: A visual formalism for complex systems”, Science of Computer Programming 8, 231–274, 1987.

[7] S. Schulz, J.W. Rozenblit, M. Mrva, K. Buchenrieder, “Model-Based Codesign”, IEEE Computer 1998; 31(8). p. 60-67.

[8]. X. Hu, B.P. Zeigler, “Model Continuity in the Design of Dynamic Distributed Real-Time Systems”, IEEE Transactions On Systems, Man And Cybernetics— Part A: Systems And Humans 2005 November; 35(6): 867- 878.
[9] AutoDesk 3ds Max, http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=5659302

[10] AC3D, http://www.inivis.com/
[11] A. I. Wasserman, “ Extending state transition diagrams for the speciﬁcation of human-computer interaction”, IEEE Transactions on Software Engineering, 11 (8), 1985.

[12] S. Smith, D. Duke, “Virtual environments as hybrid systems”, Eurographics UK 17th Annual Conference, Pages 113–128, 1999.

[13] R. Wieting, “Hybrid high-level nets”, Proceedings of the 1996 Winter Simulation Conference, Pages. 848–855, 1996.

[14] R. J. K. Jacob, “A visual language for non-WIMP user interfaces”, Proceedings IEEE Symposium on Visual Languages, pp. 231–238, 1996.

[15] A. Hamidi, A. Boukerche, L. Ahmad, M. Zhang, “Supporting web-based e-learning through collaborative virtual environments for radiotherapy treatment: A formal design”, IEEE International Conference On Virtual Environments, Human-Computer Interfaces, And Measurement Systems 2008.
[16] A. Boukerche, M. Zhang, A. Shadid, “DEVS Approach to Real Time RTI Design for Large-Scale Distributed Simulation Systems”, SIMULATION 2008; 84; 231.
[17] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)—Framework and Rules. 2000 September. IEEE Standard 1516-2000.
[18] H. Xie, A. Boukerche, M. Zhang, B. P. Zeigler, “Design of A QoS-Aware Service Composition and Management System in Peer-to-Peer Network Aided by DEVS”, Proceeding of IEEE International Symposium on Distributed Simulation and Real Time Application 2008.
 [19] J. Nutaro, ADEVS (A Discrete EVent System simulator), Arizona Center for Integrative Modeling & Simulation (ACIMS), University of Arizona, Tucson, AZ, http://www.ece.arizona.edu/~nutaro/index.php.

 [20] Q. Liu, G. Wainer, “Parallel Environment for DEVS and Cell-DEVS Models”, Simulation, Transactions of the SCS. Vol. 83, No. 6, 449-471 (2007).

 [21]. C. Seo, S. Park, B. Kim, and etc., “Implementation of Distributed High-performance DEVS Simulation Framework in the Grid Computing Environment”, 2004 High Peformance Computing Symposium.

 [22]. S. Cheon, C. Seo, S. Park, and etc., “Design and Implementation of Distributed DEVS Simulation in a Peer to Peer Network System”, 2004 Military, Government, and Aerospace Simulation.

 [23]. S. Mittal, J. L. Risco-Martin, B. P. Zeigler, "DEVS-Based Simulation Web Services for Net-centric T&E", Summer Computer Simulation Conference SCSC'07, July 2007.

[24] M. Zhang, B.P. Zeigler, P. Hammonds, "DEVS/RMI-An Auto-Adaptive and Reconfigurable Distributed Simulation Environment for Engineering Studies", International Test & Evaluation Association (ITEA) Journal of Test and Evaluation, March/April 2006, Volume 27, Number 1, Page 49-60.
_-1304135444.unknown

_-1303384348.unknown

