A DEVS-Oriented Intuitive M odelling L anguage

S. Garredu

E. Vittori

J.-F. Santucci

University of Corsica
{garredu;vittori;santucci}@univ-cor se.fr

Keywords. DEVS, methodology, MDA, Specification
Languages, Code Generation

Abstract

The purpose of this paper is to introduce a nevplycal
and intuitive programming language for DEVS mod#lss
the result of our global approach whose general igilto

[Garredu et al. 2007]) has to be used to reduee th

complexity of this task

- The destination formalism must be Classic DEVS
and the corresponding object classes automatically

generated

This paper makes some proposals who take accoasé th

two constraints.
Our approach tries to make the modelling step edsie

enable a scientist to create and simulate DEVS todehelping the scientist to create his own modelsngisa

without the constraint of asking a DEVS expert iteate the
formal models and a computer scientist to progrhemt
We explain here how our language is built, and we gn
example of a model designed using it. Models frdnis t
language can be mapped onto DEVS models, using
model-driven approach (based on MDA) which is geall
helpful to perform an automated code generatioratds/an
Object Oriented Language.

1. INTRODUCTION

DEVS [ref.] is the most general formalism used ésaibe
discrete event systems.

partially graphical and intuitive specification tarage, and
assuming the fact that a scientist is able to neieegand
make a description of a given system. This languzase
been given a graphical representation, implemetttexigh

@ GUI. We made the choice to give the possibilitcteate
only single models (of course with many state®, our
language does not support, at this time, the interections
between several models (the components cannot
coupled).

In order to fulfil the second constraint, we follavMDA

process, chosen because of its many advantages)dabe
important of which is of course the ability of MDfo

perform mappings from some models onto others,igeaV

Any system can be modelled using DEVS, the onlytheir meta-models are defined.

conditions which must be fulfilled are that thetssaof the

system are finite, and the changes between statealso

finite in a finite interval.

DEVS allows considering a system both in a modalar
hierarchical point of view, and once the model nledi, the

simulator is provided.

That is why it is interesting to study complex gyss using

such a formalism, or one of its many extensions][1-
There are several modelling and simulation toolseHaon

Thanks to the MDA PIM (Platform Independent Modsty
PSM (Platform Specific Model) models, a model desit
with our language can be mapped onto a basic DENG P
model. Finally, the DEVS PIM model can be mappatbo
several DEVS frameworks, by generating the cornedimg
source code.

The next part is dedicated to the DEVS formalism tnthe

be

MDA approach. The third part presents the proposed

specification language and its main features. Tlmerthe

DEVS, for instance PowerDEVS, JavaDEVS, JDEVSfourth part, we give an example of a model desigwét

PythonDEVS and so on [Kauffman and al., 2001].

the specification language. Finally, after a disous where
we explain how mappings can be performed onto DEMS,

Howewer, even if some of them provide graphicalrusegive a conclusion.

interfaces (G.U.l), it is not possible to use thamhout
having a good knowledge of both DEVS and objecatrugd
programming.

How can we make the modelling step easier
Two constraints have to be taken into account teesthis
problem:

2. BACKGROUND

n the first part of this section part we give lhaeerview of

the system theory on which lies the DEVS formalismcl
though which is used by many scientists.

- To make the modelling step be easier, a “simpldn the second we present the DEVS formalism, whiieh
language” (according to the criteria we definedon 2 elements : Atomic Models and Coupled Modelse T

former describe the behaviour of a system while l&tier

offer a view of the global structure of the systaie also

But the structure of a system may also give infdiomaon

briefly explain how a DEVS model is linked to the its coupling relationships and its hierarchicalistare: if the

corresponding simulator.

In the last part, we present the Model Driven Atettiure,
and we show that even if it seems to be useful Ipmam
computer engineering, such a process can alsollosvéal
in modelling and simulation.

The General System Theoryintroduced by L. Von
Bertalanffy during the middle of the XXth centuigave a
new way to consider systems. Nowadays, this thésry
well-know by the scientists who use it when thegdé¢o
study complex natural systems.

L. Von Bertanlanffy, fed this new way of considerin
systems : “a system is a mass of elements whiahnaat’.
The ultimate purpose of this theory, as an inteigimary
approach, is to find the rules which the systerndist by
the sciences share.

Of course, this fantastic purpose will not be reatkoon,
yet we are able to find common points to seversiesys.
General System Theoruyses two distinct concepts to
describe a system, which can be named views
behavioural view and the structural view.

The structure of a system is this inner constitytiand its
behaviour is its outer manifestation.

The behaviour can be seen as the way a systenadtger
with its environment, the only knowledge we havehat
this system has input ports where it receives eyesmtd
output ports through which it sends information tte
external world.

output ports of a system are coupled to the inmuitspof
another one, then there is a coupling relationshipe
resulting system can be seen as a new system, named
coupled system, which can itself be coupled to rothe
systems. Those coupling relationships illustratee th
hierarchical structure of a system, and are tightllged to
the specification level concept.

If we know the structure of a system, then its véha can

be deducted, but the other way is not true : itds always
easy to find the structure of a system only obsenits
behaviour. Though, in modelling and simulation, afeen
have to give a valid representation of a systenedas the
study of its behaviour.

The basic concepts General System Theory are kraman
used all around the world by many scientists whorizgto
several domains, that is the reason why when wedate
our language we assume that some concepts cay basil
handled, even by non-computer scientists.

: thBEVS is a formalism which is based on the genersiesns

theory; it was introduced by Pr. Zeigler [Zeigl€02].

It allows to describe a system in a modular andanohical
way, and to consider a global system as a sethafr ahore
simple subsystems, in order to reduce the systeoisal
complexity.

Modelling and simulation are distinct phases, andeothe
model designed the simulator is provided.

DEVS also has great genericity properties, it cauged in
many study domains, always considering the fact tha

The most known representation of the behaviour ®f asystem evolves with events; moreover, DEVS has @& go

system is the famous black box (see Figure 1) whieks a
relationship between inputs received by the sysaenh its
outputs. The structure of the system is not knoownly its
behaviour, that is the reason why it is represehyed black
box. An input-free system is called an autonomostesn
(i.e. it evolves itself without receiving exterrealents).

inputs outputs

Unknown

Structure

Figure 1. A system represented by a black box

The internal structure of a simple system is coragolsy
states and rules which define how inputs make yséem
go from one state to another.

evolutivity, and has often been extended to be tblake
into account various systems : dynamic systemswitgch
structure evolves with time) with DSDE [3] and DyB@S
[4], systems with uncertain parameters with fuzaMs
[5] and min-max-DEVS [6], systems with evolutions i
their interfaces with Cell-DEVS (cellular approagfi) and
Vector-DEVS (vectorial approach) [8].

\7.

Figure 2. Atomic DEVS model behaviour

The atomic model (Figure 2) is defined by:
AM =< X, Y, S, t, Sinty Oexts A >
With:

X the input ports set, through which external eseare
received,

Y the output ports set, through which external ésen
are sent;

S the states set of the system;

t, the time advance function (or lifespan of a 3tate

dint the internal transition function;

Sext the external transition function;

A the output function;

The simulation is carried out by associating each

component a simulator making it possible to impletrtae
corresponding simulation algorithms.

X, Ml\Y

EIC EOC
Figure 2. DEVS coupled model

As the main drawback of DEVS is its difficulty t@ lused

by the non-computer scientists, our approach tplkase in

the improvements already made to help the modéder
create his models. Some DEVS-oriented specification
languages have been created to reach this goal.

Among those improvements, we can quote the DEVS
Definition Language which enables to give a textual
representation (written in pseudo-code) of DEVSnato
and coupled models [Zeigler et al., 2000]. Thigylaage is
close to DEVSpecL [ref.], but they both do not hawe
corresponding graphical formalism.

Among the graphical improvements, a graphical
representation of atomic models, based on statasides)
and transitions (edges), was given in 1994 by K&g.
GDEVS is an environment which enables to specif\WWBE
models using this graphical formalism. [ref univrssille].
(citer GGAD) However, they only provide a low-level
representation and even a graphical formalism toress
DEVS models has been introduced.

DEVS is a very good tool for the modeling and siatioin

of complex systems but it does not allow a lambdar,u
who is not a computer scientist, to specify his eisd

A both graphical and textual specification languyage
establishing the link between knowledge of an eixped a
DEVS environment, would make it possible to exteinel
advantages of DEVS.

MDA (Model Driven Architecture) [11] is a softwadesign
approach initiated by the OMG (Object Management
Group) in 2001 to introduce a new way of developmen
based upon models rather than code. It definest afse
guidelines for defining models at different abdiiGaT
levels, from platform independent models (PIMs) to
platform specific models (PSMs) tied to a particula
implementation technology. The translation betwadplM
and one ore more PSMs is to be performed autonigtima
using transformation tools.

OMG provides a set of standards dedicated to fhpsceach.
Although the Unified Modeling Language (UML [12])as

at the beginning the basis of the OMG works on MDAs

Thus, DEVS enables the specialist to be completelnow MOF (MetaObject Facility) which appears to e t
abstracted from the simulators implementation. Otime
model is built and whatever its form is, B.P. Zergilefined
a simulator able to take into account any modetidesd
according to DEVS formalism, and developed the ephc
of abstract simulator [1] [2] [10]. The architeausf such a
simulator represents an algorithmic description imgkt
possible to implement the implicit instructionstbé models
resulting from formalism DEVS, in order to genertteir
behaviour. The major advantage of such a simuiattiat
its building is independent from the model.

most basic standard.

It is a metaformalism (e.g. formalism used to defin
formalisms). According to this standard, every fatism
involved in a MDA process at any level (PIM, PSS} be
specified by a metamodel expressed in terms of MOF
elements. The QVT (Query Views Transformation) dead
provides a standard formalism to define transfoionat
between models expressed in MOF compliant formalism
The UML [12] still provides a common and useful uas
notation for the description of software artefaatsseveral
levels and from several points of view. But it nappears

as a formalism (among the others) that may be used

specify models but theoretically a MDA process dan
followed without using it. However, OMG still advates its
use as a favourite formalism arguing that it becomeeal
used standard in modelling area and its metamadtllly
defined [11].

MDA™ is a trade mark hold by the OMG. However,
nowadays a more global approach called MDE Model-

Driven Engineering is used by the internationaleegsh
community to refer to the same principles evenllifttze

OMG standards are not imposed. MDE focuses orusee

of metamodeling and model transformation but istisat to
the MOF.
In our approach, we believe that a MDE process ball

useful to specify our intuitive language and alde i

automatic transformation process into DEVS fornmalis

Some links between the computer engineering wonld a

modelling and simulation, have been introduced by élk
[Tolk and Muguira 2004], he establishes a link lesw
MDA and DEVS formalism.

3. PROPOSED SPECIFICATION LANGUAGE

In this section, we first present our specificatlanguage,
and we show how it can be graphically representetivee
give its metamodel.

In the background section, we saw that most okthentists
are able to watch a system and identify bounddréaeen
this system and the rest of the world. Every masiéhked
to its environment by receiving and sending valtleyugh
its input and output ports.

Scientists also can identify how the system evolwih

time, and the ways (events) to go from one stasmtiher.

To put it in a nutshell, we are convinced that gvagientist
can handle the concepts of the general systemsytheen
if modelling with DEVS is not trivial.

The basic elements of our language are: model$gssta

events, transitions, ports.

Even if those elements seem very close to DEVS ditism,

and to every other formalism based on states amditrons,
we are convinced that they will be easier to hanaéeause
the G.U.l. provides a step-by-step help and makeses

concepts more transparent. Moreover, they haveeatgr

portability, because they are platform-independent.

The purpose of our language is to provide an ineiG.U.l.
which will help the scientists during the differesteps of
the modelling. This G.U.l. will provide a step-biep help,
as an interactive tutorial. The main steps we ifledtare:

- Model ldentification step: the user first identifies the

model, gives it a name, and defines its ports.

State Identification step: here the user is asked to

identify (and name) the different states of theteys

In his point of view, there are two types of stateset

of finite states, defined only by their names, anset

of states defined by their name and their state

variables.

Transition identification step: in this step the G.U.I.

expects a specification of the links between tlagest

Several parameters are checked, such as the regpect

determinism, and if each state is linked to attleas

another.

Once the transitions are identified, the user qatify

whether the transition is driven by time (i.e. ised

after time duration expires) or by an event frore th
external world. Graphically, those transitions aleo

different. In this case, the port where the event i

expected and the type/value of the event (messegk,

number...) have to be specified. A list of events may
be written.

- Action identification step: to each transition, an action
can be associated. This action can modify the state
their variables, send an output (if at least ontputu
port has been defined)...and so on.

A simple pseudo language is used to define events a
actions, as we will see in the following examples.

Graphically, they can be represented easily. We tigre
the representations we chose for each element,tlaad
corresponding BNF notation. We also explain how the
G.U.I. helps during the modelling step.

Model 1

ol

in

Figure 3. A simple model with ports

Figure 3 is a 3-D rectangle which shows a simplal@ho
named Model_1, with 2 input ports (inl1 & in2) andeo
output port (outl). A model must have a name, amy m

- Init step: the user gives here the time unit which will have input and/or output ports. In this case, theispmust
be used later by the simulator (millisecond, secondpe named. An input port takes place on the lef sifithe

hour, day, year...), depending on the context.

state, while an output port takes place on thet rigie. A

model must have, at least, one state. AccordirtpedBNF
form, a model is written like that :
<model>::=<state>{<state>}{<inport>}{<outport>}

STATE_2
maxDuration =19

STATE_1

maxDuration =
varl(real)

Figure 4. Two states with different durations aadables

Figure 4 shows two states, the first one “STATEid"a

default state with an infinite duration, while teecond one

has a modified duration and a state variable which real
number (and which can evolve during the simulation)

A state, once created, must be given a name.

When the user specifies a state, sometimes headdast
one state variable which can take several numevigales,

where the event is not specified if it is a timansition, and
where the corresponding action is optional.

An autotransition between two states (STATE _1 and
STATE _2) can be written:
T_1::=STATE_1, STATE _2

As we see, an action can be associated to any dfpe
transition: at this time, we write it using a simpgdseudo-
language, that is the reason why an action is coigposed
of a string. An action is often used to updatestates (their
lifespan and/or their state variables).

Using the BNF notation, an action can be writtefodews:
<action> ::= “(“{<state>[<variable>] <value> “;"}")

The target-state of the action and a value musaysvbe
specified, if only a numerical value follows thatst name,
the action will change the maxDuration. If therealso a
variable name after the state name, then the sygpelates
the variable with the given value.

An action can be composed of several updates.

An action which changes the maxDuration of STATEN
gives the value 3 to a variable named varl in SEAX
will be written :

<Al>::=(STATE_1 maxDuration 150; STATE_2 varl 1;)

and he considers there is one single state withtate s <Al>:=(STATE_1 150; STATE_2 varl 3

variable.

However, from the modeller's point of view theree as
many states as the state variable can have.

But we chose to represent the state as a simpleusully,
it is easier to simulate states with a few statéabtes.

Each state has a time duration value (considerared
particular state variable), by default this dunatis infinite,
but must be changed by the user, as we see ondh®ys
picture. When the duration expires, it generatparéicular
event, because it comes from the model itself. fijpecal
form of a state is
<state>::="(“<max_duration>{","<variable>[<value>]}’

An event is defined as follows (using the BNF niota}t :
<event>::= “(“ <inputport> | <outputport> “," <vag>)"
For instance, if the scientist expects an inpuhitifite real
value 3.14 on the third input port, the event wét

E_1= (in3, 3.14).

An event specified using an output port will autdicedly
be sent on the given port just before the autoitiansof the
current state is fired.

A transition is graphically represented by an deednarrow

between two states. There are two different arrows

depending on the transition type: if it is triggérby an
external event, the arrow will be full, if it isiggered by a

clock event, when maxDuration expires (we nhame it

autotransition) it will have a thin white line ins.

Formally, a transition is written as follows (stilking the
BNF notation):

<transition> ::=<state>","<state>[<event>] [<actin

Based on what we said, we give the metamodel & thi
specification language, using a UML 2.0 class diag(see
figure 5)

£ Fil

State

=kateName : string
maxDuration : inteqer
variables : undefined

AutoTransition EventTransition

action © string action @ gtring

L]

identifier : string
port : char
value : undefined

InputEvent OutputEvent

identifier : =tring
port : char
value : undefined

A0
gensrates

Figure 5. The language’s metamodel

4. AN EXAMPLE OF USE: A STUDENT

To illustrate our modelling method, let us takeeaywsimple
system: a student. We first study his behaviowemtive use
our method to model this system.

From an expert’s point of view, a student may leeging,
working, eating or idle.

The default time a student needs to sleep is 12shduut
this time can be reduced if an external event fhisnalarm
clock radio disturbs him. In every case, once hkesaup,
he is in an idle state, for 12 hours. As long asemeains in
this state, he can go to work if he receives a ags$rom
one of his teachers, or he can start eating fooo@rs if
someone calls him to eat (“come with us, let's!8atAs a
lambda student, he can not receive messages wdtilege
After his meal, he will say to the world that helegood,
and then he returns in the idle state. While wuagkithe
student sends regular messages to his teachey (ever),
telling him the number of exercises he did (a rando
number between 1 and 5). He is able to work foheunr,
the he gets back in the idle state unless he reseigain a
message, or he falls asleep. While working, he ctie
disturbed by an incoming message.

Every operation which needs energy (working andngat
must be taken into account: the time before he paek to
sleep must decrease.

Using our modelling method, we first choose theetiumit,
which is one hour. The model is easy to identifyisithe
student himself, he has one input port (to recaiessages)
and two output ports (one to send messages, thex tth
send values).

There are four states for this student
WORKING, EATING and IDLE.

The autotransitions will be between sleeping arid, iitlle
and sleeping, eating and idle, working and
The transitions based on events will be betweeapsig
and idle (if the alarm-clock rings), idle and egtiidle and
working.

There are 3 possible input messagesaf’; bip”, “ work’.
There are 2 types of outputs, one is a messhfgel' good

now P (after his meal) and the other is a random value

between 1 and 5 (after his work).

We must remember to decrease the maxDuration of tr

IDLE state : this is an action to associate to ditéons.
Figure 6 illustrates the representation of the istidystem
using our specification language.

idle.

WORKING

Tnl= wworkn !
maxDuraiion =1
m—l,)!OuQ:{andcm@)

LE maxDuration-2 ;) / Outl=clI feel goods

Outl

Out2

IDLE
maxDurafion =12

Inl= «bip»

SLEEPING
maxDuralion =12

EATING

Tnl= ceats maxDuration =2

Figure 6. The student modelled
5. CONCLUSION AND FUTURE WORK

We followed step by step the methodology definegart 3.
However, the main difficulty when modeling systeimgo
have a valid simulator.

Every model designed with our language is platform-
independent, a PIM according to the MDA terminology

We know the DEVS metamodel, and the proposed laggua
metamodel : hence, it is possible to transformM Rritten
using our language onto a DEVS PIM using simple
transformation rules (for instance, MOF QVT). MOd-a
meta-metaformalism, i.e. all the metamodels caddimed
using MOF.

Once the DEVS PIM created, we need to chose ancObje
Oriented Language in which we want to generate abbje
code : the metamodel of this language must aldmbern.

An environment which supports MDA is able to getera
such an object code (using templates).

SI-EEPH\lGFigure 7 sums up those mappings.

Transformation rules MOF QVT)

g >

0oL
metamodel

M3

Metaformalizm

(MOF)

Metamodel of
the proposed
language

i I
- ()
i {
é &OOLEDI‘E

Figure 7. DEVS code generation starting from a ehod
designed with our specification language

DEVS
metamodel

i

Ietarmodels

=0<0= 30=m0B 00D

10 0d

MO Eeal world

The aim of this paper was to present a methodaiodelp

scientists to specify DEVS models : this methodglégg J. B. Filippi, F. Bernardi, and M. Delhom. “The jde
applied using an intuitive specification langua@nce a environmental modeling and simulation environment”.
model created, it is interesting to perform a cgdeeration IEMSS, Integrated Assessment and Decision Support
towards a DEVS model in order to perform the sitiota Lugano Suisse, pages 283-288, 2002.

that is why we chose a MDA approach : the advamstade

this software engineering method could improve the.. Zadeh, Fuzzy Sets. Inform Control, 1965.

reusability of the models.

We designed our model using the proposed languhge, H. Vangheluwe, “The discrete event system spetifina
main advantages of this language is that it ishyegb and DEVS Formalism,” 2001.

intuitive.

In a near future, we plan to finish our G.U.l. aitd http://www.omg.org/mda/

integrated help, and to add the G.U.l. the possitfibr the

user to specify advanced actions (writing coddrfstance). G. Booch, J. Rumbaugh, and |. Jacobson. The Unified
We also plan to take into account coupling relafops Modeling Language User Guide. Addison-Wesley, 1998.
between models, in order to simulate DEVS coupled

models. Finally, we are working on a state of dralbthe S. Garredu, E. Vittori, J.-F. Santucci and A. Muzy.
MDA-Oriented Environments in order to compare theemd “Specification languages as front-end towards DEVS
to chose the best one to perform our mappings andaxle formalism”. ISEIM: The First International Symposiuon

generation towards a PythonDEVS-oriented platform. Environment ldentities and Mediterranean Area, €ort
2006.
6. REFERENCES Thomas R. Gruber (1993). Toward principles for diesign

of ontologies used for knowledge sharing, Origipati N.
B.P. Zeigler, Multifaceted modelling and discretee Guarino and R. Poli, (Eds.)nternational Workshop on
simulation. Academic Press, 1984. Formal Ontology, Padova, Italy. Revised August 1993.

Published inInternational Journal of Human-Computer
B.P. Zeigler, H. Praehofer, and T. Kim, Theory obd¢ling Studies Volume 43, Issue 5-6 Nov./Dec. 1995, Pages: 907-
and Simulation, Second Edition. Academic Press0200 928

F. Barros. “Dynamic structure discrete event systenB. Bouchon Meunier, La logique floue et ses apglice.

specification: a new formalism for dynamic struetur Broché. 1985.

modelling and simulation”. In Proceedings aVinter

Simulation Conferenc&995, 1995. A. Kaufmann,Introduction a la théorie des sous-ensembles
flous Number 1. Masson edition. 1973.

A. Uhrmarcher. “Dynamic Structures in Modeling and

Simulation: A Reflective Approach,” ACMransactions on P.-A. Bisgambiglia, E. De Gentili, J.-F. SantucaoidaP.A.

Modeling and Computer Simulatiowol. 11, No. 2, April Bisgambiglia. "DEVS-Flou: a Discrete Events and Huz

2001, Pages 206-232, 2001. Sets Theory-Based Modeling Environment”, ISSCAAt 1s
International Symposium on Systems and Control in

Y. Kwon, H. Park, S. Jung, and T. Kim. “Fuzzy-devs Aerospace and Astronautics. Harbin, CHINA, 2006.

formalism: Concepts, realization and application”.

Proceedings Al3996, pages 227-234, 1996. “Unified Modeling Language: Superstructuré’,2.0 OMG
document formal/05-07-04pril 2005

N. Giambiasi and S. Ghosh, “Min-Max-DEVS: A new

formalism for the specification of discrete evenbdals J. Bézivin, “On the Unification Power of Models"of8vare

with min-max delays,” 13th European Simulation and System Modeling. — 2005, Vol. 4, No. 2, p. 188

SymposiumMarseille, France, pp 616-621, 2001.
J. Miller and J. Mukerji, “Model Driven Architecterguide
version 1.0.1", OMG document number /03-06-01, g@gu

G. Wainer, C. Frydman and N. Giambiasi "An enviremn 2003.

to simulate cellular DEVS modelsProceedings of the SCS

European Multiconference on Simulatidsetanbul, Turkey.

1997.

[Hong et al., 2005] Hong, K.J., Kim, T.G. — DEVSpecL.:
DEVS specification language for modelling, simaatand
analysis of discrete event syste2305

A. Tolk, J.A. Muguira, M&S within the Model Driven
Architecture Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC) 2004

