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Abstract 
The purpose of this paper is to introduce a new graphical 
and intuitive programming language for DEVS models. It is 
the result of our global approach whose general aim is to 
enable a scientist to create and simulate DEVS models 
without the constraint of asking a DEVS expert to create the 
formal models and a computer scientist to program them. 
We explain here how our language is built, and we give an 
example of a model designed using it. Models from this 
language can be mapped onto DEVS models, using a 
model-driven approach (based on MDA) which is really 
helpful to perform an automated code generation towards an 
Object Oriented Language. 
 
1. INTRODUCTION 
 
DEVS [ref.] is the most general formalism used to describe 
discrete event systems. 
Any system can be modelled using DEVS, the only 
conditions which must be fulfilled are that the states of the 
system are finite, and the changes between states are also 
finite in a finite interval. 
DEVS allows considering a system both in a modular or 
hierarchical point of view, and once the model defined, the 
simulator is provided. 
That is why it is interesting to study complex systems using 
such a formalism, or one of its many extensions [1-7]. 
There are several modelling and simulation tools based on 
DEVS, for instance PowerDEVS, JavaDEVS, JDEVS, 
PythonDEVS and so on [Kauffman and al., 2001].  
 
Howewer, even if some of them provide graphical user 
interfaces (G.U.I.), it is not possible to use them without 
having a good knowledge of both DEVS and object oriented 
programming.  
How can we make the modelling step easier ? 
Two constraints have to be taken into account to solve this 
problem:  

- To make the modelling step be easier, a “simple 
language” (according to the criteria we defined 

[Garredu et al. 2007] ) has to be used to reduce the 
complexity of this task 

- The destination formalism must be Classic DEVS 
and the corresponding  object classes automatically 
generated 

 
This paper makes some proposals who take account those 
two constraints. 
Our approach tries to make the modelling step easier by 
helping the scientist to create his own models, using a 
partially graphical and intuitive specification language, and 
assuming the fact that a scientist is able to recognize and 
make a description of a given system. This language has 
been given a graphical representation, implemented through 
a GUI. We made the choice to give the possibility to create 
only single models (of course with many states), i.e. our 
language does not support, at this time, the interconnections 
between several models (the components cannot be 
coupled). 
In order to fulfil the second constraint, we follow a MDA 
process, chosen because of its many advantages, the most 
important of which is of course the ability of MDA to 
perform mappings from some models onto others, provided 
their meta-models  are defined. 
Thanks to the MDA PIM (Platform Independent Model) and 
PSM (Platform Specific Model) models, a model designed 
with our language can be mapped onto a basic DEVS PIM 
model. Finally, the DEVS PIM  model can be mapped onto 
several DEVS frameworks, by generating the corresponding 
source code. 
The next part is dedicated to the DEVS formalism and to the 
MDA approach. The third part presents the proposed 
specification language and its main features. Then, in the 
fourth part, we give an example of a model designed with 
the specification language. Finally, after a discussion where 
we explain how mappings can be performed onto DEVS, we 
give a conclusion. 
 
2. BACKGROUND 
 
In the first part of this section part we give brief overview of 
the system theory on which lies the DEVS formalism, and 
though which is used by many scientists. 
In the second we present the DEVS formalism, which lies 
on 2 elements : Atomic Models and Coupled Models. The 
former describe the behaviour of a system while the latter 



offer a view of the global structure of the system. We also 
briefly explain how a DEVS model is linked to the 
corresponding simulator. 
In the last part, we present the Model Driven Architecture, 
and we show that even if it seems to be useful mainly in 
computer engineering, such a process can also be followed 
in modelling and simulation.  
 
The General System Theory, introduced by L. Von 
Bertalanffy during the middle of the XXth century, gave a 
new way to consider systems. Nowadays, this theory is 
well-know by the scientists who use it when they need to 
study complex natural systems. 
L. Von Bertanlanffy, fed this new way of considering 
systems : “a system is a mass of elements which interact”. 
The ultimate purpose of this theory, as an interdisciplinary 
approach, is to find the rules which the systems studied by 
the sciences share. 
Of course, this fantastic purpose will not be reached soon, 
yet we are able to find common points to several systems. 
General System Theory uses two distinct concepts to 
describe a system, which can be named views : the 
behavioural view and the structural view.  
The structure of a system is this inner constitution, and its 
behaviour is its outer manifestation.  
 
The behaviour can be seen as the way a system interacts 
with its environment, the only knowledge we have is that 
this system has input ports where it receives events, and 
output ports through which it sends information to the 
external world. 
The most known representation of the behaviour of as 
system is the famous black box (see Figure 1) which gives a 
relationship between inputs received by the system and its 
outputs. The structure of the system is not known, only its 
behaviour, that is the reason why it is represented by a black 
box. An input-free system is called an autonomous system 
(i.e. it evolves itself without receiving external events). 
 

 
Figure 1. A system represented by a black box 

 
The internal structure of a simple system is composed by 
states and rules which define how inputs make the system 
go from one state to another.  

But the structure of a system may also give information on 
its coupling relationships and its hierarchical structure: if the 
output ports of a system are coupled to the input ports of 
another one, then there is a coupling relationship. The 
resulting system can be seen as a new system, named 
coupled system, which can itself be coupled to other 
systems. Those coupling relationships illustrate the 
hierarchical structure of a system, and are tightly linked to 
the specification level concept.  
If we know the structure of a system, then its behaviour can 
be deducted, but the other way is not true : it is not always 
easy to find the structure of a system only observing its 
behaviour. Though, in modelling and simulation, we often 
have to give a valid representation of a system based on the 
study of its behaviour. 
The basic concepts General System Theory are known and 
used all around the world by many scientists who belong to 
several domains, that is the reason why when we introduce 
our language we assume that some concepts can easily be 
handled, even by non-computer scientists. 
 
DEVS is a formalism which is based on the general systems 
theory; it was introduced by Pr. Zeigler [Zeigler 2004]. 
It allows to describe a system in a modular and hierarchical 
way, and to consider a global system as a set of other more 
simple subsystems, in order to reduce the system’s global 
complexity. 
Modelling and simulation are distinct phases, and once the 
model designed the simulator is provided. 
DEVS also has great genericity properties, it can be used in 
many study domains, always considering the fact that a 
system evolves with events; moreover, DEVS has a good 
evolutivity, and has often been extended to be able to take 
into account various systems : dynamic systems (i.e. which 
structure evolves with time) with DSDE [3] and DynDEVS 
[4], systems with uncertain parameters with fuzzy-DEVS 
[5] and min-max-DEVS [6], systems with evolutions in 
their interfaces with Cell-DEVS (cellular approach) [7] and 
Vector-DEVS (vectorial approach) [8]. 
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The atomic model (Figure 2) is defined by:  
AM = < X, Y, S, ta, δint, δext, λ >    
With:  
- X the input ports set, through which external events are 

received; 
- Y the output ports set, through which external events 

are sent; 
- S the states set of the system; 
- ta  the time advance function (or lifespan of a state); 
- δint  the internal transition function; 
- δext the external transition function; 
- λ the output function; 

 
     The simulation is carried out by associating to each 
component a simulator making it possible to implement the 
corresponding simulation algorithms. 
 

 
Thus, DEVS enables the specialist to be completely 
abstracted from the simulators implementation. Once the 
model is built and whatever its form is, B.P. Zeigler defined 
a simulator able to take into account any model described 
according to DEVS formalism, and developed the concept 
of abstract simulator [1] [2] [10]. The architecture of such a 
simulator represents an algorithmic description making it 
possible to implement the implicit instructions of the models 
resulting from formalism DEVS, in order to generate their 
behaviour. The major advantage of such a simulator is that 
its building is independent from the model. 
 

As the main drawback of DEVS is its difficulty to be used 
by  the non-computer scientists, our approach takes place in 
the improvements already made to help the modeller to 
create his models. Some DEVS-oriented specification 
languages have been created to reach this goal. 
Among those improvements, we can quote the DEVS 
Definition Language which enables to give a textual 
representation (written in pseudo-code) of DEVS atomic 
and coupled models [Zeigler et al., 2000]. This language is 
close to DEVSpecL [ref.], but they both do not have a 
corresponding graphical formalism. 
Among the graphical improvements, a graphical 
representation of atomic models, based on states (vertices) 
and transitions (edges), was given in 1994 by H.S. Song. 
GDEVS is an environment which enables to specify DEVS 
models using this graphical formalism. [ref univ marseille]. 
(citer GGAD) However, they only provide a low-level 
representation and even a graphical formalism to express 
DEVS models has been introduced.   
 
 
DEVS is a very good tool for the modeling and simulation 
of complex systems but it does not allow a lambda user, 
who is not a computer scientist, to specify his models. 
A both graphical and textual specification language, 
establishing the link between knowledge of an expert and a 
DEVS environment, would make it possible to extend the 
advantages of DEVS. 
 
MDA (Model Driven Architecture) [11] is a software design 
approach initiated by the OMG (Object Management 
Group) in 2001 to introduce a new way of development 
based upon models rather than code. It defines a set of 
guidelines for defining models at different abstraction 
levels, from platform independent models (PIMs) to 
platform specific models (PSMs) tied to a particular 
implementation technology. The translation between a PIM 
and one ore more PSMs is to be performed automatically by 
using transformation tools. 
OMG provides a set of standards dedicated to this approach. 
Although the Unified Modeling Language (UML [12]) was 
at the beginning the basis of the OMG works on MDA, it is 
now MOF (MetaObject Facility) which appears to be the 
most basic standard.  
It is a metaformalism (e.g. formalism used to define 
formalisms). According to this standard, every formalism 
involved in a MDA process at any level (PIM, PSM) is to be 
specified by a metamodel expressed in terms of MOF 
elements. The QVT (Query Views Transformation) standard 
provides a standard formalism to define transformation 
between models expressed in MOF compliant formalisms. 
The UML [12] still provides a common and useful visual 
notation for the description of software artefacts at several 
levels and from several points of view.  But it now appears 
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Figure 2. Atomic DEVS model behaviour 
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Figure 2. DEVS coupled model 
 



as a formalism (among the others) that may be used to 
specify models but theoretically a MDA process can be 
followed without using it. However, OMG still advocates its 
use as a favourite formalism arguing that it becomes a real 
used standard in modelling area and its metamodel is fully 
defined [11].   
 
MDA TM is a trade mark hold by the OMG. However, 
nowadays a more global approach called MDE Model 
Driven Engineering is used by the international research 
community to refer to the same principles even if all the 
OMG standards are not imposed.  MDE focuses on the use 
of metamodeling and model transformation but is not tied to 
the MOF. 
In our approach, we believe that a MDE process will be 
useful to specify our intuitive language and also its 
automatic transformation process into DEVS formalism.  
Some links between the computer engineering world and 
modelling and simulation, have been introduced by A. Tolk 
[Tolk and Muguira 2004], he establishes a link between 
MDA and DEVS formalism. 
 
3. PROPOSED SPECIFICATION LANGUAGE 
In this section, we first present our specification language, 
and we show how it can be graphically represented and we 
give its metamodel.  
 
In the background section, we saw that most of the scientists 
are able to watch a system and identify boundaries between 
this system and the rest of the world. Every model is linked 
to its environment by receiving and sending values, through 
its input and output ports. 
Scientists also can identify how the system evolves with 
time, and the ways (events) to go from one state to another. 
 
To put it in a nutshell, we are convinced that every scientist 
can handle the concepts of the general systems theory, even 
if modelling with DEVS is not trivial. 
The basic elements of our language are: models, states, 
events, transitions, ports.  
Even if those elements seem very close to DEVS formalism, 
and to every other formalism based on states and transitions, 
we are convinced that they will be easier to handle, because 
the G.U.I. provides a step-by-step help and makes some 
concepts more transparent. Moreover, they have a great 
portability, because they are platform-independent.  
The purpose of our language is to provide an intuitive G.U.I. 
which will help the scientists during the different steps of 
the modelling. This G.U.I. will provide a step-by-step help, 
as an interactive tutorial. The main steps we identified are: 
 
- Init step: the user gives here the time unit which will 

be used later by the simulator (millisecond, second, 
hour, day, year…), depending on the context. 

- Model Identification step: the user first identifies the 
model, gives it a name, and defines its ports.  

- State Identification step: here the user is asked to 
identify (and name) the different states of the system. 
In his point of view, there are two types of states: a set 
of finite states, defined only by their names, and a set 
of states defined by their name and their state 
variables. 

-  Transition identification step: in this step the G.U.I. 
expects a specification of the links between the states. 
Several parameters are checked, such as the respect of 
determinism, and if each state is linked to at least one 
another. 
Once the transitions are identified, the user can specify 
whether the transition is driven by time (i.e. is fired 
after time duration expires) or by an event from the 
external world. Graphically, those transitions are also 
different. In this case, the port where the event is 
expected and the type/value of the event (message, real 
number…) have to be specified. A list of events may 
be written. 

- Action identification step: to each transition, an action 
can be associated. This action can modify the states, 
their variables, send an output (if at least one output 
port has been defined)…and so on.  

 
A simple pseudo language is used to define events and 
actions, as we will see in the following examples. 
 
Graphically, they can be represented easily. We give here 
the representations we chose for each element, and the 
corresponding BNF notation. We also explain how the 
G.U.I. helps during the modelling step. 

 
Figure 3. A simple model with ports 

 
Figure 3 is a 3-D rectangle which shows a simple model, 
named Model_1, with 2 input ports (in1 & in2) and one 
output port (out1). A model must have a name, and may 
have input and/or output ports. In this case, the ports must 
be named. An input port takes place on the left side of the 
state, while an output port takes place on the right side. A 
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model must have, at least, one state. According to the BNF 
form, a model is written like that : 
<model>::=<state>{<state>}{<inport>}{<outport>} 
 
 

 
Figure 4. Two states with different durations and variables 

 
Figure 4 shows two states, the first one “STATE_1” is a 
default state with an infinite duration, while the second one 
has a modified duration and a state variable which is a real 
number (and which can evolve during the simulation). 
A state, once created, must be given a name.  
When the user specifies a state, sometimes he adds at least 
one state variable which can take several numerical values, 
and he considers there is one single state with a state 
variable.  
However, from the modeller’s point of view there are as 
many states as the state variable can have.  
But we chose to represent the state as a simple one. Usually, 
it is easier to simulate states with a few state variables.  
Each state has a time duration value (considerered as a 
particular state variable), by default this duration is infinite, 
but must be changed by the user, as we see on the previous 
picture. When the duration expires, it generates a particular 
event, because it comes from the model itself. The typical 
form of a state is  
<state>::=“(“<max_duration>{“,”<variable>[<value>]}“)” 
 
An event is defined as follows (using the BNF notation) : 
<event>::= “(“ <inputport> | <outputport> “,”  <value> “)” 
For instance, if the scientist expects an input with the real 
value 3.14 on the third input port, the event will be:  
E_1= (in3, 3.14). 
An event specified using an output port will automatically 
be sent on the given port just before the autotransition of the 
current state is fired.  
  
A transition is graphically represented by an oriented arrow 
between two states. There are two different arrows, 
depending on the transition type: if it is triggered by an 
external event, the arrow will be full, if it is triggered by a 
clock event, when maxDuration expires (we name it 
autotransition) it will have a thin white line inside.  
Formally, a transition is written as follows (still using the 
BNF notation): 
<transition> ::=<state>”,”<state>[<event>] [<action>], 

where the event is not specified if it is a time transition, and 
where the corresponding action is optional. 
An autotransition between two states (STATE _1 and 
STATE _2) can be written: 
T_1::= STATE_1, STATE _2 
 
As we see, an action can be associated to any type of 
transition: at this time, we write it using a simple pseudo-
language, that is the reason why an action is only composed 
of a string. An action is often used to update the states (their 
lifespan and/or their state variables). 
Using the BNF notation, an action can be written as follows:  
<action> ::= “(“{<state>[<variable>] <value> “;”}”)” 
The target-state of the action and a value must always be 
specified, if only a numerical value follows the state name, 
the action will change the maxDuration. If there is also a 
variable name after the state name, then the system updates 
the variable with the given value. 
An action can be composed of several updates. 
An action which changes the maxDuration of STATE_1 and 
gives  the value 3 to a variable named var1 in STATE_2 
will be written : 
<A1>::=( STATE_1 maxDuration 150; STATE_2 var1 1;) 
or  <A1>::=( STATE_1 150; STATE_2  var1 3;) 
 
Based on what we said, we give the metamodel of this 
specification language, using a UML 2.0 class diagram (see 
figure 5) 
 
 

 
Figure 5. The language’s metamodel 
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4. AN EXAMPLE OF USE: A  STUDENT 
 
To illustrate our modelling method, let us take a very simple 
system: a student. We first study his behaviour, then we use 
our method to model this system. 
From an expert’s point of view, a student may be sleeping, 
working, eating or idle. 
The default time a student needs to sleep is 12 hours, but 
this time can be reduced if an external event from his alarm 
clock radio disturbs him. In every case, once he wakes up, 
he is in an idle state, for 12 hours. As long as he remains in 
this state, he can go to work if he receives a message from 
one of his teachers, or he can start eating for 2 hours if 
someone calls him to eat (“come with us, let’s eat !”). As a 
lambda student, he can not receive messages while eating. 
After his meal, he will say to the world that he feels good, 
and then he returns in the idle state.  While working, the 
student sends regular messages to his teacher (every hour), 
telling him the number of exercises he did (a random 
number between 1 and 5). He is able to work for an hour, 
the he gets back in the idle state unless he receives again a 
message, or he falls asleep. While working, he cannot be 
disturbed by an incoming message. 
Every operation which needs energy (working and eating) 
must be taken into account: the time before he goes back to 
sleep must decrease. 
 
Using our modelling method, we first choose the time unit, 
which is one hour. The model is easy to identify, it is the 
student himself, he has one input port (to receive messages) 
and two output ports (one to send messages, the other to 
send values). 
There are four states for this student : SLEEPING, 
WORKING, EATING and IDLE. 
The autotransitions will be between sleeping and idle, idle 
and sleeping, eating and idle, working and idle. 
The transitions based on events will be between sleeping 
and idle (if the alarm-clock rings), idle and eating, idle and 
working. 
There are 3 possible input messages : “eat”, bip”, “ work”.  
There are 2 types of outputs, one is a message “I feel good 
now !” (after his meal) and the other is a random value 
between 1 and 5 (after his work). 
We must remember to decrease the maxDuration of the 
IDLE state : this is an action to associate to transitions. 
Figure 6 illustrates the representation of the studied system 
using our specification language. 

 
Figure 6. The student modelled 

 
5. CONCLUSION AND FUTURE WORK 
 
We followed step by step the methodology defined in part 3. 
However, the main difficulty when modeling systems is to 
have a valid simulator. 
Every model designed with our language is platform-
independent, a PIM according to the MDA terminology. 
We know the DEVS metamodel, and the proposed language 
metamodel : hence, it is possible to transform a PIM written 
using our language onto a DEVS PIM using simple 
transformation rules (for instance, MOF QVT). MOF is a 
meta-metaformalism, i.e. all the metamodels can be defined 
using MOF. 
Once the DEVS PIM created, we need to chose an Object 
Oriented Language in which we want to generate object 
code : the metamodel of this language must also be known. 
An environment which supports MDA is able to generate 
such an object code (using templates). 
Figure 7 sums up those mappings. 
 

 
Figure 7.  DEVS code generation starting from a model 
designed with our specification language 
 
 
 
 
 
 



The aim of this paper was to present a methodology to help 
scientists to specify DEVS models : this methodology is 
applied using an intuitive specification language. Once a 
model created, it is interesting to perform a code generation 
towards a DEVS model in order to perform the simulation, 
that is why we chose a MDA approach : the advantages of 
this software engineering method could improve the 
reusability of the models. 
We designed our model using the proposed language, the 
main advantages of this language is that it is graphical and 
intuitive. 
In a near future, we plan to finish our G.U.I. and its 
integrated help, and to add the G.U.I. the possibility for the 
user to specify advanced actions (writing code for instance). 
We also plan to take into account coupling relationships 
between models, in order to simulate DEVS coupled 
models. Finally, we are working on a state of art of all the 
MDA-Oriented Environments in order to compare them and 
to chose the best one to perform our mappings and our code 
generation towards a PythonDEVS-oriented platform. 
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