
A DEVS-Oriented Intuitive Modelling Language

S. Garredu E. Vittori J.-F. Santucci
University of Corsica

{garredu;vittori;santucci}@univ-corse.fr

Keywords: DEVS, methodology, MDA, Specification
Languages, Code Generation

Abstract
The purpose of this paper is to introduce a new graphical
and intuitive programming language for DEVS models. It is
the result of our global approach whose general aim is to
enable a scientist to create and simulate DEVS models
without the constraint of asking a DEVS expert to create the
formal models and a computer scientist to program them.
We explain here how our language is built, and we give an
example of a model designed using it. Models from this
language can be mapped onto DEVS models, using a
model-driven approach (based on MDA) which is really
helpful to perform an automated code generation towards an
Object Oriented Language.

1. INTRODUCTION

DEVS [ref.] is the most general formalism used to describe
discrete event systems.
Any system can be modelled using DEVS, the only
conditions which must be fulfilled are that the states of the
system are finite, and the changes between states are also
finite in a finite interval.
DEVS allows considering a system both in a modular or
hierarchical point of view, and once the model defined, the
simulator is provided.
That is why it is interesting to study complex systems using
such a formalism, or one of its many extensions [1-7].
There are several modelling and simulation tools based on
DEVS, for instance PowerDEVS, JavaDEVS, JDEVS,
PythonDEVS and so on [Kauffman and al., 2001].

Howewer, even if some of them provide graphical user
interfaces (G.U.I.), it is not possible to use them without
having a good knowledge of both DEVS and object oriented
programming.
How can we make the modelling step easier ?
Two constraints have to be taken into account to solve this
problem:

- To make the modelling step be easier, a “simple
language” (according to the criteria we defined

[Garredu et al. 2007]) has to be used to reduce the
complexity of this task

- The destination formalism must be Classic DEVS
and the corresponding object classes automatically
generated

This paper makes some proposals who take account those
two constraints.
Our approach tries to make the modelling step easier by
helping the scientist to create his own models, using a
partially graphical and intuitive specification language, and
assuming the fact that a scientist is able to recognize and
make a description of a given system. This language has
been given a graphical representation, implemented through
a GUI. We made the choice to give the possibility to create
only single models (of course with many states), i.e. our
language does not support, at this time, the interconnections
between several models (the components cannot be
coupled).
In order to fulfil the second constraint, we follow a MDA
process, chosen because of its many advantages, the most
important of which is of course the ability of MDA to
perform mappings from some models onto others, provided
their meta-models are defined.
Thanks to the MDA PIM (Platform Independent Model) and
PSM (Platform Specific Model) models, a model designed
with our language can be mapped onto a basic DEVS PIM
model. Finally, the DEVS PIM model can be mapped onto
several DEVS frameworks, by generating the corresponding
source code.
The next part is dedicated to the DEVS formalism and to the
MDA approach. The third part presents the proposed
specification language and its main features. Then, in the
fourth part, we give an example of a model designed with
the specification language. Finally, after a discussion where
we explain how mappings can be performed onto DEVS, we
give a conclusion.

2. BACKGROUND

In the first part of this section part we give brief overview of
the system theory on which lies the DEVS formalism, and
though which is used by many scientists.
In the second we present the DEVS formalism, which lies
on 2 elements : Atomic Models and Coupled Models. The
former describe the behaviour of a system while the latter

offer a view of the global structure of the system. We also
briefly explain how a DEVS model is linked to the
corresponding simulator.
In the last part, we present the Model Driven Architecture,
and we show that even if it seems to be useful mainly in
computer engineering, such a process can also be followed
in modelling and simulation.

The General System Theory, introduced by L. Von
Bertalanffy during the middle of the XXth century, gave a
new way to consider systems. Nowadays, this theory is
well-know by the scientists who use it when they need to
study complex natural systems.
L. Von Bertanlanffy, fed this new way of considering
systems : “a system is a mass of elements which interact”.
The ultimate purpose of this theory, as an interdisciplinary
approach, is to find the rules which the systems studied by
the sciences share.
Of course, this fantastic purpose will not be reached soon,
yet we are able to find common points to several systems.
General System Theory uses two distinct concepts to
describe a system, which can be named views : the
behavioural view and the structural view.
The structure of a system is this inner constitution, and its
behaviour is its outer manifestation.

The behaviour can be seen as the way a system interacts
with its environment, the only knowledge we have is that
this system has input ports where it receives events, and
output ports through which it sends information to the
external world.
The most known representation of the behaviour of as
system is the famous black box (see Figure 1) which gives a
relationship between inputs received by the system and its
outputs. The structure of the system is not known, only its
behaviour, that is the reason why it is represented by a black
box. An input-free system is called an autonomous system
(i.e. it evolves itself without receiving external events).

Figure 1. A system represented by a black box

The internal structure of a simple system is composed by
states and rules which define how inputs make the system
go from one state to another.

But the structure of a system may also give information on
its coupling relationships and its hierarchical structure: if the
output ports of a system are coupled to the input ports of
another one, then there is a coupling relationship. The
resulting system can be seen as a new system, named
coupled system, which can itself be coupled to other
systems. Those coupling relationships illustrate the
hierarchical structure of a system, and are tightly linked to
the specification level concept.
If we know the structure of a system, then its behaviour can
be deducted, but the other way is not true : it is not always
easy to find the structure of a system only observing its
behaviour. Though, in modelling and simulation, we often
have to give a valid representation of a system based on the
study of its behaviour.
The basic concepts General System Theory are known and
used all around the world by many scientists who belong to
several domains, that is the reason why when we introduce
our language we assume that some concepts can easily be
handled, even by non-computer scientists.

DEVS is a formalism which is based on the general systems
theory; it was introduced by Pr. Zeigler [Zeigler 2004].
It allows to describe a system in a modular and hierarchical
way, and to consider a global system as a set of other more
simple subsystems, in order to reduce the system’s global
complexity.
Modelling and simulation are distinct phases, and once the
model designed the simulator is provided.
DEVS also has great genericity properties, it can be used in
many study domains, always considering the fact that a
system evolves with events; moreover, DEVS has a good
evolutivity, and has often been extended to be able to take
into account various systems : dynamic systems (i.e. which
structure evolves with time) with DSDE [3] and DynDEVS
[4], systems with uncertain parameters with fuzzy-DEVS
[5] and min-max-DEVS [6], systems with evolutions in
their interfaces with Cell-DEVS (cellular approach) [7] and
Vector-DEVS (vectorial approach) [8].

inputs outputs

Unknown
Structure

The atomic model (Figure 2) is defined by:
AM = < X, Y, S, ta, δint, δext, λ >
With:
- X the input ports set, through which external events are

received;
- Y the output ports set, through which external events

are sent;
- S the states set of the system;
- ta the time advance function (or lifespan of a state);
- δint the internal transition function;
- δext the external transition function;
- λ the output function;

 The simulation is carried out by associating to each
component a simulator making it possible to implement the
corresponding simulation algorithms.

Thus, DEVS enables the specialist to be completely
abstracted from the simulators implementation. Once the
model is built and whatever its form is, B.P. Zeigler defined
a simulator able to take into account any model described
according to DEVS formalism, and developed the concept
of abstract simulator [1] [2] [10]. The architecture of such a
simulator represents an algorithmic description making it
possible to implement the implicit instructions of the models
resulting from formalism DEVS, in order to generate their
behaviour. The major advantage of such a simulator is that
its building is independent from the model.

As the main drawback of DEVS is its difficulty to be used
by the non-computer scientists, our approach takes place in
the improvements already made to help the modeller to
create his models. Some DEVS-oriented specification
languages have been created to reach this goal.
Among those improvements, we can quote the DEVS
Definition Language which enables to give a textual
representation (written in pseudo-code) of DEVS atomic
and coupled models [Zeigler et al., 2000]. This language is
close to DEVSpecL [ref.], but they both do not have a
corresponding graphical formalism.
Among the graphical improvements, a graphical
representation of atomic models, based on states (vertices)
and transitions (edges), was given in 1994 by H.S. Song.
GDEVS is an environment which enables to specify DEVS
models using this graphical formalism. [ref univ marseille].
(citer GGAD) However, they only provide a low-level
representation and even a graphical formalism to express
DEVS models has been introduced.

DEVS is a very good tool for the modeling and simulation
of complex systems but it does not allow a lambda user,
who is not a computer scientist, to specify his models.
A both graphical and textual specification language,
establishing the link between knowledge of an expert and a
DEVS environment, would make it possible to extend the
advantages of DEVS.

MDA (Model Driven Architecture) [11] is a software design
approach initiated by the OMG (Object Management
Group) in 2001 to introduce a new way of development
based upon models rather than code. It defines a set of
guidelines for defining models at different abstraction
levels, from platform independent models (PIMs) to
platform specific models (PSMs) tied to a particular
implementation technology. The translation between a PIM
and one ore more PSMs is to be performed automatically by
using transformation tools.
OMG provides a set of standards dedicated to this approach.
Although the Unified Modeling Language (UML [12]) was
at the beginning the basis of the OMG works on MDA, it is
now MOF (MetaObject Facility) which appears to be the
most basic standard.
It is a metaformalism (e.g. formalism used to define
formalisms). According to this standard, every formalism
involved in a MDA process at any level (PIM, PSM) is to be
specified by a metamodel expressed in terms of MOF
elements. The QVT (Query Views Transformation) standard
provides a standard formalism to define transformation
between models expressed in MOF compliant formalisms.
The UML [12] still provides a common and useful visual
notation for the description of software artefacts at several
levels and from several points of view. But it now appears

S ta
X Y

δext

δint

λ

Figure 2. Atomic DEVS model behaviour

AM1

AM2

CM1
X Y

EIC

IC

EOC

Figure 2. DEVS coupled model

as a formalism (among the others) that may be used to
specify models but theoretically a MDA process can be
followed without using it. However, OMG still advocates its
use as a favourite formalism arguing that it becomes a real
used standard in modelling area and its metamodel is fully
defined [11].

MDA TM is a trade mark hold by the OMG. However,
nowadays a more global approach called MDE Model
Driven Engineering is used by the international research
community to refer to the same principles even if all the
OMG standards are not imposed. MDE focuses on the use
of metamodeling and model transformation but is not tied to
the MOF.
In our approach, we believe that a MDE process will be
useful to specify our intuitive language and also its
automatic transformation process into DEVS formalism.
Some links between the computer engineering world and
modelling and simulation, have been introduced by A. Tolk
[Tolk and Muguira 2004], he establishes a link between
MDA and DEVS formalism.

3. PROPOSED SPECIFICATION LANGUAGE
In this section, we first present our specification language,
and we show how it can be graphically represented and we
give its metamodel.

In the background section, we saw that most of the scientists
are able to watch a system and identify boundaries between
this system and the rest of the world. Every model is linked
to its environment by receiving and sending values, through
its input and output ports.
Scientists also can identify how the system evolves with
time, and the ways (events) to go from one state to another.

To put it in a nutshell, we are convinced that every scientist
can handle the concepts of the general systems theory, even
if modelling with DEVS is not trivial.
The basic elements of our language are: models, states,
events, transitions, ports.
Even if those elements seem very close to DEVS formalism,
and to every other formalism based on states and transitions,
we are convinced that they will be easier to handle, because
the G.U.I. provides a step-by-step help and makes some
concepts more transparent. Moreover, they have a great
portability, because they are platform-independent.
The purpose of our language is to provide an intuitive G.U.I.
which will help the scientists during the different steps of
the modelling. This G.U.I. will provide a step-by-step help,
as an interactive tutorial. The main steps we identified are:

- Init step: the user gives here the time unit which will

be used later by the simulator (millisecond, second,
hour, day, year…), depending on the context.

- Model Identification step: the user first identifies the
model, gives it a name, and defines its ports.

- State Identification step: here the user is asked to
identify (and name) the different states of the system.
In his point of view, there are two types of states: a set
of finite states, defined only by their names, and a set
of states defined by their name and their state
variables.

- Transition identification step: in this step the G.U.I.
expects a specification of the links between the states.
Several parameters are checked, such as the respect of
determinism, and if each state is linked to at least one
another.
Once the transitions are identified, the user can specify
whether the transition is driven by time (i.e. is fired
after time duration expires) or by an event from the
external world. Graphically, those transitions are also
different. In this case, the port where the event is
expected and the type/value of the event (message, real
number…) have to be specified. A list of events may
be written.

- Action identification step: to each transition, an action
can be associated. This action can modify the states,
their variables, send an output (if at least one output
port has been defined)…and so on.

A simple pseudo language is used to define events and
actions, as we will see in the following examples.

Graphically, they can be represented easily. We give here
the representations we chose for each element, and the
corresponding BNF notation. We also explain how the
G.U.I. helps during the modelling step.

Figure 3. A simple model with ports

Figure 3 is a 3-D rectangle which shows a simple model,
named Model_1, with 2 input ports (in1 & in2) and one
output port (out1). A model must have a name, and may
have input and/or output ports. In this case, the ports must
be named. An input port takes place on the left side of the
state, while an output port takes place on the right side. A

in
1
in

out

Model_1

model must have, at least, one state. According to the BNF
form, a model is written like that :
<model>::=<state>{<state>}{<inport>}{<outport>}

Figure 4. Two states with different durations and variables

Figure 4 shows two states, the first one “STATE_1” is a
default state with an infinite duration, while the second one
has a modified duration and a state variable which is a real
number (and which can evolve during the simulation).
A state, once created, must be given a name.
When the user specifies a state, sometimes he adds at least
one state variable which can take several numerical values,
and he considers there is one single state with a state
variable.
However, from the modeller’s point of view there are as
many states as the state variable can have.
But we chose to represent the state as a simple one. Usually,
it is easier to simulate states with a few state variables.
Each state has a time duration value (considerered as a
particular state variable), by default this duration is infinite,
but must be changed by the user, as we see on the previous
picture. When the duration expires, it generates a particular
event, because it comes from the model itself. The typical
form of a state is
<state>::=“(“<max_duration>{“,”<variable>[<value>]}“)”

An event is defined as follows (using the BNF notation) :
<event>::= “(“ <inputport> | <outputport> “,” <value> “)”
For instance, if the scientist expects an input with the real
value 3.14 on the third input port, the event will be:
E_1= (in3, 3.14).
An event specified using an output port will automatically
be sent on the given port just before the autotransition of the
current state is fired.

A transition is graphically represented by an oriented arrow
between two states. There are two different arrows,
depending on the transition type: if it is triggered by an
external event, the arrow will be full, if it is triggered by a
clock event, when maxDuration expires (we name it
autotransition) it will have a thin white line inside.
Formally, a transition is written as follows (still using the
BNF notation):
<transition> ::=<state>”,”<state>[<event>] [<action>],

where the event is not specified if it is a time transition, and
where the corresponding action is optional.
An autotransition between two states (STATE _1 and
STATE _2) can be written:
T_1::= STATE_1, STATE _2

As we see, an action can be associated to any type of
transition: at this time, we write it using a simple pseudo-
language, that is the reason why an action is only composed
of a string. An action is often used to update the states (their
lifespan and/or their state variables).
Using the BNF notation, an action can be written as follows:
<action> ::= “(“{<state>[<variable>] <value> “;”}”)”
The target-state of the action and a value must always be
specified, if only a numerical value follows the state name,
the action will change the maxDuration. If there is also a
variable name after the state name, then the system updates
the variable with the given value.
An action can be composed of several updates.
An action which changes the maxDuration of STATE_1 and
gives the value 3 to a variable named var1 in STATE_2
will be written :
<A1>::=(STATE_1 maxDuration 150; STATE_2 var1 1;)
or <A1>::=(STATE_1 150; STATE_2 var1 3;)

Based on what we said, we give the metamodel of this
specification language, using a UML 2.0 class diagram (see
figure 5)

Figure 5. The language’s metamodel

STATE_1
maxDuration =∞

STATE_2
maxDuration =19

var1(real)

4. AN EXAMPLE OF USE: A STUDENT

To illustrate our modelling method, let us take a very simple
system: a student. We first study his behaviour, then we use
our method to model this system.
From an expert’s point of view, a student may be sleeping,
working, eating or idle.
The default time a student needs to sleep is 12 hours, but
this time can be reduced if an external event from his alarm
clock radio disturbs him. In every case, once he wakes up,
he is in an idle state, for 12 hours. As long as he remains in
this state, he can go to work if he receives a message from
one of his teachers, or he can start eating for 2 hours if
someone calls him to eat (“come with us, let’s eat !”). As a
lambda student, he can not receive messages while eating.
After his meal, he will say to the world that he feels good,
and then he returns in the idle state. While working, the
student sends regular messages to his teacher (every hour),
telling him the number of exercises he did (a random
number between 1 and 5). He is able to work for an hour,
the he gets back in the idle state unless he receives again a
message, or he falls asleep. While working, he cannot be
disturbed by an incoming message.
Every operation which needs energy (working and eating)
must be taken into account: the time before he goes back to
sleep must decrease.

Using our modelling method, we first choose the time unit,
which is one hour. The model is easy to identify, it is the
student himself, he has one input port (to receive messages)
and two output ports (one to send messages, the other to
send values).
There are four states for this student : SLEEPING,
WORKING, EATING and IDLE.
The autotransitions will be between sleeping and idle, idle
and sleeping, eating and idle, working and idle.
The transitions based on events will be between sleeping
and idle (if the alarm-clock rings), idle and eating, idle and
working.
There are 3 possible input messages : “eat”, bip”, “ work”.
There are 2 types of outputs, one is a message “I feel good
now !” (after his meal) and the other is a random value
between 1 and 5 (after his work).
We must remember to decrease the maxDuration of the
IDLE state : this is an action to associate to transitions.
Figure 6 illustrates the representation of the studied system
using our specification language.

Figure 6. The student modelled

5. CONCLUSION AND FUTURE WORK

We followed step by step the methodology defined in part 3.
However, the main difficulty when modeling systems is to
have a valid simulator.
Every model designed with our language is platform-
independent, a PIM according to the MDA terminology.
We know the DEVS metamodel, and the proposed language
metamodel : hence, it is possible to transform a PIM written
using our language onto a DEVS PIM using simple
transformation rules (for instance, MOF QVT). MOF is a
meta-metaformalism, i.e. all the metamodels can be defined
using MOF.
Once the DEVS PIM created, we need to chose an Object
Oriented Language in which we want to generate object
code : the metamodel of this language must also be known.
An environment which supports MDA is able to generate
such an object code (using templates).
Figure 7 sums up those mappings.

Figure 7. DEVS code generation starting from a model
designed with our specification language

The aim of this paper was to present a methodology to help
scientists to specify DEVS models : this methodology is
applied using an intuitive specification language. Once a
model created, it is interesting to perform a code generation
towards a DEVS model in order to perform the simulation,
that is why we chose a MDA approach : the advantages of
this software engineering method could improve the
reusability of the models.
We designed our model using the proposed language, the
main advantages of this language is that it is graphical and
intuitive.
In a near future, we plan to finish our G.U.I. and its
integrated help, and to add the G.U.I. the possibility for the
user to specify advanced actions (writing code for instance).
We also plan to take into account coupling relationships
between models, in order to simulate DEVS coupled
models. Finally, we are working on a state of art of all the
MDA-Oriented Environments in order to compare them and
to chose the best one to perform our mappings and our code
generation towards a PythonDEVS-oriented platform.

6. REFERENCES

B.P. Zeigler, Multifaceted modelling and discrete event
simulation. Academic Press, 1984.

B.P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling
and Simulation, Second Edition. Academic Press, 2000.

F. Barros. “Dynamic structure discrete event system
specification: a new formalism for dynamic structure
modelling and simulation”. In Proceedings of Winter
Simulation Conference 1995, 1995.

A. Uhrmarcher. “Dynamic Structures in Modeling and
Simulation: A Reflective Approach,” ACM Transactions on
Modeling and Computer Simulation, Vol. 11, No. 2, April
2001, Pages 206–232, 2001.

Y. Kwon, H. Park, S. Jung, and T. Kim. “Fuzzy-devs
formalism: Concepts, realization and application”.
Proceedings AIS 1996, pages 227–234, 1996.

N. Giambiasi and S. Ghosh, “Min-Max-DEVS: A new
formalism for the specification of discrete event models
with min-max delays,” 13th European Simulation
Symposium, Marseille, France, pp 616-621, 2001.

G. Wainer, C. Frydman and N. Giambiasi "An environment
to simulate cellular DEVS models". Proceedings of the SCS
European Multiconference on Simulation. Istanbul, Turkey.
1997.

J. B. Filippi, F. Bernardi, and M. Delhom. “The jdevs
environmental modeling and simulation environment”.
IEMSS, Integrated Assessment and Decision Support,
Lugano Suisse, pages 283–288, 2002.

L. Zadeh, Fuzzy Sets. Inform Control, 1965.

H. Vangheluwe, “The discrete event system specification
DEVS Formalism,” 2001.

http://www.omg.org/mda/

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

S. Garredu, E. Vittori, J.-F. Santucci and A. Muzy.
“Specification languages as front-end towards DEVS
formalism”. ISEIM: The First International Symposium on
Environment Identities and Mediterranean Area, Corte,
2006.

Thomas R. Gruber (1993). Toward principles for the design
of ontologies used for knowledge sharing, Originally in N.
Guarino and R. Poli, (Eds.), International Workshop on
Formal Ontology, Padova, Italy. Revised August 1993.
Published in International Journal of Human-Computer
Studies, Volume 43 , Issue 5-6 Nov./Dec. 1995, Pages: 907-
928

B. Bouchon Meunier, La logique floue et ses applications.
Broché. 1985.

A. Kaufmann, Introduction à la théorie des sous-ensembles
flous. Number 1. Masson edition. 1973.

P.-A. Bisgambiglia, E. De Gentili, J.-F. Santucci and P.A.
Bisgambiglia. "DEVS-Flou: a Discrete Events and Fuzzy
Sets Theory-Based Modeling Environment", ISSCAA: 1st
International Symposium on Systems and Control in
Aerospace and Astronautics. Harbin, CHINA, 2006.

“Unified Modeling Language: Superstructure”, V 2.0 OMG
document formal/05-07-04, april 2005

J. Bézivin, “On the Unification Power of Models”, Software
and System Modeling. – 2005, Vol. 4, No. 2, p. 171-188

J. Miller and J. Mukerji, “Model Driven Architecture guide
version 1.0.1”, OMG document number /03-06-01, january
2003.

[Hong et al., 2005] –Hong, K.J., Kim, T.G. – DEVSpecL:
DEVS specification language for modelling, simulation and
analysis of discrete event systems, 2005

A. Tolk, J.A. Muguira, M&S within the Model Driven
Architecture, Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC) 2004

