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techniques by applying docking to the
Epstein civil violence model
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Abstract
The increased focus of the United States Department of Defense (DoD) on irregular warfare and counterinsurgency has
served to identify the lack of credible models and simulations to represent the relevant civilian populations – the centers
of gravity of such operations. While agent-based models (ABMs) have enjoyed widespread use in the social science com-
munity, many senior DoD officials are skeptical that agent-based models can provide useful tools to underpin DoD analy-
sis, training, and acquisition needs mainly because of validation concerns. This paper uses docking and other forms of
alignment that enable the linking of the Epstein civil violence agent-based model results to other models. These examples
of model-to-model analysis could serve to assist and encourage DoD ABM human domain model validation efforts.

Keywords
Agent-based model, validation, docking, alignment, civil violence, SIRS model, punctuated equilibrium, ‘sparks and prairie
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1. Background

In 2006, as the campaigns in Iraq and Afghanistan wore

on, the first codification of the doctrine that was being

developed and applied was published in FM 3-24/MCWP

3-33.5, Counterinsurgency. This document made clear that

the focus of a counterinsurgency campaign is on influen-

cing local populations. Senior US Department of Defense

(DoD) officials, who sought to better understand how their

armed forces should be organized, trained and equipped

for such operations, looked to their modeling and simula-

tion community for help. That community, well-equipped

to examine kinetic operations, had little to contribute in

this domain. Modeling human and social behavior quickly

became the focus of the DoD modeling and simulation

(M&S) community, and agent-based models (ABMs)

began to receive increased interest and scrutiny. ABMs

have enjoyed popularity within several areas of the social

sciences, and their use, coupled with the situations in Iraq

and Afghanistan, has attracted the attention of DoD.

This increased DoD focus on irregular warfare (IW)

and counterinsurgency has served to identify the lack of

credible models and simulations to represent civilian

populations in conflict environments. In addition, the lack

of social science expertise to inform DoD M&S efforts

and the lack of data to represent social science phenom-

enon have also been identified as critical gaps affecting

DoD’s ability to model IW-like scenarios. While agent-

based models have enjoyed widespread use in the social

science community, many senior DoD officials are skepti-

cal that agent-based models can provide useful tools to

underpin DoD analysis, training, and acquisition needs.

A key requirement for any M&S used by DoD is that it

be validated.1 DoD’s definition of validation is ‘‘The pro-

cess of determining the degree to which a model or simu-

lation and its associated data are an accurate representation
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of the real world from the perspective of the intended uses

of the model.’’ Validation of DoD’s kinetic-focused,

physics-based combat models (PBCM) has been typically

conducted by simulating a well-documented campaign or

battle and then comparing outputs to battle outcome data.

As DoD organizations contemplated developing ABMs for

use in understanding IW and counterinsurgency cam-

paigns, the task of validating such models was also being

examined. Where cause-and-effect could be traced in the

PBCM, the phenomenon of ‘emergence’ in ABMs has not

yet been shown to be similarly auditable. Some even spec-

ulate that validation of human and social behavior models

is an unattainable goal.

Recently completed research on DoD validation of IW

models emphasized the need for DoD modelers to ensure

their conceptual models had the appropriate referents,2

that is, social science theories that had widespread accep-

tance in their communities of practice. Several DoD IW

modeling efforts had been found either to have no social

science underpinnings or to take form of proprietary soft-

ware wherein the underlying conceptual models were not

available for scrutiny. However, having the appropriately

pedigreed referents only speaks to conceptual validation.3

In this paper, we seek to examine the possibility of aug-

menting the growing body of literature directed toward

DoD modeling best practices. We explore docking and

other alignment techniques as a step toward establishing

the operational validation of conflict environment ABMs.3

Sargent describes several techniques that might be used to

establish a model’s operational validity, including model-

to-model output comparison and event validity, techniques

that we employ in this paper, as well as many others (ani-

mation, degenerate tests, extreme condition, face validity,

traces, etc.). In addition to a somewhat traditional docking

practice,4–16 we also explore the potential to establish

operational validity by aligning ABM results with accepted

social science theories as well as historical events and

phenomenon.

Specifically, we use the Epstein civil violence model

(ECVM) to demonstrate docking not only in the sense of

the conceptual exercise of connecting two models and their

theoretical foundations, but also in the sense of establish-

ing model-to-model comparisons. In the more traditional

sense of docking, such as that proposed by Axtell et al.,4

we align ECVM results to those from another model, in

this case the susceptible-infected-removed-susceptible

(SIRS) differential equation model for the spread of rebel-

lion in a contested population. In other instances the com-

parison is made between models from different fields (e.g.

computational social sciences and theoretical social

sciences); in the sense of Wilensky and Rand,17 this type

of model alignment from different fields and for different

purposes constitutes an ambitious attempt at docking.

We replicate the ECVM ABM in NetLogo with several

modifications,18 and we dock the results to demonstrate a

means of establishing the operational validity of an ABM.

We employ docking in the sense of alignment of computa-

tional models, we align results of our implementation of

ECVM with human domain models taken from the social

sciences, and we align the ECVM results with analogous

events and observed phenomenon. Our overarching goal is

to demonstrate operational validation techniques. In so

doing, we hope to show the usefulness of ABMs for simu-

lating societies in a conflict environment to the DoD M&S

user community. In addition, we hope to encourage DoD

modelers to begin to pursue validation as a part of their

modeling practice and to urge those in DoD commission-

ing new models to include prudent design requirements,

such as conceptual validation, so that these new models

have the potential to be validated for their intended uses.

2. The Epstein civil violence conceptual
model

Epstein et al. presented an agent-based computational

model of civil violence addressing a central authority’s

efforts to suppress insurrection in its population.19 The

simulation involves two principal actors, the state and its

population. The first set of actors represents the central

authority or government, which we will refer to as author-

ity agents. The second set of actors represents members of

the state’s general population, which we simply refer to as

agents. These agents are situated in a simulated society,

and at any time they may be quiescent, actively rebellious,

or incarcerated. Whether or not an agent is actively rebel-

ling depends on its sense of its local environment through

a vision radius, its threshold level for violence, its grie-

vance and hardship levels, its arrest probability, and its

perceived net risk. Our modifications to the Epstein imple-

mentation include variable vision lengths for each type

agent, as well as the ability to randomly assign agent

threshold levels for violence. We also have extended

Epstein’s work by incorporating the ability to adjust agent

hardship and its perception of government legitimacy.

None of the extensions affect the rules by which agents

behave.

An agent’s grievance (G) is the product of an individu-

al’s hardship (H) and its perception of the central author-

ity’s illegitimacy, (1 – L), and it is calculated based on the

following relationship:

G=H 1� Lð Þ

It follows that an agent’s grievance may be low due to a

legitimate government (L approaching one), even while

suffering hardship.

2 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)
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However any agent can become rebellious. This factor is

captured by the agent’s tolerance level and its inclination to

undertake the risk of being noticed by the authority – to

actively rebel. Tolerance, T, represents an agent’s threshold

level; if pushed beyond this value it will join the rebellion

by becoming active. Agent tolerance is either fixed for the

population, assigned from a uniform distribution centered

about some value, or assigned from a normal distribution

centered on some value and with some standard deviation.

An agent’s willingness to take action is based on three com-

ponents referred to as risk aversion (R), chance of apprehen-

sion (P), and deterrence (J). Risk aversion is defined as an

agent’s willingness to take chances, and an agent’s risk

aversion is randomly assigned from the uniform distribution

over the interval (0, 1), and it remains fixed during the

course of each simulation run. The higher the value the

more likely the agent is to take risk. The arrest probability,

P, for an agent at a given time, is modeled by:

P= 1� exp �k C=Að Þv
� �

where C/A represents the ratio of authority agents, C, and

agents, A, within the vision range v of the state agent, and

k is fixed. An agent’s vision of its environment is a Moore

neighborhood of lattice positions in our implementation,

and it is homogeneous among agent types. In our imple-

mentation, agents and state agents can have different

vision radii.

Because we allow authority agents and agents to have

different vision ranges, we can simulate dynamics in a

society where the central authority might have varying

degrees of understanding of its people. For instance, an

insular central authority that has little understanding of its

people would be represented in a simulation by authority

agents having a short vision distance. A society where the

people are well aware of government and the disposition

of fellow citizens could be modeled by agents having a

longer vision distance.

The arrest probability equation implies that as the num-

ber of authority agents, C, increases in an agent’s neigh-

borhood, the less likely it is that an individual will rebel

against the central authority. Net risk, N , is calculated as

the product of risk aversion, probability of arrest, and the

deterrence of jail time if apprehended, given by

N =RPJ

This leads to the construction of the first agent behavioral

rule.

Rule 1: If G – N > T then the agent will rebel.

In this artificial society, the authority agents are much

simpler to describe since they possess just one attribute:

they seek out and arrest agents that are actively rebelling.

Authority agents have an assigned vision range, creating a

neighborhood that they inspect during each time step. This

leads to the authority agent’s behavioral rule.

Rule 2: Per iteration, each authority agent identifies all

rebelling agents within its vision, randomly selects one,

and then ‘arrests’ it.

The final behavioral rule applies to both agent types; it

addresses their movement.

Rule 3: Move to a random position within vision range.

Combined, these three simple behavioral rules govern the

actions and interactions of all the agents in this artificial

society. The society’s environment is established on a 40-

by-40 torus lattice grid (1600 cells) in NetLogo. Prior to

each simulation, the user selects and sets parameters that

include the initial number of agents (set through density),

jail time, arrest probability parameter, agent rebellion tol-

erance (fixed or assigned from some distribution), and

agents vision distance. For each turn, an agent may exist

in one of three states; non-active (not rebelling but suscep-

tible to becoming active), active (rebelling), or arrested.

Having reviewed the Epstein civil violence conceptual

model, we note that the literature reflects that establishing

both conceptual validity and operational validity are nec-

essary to the process of validating an ABM.3,20–22

Conceptual validity determines that the theories and

assumptions underlying the conceptual model are correct

and that the model’s structure, logic, and causal relation-

ships are ‘‘reasonable’’ for the intended purpose of the

model.3,23 For the sake of replication,17 conceptual valid-

ity requires, at a minimum, a well-documented model.24

In essence, conceptual validation ensures that the underly-

ing intellectual foundations are sound.

Klemens et al. establish the conceptual validity of the

Epstein model through an analysis of the model’s underly-

ing structure and an application of appropriate data to

underpin the modeling effort that the conceptual model

describes.25 Klemens strongly suggests that hardship,

regime legitimacy, and repressive capacity are powerful

drivers of decentralized civil unrest.25 In addition, the

ECVM is ‘‘found to be robust across a variety of statistical

instruments for the theoretical independent variables.’’

We also note that the Epstein model clearly states the

rules by which the simulation’s agents behave, an aspect of

conceptual validation that is of concern to the M&S com-

munity, particularly within DoD. Establishing the rules by

which agents behave affords replications and modifications

of the model as we have done in this study.

We now turn to our purpose: demonstrating the means

to establish the operational validity of an agent-based

Appleget et al. 3
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model. According to Sargent,3 ‘‘Operational validation is

defined as determining that the model’s output behavior

has sufficient accuracy for the model’s intended purpose

over the domain of the model’s intended applicability.’’

Operational validity – or external validity – refers to the

accuracy and adequacy of the computational model in

matching real world data.5 Techniques for establishing

operational validation will vary and depend on the system

of interest and most importantly, for DoD purposes, the

model’s intended use. The following examples use the

ECVM as an exemplar – we do not claim the ECVM is a

validated model, nor are we claiming we have established

the operational validity of any model as a result of docking

or alignment. The first example fits the formal definition

of docking, while the next three are examples of similar

alignment techniques.

3. Docking examples
3.1. Docking example 1: aligning the Epstein model
to the SIRS model for the spread of infectious
diseases

We draw an analogy between the SIRS model from epide-

miology and insurgency mobilization dynamics to obtain

another theory for the spread of rebellion. The SIRS model

is a refinement of the Kermack and McKendrick SIR epi-

demic model.26

Let S(t) represent that portion of a population that is

susceptible to joining a rebellion and thus becoming

infected by a revolutionary idea; let I(t) represent those

from a population already infected with the revolutionary

idea; and let R(t) represent those incarcerated by the

state’s authority. Due to interactions between those in S(t)

and I(t), we assume that S(t) decreases at a rate propor-

tional to the size of S(t) and the size of I(t). Furthermore,

if we consider that freed individuals do not directly rejoin

the rebellion, then S(t) increases as individuals are freed

from incarceration. We assume that losses from S(t) are

gains for I(t). Because members of the rebellion can be

captured and incarcerated – removed from the general

population by the state’s authority, then we assume that

I(t) decreases at a rate proportional to its size. We assume

that those removed or incarcerated are freed at a rate pro-

portional to the number incarcerated. We note, finally, that

this description generally matches agent behavior in the

Epstein model.

From the above descriptions, we obtain the following

system of differential equations representing the SIRS

model:

dS

dt
=� β S I + νR

dI

dt
= β S I � γ I

dR

dt
= γ I � νR

where, β represents the rate at which susceptible are lost

to the rebelling class, ν represents the rate at which prison-

ers are freed, and γ represents the rate at which rebels are

removed to prison.

We assume that there are no gains or losses to the total

population over the course of the rebellion, so

S tð Þ+ I tð Þ+R tð Þ=N

for some constant, N. Finally, we assume that the rebellion

begins with one individual while, concurrently, there is

some number, S0, in the susceptible class and none in the

removed class. The initial conditions are thus

I 0ð Þ= 1, S 0ð Þ= S0, and R 0ð Þ= 0: Thus, N = S0 + 1:
It is straightforward to find non-negative steady-state

values for the system and that these equilibrium values are

stable.27 This means that once a revolutionary idea is

introduced the revolutionary epidemic runs its course until

the steady state condition Se, Ie,Reð Þ is achieved. It should

be noted that the results of the ordinary differential equa-

tions (ODE) model imply that the revolutionary idea per-

sists once it is introduced; that is, Ie is positive. Clearly,

from the perspective of the state’s authority, it is desirable

to have as few rebels as possible. This corresponds to hav-

ing Ie as small as possible. To achieve this requires an

incarceration rate, γ, as large as possible, and/or prolonged

incarceration periods, which would reduce ν. Furthermore,

increasing Se might be another objective of a central

authority. Noting that increasing Se correspondingly

decreases Ie, then the state might attain an increased Se by

decreasing the infection rate, β. Thus, for the state to limit

the extent of a nascent rebellion, decreasing β translates

into having a general population with a strong resistance

to the revolutionary narrative – in a sense, the population

would be inoculated against the revolutionary idea. The

state might achieve this through strengthening the popula-

tion’s allegiance to authority – perhaps accomplished

through general well-being, or, in less benevolent circum-

stances, through threat, brutality, or increased

indoctrination.

Figure 1 depicts the solution of the system of ODEs

with the initial conditions I 0ð Þ= 1, S 0ð Þ= S0, and

R 0ð Þ= 0, alongside the NetLogo ABM implementation

with vision radius set to two for all agents. When all

agents are myopic or insular, the rules by which they oper-

ate cause them to mix in such a manner that rebellion is

endemic at an essentially constant level. This is consistent

with the ODE results, where it is assumed that non-rebels/

susceptibles and rebels/infected mix continuously,

4 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)
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resulting in a constant level of rebellion. The results sug-

gest that the two implementations capture, at the macro-

scopic level, the nature of the interactions between state

and revolutionary actors in a contested population. This is

an example of docking two computational models, and it

serves to demonstrate how to establish the operational

validity of two theories.3

3.2. Docking example 2: aligning the Epstein model
to a model from the social sciences, in this case
Kuran’s ‘sparks and prairie fires’

Among the benefits of ABM is that simulations can result

in behaviors unattainable by more traditional models such

as ODEs in example 1. For instance, ECVM results also

align with observed phenomenon from socio-political sys-

tems. We obtain the interesting results by assigning vari-

ous ‘vision distances’ to the ECVM agents.

Figure 2 depicts one such situation. The emergent beha-

vior in this instance – a civil war – emerged from interac-

tions among agents given a vision radius of ten lattice units

while keeping authority agent vision radii at one unit. This

might represent the situation alluded to earlier where the

government is detached, unaware, or unconcerned with

knowing about the population whereas the populace is very

aware of its environment.

Prior to the spark that occurs near the 120th time step of

the simulation shown in Figure 2, the originally established

equilibrium condition finds approximately six agents rebel-

ling at any time. However, at the 120th time step condi-

tions are favorable for the ignition of a rebellion: agent

dissatisfaction is sufficiently high and concentrated, and

authority agent distribution is sufficiently sparse. The

result: rebellious activity spreads in a flash. The myopic

authority agents – or insular state agents – are unable to

control the revolt, and a new equilibrium of approximately

130 actively rebelling agents persists. Rather than decaying

to the original equilibrium position (as in the previous

Figure 1. Solid curves denote the number of inactive (ABM) or susceptible (ODE) individuals, dotted curves denote rebelling
(ABM) or infected (ODE) individuals, and dashed curves denote imprisoned (ABM) or removed (ODE) individuals as a function of
time for (a) ABM civil violence NetLogo agents, and (b) SIRS ordinary differential equation model solution curves. Parameters used
in the NetLogo civil violence implementation include authority agent density = 0.04, agent density = 0.5, max jail time =
30 time steps, k = 2.3, T = 0.1, L = 0.82, and both type agents vision = 2 units, where a unit is defined as a single lattice space on
the NetLogo artificial landscape. SIRS ODE results from S(0) = 799 and I(0) = 1 with β = 0.00068, g = 0.31875, and n = 0.09625.
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Figure 2. Bifurcated equilibrium, in this case an agent ‘civil war’
is obtained from the civil violence ABM. This situation matches
Kuran’s ‘sparks and prairie fires’, which is conjectured to be
the cause of political revolutions in France, Russia, and Iran,
among others. This bifurcated equilibrium was obtained
when state agents had vision radius set to one lattice unit and
agent vision radii set to ten lattice units.
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example), a new level of actively rebelling agents is estab-

lished, indicating a change from the original system order.

In essence, a revolution, manifested as an agent ‘civil war’

has emerged. Similar to the previous example of punctu-

ated equilibrium, this ‘bifurcated equilibrium’ can be

likened to socio-political phenomena, in this case Kuran’s

‘sparks and prairie fires’.28 According to Kuran, the

French, Russian, and Iranian revolutions are examples of

unanticipated events where corruption of public knowl-

edge, modeled here by myopic state agents, led to unantici-

pated revolts. These revolutions, analogous to the ECVM’s

emergent civil war, serve to align the ABM to an hypoth-

esis from the social sciences, as well as the aforementioned

revolutions: Kuran’s model for the cause of revolution is

docked to the behavior of the ECVM. The simulated revo-

lutions also align Kuran’s theory and the ABM implemen-

tation through event validity: the historical record reflects

at least three unanticipated revolutions. This provides

another example of demonstrating the operational validity

of an ABM.

3.3. Docking example 3: aligning the Epstein
model to another theory from the social sciences,
in this case Granovetter’s ‘threshold models of
collective behavior’

Another result from the ABM implementation is shown in

Figure 3, which depicts agent rebellion intensity for vari-

ous uniformly distributed agent thresholds centered about

mean threshold values. Here we define rebellion intensity

as the total number of agents that have rebelled during a

fixed simulation period. We assigned agent rebellion

activity thresholds according to a uniform distribution cen-

tered at values shown along the horizontal axis when agent

vision is set to ten lattice units and state agents had vision

radii set to one lattice unit. Here an agent’s riot threshold

is a number carried throughout a simulation run, and rebel-

lion results from the configuration of costs and benefits of

riot/no riot behaviors in a particular simulation setting.

Thresholds, movements, and initial agent distributions in

the NetLogo environment vary from one simulation to

another. Inevitably, some situations engage riot actors

more than others. We note that riot intensity and variabil-

ity decrease as the mean threshold distribution increases,

which makes sense: the probability of an agent becoming

active decreases with increased thresholds. The variability

in riot intensity for the various distributions validate

Granovetter’s claim that collective behavior is sensitive to

crowd threshold distributions.29 We leave for future work

investigation of thresholds that may change during the

course of a simulation.

3.4. Docking example 4: aligning the Epstein model
output to other observed phenomenon to establish
event validity

As reported by Epstein,19 and reproduced in our imple-

mentation, ‘punctuated equilibrium’ is shown in Figure 4.

These are likened to riots, ‘flash mobs’, and other episodic

rebellious outbreaks that have been observed throughout

human history, particularly of late. The episodic distur-

bances emerge from our NetLogo implementation when
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Figure 3. Agent rebellion intensity, defined to be the number
of agents rebelling during a fixed period, versus uniform
agent threshold distribution centered about the mean threshold
value. In this case, agent vision is set to 10 lattice units, and
state agent vision set to one unit. Vertical bars represent
maximum and minimum intensity values over thirty runs.
Results indicate that rebellion intensity depends on the
initial agent threshold distribution.
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Figure 4. Episodic disturbances of quiescent state depicted by
the number of rebelling agents (dashed curve) versus
time. Parameters used to produce this result include authority
agent density = 0.04, agent density = 0.5, max jail time = 30
time steps, k = 2.3, T = 0.1, L = 0.82, and both type agents
vision = 7 units, where a unit is defined as a single lattice space
on the NetLogo artificial landscape. Note that in each case, the
authority agents succeed in quelling the rebellion.
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both agent types are given a vision radius of 8 lattice units.

Unlike the results in docking example 2, where the origi-

nal quiescent equilibrium is never restored, in this example

the authority agents are sufficiently numerous and aware

of rebellious activity that the original quiescent equili-

brium state is eventually restored. Likening ECVM results

to such socio-political phenomena establishes the model’s

event validity.3

Having presented four examples that demonstrate how

to establish the operational validity of an ABM, we note

that we do not claim that the ECVM is itself a validated

model. Nonetheless, the model provides insight into

human behavior that we think should be of interest to

DoD, the State Department, and/or other agencies inter-

ested in regime stability or instability. The ECVM incorpo-

rates grievance, hardship, regime legitimacy, repression,

risk, and individual rebellion thresholds for violence as the

primary factors affecting a population’s propensity for vio-

lence. Thus, agencies responsible for enacting measures

directed toward influencing these factors might better

serve national interests with these factors and their effects

in mind. For example, propaganda efforts could be directed

toward moving threshold means in directions amenable to

inducing either stability or instability, especially if plan-

ning and execution were to be coupled with other factors

(e.g. male age composition).30,31

4. Conclusions

We have demonstrated potential ABM validation tech-

niques by docking the Epstein civil violence model

(ECVM) to several other models. We enhanced the

ECVM represented in NetLogo with modifications that

allow further exploration and investigation. In the tradi-

tional sense of aligning model behaviors, we dock results

from the solution of the SIRS ODE system to those

obtained from the ECVM implementation for certain agent

parameters: the similarity of the ODE model solution to

the results obtained from the ECVM implementation

serves as a demonstration of cross-model validation. We

also dock our implementation’s results with several exam-

ples taken from the social sciences. A result obtained from

the ABM, not attainable from the ODE model, matches

not only an hypothesis from political science, in this case

Kuran’s ‘sparks and prairie fires’, but the ECVM results

also match observed phenomenon. For ECVM agent

vision settings that replicate a detached polity, unantici-

pated civil war can arise which serves to align the ECVM

to Kuran’s theory. In addition to the demonstration of vali-

dation through docking, historical events such as the

French, Russian, and Iranian revolutions that fit Kuran’s

theory can also be demonstrated by the ECVM. This align-

ment with observed phenomenon demonstrates another

form of model validation, in this case event validity. Then

we showed that agent rebellion activity is sensitive to their

rebellion threshold distributions. This we align with

Granovetter’s threshold theory of collective behavior,

another model drawn from political science. Finally, we

note that our implementation produces episodic ‘punctu-

ated equilibrium’, an emergent feature of the Epstein

implementation that resembles flash mobs or riots (distinct

from revolution in that the original order is restored),

another instance where the ECVM permits the demonstra-

tion of event validity. By docking the ECVM with several

other models, we hope to demonstrate to the DoD M&S

community (and others) techniques that can be employed

to establish operational validation of ABMs.
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