
UNIVERSITEIT ANTWERPEN

A Multi-Paradigm Modelling Approach
for Engineering Model Debugging

Environments

Een Multi-Paradigma Modelleeraanpak voor het Ontwikkelen
van Debugomgevingen voor Modelbouw

Auteur:
Simon VAN MIERLO

Promotor:
Prof. Dr. Hans VANGHELUWE

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

https://www.uantwerpen.be/
http://msdl.cs.mcgill.ca/people/simonvm
http://msdl.cs.mcgill.ca/people/hv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 5
1.3 Structure . 6

2 Background 7
2.1 Multi-Paradigm Modelling . 7
2.2 Building Modelling and Simulation Tools 8

2.2.1 Syntax of Modelling Languages 9
2.2.2 Model Transformation . 11
2.2.3 Semantics of Modelling Languages 13
2.2.4 Modelling Workflows with FTG+PM 16

2.3 Modelling System Behaviour with Statecharts 17
2.3.1 Harel Statecharts . 18
2.3.2 SCCD: Extending Statecharts with Dynamic Structure 21

2.4 Modelling and Simulation Workflow . 23

3 State of the Art 27
3.1 Program Debugging . 27

3.1.1 Scientific Debugging . 28
3.1.2 Debugging Concurrent Programs 30
3.1.3 Debugging Embedded Systems 33
3.1.4 Omniscient Debugging . 33
3.1.5 Live Programming . 34

3.2 Model Debugging . 34
3.2.1 Executable Modelling . 35
3.2.2 Domain-Specific Modelling . 37
3.2.3 Non-Executable Modelling . 38

3.3 Simulation Debugging . 39
3.4 Back-Translation of Traces . 39

4 Modelling Model Debugging Environments 41
4.1 A Language Classification . 44

4.1.1 Semantic Features . 44
4.1.2 Definition of Semantics . 50

4.2 Debugging Operations . 51

CONTENTS

4.2.1 Stepping . 51
4.2.2 State . 52
4.2.3 Time . 53
4.2.4 Breakpoints . 55

4.3 De- and Reconstruction of Model Simulators 57
4.4 Architecture . 60
4.5 Workflow . 62

5 Representative Formalisms 65
5.1 Action Language . 67

5.1.1 Syntax and Semantics . 68
5.1.2 Debugging Operations . 70
5.1.3 De- and Reconstructed Simulator 74
5.1.4 Debugging Environment . 77

5.2 Causal Block Diagrams . 79
5.2.1 Syntax and Semantics . 79
5.2.2 Debugging Operations . 83
5.2.3 De- and Reconstructed Simulator 84
5.2.4 Debugging Environment . 86

5.3 Parallel DEVS . 88
5.3.1 Syntax and Semantics . 88
5.3.2 Debugging Operations . 95
5.3.3 De- and Reconstructed Simulator 96
5.3.4 Debugging Environment . 99

5.4 Statecharts . 104
5.4.1 Syntax and Semantics . 104
5.4.2 Debugging Operations . 108
5.4.3 De- and Reconstructed Simulator 109
5.4.4 Debugging Environment . 112

5.5 Petrinets . 115
5.5.1 Syntax and Semantics . 116
5.5.2 Debugging Operations . 117
5.5.3 De- and Reconstructed Simulator 118
5.5.4 Debugging Environment . 120

5.6 Dynamic-Structure DEVS . 122
5.6.1 Syntax and Semantics . 122
5.6.2 Debugging Operations . 127
5.6.3 De- and Reconstructed Simulator 130
5.6.4 Debugging Environment . 133

5.7 Hybrid TFSA-CBD . 136
5.7.1 Syntax and Semantics . 136
5.7.2 Debugging Operations . 140
5.7.3 De- and Reconstructed Simulator 141
5.7.4 Debugging Environment . 144

5.8 A Domain-Specific Formalism for Production Systems 145
5.8.1 Syntax and Semantics . 146
5.8.2 Debugging Operations . 151
5.8.3 Implementation . 152

ii

CONTENTS

6 Advanced Techniques 165
6.1 Omniscient Model Debugging . 165

6.1.1 Stepping Back . 166
6.1.2 Optimization . 167
6.1.3 Performance Evaluation . 171

6.1.3.1 Omniscient Debugging Overhead 171
6.1.4 Conclusion . 174

6.2 Live Modelling . 175
6.2.1 Introduction to Live Programming 176
6.2.2 Deconstructing Live Programming 177
6.2.3 Transposing to Live Modelling 179
6.2.4 Examples . 185

7 Conclusion 191

iii

Acknowledgements

I would like to take this opportunity to thank a number of people that have played an
important role supporting me during my 4-year PhD project.

First off, this thesis would not be here, and I probably would not have started a scientific
career, if it weren’t for my supervisor, Hans Vangheluwe. You created numerous oppor-
tunities for me to discover the scientific community and work within it. You taught me
the scientific method, always with encouragements, rather than dictating. Thank you for
instilling part of the passion you have for scientific research and being an inspiration to
finish this work.

Thanks to my colleagues, not only for the scientific discussions, but equally for the team
spirit, off-topic discussions, and fun activities. In particular, thank you Yentl, for sharing an
office with me (and putting up with me) for all these years. Without the cross-fertilization
and collaborations that emerged, this thesis would not be what it is today. Thank you
Claudio, Istvan, Ken, Joachim, Bart, as well as the other members of the Ansymo research
group, for being great colleagues. To Bentley, Maris, Sadaf, and Levi: thank you for hosting
me on numerous occasions when I visited MSDL at McGill. To my extended colleagues in
the department, the faculty, and the administration: thank you for you helpfulness, your
flexibility at times, and the pleasant co-operations.

Thanks to everyone at Autodesk Research for an interesting three-month internship. In
particular, thank you Rhys, Simon, and Azam for the fruitful collaboration. Due to your
insights and by giving me a glimpse into how your department conducts research, my own
research skills have vastly improved. Thank you Peter, Louise, Marcus, Gabrielle, and
Harrison for making me feel at home in Toronto. I hope we meet again soon.

Every PhD thesis has to be reviewed and accepted by the scientific community. Thank you
to the members of my PhD committee and jury: Jeff Gray, Clark Verbrugge, Tom Mens,
Dirk Janssens, Jan Broeckhove, and Serge Demeyer. Your diligent reading of my thesis
has improved it tremendously, and the questions I received made me rethink and adjust,
arriving at this final version.

Thank you mom, for always being there for me and supporting me at every step in my life.
Your continuous wisdom, care, and love have given me the strength to continue and find
myself at times. Thank you dad, for your continuous support and a listening ear throughout
the years.

A big thank you to my friends, who offered the necessary distractions outside of the
university. Michiel, Jo, Laurens: thank you for all the years we’ve been friends, our long-

ACKNOWLEDGEMENTS

lasting friendship is truly important to me. Joachim, Michiel, Cis, and Philippe: I had a fun
time studying with you at the university, and whenever we see each other (usually over a
beer). Thank you to everyone I met, worked with, and had a lot of fun with in the scouts,
and in EESTEC.

And last, but certainly not least, thank you Stien. Thank you for always supporting me,
being there for me, and understanding how important my work is for me. Marrying you
was the best decision that I made, and I cannot wait to spend the rest of my life with you.

Simon Van Mierlo
12 March 2018

vi

Abstract

Today’s engineered systems are becoming increasingly complex. This complexity stems
from the demand on their autonomy, safety, and intercommunication: software-intensive
systems combine a mechanical aspect with a software controller, forming a feedback loop;
cyber-physical systems combine multiple independent systems into a network to achieve
a higher-level task. Safety needs to be guaranteed, as our society increasingly depends
on these systems to fulfil day-to-day needs. To successfully develop such systems, the
methods to design, analyse and deploy such systems need to evolve. Before, systems
were categorized either as a mechanical system or as a software system, and specialized
development methods existed for each category. This no longer suffices: the tight integration
between physical aspects and software aspects of systems needs to be acknowledged during
all phases of the development cycle: from requirements engineering, to system design and
validation, and ultimately deployment.

Model-Driven Engineering (MDE) is a method for developing systems that regards models
as first-class citizens in the development process. When developing systems according
to the MDE process, engineers build models (abstractions) that describe the different
parts of the system in (graphical) modelling languages. The modelling languages provide
abstractions that allow engineers to focus on what the system is supposed to do, instead of
how the system is supposed to do it (which are implementation details that are important
for deployment, not at design time). Within MDE, Multi-Paradigm Modelling (MPM)
advocates to model every (relevant) aspect of a system explicitly, at the most appropriate
level(s) of abstraction, using the most appropriate modelling language(s), while modelling
the development process(es) explicitly. This allows specialists in a particular domain
to model systems using abstractions they are most familiar with. But, while modelling
languages are tools that allow domain experts to more intuitively develop their models and
thereby manage the development process for highly complex systems, they do not guarantee
the developed models are without defects. The complexity of the systems does not decrease
by using a different development method: while the languages are more intuitive and
specialized, the systems they can model are not simple by any means. By identifying
system properties that are not satisfied (signifying that a requirement was not implemented
by the system), early verification and validation techniques are able to discover and observe
the failures (or bugs) of a system. Yet, once a failure has been observed, it is then necessary
to identify why the failure occurs (i.e., the defect that caused the failure), and how to modify
the models to remove the cause of the failure. Locating and fixing the cause of a failure can
be accomplished manually given a good understanding of the models. Alternatively, a wide
range of debugging techniques can be used to assist developers in finding the cause of the

ABSTRACT

problem. Such debugging techniques have been extensively researched and developed for
systems implemented with (imperative) program code. Yet, when it comes to models, very
few debugging tools and techniques are available.

Building tools for the large set of (semantically varying) modelling languages is a costly
endeavour, as the users demand their tools to solve increasingly difficult tasks, such
as automatic verification, symbolic execution, and design space exploration. For often-
used (general-purpose) languages, this investment can be made, but for domain-specific
languages, the cost of developing tools needs to be low in order for the benefits to outweigh
these costs. Recent advances in modelling language engineering have provided language
engineers with tools to quickly develop a specialized modelling language and its associated
tools, including (graphical) modelling environments, simulators, and code generators.
Language engineering techniques are used by language engineers that are tasked with
developing a new language and its tooling. More recently, techniques focus on generating
not only a design environment for the language, but also a runtime language for visualizing
the state of the system after and during simulation, an output language for viewing and
replaying a simulation trace, and a property language for defining temporal properties the
system needs to satisfy.

Finding a systematic way of implementing tools and techniques (i.e., finding an engineering
process) for model debugging is related to the diverse set of models and modelling languages
used in a typical system development. Developing such debuggers is complicated because
of the interaction between the modelling language’s semantics (which can exhibit, amongst
others, non-deterministic, concurrent, timed, and event-processing behaviour), the different
notions of simulated time (real-time versus as-fast-as-possible) and the user interacting with
the execution of the model through a (visual) debugging interface. We contribute to the state
of the art in language engineering by providing a structured approach for turning modelling
and simulation environments into interactive debugging environments. To achieve this, we
present:

• an approach to instrument simulators with debugging support based on an explicit
representation of their control flow;

• an architecture, that leverages existing components for debugging purposes, including
the (graphical) modelling environment, the debugging-enhanced simulator, and any
model-specific visualizations;

• a workflow that guides language engineers and tool builders to enhance their lan-
guages and tools with debugging support.

To demonstrate feasibility and validate our approach, we apply it to a set of formalisms
with diverse semantics. These formalisms are carefully chosen based on an analysis of their
semantic properties. For each language, we define a set of useful debugging operations and
implement them by instrumenting their simulation algorithm using our technique based
on an explicit model of their control flow. We focus on interactive debugging techniques
which allow users to control and observe the simulation process. The user controls the
debugger through a (graphical) interface which communicates with the debugging-enhanced
simulator. These interfaces use the abstractions provided by the debugged language to
present intermediate states of the simulation to the user. The interfaces are generated from
a definition of a debugging language, which extends the runtime language of the modelling
language. We also explain how two advanced debugging techniques that were implemented

viii

ABSTRACT

for a number of programming languages can be (efficiently) implemented for modelling
languages: omniscient debugging (which allows users to step back in a simulation trace)
and live modelling (which allows users to modify the design model during simulation). For
these advanced techniques, we provide a generic workflow and techniques for implementing
these operations for any modelling language, and apply these techniques to representative
examples to demonstrate feasibility.

ix

Nederlandstalige
Samenvatting

De complexiteit van systemen die door de mens worden ontwikkeld stijgt continu. Dit komt
doordat er hoge eisen worden gesteld aan de veiligheid van deze systemen, hun autonomie,
en hun intercommunicatie: software-intensieve systemen combineren een mechanisch
aspect met software die deze controleert (waardoor een terugkoppeling ontstaat); cyber-
fysische systemen plaatsen verschillende onafhankelijke systemen in een netwerk om zo
een taak te verrichten. Om deze systemen succesvol te kunnen ontwikkelen, moeten de
methodes om deze systemen te ontwerpen, analyseren, en uitrollen mee evolueren. Vroeger
werden systemen ingedeeld als een mechanisch of een softwaresysteem, en er bestonden
gespecialiseerde ontwikkelmethoden voor elk type systemen. Dit voldoet niet langer:
de integratie tussen de fysieke en software aspecten van systemen moet in beschouwing
worden genomen tijdens alle fasen van systeemontwikkeling: van het verzamelen van
benodigdheden, tot het ontwerp en validatie van het systeem, en uiteindelijk het uitrollen
van het systeem.

Model-Driven Engineering (MDE) is een methode voor het ontwikkelen van systemen,
waarbij modellen die het gedrag en de structuur van systemen beschrijven centraal staan.
Ingenieurs bouwen modellen (abstracties) van de verschillende delen van het systeem in
(grafische) modelleertalen. Deze talen laten de ingenieurs toe om te focussen op wat het
systeem moet doen, in plaats van hoe het systeem zijn taken moet volbrengen. Binnen MDE
beschrijft Multi-Paradigm Modelling (MPM) een methode waarbij alle relevante aspecten
van systemen expliciet gemodelleerd worden, op het (de) meest geschikte niveau(s) van
abstractie, gebruik makende van de meest geschikte modelleertaal (of -talen), waarbij
de ontwikkelprocessen expliciet gemodelleerd worden. Dit laat domeinexperts toe om
hun systemen te ontwikkelen met notaties waar zij vertrouwd mee zijn. Maar, hoewel
dit het ontwikkelproces vergemakkelijkt, is er geen garantie dat het ontwerp van het
systeem geen fouten bevat. De complexiteit van systemen verlaagt niet door een andere
ontwikkelmethode te gebruiken: hoewel de ontwerptalen meer gespecialiseerd en intuı̈tief
zijn, zijn de systemen die ermee gemodelleerd worden allesbehalve triviaal. Door de
eigenschappen te identificeren die werden gespecifieerd voor het systeem, maar waaraan
het geı̈mplementeerde systeem niet voldoet, kunnen verificatie en validatie technieken
de fouten (of bugs) van het systeem ontdekken en observeren. Het is noodzakelijk, eens
een fout geobserveerd wordt, de oorzaak hiervan (een defect) te ontdekken. De defecten
kunnen gevonden worden door manuele inspectie van de modellen, indien de modellen
goed begrepen worden. Een alternatief voor manuele inspectie, die ontwikkelaars bijstaat

NEDERLANDSTALIGE SAMENVATTING

bij het vinden van defecten, wordt geboden door debugtechnieken. In het domein van
programmeertalen zijn deze technieken uitvoerig onderzocht, maar voor MDE en MPM
zijn ze vaak onbestaande, of geı̈mplementeerd op een ad-hoc manier.

Het ontwikkelen en onderhouden van tools voor een grote verzameling (semantisch ver-
schillende) modelleertalen is een grote investering, zeker gezien de gebruikers van deze
tools verwachten dat meer en meer complexe taken worden uitgevoerd, zoals automatische
verificatie, symbolische uitvoering, en het verkennen van de ontwerpruimte. Voor vaak ge-
bruikte modelleertalen kan deze investering gemaakt worden, maar voor domein-specifieke
talen moet de ontwikkelkost gedrukt worden. Recente vooruitgang in het ontwerpen van
modelleertalen heeft gezorgd voor tools en technieken die taalingenieurs in staat stellen
om snel een gespecialiseerde modelleertaal en bijhorende tools te ontwikkelen, waaronder
(visuele) modelleeromgevingen, simulatoren, en codegeneratoren. Meer recent werden
technieken ontwikkeld om niet enkel een ontwerptaal voor een modelleertaal te construeren,
maar ook een runtime taal, die de staat van het systeem kan visualiseren tijdens en na simu-
latie, een output taal om een simulatie trace te bekijken en terug af te spelen, en een taal
waarin temporele eigenschappen waaraan het systeem moet voldoen kunnen gespecifieerd
worden.

Een systematische techniek voor het ontwikkelen van tools en technieken voor het debuggen
van modellen is gerelateerd aan de diverse verzameling van modellen en modelleertalen
die gebruikt worden bij het ontwikkelen van systemen. Het ontwikkelen van debuggers
is complex, mede door de interactie tussen de semantiek van de modelleertaal (die onder
andere niet-deterministisch, concurrent, tijdsgebonden, en event-verwerkend kan zijn), de
verschillende noties van gesimuleerde tijd (real-time tegenover as-fast-as-possible) en de
gebruiker die het uitvoeren van het model door middel van een (visuele) debugomgeving
beı̈nvloedt. Deze thesis breidt de state-of-the-art in het ontwerpen van talen en hun geasso-
cieerde tools uit, waarbij het mogelijk wordt gemaakt om debugoperaties toe te voegen aan
eender welke modelleertaal. Hiervoor worden drie bijdragen gemaakt:

• een proces om de simulator van de taal te instrumenteren met debugoperaties;

• een architectuur, die de simulator verbindt met een (grafische) debugomgeving,
waarin de domeinexpert modellen kan debuggen, gebruik makende van de abstracties
van de modelleertaal;

• een workflow die toolontwikkelaars helpt om debugoperaties toe te voegen aan hun
tool(s).

De technieken worden gevalideerd door ze toe te passen op een verzameling modelleertalen
waarvan het gedrag sterk uiteenloopt. Deze modelleertalen zijn gekozen op basis van hun
semantische eigenschappen. Dit toont aan dat de technieken generiek zijn en ook op andere
modelleertalen kunnen toegepast worden. Voor elke modelleertaal wordt een verzameling
van bruikbare debugoperaties gedefinieerd, die geı̈mplementeerd worden door het simulatie-
algoritme te instrumenteren, gebruik makende van onze techniek gebaseerd op een expliciete
voorstelling van de controleflow. We leggen ons toe op interactieve debugtechnieken, die
gebruikers toelaten om het simulatieproces te beı̈nvloeden en observeren. De gebruiker
benadert de debugger door middel van een (visuele) debugomgeving, die communiceert
met de geı̈nstrumenteerde simulator. Deze debugomgeving gebruikt de abstracties van de
gedebugde taal om intermediaire simulatie “snapshots” weer te geven aan de gebruiker. De
debugomgeving is gegenereerd van de definitie van een debugtaal, die de runtimetaal van de

xii

NEDERLANDSTALIGE SAMENVATTING

modelleertaal uitbreidt. Bovendien worden twee technieken, live modelling en omniscient
debugging, geı̈mplementeerd voor modelleertalen. Voor deze technieken ontwikkelen
we een generische workflow en technieken die het mogelijk maken ze te implementeren
voor eender welke modelleertaal. We passen ze toe op representatieve voorbeelden om de
techniek te valideren.

xiii

Publications

The following peer-reviewed publications that I co-authored were included in this the-
sis:

• HANS VANGHELUWE, DANIEL RIEGELHAUPT, SADAF MUSTAFIZ, JOACHIM
DENIL, AND SIMON VAN MIERLO, Explicit modelling of a CBD experimentation
environment, in Proceedings of the 2014 Symposium on Theory of Modeling and
Simulation - DEVS, TMS/DEVS ’14, part of the Spring Simulation Multi-Conference,
Society for Computer Simulation International, 2014, pp. 379–386.

Hans came up with the idea, Daniel implemented the prototype, Simon wrote the
paper, Sadaf and Joachim reviewed and modified the paper accordingly. Used in
section 5.2.

• SIMON VAN MIERLO, Explicit modelling of model debugging and experimentation,
in Proceedings of the Doctoral Symposium at MODELS’14, 2014.

Hans provided the inspiration, Simon compiled the ideas and wrote the paper. Used
in chapter 4.

• SIMON VAN MIERLO, Explicitly modelling model debugging environments, in Pro-
ceedings of the ACM Student Research Competition at MODELS 2015 co-located
with the ACM/IEEE 18th International Conference MODELS 2015, 2015, pp. 24–29.

Simon did all the work (implementing the CBD debugger, writing the paper). Used
in chapter 4 and section 5.2.

• SIMON VAN MIERLO, YENTL VAN TENDELOO, BRUNO BARROCA, SADAF
MUSTAFIZ, AND HANS VANGHELUWE, Explicit modelling of a Parallel DEVS
experimentation environment, in Proceedings of the Symposium on Theory of Mod-
eling & Simulation: DEVS Integrative M&S Symposium, DEVS ’15, San Diego,
CA, USA, 2015, Society for Computer Simulation International, pp. 107–114.

Simon and Hans worked on the initial ideas. Yentl implemented the debugging-
enhanced simulator. Simon implemented the front-end and wrote the paper. Sadaf
and Bruno reviewed and modified the paper accordingly. Used in section 5.3.

• SIMON VAN MIERLO, YENTL VAN TENDELOO, BART MEYERS, JOERI EXEL-
MANS, AND HANS VANGHELUWE, SCCD: SCXML extended with class diagrams,
in 3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS
2016, 2016.

PUBLICATIONS

Hans provided the initial idea, Joeri implemented the compiler and runtime of SCCD.
Simon wrote the paper, Yentl and Bart reviewed and modified the paper accordingly.
Used in section 2.3.2.

• SIMON VAN MIERLO, YENTL VAN TENDELOO, AND HANS VANGHELUWE, De-
bugging Parallel DEVS, SIMULATION, 93 (2017), pp. 285–306.

Simon and Hans worked on the initial ideas. Yentl implemented the debugging-
enhanced simulator and wrote the related work section. Simon implemented the
front-end and wrote the rest of the paper. Used in section 5.3.

• SIMON VAN MIERLO, CLÁUDIO GOMES, AND HANS VANGHELUWE, Explicit
modelling and synthesis of debuggers for hybrid simulation languages, in Proceedings
of the Symposium on Theory of Modeling & Simulation, TMS/DEVS ’17, San Diego,
CA, USA, 2017, Society for Computer Simulation International, pp. 4:1–4:12.

Cláudio provided the examples and the hybrid simulation algorithm. Simon and
Cláudio worked on the initial ideas, and Simon implemented the debugging-enhanced
hybrid simulator. Simon and Claudio jointly wrote the paper. Hans reviewed and
modified the paper accordingly. Used in section 5.7.

• SIMON VAN MIERLO, YENTL VAN TENDELOO, BART MEYERS, AND HANS
VANGHELUWE, The Handbook of Formal Methods in Human-Computer Interaction,
Human-Computer Interaction Series, Springer Int. Publishing, 2017, ch. Domain-
Specific Modelling for Human–Computer Interaction, pp. 435–463.

Bart proposed the initial idea and wrote the section on ProMoBox. Simon imple-
mented the domain-specific language and wrote the paper together with Yentl. Hans
reviewed and modified the paper accordingly. Used in section 2.2.

• YENTL VAN TENDELOO, SIMON VAN MIERLO, AND HANS VANGHELUWE, Time-
and space-conscious omniscient debugging of Parallel DEVS, in Proceedings of the
Symposium on Theory of Modeling & Simulation, TMS/DEVS ’17, San Diego, CA,
USA, 2017, Society for Computer Simulation International, pp. 3:1–3:12.

Yentl implemented the solution and wrote the paper, Simon helped by writing the
related work section and reviewing the paper. Hans also reviewed and modified the
paper accordingly. Used in section 6.1.

• SIMON VAN MIERLO AND HANS VANGHELUWE, Debugging non-determinism:
a Petrinets modelling, analysis, and debugging tool (tool demonstration), in Pro-
ceedings of MODELS 2017 Satellite Events, vol. 2019, CEUR-WS, September
2017.

Simon implemented the debugger and wrote the paper. Hans reviewed and modified
the paper accordingly. Used in section 5.5.

• SIMON VAN MIERLO, ERWAN BOUSSE, HANS VANGHELUWE, MANUEL WIM-
MER, MARTIN GOGOLLA, MATTHIAS TICHY, AND ARNAUD BLOUIN, Report on
the 1st international workshop on debugging in model-driven engineering (MDE-
bug’17), in Proceedings of MODELS 2017 Satellite Events, vol. 2019, CEUR-WS,
September 2017.

xvi

PUBLICATIONS

Simon, Hans, Erwan, Manuel, and Clark organized the workshop. Simon and Erwan
wrote the bulk of the paper. Manuel, Clark, Martin, Matthias, and Arnaud reviewed
and helped iterate over several versions of the paper. Used in chapter 1.

The following peer-reviewed publications that I co-authored were not included in this
thesis:

• EUGENE SYRIANI, HANS VANGHELUWE, RAPHAEL MANNADIAR, CONNER
HANSEN, SIMON VAN MIERLO, AND HUSEYIN ERGIN, AToMPM: A web-based
modeling environment, in Joint Proceedings of MODELS’13 Invited Talks, Demon-
stration Session, Poster Session, and ACM Student Research Competition co-located
with the 16th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2013), vol. 1115, CEUR, Sept. 2013, pp. 21–25.

Raphael implemented the first prototype of AToMPM, inspired by the ideas of Hans.
Simon, Conner, and Huseyin improved the prototype. Eugene wrote the paper, and
Hans reviewed and modified it accordingly.

• SIMON VAN MIERLO, BRUNO BARROCA, HANS VANGHELUWE, EUGENE SYRI-
ANI, AND THOMAS KÜHNE, Multi-level modelling in the Modelverse, in MULTI
2014 – Multi-Level Modelling Workshop Proceedings, 2014.

Simon, Hans, and Bruno came up with the initial idea. Simon implemented the
prototype. Simon wrote the paper. Eugene, Hans, and Thomas reviewed and modified
the paper accordingly.

• BRUNO BARROCA, SADAF MUSTAFIZ, SIMON VAN MIERLO, AND HANS VAN-
GHELUWE, Integrating a neutral action language in a DEVS modelling environment,
in Proceedings of the 8th International Conference on Simulation Tools and Tech-
niques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), 2015, pp. 19–28.

Bruno, Sadaf, and Hans came up with the initial idea. Bruno and Sadaf implemented
the prototype, Simon helped with the front-end in AToMPM. Bruno wrote the paper.
Hans, Sadaf, and Simon reviewed and modified the paper accordingly.

• JONATHAN CORLEY, EUGENE SYRIANI, HUSEYIN ERGIN, AND SIMON VAN
MIERLO, Modern Software Engineering Methodologies for Mobile and Cloud Envi-
ronments, IGI Global, jan 2016, ch. Cloud-based Multi-View Modeling Environments,
pp. 120–139.

Jonathan implemented the multi-view architecture and wrote the paper,with help from
Huseyin. Simon implemented the back-end (Modelverse) and wrote the section on it.
Eugene reviewed and modified the paper accordingly.

• YENTL VAN TENDELOO, SIMON VAN MIERLO, BART MEYERS, AND HANS
VANGHELUWE, Concrete syntax: A multi-paradigm modelling approach, in Proceed-
ings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2017, New York, NY, USA, 2017, ACM, pp. 182–193.

Simon provided the initial idea. Yentl implemented the approach in the Modelverse,
and wrote the majority of the paper, while Simon and Bart helped and refined it.
Hans reviewed and modified the paper accordingly.

xvii

Overview of Activities

During my PhD, I participated in a number of scientific activities that were (to some extent)
related to my research. A (non-exhaustive) list is included here.

Organization of Scientific Activities

• Main organizer of the “1st International Workshop on Debugging in Model-Driven
Engineering” (MDEbug’17), part of the 20th Intl. Conf. on Model Driven Engineer-
ing Languages and Systems (MODELS’17)

Teaching

• Lab Sessions “Model Driven Engineering” course at University of Antwerp (2013-
2017)

• Lab Sessions of the 6th International Summer School on Domain-Specific Modelling
(DSM-TP 2015)

• Lab Sessions of the 7th International Summer School on Domain-Specific Modelling
(DSM-TP 2016)

• Lab Sessions of the 8th International Summer School on Domain-Specific Modelling
(DSM-TP 2017)

• Tutorial “An Introduction to Statecharts Modelling and Simulation” at SpringSim’17,
23 april 2017.

Participation in Scientific Activities

• CAMPaM Workshop 2014 (Bellairs, Barbados; 7-14 February 2014)

• 17th Intl. Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS’14) (Valencia, Spain; 28 September - 3 October 2014)

OVERVIEW OF ACTIVITIES

• DSM-TP Summer School 2014 (Antwerp, Belgium; 25-29 August 2014)

• CAMPaM Workshop 2015 (Bellairs, Barbados; 30 January - 6 February 2015)

• Spring Simulation Multiconference 2015 (Alexandria, VA, USA; 12-15 April 2015)

• DSM-TP Summer School 2015 (Antwerp, Belgium; 24-28 August 2015)

• 18th Intl. Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS’15) (Ottawa, Canada; 27 September - 2 October 2015)

• DSM-TP Summer School 2016 (Geneva, Switzerland; 22-26 August 2016)

• 3rd Workshop on Engineering Interactive Systems with SCXML (Brussels, Belgium;
21 June 2016)

• Spring Simulation Multiconference 2017 (Virginia Beach, VA, USA; 23-26 April
2017)

• DSM-TP Summer School 2017 (Montreal, Canada; 10-14 July 2017)

• 20th Intl. Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS’17) (Austin, TX, USA; 17-22 September 2017)

xx

List of Figures

1.1 The debugging process: an overview. 3

2.1 Defining a formalism. 9
2.2 Generating a modelling environment for a design language D. 10
2.3 Generating a modelling environment for a RAMified design language D PAT. 12
2.4 Operational semantics. 14
2.5 Translational semantics. 15
2.6 An example FTG+PM model for developing systems using the State-

charts language. 17
2.7 The metamodel for the Statecharts language. 18
2.8 An example Statecharts model. 20
2.9 A modelling and simulation workflow modelled in a FTG+PM language. 24

4.1 The different environments, their relations, and operations. 42
4.2 A classification of language features. 44
4.3 An example algebraic loop in a dataflow language. 46
4.4 Different types of state evolutions as a function of simulated time. 47
4.5 A classification of debugging operations. 51
4.6 Small steps: a view into the simulation algorithm. 52
4.7 A god event changes the simulation state and influences future state updates. 53
4.8 The different relations of simulated time to the wall-clock time. 54
4.9 Pausing: difference between as-fast-as-possible and real-time simulation. 55
4.10 De- and reconstruction of simulators. 58
4.11 The modal part of the generic algorithm. 59
4.12 The artefacts that can be instrumented with debugging support. 60
4.13 The generic architecture of a debugging environment for formalism F. . . 60
4.14 The workflow for constructing a debugging environment. 63

5.1 The de- and reconstructed action language executor. 75
5.2 The interface for the action language debugger. 78
5.3 The metamodel of the CBD language. 80
5.4 An example CBD model, both its design and initialized runtime state. . . 81
5.5 Simulation results of the example CBD model. 83
5.6 The de- and reconstructed CBD simulator. 85
5.7 The debugging environment for the CBD formalism. 87
5.8 Input, state, and output trajectories for an atomic DEVS model. 90

LIST OF FIGURES

5.9 The Parallel DEVS metamodel in AToMPM. 91
5.10 The design model of the producer-consumer DEVS model. 93
5.11 The runtime model of the producer-consumer DEVS model. 95
5.12 The de- and reconstructed Parallel DEVS simulator. 97
5.13 The debugging toolbar for Parallel DEVS. 99
5.14 Sequence of small steps, forming a single big step. 101
5.15 The debugging environment for Parallel DEVS. 103
5.16 The metamodel for the Statecharts language. 104
5.17 The example model and its input-output segments trace. 107
5.18 The de- and reconstructed Statecharts simulator. 110
5.19 The debugging toolbar for Statecharts. 112
5.20 The debugging environment for the Statecharts formalism. 114
5.21 The language definition and example model for the Petrinets language. . 116
5.22 The de- and reconstructed Petrinets analyser. 119
5.23 The interface of the Petrinets debugger. 121
5.24 The model-specific visualization UI—models and generated application. . 125
5.25 The de- and reconstructed Dynamic Structure DEVS simulator. 131
5.26 A screenshot of the debugging interface. 133
5.27 The metamodel for the Hybrid Automata language. 136
5.28 The example model and its simulation trace. 137
5.29 The canonical form of the generic simulation algorithm. 142
5.30 The hierarchical structure of the T-FSA simulator. 143
5.31 The de- and reconstructed T-FSA-CBD simulator. 143
5.32 The user interface for the Hybrid Automata language. 144
5.33 The metamodel of the ProductionSystem design language. 146
5.34 Translational semantics. 149
5.35 A rule that maps a generator onto its corresponding Parallel DEVS structure.150
5.36 Workflow: translating a target output model back to the domain-specific level.153
5.37 Detection: discrete-event. 154
5.38 Detection: discrete-time. 155
5.39 Propagation. 156
5.40 Detection and propagation: conveyor belt. 160
5.41 Detection and propagation: operator. 161
5.42 The interface for the ProductionSystem debugger. 163

6.1 Overhead of omniscient debugging in forward simulation. 167
6.2 Overview of periodic state saving approach. 169
6.3 Overhead of omniscient debugging (logarithmic scale). 172
6.4 Memory usage of the two approaches. 173
6.5 Comparing latency and the influence of model size. 175
6.6 State of the game before and after decreasing the jump height parameter. . 177
6.7 Diagrammatic overview of live programming. 179
6.8 Example design models. 180
6.9 The full runtime models of the examples. 181
6.10 Sanitization in FSA models. 183
6.11 Sanitization in CBD models. 184
6.12 Overview of our approach applied to an FSA model. 185
6.13 Overview of our approach, as an FTG+PM model. 186

xxii

LIST OF FIGURES

6.14 Implementation of live modelling for FSAs. 187
6.15 Implementation of live modelling for CBDs. 188

7.1 A Petrinets model of a program with three threads and two semaphores. . 194

xxiii

List of Tables

5.1 Structural changes and their effect on debugging. 128
5.2 Small step visualization: the eight phases of a simulation iteration. 135

Chapter 1

Introduction

This chapter introduces the thesis by providing the motivation, stating the contributions,
and by explaining the structure of this document.

1.1 Motivation

The complexity of (engineered) systems grows as our society increasingly depends on
them. While before, mechanical systems and software systems were separated and hardly
interacted, the requirements today mandate a tight integration. Software-intensive systems
are characterized by a feedback loop between hardware components (which sense and act
upon a physical system.) and a software controller. For example, a modern car is chiefly
controlled by embedded software that continually interprets sensor values and decides
an appropriate control action sent to actuators [35]. As the demand for autonomous and
adaptive systems rises, a new class of system emerges which combines multiple software-
intensive systems in a network: the cyber-physical system [109, 147].

With the growth in system complexity comes the need for development processes, meth-
ods, and techniques that allow system developers to successfully build such systems;
concerns include safety, interoperability, and performance. Model-Driven Engineering
(MDE) [15, 94, 180] regards models as first-class concepts in the development process.
When developing systems according to the MDE process, engineers build models (ab-
stractions) that describe the different parts of the system in (possibly graphical) modelling
languages. The modelling languages provide abstractions that allow engineers to focus on
what the system is supposed to do, instead of how the system is supposed to do it (which
are implementation details that are important for deployment, not at design time). The
models constructed during the MDE process serve a number of purposes. They allow for
early Verification and Validation (V&V) using formal verification (e.g., model checking),
simulation, and testing techniques. They serve as documentation for the system once
it is build. And, they can be used for synthesizing (parts of) the system. For hardware
components, they serve as a “blueprint”; for software components, code generators can
synthesize a running application.

CHAPTER 1. INTRODUCTION

Complexity, as well as time-to-market pressure, demand experts. These experts specialize:
they are trained for one domain, and many experts work concurrently on different aspects of
the system. Within MDE, Multi-Paradigm Modelling (MPM) [138] actively promotes this
specialization: its philosophy is to model every (relevant) aspect of a system explicitly, at
the most appropriate level of abstraction, using the most appropriate modelling language(s),
while modelling the development process(es) explicitly. We differentiate between two
different classes of modelling languages: general-purpose modelling languages (GPMLs)
provide general abstractions that can be applied in many domains, while domain-specific
languages (DSLs) are (often small) specialized languages that are developed to be used
in one specific domain. Examples of GPMLs include the Unified Modelling Language
(UML) [171], Petrinets [139], Causal Block Diagrams [33], DEVS [221], and State-
charts [73]. These languages have been researched extensively and many tools have been
developed to design, simulate, analyse, test, and generate code for systems whose behaviour
is specified in these languages. Building such tools is often costly, as the users demand
their tools to solve increasingly difficult tasks, such as automatic verification, symbolic
execution, and design space exploration. For often-used languages, this investment can be
made, but for DSLs, the cost of developing tools needs to be low in order for the benefits to
outweigh these costs.

Recent advances in modelling language engineering have provided language engineers
with tools to quickly develop a specialized modelling language and its associated tools,
including (graphical) modelling environments, simulators, and code generators. Language
engineering techniques are used by language engineers that are tasked with developing a
new language and its tooling. Such techniques are used to define the (abstract and concrete)
syntax of languages and generate (graphical) interactive modelling environments [91].
Other techniques facilitate the definition of the modelling language’s semantics by im-
plementing a simulator for the language, or a code generator that generates appropriate
implementation code. More recently, techniques focus on generating not only a design
modelling language, but also a runtime language for visualizing the state of the system after
and during simulation, an output language for viewing and replaying a simulation trace,
and a property language for defining temporal properties the system needs to satisfy [136].
An important feature of such techniques is that the languages only slightly differ, and
use domain-specific syntax to present the models and information to the language user
(an engineer) to close the cognitive gap. This ensures that the engineer can focus on the
essential complexity of the problem (what the system is supposed to do), and limiting its
accidental complexity (how the system implements its functionality).

While modelling languages are tools that allow domain experts to more intuitively develop
their models and thereby manage the development process for highly complex systems,
they do not guarantee that the developed models are without defects. The complexity of the
systems does not decrease by using a different development method: while the languages
are more intuitive and specialized, the systems they can model are not simple by any means.
In the past years, significant effort has been directed towards providing early verification
and validation (V&V) techniques to determine whether or not a set of models fulfils a set
of properties [60, 81, 156, 226]. By identifying the properties that are not satisfied, such
techniques are able to discover and observe the failures (or bugs) of a system. Yet, once a
failure has been observed, it is then necessary to identify why the failure occurs (i.e., the
defect that caused the failure), and how to modify the models to remove the cause of the
failure. These two tasks constitute the core of the debugging activity [223]. To illustrate

2

1.1. MOTIVATION

Requirements
Modelling

System
Design

properties models

Verification &
Validation

Defect
Localization

Defect
Removal

defect

unknown

pass

interactive debugging,
output statements,
manual search,
automated search,
slicing, etc.

model element(s),
line number,
event sequence, etc.failure

natural language,
temporal logic,
test cases, etc.

conforming to DSLs,
UML, SysML, etc.

model checking
theorem proving,
testing, etc.

Figure 1.1: The debugging process: an overview.

this activity, Figure 1.1 presents an overview of a typical system design process. First,
a set of properties that the system has to satisfy is defined. Then, a system is designed
as a collection of models that must satisfy these properties. To check that the properties
are satisfied by the models, a wide range of verification and validation (V&V) techniques
are available, such as theorem proving, symbolic execution, model checking, real-time
simulation, and testing. Depending on the approach, it might be found that a property is
satisfied (“pass”), not satisfied (“failure”, which actually signifies a potential failure, since
the considered V&V technique may give false positives), or that the result is inconclusive
(“unknown”); this is called the verdict. For example, a result is inconclusive when the
chosen technique cannot prove the property in a reasonable time frame. At that point,
however, the cause of the failure (also called the defect) must still be identified. Either the
defect is found in (one of) the design models, or the properties were wrongly specified.
Once the defect(s) is (are) identified, the models or the properties have to be changed in
order to remove the defect(s), after which the failure will no longer be observed.

Locating and fixing the cause of a failure can be accomplished manually given a good
understanding of the models. Alternatively, a wide range of debugging techniques can
be used to assist developers in finding the cause of the problem [223]. Since software
errors have a large economic impact [145], it is imperative that such debugging tools and
techniques are developed, to assist the developers as much as possible. With the growing
importance of MDE techniques to develop complex systems, researchers are increasing the
reliability of modelled systems by, amongst others, integrating verification and validation
techniques. Yet, when it comes to models, very few debugging tools and techniques are
available. To find the source of an observed failure (i.e., debug) a system that is implemented
using models as first-class entities, developers often have to resort to ad-hoc methods. One
technique is to manually inspect the model(s) and their simulation results; since the models
are defined by domain experts, they can often detect defects by relating cause (in the
model) and effect (in the simulation results). A technique that is used for executable models
from which code is generated consists of inspecting or debugging the code generated

3

CHAPTER 1. INTRODUCTION

from models, by reusing established and well-researched program debugging techniques.
This is not ideal, since the developer has to switch contexts and is required to understand
the semantics of the underlying implementation language. Instead, dedicated debugging
support for modelling languages and workbenches is required.

We identified the following challenges in finding a systematic way of implementing tools
and techniques (i.e., finding an engineering process) for model debugging, which are
related to the diverse set of models and modelling languages used in a typical system
development:

• The semantics of modelling languages can include non-determinism, concurrency,
event-processing behaviour, dynamic structure, and much more diverse semantics
natively.

• Models in different languages are often executed/simulated together, requiring their
interpreters/compilers/executors to communicate. To debug such co-simulations, the
debuggers for the individual languages have to be combined.

• In an MDE project, potentially many artefacts are created that might be in need of
debugging, such as model transformations, language definitions, structural diagrams,
etc. They need specialized debugging techniques and tools.

• Domain-specific languages have their own tools, such as workbenches, interpreters
and code generators. They also require debugging support. While techniques have
been developed to generate (visual) modelling interfaces from syntax definitions
(i.e., metamodels), it remains to be investigated whether generic techniques can be
developed to generate debugging tooling as well.

• Debugging techniques for models are related to the technique used for verifying
the model. Research is needed to integrate debugging techniques and tools with
validation and verification techniques and tools.

• From models, often (embedded) code is generated. To debug this code (potentially
in a human-, hardware-, or software-in-the-loop context), it needs to be properly
instrumented, taking into account the real-time behaviour of the system.

• The source of a defect may be distributed among several models, which may each be
developed in a different modelling language.

Examples of techniques that were already developed for debugging models include:

• interactive debugging techniques [8, 107, 128], which can be used to observe and
control the execution of behavioural models in an interactive fashion (e.g., using
breakpoints, stepping operators, or by inspecting properties).

• (Semi-)automated fault localization, for instance using symbolic execution [175], or
model slicing [16].

• Omniscient debugging techniques [19, 43], which allow their users to explore the
execution trace both backwards and forwards.

There is, however, no structured approach to constructing model debugging environments
based on language engineering techniques.

4

1.2. CONTRIBUTIONS

A note on terminology. We use the term model simulation as an amalgamate for model
interpretation, model execution, and model simulation. Although we realise these are not
synonyms, it serves our need: model simulation differs from model interpretation and
model execution as it uses a different clock, the simulated time, to represent the logical
time perceived by the model. Developing debuggers for such simulations is more generic,
and our approach more complete, than if we only consider model interpretation or model
execution. We explicitly mention if a debugger for a formalism does not support simulated
time due to the formalism’s untimed semantics, and refer to model execution instead.

1.2 Contributions

We contribute to the state of the art by providing a structured approach for turning modelling
and simulation environments into interactive debugging environments. To achieve this, we
present:

• an approach to instrument simulators with debugging support based on an explicit
representation of their control flow;

• an architecture, that leverages existing components for debugging purposes, including
the (graphical) modelling environment, the debugging-enhanced simulator, and any
model-specific visualizations;

• a workflow that guides language engineers and tool builders to enhance their lan-
guages and tools with debugging support.

To demonstrate feasibility and validate our approach, we apply it to a set of formalisms
with diverse semantics. These formalisms are carefully chosen based on an analysis of their
semantic properties. For each language, we define a set of useful debugging operations and
implement them by instrumenting their simulation algorithm using our technique based
on an explicit model of their control flow. We focus on interactive debugging techniques
which allow users to control and observe the simulation process. The user controls the
debugger through a (graphical) interface which communicates with the debugging-enhanced
simulator. These interfaces use the abstractions provided by the debugged language to
present intermediate states of the simulation to the user. The interfaces are generated from
a definition of a debugging language, which extends the runtime language of the modelling
language.

Finally, we explain how two advanced debugging techniques can be (efficiently) imple-
mented: omniscient debugging (which allows user to step back in a simulation trace) and
live modelling (which allows users to modify the design model during simulation). Again,
we provide a generic workflow and techniques for implementing these operations for any
modelling language, and apply these techniques to representative examples to demonstrate
feasibility.

5

CHAPTER 1. INTRODUCTION

1.3 Structure

Chapter 2 provides background information on the techniques and formalisms on which
the techniques developed in this thesis depend. Chapter 3 reviews the state-of-the-art in
debugging techniques, both for debugging code, as well as for debugging models. Chapter 4
extends the state-of-the-art in language engineering and modelling tool construction with
techniques, an architecture, and a workflow for systematically augmenting modelling envi-
ronments and simulators with debugging support. Chapter 5 evaluates these new techniques
by applying them to a set of formalisms with diverse semantics to demonstrate feasibility.
Chapter 6 discusses the implementation of two advanced model debugging techniques,
transposed from program debugging: omniscient debugging and live modelling. Chapter 7
concludes the thesis and points towards possible directions for future work.

6

Chapter 2

Background

This chapter provides background to the thesis. It presents a number of concepts, methods,
and techniques that we will use to develop a generic technique to construct debugging
environments for modelling languages. First, Section 2.1 explains Multi-Paradigm Mod-
elling (MPM), a philosophy towards the modelling of complex, software-intensive systems.
MPM is central to this thesis, as the implemented debugging tools and techniques are an
important addition to the tool set used for modelling systems with MPM techniques, and
because we use MPM techniques for developing those tools. Second, Section 2.2 explains
how modelling languages and their tooling are developed in a structured, repeatable, and
efficient way. These language engineering techniques are important towards the reliable
implementation of advanced modelling tools and environments. Third, Section 2.3 focuses
on one particular class of systems: timed, reactive, autonomous systems, whose behaviour is
difficult to express using standard, imperative programming languages. Instead, the section
explains how the Statecharts modelling language is used to more effectively develop
such systems, as we will use Statecharts to model the behaviour of debugging-enhanced
simulators. Last, Section 2.4 presents an assumed modelling and simulation workflow
that engineers can use for developing systems, listing the artefacts that are created. This
motivates the need for debugging techniques and tools to assist engineers when they revise
their systems as failures are detected. It also introduces the artefacts that are created as part
of the modelling process, which potentially can be (re)used for debugging purposes.

2.1 Multi-Paradigm Modelling

The complexity of (engineered) systems grows as our society increasingly depends on
them. While before, mechanical systems and software systems were separated and hardly
interacted, the requirements today mandate a tight integration. Software-intensive systems
are characterized by a feedback loop between hardware components (which sense and
act upon a physical system.) and a software controller. For example, a modern car is
chiefly controlled by embedded software that continually interprets sensor values [35]. As
the demand for autonomous and adaptive systems rises, a new class of system emerges

CHAPTER 2. BACKGROUND

which combined multiple software-intensive systems in a network: the cyber-physical
system [109, 147].

With this growth in system complexity comes the need for development processes, meth-
ods, and techniques that allow system developers to successfully build such systems;
concerns include safety, interoperability, and performance. Model-Driven Engineering
(MDE) [15, 94, 180] regards models as first-class concepts in the development process.
When developing systems according to the MDE process, engineers build models (abstrac-
tions) which describe the different parts of the system in a (graphical) modelling language.
These models serve a number of purposes. They allow for early Verification and Validation
(V&V) using simulation and testing techniques. Modelling and Simulation (M&S) [208]
techniques focus on virtual experimentation to “get it right the first time”: even before any
physical component of the system is built, accurate simulations can predict its behaviour.
For hardware components, models serve as a “blueprint”; for software components, code
generators can synthesize a running application. Such techniques are possible only if mod-
elling languages have precisely defined syntax and semantics.Models document the system
by making explicit assumptions, requirements, and design choices of the system.

Developing complex, software-intensive systems demands experts. These experts specialize:
they are trained for one domain. Within MDE, Multi-Paradigm Modelling (MPM) [138]
actively promotes this specialization: its philosophy is to model every (relevant) aspect of
a system explicitly, using the most appropriate modelling language(s), while modelling
the development process(es) explicitly. Tailored modelling languages allow an engineer
to focus on what the solution to a problem is, not how it is implemented. The solution is
developed in a notation that is most familiar to the engineer.

2.2 Building Modelling and Simulation Tools

Many General-Purpose Modelling Languages (GPMLs) have been developed, a few well-
known examples include Statecharts [73], DEVS [221], and CBD [33]. Such languages
can model a large set of systems due to their generality. Moreover, as a language becomes
popular, its user base grows and mature tooling is developed for more effectively developing,
simulating, and verifying models in these languages. In certain cases, however, more
specialized languages are needed. Domain-Specific Modelling (DSM) [91] in particular
makes it possible to specify models in a Domain-Specific Modelling Language (DSML),
using concepts and notations of a specific domain. DSMLs are an integral part of the MPM
philosophy, where they seamlessly integrate with GPMLs and other DSLs. The goal is
to enable domain experts to develop, understand, and verify models more easily, without
having to use concepts outside of their own domain. DSMLs allow the use of a custom
visual (graphical or textual) syntax, which is closer to the problem domain, and therefore
more intuitive. There is, however, a cost involved: a language engineer needs to create the
DSML, which includes defining its syntax, providing the mapping between the problem
domain and the solution domain, and building the necessary tooling: (graphical) modelling
environments, verification and validation tools, simulators, and code generators. Recent
advances in modelling language engineering have provided language engineers with tools
to quickly develop a specialized modelling language and its associated tools.

A modelling language, or formalism, is fully defined [97] by:

8

2.2. BUILDING MODELLING AND SIMULATION TOOLS

Concrete
syntax

Abstract
syntax

Semantic
domain

transformation

Graph

Semantic
mapping

m

M(m)

K(m)

Formalism

Syntax Semantics

Concrete Abstract
Semantic
Mapping

Semantic
Domain

Figure 2.1: Defining a formalism.

1. Its abstract syntax, defining the language constructs and their allowed combinations.
This information is typically captured in a metamodel for graphical languages, or a
grammar for textual languages.

2. Its concrete syntax, specifying the (often visual) representation of the different
constructs. This visual representation is typically graphical (using icons), or textual.
Others, such as sound, are possible as well [203].

3. Its semantics, defining the meaning of models created in the domain [77]. This
encompasses both the semantic domain (what is the meaning of the language), and
the semantic mapping (how to give the models in the language meaning).

For example, 1 + 2 and (+ 1 2) can both be seen as textual concrete syntax (i.e., visual-
izations) for the abstract syntax concept “addition of 1 and 2” (i.e., the abstract concept
represented by the textual syntax). The semantic domain of this operation is the set of natu-
ral numbers (i.e., what the expressions evaluates to), with the semantic mapping being the
execution of the operation (i.e., how the expression is evaluated). Therefore, the semantics,
or “meaning”, of “addition of 1 and 2” (represented by 1 + 2 or (+ 1 2)) is 3.

This definition of terminology can be seen in Figure 2.1. Each aspect of a formalism
is modelled explicitly, as well as relations between different formalisms. In the next
subsections, we survey language engineering methods for each aspect of a formalism’s
definition. We first explain how the syntax of a language is defined, and how a (graphical)
modelling environment is synthesized from this definition (Section 2.2.1). Then, we explain
model transformations, which manipulate models by rewriting their structure, possibly
translating models to a different language (Section 2.2.2). Model transformations are
used in the next two subsections: Section 2.2.3 explains how semantics are defined for a
modelling languages, and Section 2.2.4 explains how workflows for developing systems
are modelled, including an explicit representation of the produced artefact’s languages and
their relations.

2.2.1 Syntax of Modelling Languages

Syntax defines whether elements and constructs are valid in a specified language or not. It
does not, however, concern itself with what the constructs mean. With syntax only, it would

9

CHAPTER 2. BACKGROUND

MMD

MMCD MMCS

MDCS
<<generate>>

Figure 2.2: Generating a modelling environment for a design language D.

be possible to specify whether a construct is valid, but it might have undefined or invalid
semantics. A simple, textual example is the expression 1

0 . It is perfectly valid to write
this, as it follows all structural rules: a fraction symbol separates two recursively parsed
expressions. Its semantics is undefined, however, since it is a division by zero.

The abstract syntax definition of a language specifies its constructs and their allowed
combinations. Such definitions are captured in a grammar, in rules, or in a metamodel,
which itself conforms to a metametamodel [105]. Most commonly, the metametamodel is
similar to UML Class Diagrams. The metametamodel used in this thesis whenever we
present a metamodel allows a language engineer to define classes, associations between
classes (with incoming and outgoing multiplicities), and attributes.

While the abstract syntax reasons about the allowable constructs, it does not state anything
about how they are presented to the user. In this way, it is distinct from textual grammars,
as they already offer the keywords to use [97]. It merely states the concepts that are usable
in the domain. The concrete syntax definition of a model specifies how elements from the
abstract syntax are (visually) represented. The relation between abstract and concrete syntax
elements is also modelled and made operational with parsers (deducing the abstract syntax
from a concrete syntax model) and pretty printers (deducing the concrete syntax from an
abstract syntax model). Syntax-directed editing environments only allow users to create
syntactically valid models using concrete syntax, in which case parsing and pretty printing
is not necessary, since the editing of models encompasses both creating the concrete syntax
and associated abstract syntax element(s). A language has one abstract syntax definition,
but can have multiple concrete syntax definitions, and a domain-specific environment can
allow a user to switch between representations. The definition of the concrete syntax is a
determining factor in the usability of the DSML [9].

The language definition, consisting of the abstract syntax definition and concrete syntax
definition, can be used by a meta-modelling environment (such as AToMPM [192]) to
generate a syntax-directed modelling environment for that language. This is visualized
in Figure 2.2, where a metamodel for a language D (MMD) (conforming to the Class Dia-

10

2.2. BUILDING MODELLING AND SIMULATION TOOLS

grams metamodel (MMCD)) and a definition of its concrete syntax (MDCS , conforming
to the Concrete Syntax formalism (MMCS)) are used to generate a graphical modelling
environment. The environment has a toolbar with icons for each language element (in this
case, circles, rectangles, triangles, and arrow). By using this toolbar, the modeller can
instantiate elements of the language on a canvas, creating a valid design model.

A metamodel and concrete syntax definition do not define the semantics of a modelling
language. Nor do they specify how the runtime state of a system is to be visualized. For
that, recent techniques allow language engineers to turn their design language into several
languages used for execution, simulation, and analysis [136]. Before we discuss those, we
explain model transformation, a technique that can be used to define the semantics of a
modelling language.

2.2.2 Model Transformation

Model transformation has been called the heart and soul of MDE [181]. When using
multiple languages to model a system in, model transformations can define relations
between languages and models expressed in those languages. This is useful, since models
might be related: for example, one model might be a refinement of another model, or
one model might encode the semantics of another model. Model transformations can be
categorized [134]. Endogenous transformations transform models in a language to models
in the same language, while exogenous transformations transform models in a language
to models in another language; in-place transformations modify the model in place, while
out-place transformations create a new model.

Model transformations can be specified in numerous ways; we mention three different
paradigms. A transformation can be specified manually using an imperative programming
language. The code of the transformation needs access to the data structures of the model
(the graph structure) to traverse it, query it, and make modifications to it. Such methods
regard models as graph-like structures in-memory and do not take advantage of the extra
information added by the conformance relation between a model and its metamodel. They
are easy to implement for programmers with a background in imperative programming
languages, however. On the other side of the spectrum are Triple Graph Grammars
(TGGs) [179], a declarative approach to model transformation. TGGs allow a modeller to
specify relations between models using patterns. These relations are automatically made
operational and maintained by a transformation engine. For example, such an engine might
translate source models to target models automatically, or maintain consistency between
two models in both directions. The modeller has no influence on the engine and cannot
control, for example, the order in which rules are executed. A hybrid approach allows users
to model transformation rules (based on patterns) declaratively and to model the scheduling
in an appropriate language. MoTiF [191] is such a language: it provides primitives to
schedule rules in an explicit control flow. Rules are modelled explicitly as well. A rule
consists of:

• exactly one positive precondition pattern (a Left-Hand-Side (LHS)) that, when
matched, actives the rule;

• a number of negative precondition patterns (Negative Application Conditions (NACs))
that, when matched, deactivate the rule;

11

CHAPTER 2. BACKGROUND

MMD

MMCD MMCS

MDCS

<<generate>>

MD_PatCSMMD_Pat

1

2

3
1

2

3
4

5
1

6

7

<<RAMify>>

Figure 2.3: Generating a modelling environment for a RAMified design language D PAT.

• a postcondition pattern (a Right-Hand-Side (RHS)), that specifies how the matched
elements are to be rewritten.

The patterns are models themselves; and, following the MPM philosophy, their structure
should be similar to the models to be transformed. After all, patterns specify that a part
of a model (a number of elements, relations, and attribute values) need to be matched, or
specify how elements in a model are to be altered (by removing or adding elements and
relations, or by changing their attribute values). An automated approach that constructs
such languages from the original definition of the language was introduced by Kühne et
al. [106]. They propose to Relax, Augment, and Modify (RAMify) the design metamodel
of the language to arrive at a pattern language for use in the LHS, RHS, and NACs of a
rule.

Figure 2.3 shows an example of RAMification on our example language D: an automatic
transformation transforms its metamodel and concrete syntax definition to a pattern meta-
model and accompanying concrete syntax definition. From that language definition, a
new modelling environment is generated for describing patterns. In this environment, new
concepts become available: we can model rules, in the form of a left-hand-side pattern (rep-
resented by an “arrow” pointing right), a right-hand side pattern (denoted by an “inverted
arrow”), and a set of negative application conditions (represented by dotted rectangles). An
example rule is shown: it transforms a triangle connected to a square, by adding a circle,
but only if no circle is connected to the triangle. This rule needs to be scheduled. For
example, we might want to find all matching pairs of squares and triangles and execute
the rule for all of them. Or, we might match a pair of squares and triangles and rewrite
them, until no more matches are found. The subtle difference between the two is that in the
second case, a rewrite might cause a match that was found in the first case to not be found
(since a circle was connected to a triangle). MoTif is a possible scheduling language, but
others are possible. Action language, for example an imperative programming language, is
well-suited: its while- and for-loops naturally allow for a schedule to be encoded.

12

2.2. BUILDING MODELLING AND SIMULATION TOOLS

2.2.3 Semantics of Modelling Languages

Since the syntax only defines what a valid model looks like, we need to give a meaning
to the models. Even though models might be syntactically valid, their meaning might
be useless or even invalid (as pointed out above, the division 1

0 is syntactically valid, but
semantically invalid).

It is possible for humans to come up with intuitive semantics for the visual notations used
(e.g., an arrow between two states in a finite-state automata model means that the state
changes from the source to the destination if a certain condition is satisfied). There is,
however, a need to make the semantics explicit for two main reasons:

1. Computers cannot use intuition, and therefore there needs to be some operation
defined to convey the meaning to the machine.

2. Intuition might only take us that far, and can cause some subtle differences in
border cases. For example, the specification of Java threads was ambiguous and
difficult to interpret, leading to inconsistent implementations [166]. Having semantics
explicitly defined makes different interpretations impossible, as there will always be
a “reference implementation”.

Semantics consists of two parts: the domain it maps to, and the mapping itself. The
semantic domain is the target of the semantic mapping. As such, the semantic mapping will
map every valid language instance to a (not necessarily unique) instance of the semantic
domain. Many semantic domains exist, as basically every language with semantics of its
own can act as a semantic domain. The choice of semantic domain depends on which
properties need to be conserved. For example, DEVS [221] can be used for simulation,
Petrinets [139] for verification, Statecharts [73] for code synthesis, and Causal Block
Diagrams (CBD) [33] for continuous systems using differential equations. A single model
might even have different semantic domains, each targeted at a specific goal. The semantic
domain might also be the language itself, in which case the semantic mapping implements
the semantics of the language without relying on the semantics of a target language.

We focus on the two categories of semantic definitions [225]:

1. Translational semantics, where the semantic mapping translates the model from
one formalism to another, while maintaining an equivalent model with respect to the
properties under study. The target formalism has semantics (again, either translational
or operational), meaning that the semantics is “transferred” to the original model.

2. Operational semantics, where the semantic mapping effectively executes, or sim-
ulates, the model being mapped. Operational semantics can be implemented with
an external simulator, or through model transformations that simulate the model
by modifying its state. The advantage of in-place model transformations is that
semantics are defined completely in the problem domain (the semantic domain is
equal to the original language), making it suitable for use by domain experts. A
disadvantage of this approach is that the semantics are difficult to optimize, since this
requires knowledge of the implementation and underlying platform, which domain
experts do not necessarily have. The simulator can be implemented using model
transformations, or in action language.

13

CHAPTER 2. BACKGROUND

MMDMD

MMRMR

Init

MMOMO

Sim

Exec(Init)

Exec(Sim)

D_To_RExec(D_To_R)

Figure 2.4: Operational semantics.

Figure 2.4 illustrates how operational semantics work. Three languages are involved: a
design language, a runtime language, and an output language; their metamodels MMD,
MMR, and MMO, as well as the operations between them are shown in the figure:

• The design language is used to model the static structure of the system; this does not
mean that the behaviour of the system is necessarily static in nature, but it means that
the design model does not contain any runtime information.

• The runtime language is an extension of the design language and adds runtime
attributes to the design language. Conforming models are “snapshots” in the runtime
trace of a system. A runtime model is obtained from a design model by executing the
D To R transformation. The initial runtime state of a model is obtained by executing
the Init transformation. This operation initializes the runtime attributes of the model.

• The output language models output traces, verification results, or simulation results.
Its structure depends on which questions the models in the language need to answer.
An output model is obtained by executing the Sim operation, which represents
simulation, interpretation, or execution of the runtime model. During simulation, the
runtime state of the model is updated in consecutive “snapshots” (models conforming
to the runtime language). If the output language contains a full state trace, these
snapshots are stored and communicated to the user at the end of simulation.

Translational semantics are another way of defining semantics for a modelling language.
Traditionally, denotational semantics allow to formalize the semantics of programming
languages in terms of mathematical objects (the denotations). Such semantics are referred
to as Scott-Strachey semantics for programming languages [189]. We interpret denotations
more broadly, and allow any model element in a formalism (not only the mathematical
formalism) to serve as a denotation. In that context, the more general translational semantics
are defined by building a transformation which transforms any conforming design model
into a conforming design model of a language with known semantics. This technique is
often useful in case a similar language exists with mature tooling. Instead of reinventing the
wheel, the language designer exploits the similarities between his language and the target
language, and reuses the already existing infrastructure.

Figure 2.5 illustrates how translational semantics work. We assume a target language with
known semantics, whose design language, runtime language, and output language are de-
scribed by the metamodels MMTrg D, MMTrg R, MMTrg O. We also assume semantics

14

2.2. BUILDING MODELLING AND SIMULATION TOOLS

MMTra_Src_Trg

SEMDenMMSrc_D MMTrg_D

SEMOp

MMTrg_OMMSrc_O
MAPO_O

MMSrc_R MMTrg_R

INIT

D_To_RTrg

SEMSrc

D_To_RSrc

Figure 2.5: Translational semantics.

are defined for this language operationally as discussed above. The source language is
defined by a design language MMSrc D, a runtime language MMSrc R and an output
language MMSrc O. A number of operations are defined between these languages:

• A design model conforming to the source metamodel MMSrc D is transformed to a
design model in the target language MMTrg D. This operation is a total function:
any valid model in the source language can be transformed to a model in the target
language. As a side effect of this transformation, a traceability model (conforming
to MMTra Src Trg) is created which contains information on how elements in the
source model are related to models in the target model.

• The target language has its semantics defined operationally: as discussed above,
an output model conforming to MMTrg O is created as a result of simulating the
model. For this discussion, we assume the operational semantics is a black box: no
intermittent updates to the runtime model are visible.

• To obtain a model in the source output language MMSrc O, the target output model
is translated through the MapO O transformation.

Translational semantics allow to reuse existing infrastructure to simulate models. If done
correctly, however, a user of the source language needs not know that the semantics are
defined translationally: from the outside, a request for simulating a model in the source
language results in an output model just the same as it would do if the semantics were
defined operationally. The view of the modeller is represented by the light green arrows
between the source languages:

SEMSrc(MSrc) = (MAPO O ◦ SEMOp ◦ INIT ◦D To RTrg ◦ SEMDEN)(MSrc)

We do not consider the case where the user wants to view intermittent states of the sim-
ulation at the source level for now. This will be addressed in a later chapter, when we
define debugging for a domain-specific language whose semantics are defined translation-
ally.

15

CHAPTER 2. BACKGROUND

2.2.4 Modelling Workflows with FTG+PM

Process modelling is a widely used technique on the business level of a project. Busi-
ness process modelling formalisms, however, fall short of capturing the essence of the
engineering nature of complex system development. To model workflows and the relation
between formalisms in the context of MPM, a Formalisms Transformation Graph and
Process Model (FTG+PM) language is designed specifically for depicting model-driven
development processes and offers appropriate abstractions. The first version of a formalism
transformation graph was presented by Vangheluwe and Vansteenkiste [209]. Such models
represent relations between formalisms explicitly; relations represent a (semantic) corre-
spondence between the languages and are made operational using model transformation.
Later, the graph was extended with an explicit workflow model [119, 120], and a case
study was performed in the automotive domain [140]. The language allows the modelling
of an engineering workflow whose deliverable is a set of (software) artefacts, and allows
the modeller to relate each artefact to the language it is specified in, as well as to specify
transformations between the used languages. The process model part of an FTG+PM model
represents a workflow consisting of activities that require user input (manual activities) and
activities that do not require user intervention (automatic transformations). The formalism
transformation part describes a formalism transformation graph consisting of a number
of formalisms and (automatic/manual) transformations between them. The workflow and
formalism transformation graph are related: activities in the workflow are explicitly typed
by transformations in the formalism transformation graph, while the artefacts created in the
workflow are typed by the formalisms in the formalism transformation graph.

Models in the FTG+PM language can be used for various purposes. By explicitly repre-
senting workflows (for engineering processes) they can be reused for developing several
systems, used to extract traceability information, and used for certification of regulatory
requirements. Workflows can furthermore be analysed and optimized by reasoning over
the complete transformation chain. And last, by not only modelling the workflow, but
also the languages of the produced artefacts, the workflow can be enacted in a visual
modelling environment. The model then guides the modeller by opening language-specific
model editors for manual tasks and executing automatic transformations when it is required.
FTG+PM languages are an essential part of the MPM approach, making it a repeatable and
analysable process for developing complex engineered systems.

Figure 2.6 shows an example FTG+PM model. It models a workflow for developing
systems using the Statecharts language (discussed in the next section). On the left (for-
malism transformation graph) side, five languages are involved: a language for modelling
textual requirements (Text. Req.), the Statecharts language for modelling the system,
a trace language (TraceLang), a language for representing boolean values (Boolean),
and the Java programming language. Between these languages, several (automatic or
manual) transformations are modelled for gathering requirements, modelling and revising
the system, testing and simulating the system, and generating executable code. On the right
(process model) side, the workflow orchestrates the execution of these transformations as
activities: it orders them. First, the requirements need to be defined, resulting in an artefact
that conforms to the Text. Req. language. Then, the system is modelled, resulting in a
first version of the design model conforming to Statecharts. This model is subsequently
simulated and tested in orthogonal branches of the workflow. In the simulation branch,
an input trace is used by the simulator, and the output of the simulation is checked to be

16

2.3. MODELLING SYSTEM BEHAVIOUR WITH STATECHARTS

:GatherReqs

:ModelSystem
M:Statecharts

:Text. Req.

Test

Statecharts

GatherReqs

Text. Req.

language

manual transformation

automatic transformation

model artefact

manual activity

automatic activity

:DefineInput :DefineTestCases

TC: Statecharts

:Test

ST: TraceLang

[False]

Simulate IT: TraceLang

TraceLang

DefineTestCases

Boolean

:GenerateCode

:Code

Java

Generate
Code

Verify System

:Boolean

[False]

[True]
[True]

:Simulate

:CheckOutput

:Boolean

DefineInput

CheckOutput

:ReviseSystem

TT: TraceLang

ReviseSystem
ModelSystem

Figure 2.6: An example FTG+PM model for developing systems using the Statecharts
language.

correct. In the testing branch, test cases are defined and run on the model, again checking
whether the system behaves as expected. Based on the simulation and test results, the
system is iteratively refined. Last, when simulation and testing return satisfactory results,
code is generated that executes the system. We use FTG+PM models whenever we describe
workflows in this thesis.

2.3 Modelling System Behaviour with Statecharts

Timed, reactive, autonomous systems are challenging to design and develop. Behaviour
is inherently concurrent—the autonomous behaviour of the system has to be interleaved
with its handling of external (coming from the environment) events. The environment
is non-deterministic, since we cannot predict when external events will arrive. And,
while operating systems offer threading interfaces natively, programming with threads,
locks, and semaphores quickly becomes unmanageable [108]. Instead, such behaviour is
better expressed at an abstraction level which hides these implementation details—one
which focuses on the essential complexity. Statecharts was introduced by Harel [73]
as a graphical, topological formalism for describing complex system behaviour and is an
appropriate language for modelling timed, reactive, autonomous behaviour. In Section 2.3.1

17

CHAPTER 2. BACKGROUND

State

- name: String

- entryAction: ActionCode

- exitAction: ActionCode

CompositeState

SubState

0..1

*

OrthogonalRegion

- name: String

Regions

Contains
0..11..1

0..1*

HistoryState

- name: String

- type: ENUM(deep, shallow)

Transition

- name: String

- trigger: String

- guard: ActionCode

- action: ActionCode

TransitionToH

1..1

*

HistoryStates

InitialMarker

ITransition

1..1

0..1

- action: ActionCode

Figure 2.7: The metamodel for the Statecharts language.

we explain the syntax and semantics of Harel’s Statecharts formalism. In Section 2.3.2,
we expand upon his work and introduce SCCD, a language which adds dynamic structure
to the semantics of Statecharts.

2.3.1 Harel Statecharts

Statecharts is an extension of state machines and state diagrams with hierarchy, orthogo-
nality, and broadcast communication. Its metamodel is shown in Figure 2.7. A Statecharts
model consists of states, that explicitly encode a set of discrete states the system can be
in and transitions between those states that model the dynamics of the system. In the next
subsections, we explain each language feature.

States

A state is the basic building block of a Statecharts model. It has the following at-
tributes:

• A unique name within its enclosing scope.

• An optional entry action that is executed when the state is entered.

• An option exit action that is executed when the state is exited.

States can be composed hierarchically in composite states (which, when they are active,
have exactly one active child state), as well as orthogonally in orthogonal regions (which are
all active when their parent state is active). Within each composite state, exactly one state
is the default state. When the composite state is entered, its default state is entered as well
(except when a history state is present in the composite state, see below). An orthogonal
region is composed of multiple composite states: upon entering the orthogonal region, all
its child states are entered as well. History states are used to remember the active child state
of a composite state. When the composite state is re-entered, the state that was originally
active is restored. History states can be shallow, remembering only the direct child of its

18

2.3. MODELLING SYSTEM BEHAVIOUR WITH STATECHARTS

parent state that was active, or they can be deep, in which case they remember all active
descendant states.

Transitions

Transitions between states model the dynamics of the system. When a transition is executed,
its source state (and its descendants) is (are) exited, and its target state (and its descendants)
is (are) entered. An algorithm determines the least common ancestor of the source and
target states, and also exits any states up to (but excluding) the least common ancestor, and
enters any states down from the least common ancestor to the target state. A transition
is triggered by an external event (coming from the environment), an internal event that
was raised by an orthogonal component, or a timeout. This is how time is incremented
in Statecharts: the clock is synchronized either with the timeout event, or with the time
at which an external interrupt arrives. An optional guard specifies an additional runtime
condition that must be satisfied in order for the transition to be enabled. An optional action
is executed when the transition is executed.

Actions

As part of the transition’s execution, or when entering or exiting a state, an action can
be executed. An action is specified in an action language with imperative constructs for
modifying runtime variables. Actions can also raise an event. The scope of the raised
event is either local, in which case it can trigger transitions in components orthogonal to
the component in which the event was raised, or the event can be raised on an output port,
in which it can be “sensed” by the environment. Actions are assumed to take zero time,
although the real delay of executing the action can be non-zero (especially in the case of
heavy computations). The time as perceived by the Statecharts model, however, does
not increase. This can cause the Statecharts clock to lag behind the wall-clock time, in
which case the runtime has to resynchronize the clocks when the computational load is
lower.

Additional Structures

We assume that a Statecharts model is accompanied by:

• a memory component that stores variables and their values;

• a non-modal component, consisting of functions that read and write the values in the
store;

• an interface definition to interact with its environment in the form of a set of input
and output ports.

We describe a structure S =< SCS ,MemS , NonMS , XS , YS > where:

• SCS is the Statecharts model describing the behaviour of the system using the
above concepts. A formal description of Statecharts can be found in [76].

19

CHAPTER 2. BACKGROUND

in::police_interrupt

H

statechart {inports: in; outports: out}

normal

after(5) / out::displayGreen

after(2) /

out::displayRed

 / out::displayRed

Red

Green

Yellow

after(3) / out::displayYellow

interrupted

after(1) / out::displayBlack

after(1) /

out::displayYellow

 / out::displayYellow

Black

Yellow

in::police_interrupt

Figure 2.8: An example Statecharts model.

• MemS is a store that maps variable names onto their value. The values that can be
stored depend on the data types available; we will not go into detail, and assume the
Statecharts model is compiled to a general-purpose language such as Python, and
can use its data types.

• NonMS is a set of functions (‘non-modal’ functionality) that modify the data store
MemS . These functions are called in the actions modelled in the Statecharts.

• X = {(p, v)|p ∈ IPorts, v ∈ Xp} describes the input of the model. IPorts is a set
of input port names. Each port p has an associated set of possible input events Xp.

• Y = {(p, v)|p ∈ OPorts, v ∈ Yp} describes the output of the model. OPorts is a
set of output port names. Each port p has an associated set of possible output events
Yp.

Statecharts is a deterministic formalism, and different language variants exist, corre-
sponding to different deterministic orderings and interleavings of events and transitions.
We assume the STATEMATE [75] semantics, but other reasonable choices are possible
[51, 74].

Example

Figure 2.8 shows an example Statecharts model: the behaviour of a traffic light. It has one
input port in and one output port out. In the Statecharts model, events received on input
ports or sent on output ports by the Statecharts model are prepended by <portname>::
where <portname> is the name of the port. The traffic light is initialized in the normal
state (denoted by a black dot with an outgoing arrow). Within the normal state, the traffic
light cycles through its Red, Green, and Yellow states. When a transition is taken, an event
is raised on the output port to communicate what the current colour of the traffic light is.
The traffic light can be interrupted by a police interrupt. Whatever substate of the normal
state it is in, it transitions to the interrupted state. Within that state, it cycles through its
yellow and black state, raising appropriate events on its output port. The police can resume

20

2.3. MODELLING SYSTEM BEHAVIOUR WITH STATECHARTS

the traffic light, at which point the state it was in before the interrupt is restored (using a
history state).

We use Statecharts extensively throughout this thesis to model (parts of) the behaviour of
debugging environments.

2.3.2 SCCD: Extending Statecharts with Dynamic Structure

While Statecharts is an appropriate formalism for describing the timed, reactive, au-
tonomous behaviour of systems, it does not allow to model a system with dynamically
changing structure. In many software applications, objects are continuously created and
destroyed. If we want to describe the software system’s behaviour using Statecharts, we
would not be able to: we would have to resort to an object-oriented programming language
that connects compiled Statecharts models at runtime and manages multiple instances of
them. This is not ideal, as that program code is hand-crafted, which means it is prone to
errors.

The SCCD formalism extends Statecharts with the concepts of the Class Diagrams
formalism (classes and relations), which model structure, and associates with each class a
definition of its behaviour (in the form of a Statecharts model).

Classes

Classes are the main addition of the SCCD language. They model both structure and
behaviour. Structure is modelled in the form of attributes and relations with other classes,
effectively encapsulating the runtime data of the application. Behaviour is modelled in
the form of methods, which access and change the values of attributes of the class by
executing statements modelled in an action language, and a Statecharts model, which
constitutes the “modal” part (i.e., the control flow) of the class. Compared to Statecharts,
the additional structures MemS and NonMS are now encapsulated in class attributes
and methods, respectively. At runtime, an object can be created and deleted, followed
by the invocation of, respectively, the constructor and the destructor. The relationships
modelled between classes are instantiated at runtime in the form of links. They serve
as communication channels, over which objects can send and receive events. There is
exactly one default class, of which an instance is created when the system is started by the
runtime.

Relationships

Classes can have relationships with other classes. An association relation is defined
between a source class and a target class, and has a name. An association has a multiplicity,
defined as a minimal cardinality cmin ∈ N and a maximal cardinality cmax ∈ N>0 ∪ {∞}.
By default, cmin = 0 and cmax = ∞. They control, at runtime, how many instances of
the target class have to be minimally associated to each instance of the source class, and
how many instances of the target class can be maximally associated to each instance of the
source class, respectively. Each time an association is instantiated, it results in a uniquely

21

CHAPTER 2. BACKGROUND

identified link between the source and target object which can be used, for example, to send
events. An inheritance relation results in the source of the relation to inherit all attributes
and methods from the target of the relation. Specialisation of the superclass’s behaviour,
however, is not supported.

Event Scopes

With the addition of a public input/output interface using ports, as well as classes and
associations, comes the need for event scoping. Compared to Statecharts scoping of
events, SCCD adds the ability to transmit events to class instances. In particular, the
following scopes are defined:

• local: The event is only visible for the sending instance (the default behaviour of
Statecharts).

• broad: The event is sent to all currently running instances.

• output: The event is sent to an output port.

• narrow: The event is narrow-cast to specific instances only that are connected to
the sending instance with a link.

• cd: The event is processed by the object manager. See the next section for more
details.

Runtime Behaviour

At runtime, a central entity called the object manager is responsible for creating, deleting,
and starting class instances, as well as managing links (instances of associations) between
class instances. It also checks whether no minimal or maximal cardinalities are violated
when the user deletes or instantiates an association, respectively. As mentioned previously,
instances can send events to the object manager using the cd scope. The object manager
can thus be seen as an ever-present, globally accessible object instance, although it is
implicitly defined in the runtime, instead of as an SCCD class.

When the application is started, the object manager creates an instance of the default class
and starts its associated Statecharts model. From then on, instances can send several
events to the object manager to control the set of currently executing objects. The object
manager accepts four events. We list them below, including the parameters that have to be
sent as part of the event:

• create instance(association name, class name, . . .): creates a new instance, if it
is allowed (i.e., no constraints would be violated). The newly created instance is
always associated to its creator (the instance that sent the event). The first parameter
is the name of the association that should be instantiated to create a link between the
parent and its newly created child. The second parameter is the name of the class that
needs to be instantiated. This should be the class that is defined as the target of the
association, or one of its subclasses. Any subsequent parameters are interpreted as
arguments to the constructor of the new instance. If creation succeeds, a reply event

22

2.4. MODELLING AND SIMULATION WORKFLOW

is sent to the requester containing the unique identifier of the link created between
the creator and the new object. If creation failed, an error event is sent instead.

• delete instance(link ref): deletes the instances specified by the link reference. The
link reference is evaluated in the context of the instance that sent the event and should
result in a set of link identifiers. The target objects of these links are deleted, as well
as any links for which these objects are the source or target, as long as no multiplicity
constraints are violated. The object manager sends an event to the requester when
deletion was successful. If deletion failed, an error event is sent instead.

• start instance(link ref): starts the execution of the Statecharts model of the in-
stances specified by the link reference.

• associate instance(source ref, association name, target ref): creates an instance
of an association (a link) between two existing instances. The source and target
references are evaluated to two sets of instances, and each instance in the first set is
connected using the specified association with the instances in the second set.

The object manager is also responsible for keeping track of which objects will execute a
transition. It ensures a proper scheduling between objects based on events they receive
from the environment or from each other. The Statecharts models of the objects execute
according to Harel Statecharts; in essence, each object has its own Statecharts executor,
and all executors are globally synchronized to ensure input and messages between objects
are properly handled.

2.4 Modelling and Simulation Workflow

When modelling and simulating complex systems, a number of artefacts are typically
created. While we do not discuss different M&S workflows in-depth (this can be found in
other works, such as [32]), we present a generic workflow and assume that a number of
artefacts are created by the domain expert.

We present a (high-level) overview of the presumed modelling and simulation workflow in
Figure 2.9 as an FTG+PM model. The domain expert is expected to produce three artefacts:
a model of the system (modelled in a design language), a set of experiments (which
could be modelled in an experiment language such as SESSL [52]), and an (optional)
domain-specific visualization. This last artefact can, for example, be used for systems that
exhibit agent-like behaviour, where each agent is assigned a visual representation, and the
domain expert can follow and potentially influence the simulation by interacting with the
visualization. We assume in this thesis that the domain expert models the behaviour of the
visualization in Statecharts. Although this assumption does not always hold, Statecharts
is an appropriate formalism to specify the “modes” of the visualization in an explicit control
flow model [96]. Therefore, it is reasonable to require the modal behaviour to be specified
using this formalism. From this model, code is generated and combined with an existing
visualization library to build an executable model-specific visualization interface. The
visualization and simulation model are strictly separate; the visualization can only interact
with the model through its interface (and as such, can only visualize behavioural models

23

CHAPTER 2. BACKGROUND

Create Simulation Experiment

:ModelSystem :ModelExp :ModelVis

M:DesignL E:Exp. Lang. V: Statecharts

Run Simulation

:OutputL

:Analyze Result

:Boolean

[True]

[False]

model artefact

manual activity

automatic activity

Run Simulation

ModelVis

Statecharts

ModelSystem

DesignL

OutputL

ModelExp

Exp. Lang.

Boolean

Analyze Result

language

manual transformation

automatic transformation

Figure 2.9: A modelling and simulation workflow modelled in a FTG+PM language.

with a communication mechanism). If no visualization is required, the simulation can just
as well be run without it (“headless”).

Once these artefacts are created, the domain expert runs the simulation experiments and
observes the results (typically, a trace generated by the simulation model and/or the visual-
ization). The domain expert then analyses the results and decides whether the goals of the
experiment are satisfied by the model. If so, the system is adequately modelled. If not, the
modeller has to adapt the model.

This workflow emphasises modularity, as it splits the simulation system into separate
subsystems. It allows the domain expert to replace components as necessary, and increases
scalability, as components can be deployed on separate machines. In many cases, a process
such as this can be employed by domain experts to design and evaluate their systems (for
example, to simulate occupant behaviour in buildings [22]).

In this thesis, we assume modellers use a workflow similar to this one to model their
systems.

Summary

This chapter provides the necessary background for the techniques developed in this thesis.
We started by motivating the MDE and the MPM philosophy for developing complex
engineered systems. We then explained language engineering techniques that allow to
build tools for the many different languages used in a typical MDE workflow. These
techniques allow to model a language’s syntax (using metamodelling), its semantics (often
using model transformations) and an engineering workflow that can be enacted for guiding
the engineer(s) during system development. They have effectively been used to generate
modelling environments and accompanying tooling such as simulators and verification and

24

2.4. MODELLING AND SIMULATION WORKFLOW

validation tools. We’ve explained how complex timed, reactive, autonomous systems can
be developed using the Statecharts language. Last, we tied these concepts together into a
typical modelling and simulation workflow, in which modellers use the available tools and
languages to model, simulate, and analyse their systems. This scopes our work, since we
contribute language engineering techniques for building model debugging environments.
Before we present these techniques, the next section surveys the state of the art in debugging
techniques, both for programming languages (well-established) and modelling languages
(more recent).

25

Chapter 3

State of the Art

This chapter presents the state of the art in debugging that is relevant for this thesis.
It is divided into a number of sections, each listing a set of techniques, methods, and
tools for debugging a subset of systems. In Section 3.1, the large body of work on
program debugging is explored. We go into a number of subtopics, including techniques
for debugging concurrent programs, omniscient debugging, and live programming. This
section provides a solid foundation for Section 3.2 on model debugging, where we hone
in on the topic of this thesis and discuss what has already been done. Since models are
abstractions of real-word systems or systems implemented using software, their debugging
techniques differ significantly. The section surveys the growing research body on model
debugging, providing an overview of these debugging techniques. Section 3.3 touches
on the topic of simulation debugging. Since simulations are not necessarily implemented
explicitly using models, but are significantly different from traditional software systems
(due to the semantics of the simulation abstractions used), other debugging methods are
needed. Last, we survey the back-translation of traces obtained from simulation, execution,
or verification to a format using abstractions familiar to the modeller of the system.

3.1 Program Debugging

Developers of software systems spend a large portion of their time debugging the code
they write, incurring a high cost [145]. Many approaches exist to minimize the amount
of defects developers introduce in their code; as systems become increasingly complex,
however, no method guarantees failure-freeness. Such approaches include early system
verification and testing, but debugging remains an important activity [71]. Whenever a new
development paradigm, programming language, or development environment is introduced,
debugging techniques for that platform follow shortly after. And, while program debugging
is well-researched, code is still the most popular vehicle with which to produce (software)
systems. As such, it is ever-evolving. This section surveys well-established program
debugging techniques, as well as more recent ones.

In Section 3.1.1, we look into techniques for debugging traditional, sequential programs.
In Section 3.1.2, we review techniques for debugging concurrent programs, which can

CHAPTER 3. STATE OF THE ART

be run on a number of (logical) parallel processes or distributed over multiple (physical)
processors. In Section 3.1.4, we explore “omniscient debugging”, a technique for traversing
the execution trace of a program both forwards and backwards. In Section 3.1.5, we survey
techniques for “live programming”, a more recent technique that allows to modify the code
of a program while it is executing.

3.1.1 Scientific Debugging

This subsection explains techniques for debugging sequential programs, which have been
well-researched and serve as a basis for the techniques explained in the next sections.
The field of program debugging is well-established and many works provide guides to
using them effectively. Zeller [223] provides an excellent overview of existing code
debugging techniques. His book explains how to combine these techniques in a process
called “scientific debugging” to find, manage, and remove defects in software in an optimal
way. The first step when observing a failure, is to reproduce the problem by reproducing
the environment and conditions that lead the program to fail. Next, a number of iterations
have to be gone through where the programmer invents a hypothesis (or refines a previous
one), predicts the program behaviour, and tests the hypothesis by experimenting with the
program, leading to a rejection or a refinement of the hypothesis. Ultimately, a hypothesis
can no longer be refined, and the programmer arrives at a diagnosis for the failure: the
defect has been found.

This subsection surveys commonly used debugging techniques that aid the programmer
in the experimentation phase of the scientific debugging method. The main task of any
debugger is to convey the meaning (runtime semantics) of the code to the user, explaining
why some behaviour is observed. Debugging techniques can provide functionality to the
user to manually traverse the runtime behaviour of a program, relying on the user to control
execution and observe state changes, or they can be automated, guiding the user towards
the source of the defect (semi-)automatically.

Most, if not all, programmers are familiar with interactive debuggers that provide functions
to pause, resume, and step through a program. Such debuggers also offer functions to
observe the state of the program (the call stack and variable values). Most debuggers reuse
the symbols introduced in the program text to present the information to the user with a
minimal semantic gap.

A well-known open-source debugger is the GNU debugger (gdb) [62]. It was developed for
the Linux operating system and the C programming language, but has been turned into a
multi-platform, multi-language debugger by separating the symbol side (where the source
files of the program are found) and the target side (the platform on which the compiled
binary runs). This separation allows gdb to debug native binaries, remote programs, and
stored traces through a common interface on the target side: the target vector. For the Linux
platform, this vector is implemented using the ptrace tool, which allows a process to attach
itself to another process and control it as well as read its runtime state. On the symbol
side, a symbol table translates memory locations to variable and function names, although
gdb can handle partial or missing symbol tables, in which case raw memory addresses and
values are presented to the user.

Lower-level debugging can be provided by Dynamic-Binary Instruction (DBI) systems

28

3.1. PROGRAM DEBUGGING

such as Pin [121] and Valgrind [146]. These systems allow a user to instrument the binary
with instructions to perform an action at strategic locations, for example a memory write
or a function call. Many tools, such as profilers, memory checkers, and debuggers can be
developed using DBI. Their main feature consists of dynamically instrumenting a running
binary, minimizing the overhead for the user.

Although traditional debuggers such as gdb have evolved, it remains a debugger for sequen-
tial, procedural languages. Many languages, however, regard other entities as first-class
citizens. Most notably, the development process using object-oriented languages revolves
around objects, not statements or functions. A debugger that was built for a procedural
language might not be well-suited if it assumes other abstractions than the ones the user
develops the program with. Object-centric debugging [167] augments traditional debuggers
with operations that access or modify objects. A higher level of abstraction is also pro-
vided by event-based debugging [149], where users can specify high-level events based on
lower-level events such as variable accesses and method calls. These debuggers provide a
debugging language based on a dataflow approach to specify events. It allows to monitor the
execution of a program at the level of the user’s abstractions, encoded in events. Similarly,
Marceau et al. construct a dataflow language for scriptable debugging [124]. Scripts can
monitor the runtime behaviour of a program and generate high-level events.

Visualization of the runtime state can help the user to understand the program by displaying
the data manipulated in a more intuitive way. The Data Display Debugger (DDD) [224] is
a graphical debugger that allows to display data structures made up of records that have
pointers to each other. A more advanced system is presented by Cross et al. and provides
custom visualizations for data structures [44] such as linked lists, stacks, and hash tables.
xDIVA allows to create visualization metaphors for data structures, which are composed of
other (more basic) metaphors [36]. For visualizing call paths, the Code Bubbles paradigm
was implemented in the Debugger Canvas [21].

Query-based object-oriented debugging allow users to write queries on the runtime state
of the system, which is a graph of objects [110, 111, 112, 160]. The queries can check
relations between objects and their attribute values. Closely related is the Program Query
Language (PQL) [125], which is used to dynamically find occurrences of a pattern in the
state trace, signifying an error. This can be useful to check for common errors such as the
misuse of APIs. Expositor [95] treats state traces as first-class-citizens and allows its users
to query, filter, and ask questions of a program’s trace (which is a list of program state
snapshots). While powerful and highly customizable, the users are required to write debug
scripts instead of using the more traditional debugging operations.

Debuggers can provide a higher level of automation. A recent survey by Wong et al.
provide a catalogue of fault localization techniques [215], demonstrating its importance
for efficiently finding the source of a failure. We cover a number of such techniques in the
following paragraphs.

Slicing techniques allow a user to discover which parts of the code of a program can
influence a set of variables at a location in the program (the slicing criterion). A study on
program slicing techniques is presented in [184]. Slicing has been used extensively to, in
general, discover program elements that can influence a location of interest. Or, they can
be used to discover those program elements that are influenced by a location of interest.
It helps the user in the scientific debugging process to more quickly find the source of an

29

CHAPTER 3. STATE OF THE ART

erroneous computation.

Algorithmic debugging automates the debugging process further by attempting to eliminate
working parts of the code as sources of observable failures. In [183], Silva surveys the
state of the art in algorithmic debugging. In essence, an algorithmic debugger splits the
execution of a program which leads to the observation of a failure in sub-computations. It
then asks an oracle (most of the times the user), whether the result of a sub-computation
was correct or not. it can then progressively ‘zero in’ on the offending statement. Related,
Whyline [98] allows users to ask why something was (or was not) found in the program
state. The system attempts to find an answer (or multiple answers) to the question, which
guides the user progressively towards the defect by continuously asking questions.

Iterative delta debugging [4] assumes that there is an earlier version of the program which
does not have the observed failure. By successively going back to older versions, the system
finds one which does not exhibit the failure and computes the minimal difference between
the earlier and current version of the program, arriving at the change that introduced the
defect. Related to iterative delta debugging is angelic debugging, which automatically
identifies expressions in a buggy program as ‘repair candidates’ if they can be changed
such that a failing test passes and no passing tests break. [34]

In model-based software debugging, a model is built that reflects the behaviour of the
(incorrect) program, while test cases specify the correct (or expected) result. When a
inconsistency between expected and actual results is observed, a set of model elements is
computed that, when they behave differently, explain the inconsistency. A model-based
debugging engine computes possible explanations for the inconsistency. An overview of
such techniques is given by Mayer and Stumptner [126, 127].

Although many automated software debugging techniques exist, they are often not used
in industry, where professionals resort to the breakpoint-based debuggers and even print
statements [182].

3.1.2 Debugging Concurrent Programs

Concurrent programming allows a developer to split sub-computations of a program into
concurrently executing threads of control. It improves modularity, and, in many cases,
performance, especially if these threads of control are deployed to parallel processes or
distributed over multiple physical processors. Naturally, concurrent systems increase the
complexity of systems since the threads of control can exchange information, and need to be
synchronized at certain points in time; this can lead to subtle defects such as race conditions,
deadlock, and starvation. This is further complicated by their inherent non-determinism:
the threads are independently scheduled and can be preempted at arbitrary points in their
execution. Observing a failure can be difficult or impossible of two executions of the system
with the same inputs exhibit different behaviour. And, when “probing” the system, another
effect can appear: the “Heisenbug”, which disappears (or appears) when the behaviour of
the system is observed (since instrumenting concurrent programs can lead to a different
scheduling of the threads).

McDowell and Helmbold survey techniques for debugging concurrent programs [131].
They distinguish four categories of approaches: traditional (breakpoint-based) debugging

30

3.1. PROGRAM DEBUGGING

techniques, event-based debugging, techniques for displaying flow of control and distributed
data, and static analysis.

Several traditional, sequential debuggers may be coordinated by a “master” debugger: each
thread of control has an attached debugger that allows the user to set breakpoints, step
through the code, and observe the state. The information has to be presented suitably:
often multiple windows (one for each thread) is shown. We highlight a number of works
that implement this approach. Kacsuk et al. present an approach to debug message-
passing parallel programs based on collective breakpoints and macrosteps [89]. Collective
breakpoints pause execution when messages are exchanged by the parallel processes.
A macrostep is the code executed between two collective breakpoints. These high-level
breakpoints and steps provide new tools to developers of message-passing parallel programs,
closer to the information they require: the (often problematic) communication between
processes. Balle et al. aggregate single-process debuggers for parallel programs [7].
They aggregate the output from lower-level debuggers to present the information to the
user in a manageable form. Users can focus on individual processes and debug them
using a traditional code debugger. Cunha et al. develop a generic framework for parallel
and distributed debugging that coordinate a set of single-process debuggers [45]. Leske et
al. [113] improve the information on the running threads provided to the user by constructing
full thread histories. These histories allow a user to see a merged view of the thread’s stack
and its parent’s stack as if it were a sequential program.

Bates develops a debugger for distributed systems using event-based models [13]. They see
a system execution as a stream of events that signal the occurrence of significant behaviour.
By building a mode of expected system behaviour, the generated event trace of the system
execution can be matched to its specification. If the actual behaviour does not fit the
user-defined patterns, a potential defect is found. Similarly, Fromentin et al. present an
overview of replay mechanisms and detection of properties of distributed executions [56].
They assume message-passing distributed systems with no global clock. Each process
maintains a history of events, over which a user can abstract to construct high-level traces.
These event traces are then analysed, to detect concurrency bugs such as racing.

Kraemer and Stasko survey visualization techniques for parallel systems [101]. They present
systems that visualize properties of the system that users are interested in. These properties
range from communication patterns between processes, temporal ordering of computations,
statistical displays for performance evaluation results, memory access displays, barscope
views to show the mapping of threads to processes, and application-specific displays that
allow for the user to customize what information is displayed, and in which form. Pancake
focuses on the way information on parallel system execution is presented graphically to
the user [150, 151]. The main requirement of graphical displays is to make quantitative
information intelligible, essential for parallel debuggers which need to process a large
amount of data. Koch and Zündorf use UML object diagrams to visualize the state of
distributed applications at runtime [100]. JaVis visualizes concurrent Java programs using
UML diagrams [132]. Caerts et al. [31] implement a hierarchical graphical debugger
for communicating processes. They propose the use of domain-specific visualizations
to visualize hierarchical processes, which allows users to employ a top-down approach,
successively zooming into processes of interest.

Since many defects in concurrent programs stem from timing-related behaviour, temporal
properties are an important tool for users wishing to verify the behaviour of these systems.

31

CHAPTER 3. STATE OF THE ART

A flexible approach to high-level stepping is presented by Gunter and Peled, who allow
the user to define steps using temporal logic [70]. The program and step definitions are
translated to finite state automata. Their approach is not as powerful as traditional model
checking, but has a lower cost and allows users to explore the semantics of the program
using (temporal) properties they are interested in.

To deal with the non-determinism of concurrent programs, debugging techniques are
developed that approach the issue from two directions: either they allow to replay the
process deterministically (using record and replay techniques), or they embrace the non-
determinism and allow the user to explore alternative branches in the state space. A review
of replay techniques is presented by Ronsse et al. [170]. The main challenges for the
record-replay technique for concurrent problems are the overhead for the recording phase
(to avoid introducing or removing bugs) and faithful re-execution, which can be attained
with data-based replay (forcing the processes to read the same values as during the traced
execution) or ordering-based replay (forcing the order in which processes interact, which
requires a logical clock that partially orders process interactions during tracing). Wang et al.
also present a survey of deterministic replay mechanisms for multithreaded debugging [211],
distinguishing techniques based on their tracing method (hardware-based, software-based,
virtual-machine based, or hybrid). Jockey [173] and BugNet [144] are two tools for
recording and replaying the execution of a program by recording calls to non-deterministic
functions such as input/output. For concurrency-related bugs such as deadlock, Zamfir and
Candea introduce a method for automatically synthesizing a thread schedule and program
input for the failure to manifest itself [220]. The synthesized execution can be replayed
deterministically using a traditional debugger. Kobler et al. embrace the non-determinism
of distributed programs. They allow users to explore other branches in the non-deterministic
execution of OpenMP programs resulting from date races and synchronization races [99].
If users find potential race candidates, they can re-execute the program and force a different
choice of event ordering (process communication).

Last, we explore debugging techniques for multi-agent systems. Van Liedekerke and
Avouris explore the debugging of multi-agent systems and provide a technique based on an
abstracted view of the execution [115]. They stress the importance of presenting the state
of the system in a way that is natural, using abstractions related to agents. They develop an
interface which visualizes both the local view of agents, as well as their communication
patterns. Poutakidis et al. [164] present related techniques. They assume complex multi-
agent systems are developed using high-level languages such as UML. From such design
artefacts, a test set can be produced which checks whether the implemented system conforms
to the specification documents. Conversely, the behaviour of the system can be observed
and presented to the user using the abstractions of the modelling language(s) used to design
the system. A more advanced approach is presented by Hindriks [82]. The system he
presents allows users to ask questions about the system behaviour: the debugger can explain
why an action was (not) performed, and why an agent does (not) have a certain belief or
goal.

From this overview, we can conclude that many systems attempt to hide the low-level
behaviour of the system and present a global overview of system behaviour that is more
easily interpreted by the user. This is offered through high-level events detected by patterns
on the execution trace and high-level steps through the system. Trace information is
visualized in a format a user is familiar with; in some cases, design artefacts (models) are

32

3.1. PROGRAM DEBUGGING

reused.

3.1.3 Debugging Embedded Systems

Embedded systems are often characterized by hard real-time deadlines, they often control
hardware systems, and they need to interact with the environment. This increases their
complexity compared to traditional, often isolated, pure software systems.

Hopkins and McDonald-Maier survey the debug support for complex systems-on-chip [85],
where they list four requirements for effective debugging support: 1) there should be limited
change in device behaviour; 2) users should be able to externally observe the system state
and other critical nodes; 3) users should have external access to control the system state
and resources; 4) the cost impact should be limited in terms of device pins or chip area.
Pouget et al. [163] develop a debugging technique for dataflow applications. The debugger
presents debugging information (such as the state of the system, data dependencies, and call
graphs) using dataflow abstractions. Burgess et al. [29] develop a tool that can instrument
embedded systems while they are running to observe their behaviour and debug them at a
high abstraction level (through event monitoring). Tsai et al. [195] introduce a technique
for monitoring the execution of a target (real-time) system non-intrusively, and later to
replay that captured trace deterministically. Similarly, Thane et al. develop a deterministic
replay approach for real-time systems using standard components [194].

3.1.4 Omniscient Debugging

Omniscient debugging allows users not only to explore the state trace of a program in the
forwards direction (by stepping over statements), but also backwards. This is motivated by
the observation that it easier to find the location in the code where a failure is observed (for
example, an exception is thrown, or an incorrect value is detected). With traditional code
debuggers, users need to restart the program multiple times and manually track back from
the failure to the defect. Omniscient debuggers allow users to step back in the execution
trace, eliminating the need to restart the program and manually track back. The main issue
with omniscient debuggers is memory consumption: maintaining a full execution trace
quickly becomes unmanageable.

Engblom presents an overview of different techniques for omniscient debugging of GPLs
[50]. Recently, support for omniscient debugging has also been included in mainstream
tools, such as the gdb [61]. For the object-oriented paradigm, a back-in-time debugger was
created by Lienhard et al. [116].

Pothier et al. use events to monitor the running execution [162]. These events are stored in
a database, which can be distributed to further increase performance. They also support
partial traces by selectively generating events to decrease storage requirements.

Boothe explores techniques for efficient bidirectional debugging of GPL programs [17].
These techniques are based on event traces (to deal with the non-determinism) and snap-
shotting (for increased performance). Older snapshots are progressively removed as the
program is executed (for memory efficiency). Ultimately, however, memory runs out, as
removing events from the trace is not an option. The only solution is to become lossy:

33

CHAPTER 3. STATE OF THE ART

dropping events from the trace, or limiting the number of backward steps the modeller can
make (i.e., a window). If it turns out that the user is interested in these events after all, the
program needs to be reset and executed again.

Some approaches, such as reverse computation [222], partly avoid the problem of memory
consumption. But while they avoid one problem, reverse computation is computationally
more intensive for long jumps, and not always possible.

3.1.5 Live Programming

Live programming is a more recent technique which allows users to change the code of a
running program to quickly test hypotheses. Systems implementing live programming need
mechanisms for replacing the executing binary with the new version, as well as to merge
the runtime state of the old program with that of the new version of the program.

One of the most important distinctions between different approaches is how they handle
time: a distinction is made between real-time and recorded [130]. In real-time mode, the
past is left unaltered, and only future executions of the code are influenced. This is often
termed fix and continue, as implemented by Lisp [174], Smalltalk [64], Erlang [3], and
SELF [198]. In recorded mode, all past input events are recorded and replayed, resulting in
a completely new history. This is implemented in languages such as ElmScript [46] and
YinYang [130].

A lot of work is spent towards making live programming usable. This requires research as
to which representation is most usable, such as textual or graphical languages [49, 69, 129,
155]. Many different types of languages have been made live: graphical languages such as
VIVA [193] and Flogo [72], textual languages such as ElmScript [46] and Smalltalk [64],
and hybrid languages such as Subtext [49].

Many challenges related to live modelling are tackled only for specific cases or specific
languages. One issue relates to how the state needs to be retained [53, 187], and what
needs to be recomputed [30]. Making an existing programming language live is often done
through ad-hoc modifications, often turning liveness into a black art [28].

3.2 Model Debugging

Models are used to describe systems on a higher level of abstraction by focusing on what
the system does, not necessarily how it does it. This allows users to focus on the essential
complexity of the system, instead of implementation details. Model-driven methods, by
providing abstractions with which modellers are familiar with, attempt to decrease the
amount of implementation errors made. That does not mean, however, that the models
created are without defect. Failures can still be observed, and debugging techniques are
necessary to trace their source. Debugging models is considered important, for example in
the automotive domain [188].

In Section 3.2.1 we explore how executable models can be debugged. In Section 3.2.2
we look at a specific subset of languages: domain-specific languages, whose semantics
are often defined by mapping onto a programming language, and how debuggers for these

34

3.2. MODEL DEBUGGING

languages are constructed. In Section 3.2.3, we shortly discuss non-executable modelling,
for which debugging techniques have also been introduced.

3.2.1 Executable Modelling

A plethora of executable modelling languages have been developed. In one way or the other,
they model an executable process, that can be executed through simulation, interpretation,
or compilation. With the design and implementation of a new language comes the need to
develop tools that aid users of the language to construct, execute and debug models in the
language. In [2], Allen et al. explore requirements for modelling and simulation tools that
support verification, validation and testing. One of those is the need to present concepts at
the level of the concepts of the modelling language. This section discusses the work by the
research community on enabling debugging for executable modelling languages—some of
the debugging operations offered are transpositions of code debugging operations, others
are language-dependent.

One way of implementing debugging is through instrumentation. Since the model is exe-
cutable, it can be instrumented in such a way that user interaction is added that implements
debugging operations such as pause/resume, stepping, and breakpoints. An example of this
approach was presented by Mustafiz and Vangheluwe [142]. They generate an experimenta-
tion environment for Statecharts models by “embedding” the original Statecharts model
into the Statecharts model of the environment, which implements the user interaction
for debugging. The instrumentation is implemented using explicit model transformation.
The model is further instrumented to visualize the current state in the original model. The
instrumented model runs in the background, while the user interacts with the original
model in the experimentation environment. There is support for execution modes, steps,
breakpoints (by specifying a condition), and changing of the scale factor in real-time simu-
lation. Bagherzadeh et al. [6] similarly instrument a UML-RT model (which shares some
commonality with the Statecharts language) with debugging operations.

Slicing Statecharts models was implemented by Luangsodsai and Fox [118]. They dis-
tinguish two types of dependencies in non-concurrent Statecharts: control dependence,
where the entering of a state depends upon the previous state, the triggered event, and
the condition; and data dependency, where a test on a variable depends on that variable’s
definition. Three more dependencies are introduced for concurrent Statecharts: parallel
control dependence (parallel components are entered simultaneously), interference con-
trol (an event is raised in a parallel component, causing a transition in another parallel
component), and interference data dependence (a variable is referenced in a component,
but defined in another). The different dependencies are represented in an and/or-graph. A
slicing criterion can be defined, based on a state or event (in combination with a state).
The Statecharts model is then sliced (backward or forward), so only relevant states and
transitions remain.

Model debugging has received some attention in the literature on the Modelica lan-
guage [55], which is an a-causal language for modelling physical systems using equations.
In [5, 26, 27, 157, 158, 159, 185, 186], the authors develop techniques for debugging
equation-based models, which differ greatly from sequential programs, where each state-
ment is executed sequentially. They look at static and dynamic debugging, as well as how to
make the debugging techniques scalable for large models. Further, they develop algorithmic

35

CHAPTER 3. STATE OF THE ART

techniques that use slicing to (semi-)automatically find potential source of failures. Their
dynamic debugger (offering breakpoints and stepping) is implemented by instrumenting the
generated code with symbolic information and translating high-level debugging commands
to low-level C debugging commands.

Tools for Petrinets, an language that allows to model non-deterministic behaviour, offer
limited debugging capabilities. An example is TINA [14], which allows to step through a
model’s firing sequence manually, but does not offer more advanced capabilities such as
breakpoints.

SpecDiff uses model differencing to aid users in understanding the evolving behaviour
of formal specifications [217]. They construct, for both versions, a model to capture the
operational semantics of both models. These models are compared, and the differences
(points at which the behaviour of the models is different) are presented to the user as
possible defects.

An alternative approach to model debugging is presented in [122]. The authors argue that the
traditional DEVS [221] terminology does not communicate the meaning of the formalism
to domain experts that might not be familiar with discrete-event modelling and simulation.
They introduce a new, more intuitive way of specifying discrete-event systems, explicitly
exposing the semantics of the DEVS formalism. They also present a novel visualization
method that communicates the dynamics of the system (in the form of an event trace) more
effectively to the domain expert. While they do not provide debugging operations, the
information displayed in their interface can be useful in a debugging context.

Model Transformations (MTs) are an essential part of the Model-Driven Engineering
(MDE) approach to designing and developing complex systems. Early work on debug-
ging graph rewrite rules (on which MTs are based) is described for Fujaba by Geiger and
Zündorf in [63]. Mészáros et al. [135] implement a debugger for the Visual Modelling
and Transformation System (VMTS). They implement step-by-step execution, breakpoints,
visualization of the current state of the transformation and host model, and runtime mod-
ification of identified matches, the host model, as well as the transformation definition.
Similarly, Sun and Gray [190] extend their demonstration-based model transformation
engine with debugging support, allowing users to step through previously defined patterns
when they are deemed incorrect. Low-level execution information is hidden, and the
debugger presents the information graphically in a format that is familiar to the users of
the tool. In [176, 177, 178, 213], Schoenboeck et al. make the observation that MTs are
inherently non-deterministic. To capture that non-determinism, they develop a domain-
specific language on top of Petrinets [139] to execute and debug MTs. Corley, on the other
hand, focuses on bringing debugging support similar to program debuggers, in particular
omniscient debuggers, to debug MTs. [40, 41, 42, 43]. To achieve this, he transposes
“step forward” and “step back” operations from code debugging to appropriate debugging
operations that allow traversal of the MT execution history in both directions. Since model
transformations are non-deterministic, the implementation logs each change at the end of
a transformation step, to be able to undo them when the user requests to step back. By
inverting these changes, users step back to previous states. Overhead is limited, as it is
incremental in nature, though the debugger eventually runs out of memory unless old events
are dropped or persisted to disk. Hibberd et al. [80] implement forensic debugging of
MTs: traces of the transformation’s execution are leveraged to ask “why (not)” questions.
Ujhelyi et al. [197] transpose slicing techniques onto MTs to find potential sources of an

36

3.2. MODEL DEBUGGING

observed failure. Dynamic backwards model slices are computed based on data and control
dependencies that were computed from the MT definition. More recently, Jukšs et al. [88]
describe a “layered” approach to the debugging of MTs, recognizing the embedding of
languages (scheduling, rule, pattern). They allow users to specify debugging “scenarios”
using model transformations.

Closely related are debugging techniques for Model-Driven Development (MDD), and
more specifically for the Unified Modelling Language (UML), a family of (executable)
languages for specifying the structure and behaviour of software systems. In [103], Krasno-
golowy et al. map code debugging concepts onto the Story Diagrams formalism, and build
a visual debugging user interface in the open-source development environment Eclipse.
Their architecture consists of a debugging client (with which the user interacts) that com-
municates with a debugging server, which controls the execution of the interpreter. Both
Mayerhöfer [128] and Laurent [107] extend the fUML—a subset of the UML for which
precise semantics are defined—with debugging support. Dotan and Kirshin similarly de-
velop a visual debugging tool for behavioural UML models [48]. Pópulo is a debugging
tool for UML models [57]. It implements step-by-step execution and breakpoints for UML
activity diagrams. Brüning et al. implement debugging support for OCL constraints in
UML models [24]. Graf et al. [67, 68] propose debugging embedded systems that were
specified using UML models by mapping runtime information back to the model level.
Specifically for the state machine language, Kaufmann et al. [90] propose a SAT-based
tool that checks the consistency of a state machine with its specification (in the form of a
sequence diagram). In case a counter example is found, it is visualized in the graphical
modelling environment, which allows the user to step through the trace.

3.2.2 Domain-Specific Modelling

Recent advances in modelling language engineering have provided language engineers
with tools to quickly develop a specialized modelling language and its associated tools,
including (graphical) modelling environments, simulators, and code generators. DSLs allow
an engineer to focus on what the solution to a problem is, not how it is implemented. The
solution is developed in a notation that is most familiar to the engineer. For domain-specific
models, focus has primarily been on the theoretical foundations of (meta-)modelling [105]
and how (domain-specific) modelling can help developers [91]. Nowadays, focus starts
shifting to model execution [133]. With model execution comes the need for debugging, and
since the effort to develop domain-specific tools should be as low as possible, techniques
for developing domain-specific language debuggers are needed.

Mannadiar and Vangheluwe [123] address the need for debugging models in domain-specific
languages. They propose a mapping of code debugging concepts (such as breakpoints) to
model-based design. Their focus is on debugging model transformations and synthesized
applications (with traceability links back to the design models from which the code was
synthesized).

Wu et al. [216] map DSL debugging operations to code debugging operations, performed on
the generated code. The language developer has to instrument the grammar of the (textual)
DSL with debugging actions. Similarly, Lindeman et al. [117] instrument a language
definition with debugging support. The debugger specification is expressed in a specialized
language called SEL, and the parsed DSL program is instrumented before code generation

37

CHAPTER 3. STATE OF THE ART

to insert the appropriate debugging behaviour. The instrumentation specifies points in
the code where domain-specific events are generated and communicated to the domain-
specific debugger. A debugging environment interacts with the generated code to offer
the user a domain-specific view on the execution state and a set of debugging operations
(pause/resume, step over/into/out). Their approach is platform- and language-independent,
and their architecture is split into four parts to isolate platform-specific libraries. Finally,
Sadilek and Wachsmuth describe a method for building (visual) debuggers for DSLs by
(manually) instrumenting the operational semantics of the DSL [172]. This allows language
developers to quickly prototype language workbenches that implement debugging. TIDE
is a generic framework to develop debuggers for (domain-specific) languages [199]. The
language developer needs to define a number of debugging rules, that make use of logical
breakpoints (DSL-level steps) to implement debugging actions.

Pavletic et al. [153, 154] present debugging techniques for extensible languages. Such lan-
guages extend a previously defined (general-purpose) language with extra domain-specific
concepts, while still retaining the full power of the underlying language. Chiş general-
izes techniques for adding debugging support to DSLs in the Moldable Debugger [37], a
reusable framework for developing debuggers for DSLs. The framework allows to imple-
ment a set of debugging operations such as stepping, state querying, and visualization at
the most appropriate (domain-specific) level of abstraction. The framework is flexible, and
determines the most appropriate debugging view depending on patterns in the code.

Bandener et al. [8] demonstrate how to add visual execution and debugging to a DSL whose
syntax is described in a metamodel, and its semantics in a set of graph transformation rules.
Similarly, in [19], Bousse et al. describe a partly generic debugger that can be extended
with domain-specific trace management functions [20]. They allow the definition of a set
of debugging operations that traverse, query, and manage these execution traces.

In [200], van der Storm explores how executable (domain-specific) modelling languages
can be made live with “semantic deltas”. The system is capable of translating source
program modifications (so-called deltas) to operations on the running code.

3.2.3 Non-Executable Modelling

While debugging techniques are most often associated with exploring the execution of a
system, debugging techniques have been developed for non-executable modelling languages.
These techniques attempt to find defects in the specification of the models, most often by
explaining the results of a well-formedness checker.

Wille et al. [212] develop techniques for debugging UML models that do not conform to
their metamodel, either violating UML constraints, or violating OCL constraints. If an
inconsistency is found, only a small subset of the model’s elements have to be considered
by the user in order to re-establish the conformance relation between model and metamodel.
Similarly, Beanbag [218] is a language that allows to (semi-)automatically re-establish the
consistency relation between a model and its well-formedness rules (which are similar to
OCL constraints) after a user has edited the model.

Ananke is a tool for debugging constraint models based on metamodels and metaknowl-
edge [54]. The authors present an iterative process for improving constraint satisfaction

38

3.3. SIMULATION DEBUGGING

models. The process is guided by suggestions for relaxing or tightening the constraints of
the model.

3.3 Simulation Debugging

Simulations are a way of answering questions about systems without physically building
them. They can be implemented using various techniques, in general-purpose programming
languages or specialized simulation languages. Whatever the implementation medium,
debugging techniques aid the simulation developer in finding defects.

Krahl presents a “best-practice” guide to simulation debugging based on common types of
defects in simulation models, when implemented in a programming language [102]. Among
the tools useful for debugging, the author lists animation, model traces, and debuggers for
interactively stepping through the simulation code.

Debugging techniques are often based on a view on the trace of the simulation, which
possibly aggregates some parts or, through visualization, aids the user in finding patterns
that demonstrate a defect is present. In [25], Buchanan and Keefe explain how debugging
support was added to the Möbius modelling and simulation framework, which provides
a formalism-independent discrete-event simulator. They add support for stepping, model
state modification and model state visualization to their existing kernel. The back-end
simulation process is separated from the front-end visualization by a communication layer.
Kemper [92] presents a method for debugging stochastic simulation models based on a
visualization of their trace, from which irregular patterns can be discerned. In [66], Gore et
al. develops a different approach, extending statistical debugging techniques traditionally
used for debugging software systems, which makes them effective to debug simulation
systems as well. The author assumes the models are developed using a programming
language, instead of a high-level modelling language. By introducing simulation-specific
debugging aids, traditional code debuggers are extended to help a simulation developer
more quickly identify the source of a failure.

Rogin and Drechsler build a high-level debugger for the SystemC simulation language [168].
The debugger is based on gdb. It abstracts its output to offer system-level information to
the user of the debugger. Operations are also provided at the SystemC level and translated
to commands for gdb.

In [93], Kemper and Tepper present an automatic transformation from simulation models
to Petrinets models, in which analysis can be performed. The analysis results can discover
failures in the simulation models and point to their source.

3.4 Back-Translation of Traces

When using specialized modelling or simulation languages, models are often translated to
another language (the semantic domain) for simulation or analysis. This approach promotes
reuse of languages whose semantics are well-defined and whose tooling is mature. There
can be a wide semantic gap between both languages, however. Users of the source language
might not be familiar with the abstractions used by the target language. Back-translation of

39

CHAPTER 3. STATE OF THE ART

simulation or verification traces is useful, as they present the trace using abstractions most
familiar to users of the language.

As part of the ProMoBox approach, verification results (counter examples) are translated
back to a domain-specific trace language [136]. The model is a trace leading to a violation
of a property, and can be stepped through in a visual environment. The back-translation is
performed by rules that are derived from the modelling language’s semantics.

Related to the ProMoBox approach is the approach presented by Zalila et al. [219]. They in-
strument the operational semantics of the modelling language (expressed using model trans-
formations) using higher-order transformations to produce traceability information. That
information is used to translate verification results back to the domain-specific level.

Hegedüs et al. [79] use a back-annotation technique to translate simulation traces in a target
formal verification tool (and accompanying language) back to domain-specific concepts.
The approach presented in their paper is used to translate the output model in the target
output language back to an output model in the source output language, making use of
the (forward) traceability links between the source and target design models. The back-
annotation phase uses change-driven transformation rules to find patters in the target state
trace that correspond to changes in the domain-specific state.

These techniques improve model understanding, but are not necessarily a debugging
technique; after detecting a failure in the domain-specific trace obtained by back-translation,
the defect in the model still has to be found.

Summary

Program debugging techniques have been well-researched, and a plethora of debugging
tools have been developed. They all have the same goal: program understanding and the
tracking of defects in source code. The techniques range from manual step-wise debugging
(forwards and backwards), trace visualization and replay, algorithmic debugging, query-
based debugging, and model-based techniques. We observe that abstraction is often used
to understand increasingly complex systems such as parallel and distributed programs.
The sheer complexity of the code makes abstraction essential to navigate the state and
execution space successfully. These techniques naturally evolve towards (domain-specific)
modelling languages where abstraction is promoted and domain abstractions are promoted
to first-class citizens. The first steps to bring debugging to these modelling languages
relied on manually implementing them. More recently, efforts to structure the building
of advanced (visual) modelling, execution and simulation environments for modelling
languages have expanded to include debugging. These methods hand tools to language
designers for quickly building a complete set of tools for their language—from editors, to
executors, analysers, testers and debuggers. In the next chapter, we contribute to this effort
by extending the available methods. We analyse the semantic properties that modelling
languages can exhibit, and explore debugging for each semantic variation point. These
debuggers are created according to a structured, repeated process and integrated with
existing modelling environments instrumentation.

40

Chapter 4

Modelling Model Debugging
Environments

This chapter explains how model debugging environments can be explicitly modelled. We
extend the state-of-the-art in (visual) environment construction for modelling languages
based on language engineering.

We explained in Chapter 2 how MDE techniques can help overcome the complexity
of developing engineered systems. In particular, the multi-paradigm philosophy takes
advantage of a wide variety of modelling languages, each with their specialized syntax
and semantics (sometimes tailored to a specific domain), to model the different aspects
of a system at the most appropriate level of abstraction. But, tool support is crucial, and
techniques are required to efficiently build modelling tools that support each phase in the
MDE process. This includes specifying, verifying, testing, and simulating models, amongst
others. In the previous chapter, we surveyed the state-of-the-art in program debugging
and the growing field of model debugging. From the discussion there we deduce that
currently lacking is an approach based on language engineering that allows the construction
of debugging and experimentation environments for formalisms with varying syntax and
semantics. This chapter fills that gap: we provide a structured approach towards building
such environments, by providing a workflow, architecture, and an instrumentation technique
for adding debugging support to model simulators.

We consider the ProMoBox approach [136] to be the state-of-the-art in language engineering
for modelling, simulation, and verification environments. In Section 2.2.3, we explained
that, inspired by the ProMoBox approach, we consider in this thesis that a modelling
language actually consists of three sub-languages:

• the design language, its syntax described by metamodel MMD, supports the mod-
elling of designs in the language;

• the runtime language, its syntax described by metamodel MMR, supports the repre-
sentation of a runtime state (snapshot) of models in the language;

• the output language, its syntax described by metamodel MMO, supports the repre-

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

MMD

MMR

MMO

EnvD

EnvR

EnvO

Sim

MD

MR

<<gen>>

<<gen>>

<<gen>>

<<
de
si
gn
>>

<<init>>

<<input>>

<<modify>>

MO
<
<
o
b
s
e
rv
e
>
>

<<
ge
ne
ra
te
>>

<
<
s
ta
r
t>
>

<
<
c
o
n
tr
o
l>
>

Languages Environments User

Simulator

Figure 4.1: The different environments, their relations, and operations.

sentation of an execution trace (of consecutive snapshots in the language MMR) of
models in the language, resulting from a simulation or verification run.

These languages are used to generate three environments: a design environment, which
offers tools to engineers for building designs in the language; a simulation environment,
which interprets the results from a(n) (external) simulator to represent the evolving state
of a model; and a replay environment, which interprets an execution trace or verification
results and allows a user to step through this trace.

Figure 4.1 presents the three environments (one for each sub-language), their relations and
operations. From the user’s perspective, these environments allow to perform the following
modelling and simulation tasks:

1. In the design environment, a valid design of the system can be created.

2. In the runtime environment, the runtime state of the system can be displayed. The
runtime model for a system is obtained from its design model, and initialized ac-
cording to a user-specified configuration. A runtime state can be used as input for
a simulator. The simulator updates the state of the system and modifies the run-
time model to display the new runtime state. The runtime environment provides
visualization support for the simulation process.

3. In the output environment, a complete simulation trace can be visualized. This trace
is generated by the simulator at the end of simulation, and it is used to replay the
simulation step-by-step (controlled by the user).

The output environment can already be used for a posteriori debugging of the system. It
only offers a limited number of features (visualization of the trace, stepping), and in practice
might not be usable since the trace of a simulation can be very large and therefore either
not representable in memory, or it might be difficult to find a state of interest. The runtime

42

environment similarly can be used to observe the semantics of a model, since it displays
the runtime model while it is being modified by the simulator. Not much control is offered,
however, besides the visualization aspect.

The ProMoBox approach distinguishes two more languages:

• the input language, described by its metamodel MMI , which supports the modelling
of a trace of input events to model the behaviour of an environment;

• the property language, described by its metamodel MMP , which supports the
modelling of temporal properties using domain-specific abstractions.

These languages can support running experiments on the models created in the design
language, similarly to what was proposed in the experimental frame approach [221]. The
experiment consists of an input model (conforming to the input language); the simulator
then produces an output model (conforming to the output language) and a model checker
ensures this output model satisfies the properties defined in the property model (conforming
to the property language).

In the rest of the discussion, we do not consider the input, output, and property languages,
since we are concerned only with the interactive debugging of model simulations. It is our
goal to extend the existing infrastructure for debugging. The techniques that we develop for
constructing model debugging environments need to be general: they need to be applicable
to any type of language a language engineer would want to build such environments for.
This means three things:

• we need to instrument the language’s simulator with debugging support;

• we need to construct a debugging environment that can interact with the debugging-
enhanced simulator by invoking operations and interpreting their results;

• we need to leverage any other artefact created during the modelling and simulation
workflow if they can serve as a debugging aid.

The sections in this chapter describe our techniques for achieving these goals.

Structure In Section 4.1, we explain the (combination of) semantic properties a language
can have; for each valid combination of semantic properties, our techniques need to be able
to construct a debugging environment. This is demonstrated in Chapter 5, where we use
our approach to build debugging environments for languages that exhibit widely differing
semantics. In Section 4.2, we explore debugging operations that are useful for modelling
languages. We both look at how code debugging operations can be transposed, and which
additional operations are useful in the context of modelling languages. In Section 4.3, we
explain our technique of de- and reconstructing a model simulator to instrument it with
debugging operations. In Section 4.4, we place the de- and reconstructed simulator in an
architecture which couples the components useful for model debugging in an architecture.
Last, in Section 4.5, we present the workflow for developing debugging environments, tying
together the previous sections.

43

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

Language Semantics

Code Generation

Type

Operational Translational

Visibility

Black-BoxWhite-Box Grey-Box

Definition

Features

Time Determinism

Causality Algebraic Loops Structure

A-Causal Causal Dynamic Static

Discrete-Time Discrete-Event Continuous-TimeUntimed Non-DeterministicDeterministic

Procedural

Hybrid

Embedding

Environment

Interaction

Spatial

Distribution

Figure 4.2: A classification of language features.

4.1 A Language Classification

We classify modelling languages according to their semantic properties. This is a useful
exercise, since many semantic variations exist among modelling languages. In fact, this
diversity in semantics is essential in the context of MDE and MPM, since the domain knowl-
edge of experts is leveraged. We discuss two aspects relevant to a language’s semantics
for the building of debugging environments: the language’s features, and the way these
semantics are defined.

4.1.1 Semantic Features

To ensure our techniques are general, we need to consider the semantic variety found in
modelling languages. As these languages are used to model systems in a broad context,
we are no longer constrained by the sequential, procedural style of programming that still
dominates in software engineering. Since most debugging techniques are implemented
for software systems, they specifically target such semantics. To transpose traditional
debugging techniques onto modelling languages, or create new, simulation-specific ones,

44

4.1. A LANGUAGE CLASSIFICATION

we need to study the semantic properties of modelling languages in general.

In this section, we pick out a number of interesting semantic variation points from the
point of debugging. Languages can be classified according to the semantic features they
exhibit. Often, a language combines several features. Our work focuses on executable
languages, and we do not consider languages that have no dynamic semantics. The feature
diagram shown in Figure 4.2 presents a classification of modelling languages according to
1) their semantic features and 2) how their semantics are defined. The diagram is a result of
examining the semantic properties of modelling and simulation languages that are used to
describe the behaviour of systems. In the next subsections, we explore each feature and
link them to possible debugging operations. We mention for each semantic property which
debugging operations are useful to debug models in those languages. The classification
is used in Chapter 5 when we construct debugging environments for a set of different
languages: for each language, we specify the semantic properties it exhibits.

Procedures

The structure of a procedural language is decomposed into functions, and a notion of
one function “calling” another function is present in the semantics of such languages.
Most notably, programming languages traditionally decompose into functions. Even
though currently the object-oriented paradigm is arguably most popular (which decomposes
programs into objects), the dynamics of the system is still built around calls to the methods
of objects. A characterizing runtime feature of such languages is a “call stack” to which an
entry is pushed every time a function is called, and one is popped every time a function
returns. This gives rise to a call hierarchy at runtime that is built up and torn down
continuously while functions are being called and returned.

Procedures have debugging operations associated with them that allow users to navigate
this hierarchy: step into, step return, and step over. These operations are directly linked to
the calling and returning of functions.

• The step into operation is enabled when the next instruction is a function call. By
executing the operation, the scope switches to the called function, and the next
instruction is the first instruction of the function.

• The step return operation is enabled when the current instruction is executed inside
of a function. By executing the operation, the scope switches to the calling function,
and the next instruction is the instruction following the call to the function.

• The step over operation is enabled when the next instruction is a function call. By
executing the operation, the debugger resumes execution until the function returns,
and the next instruction is the instruction following the call to the function.

These three operations allow the user to navigate the call stack efficiently.

Algebraic Loops

Languages can allow algebraic loops in their models. An algebraic loop occurs if the result
of a computation is also an input to that same computation, either by a direct feedback from

45

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

+

-

x y

Figure 4.3: An example algebraic loop in a dataflow language.

the computation to itself, or through a number of other computations. Such loops prohibit
“normal” computation, since values can depend on themselves. Instead, the dependencies
within the loop have to be resolved first and a globally consistent solution has to be found,
often by solving a set of equations. A defining feature for such languages is a scheduling
mechanism that orders the computation of the new value of the elements based on the
analysis of the algebraic loop.

An example is given in Figure 4.3. The value of y depends on the value of x, but also on
itself. We construct the set of equations, where w is the output of the negator block:

y(t) = x(t) + w(t) (4.1)
w(t) = −y(t) (4.2)

While this seems a trivial model to implement in program code, this is not the case: the
algebraic loop must be resolved first. Indeed, in code, the statement y = x - y translates
to the equation y(t) = x(t − 1) − y(t − 1), as the old values of x and y are used in the
assignment. To actually implement the equation y = x − y, the algebraic loop must be
solved to y = x

2 , an equation trivially solved in code. But before arriving at that solution,
programmers would have to manually solve the set of linear equations to come up with
the code to solve the system of equations. In contrast, these formalisms handle linear
algebraic loops natively, solving y = x− y automatically. To solve linear algebraic loops,
the loop is detected as a strongly connected component, and a linear system of equations is
constructed.

For debugging purposes, languages that allow algebraic loops need to be able to show those
loops when they are encountered, as well as the order in which the output of the elements
are computed (the schedule).

Causality

Most simulation languages are causal. On a time-line, events in the present are caused
by events in the past and they cause events in the future: they are causally related. Other
languages, most notably the Modelica language [55], are a-causal. In those languages,
cause and effect cannot be deduced. Instead, relations are defined between model elements,
and the execution engine deduces a solution at runtime. It is in some domains more natural
to model systems using a-causal languages, since the dynamics of many systems are guided
by relations between elements (for example, the relation between current, voltage, and
resistance is defined by Ohm’s law). Encoding those rules in a causal language would
require to translate such relations to (causal) computations, bringing the modeller further

46

4.1. A LANGUAGE CLASSIFICATION

S
t
a
t
e
 V

a
r
ia

b
le

Simulated Time

21 3

(a) Continuous-time semantics.

S
ta

te
 V

a
r
ia

b
le

 (
S

V
)

Simulated Time (ST)

0.540.53 0.55

(b) Discrete-time semantics.

S
t
a
t
e
 V

a
r
ia

b
le

Simulated Time

2.3 30.8

(c) Discrete-event semantics.

Figure 4.4: Different types of state evolutions as a function of simulated time.

from “what” the system is and closer to “how” the system needs to compute it (for example,
in a dataflow language with algebraic loops as presented in the previous section).

As we discussed in Chapter 3, a-causal debugging requires specialized techniques that have
been the subject of extensive research. We therefore do not consider such languages for
our debugging techniques, and from now on assume the language for which debugging is
implemented is causal.

Time

The notion of time is central to many simulation formalisms. The simulated time differs
from the wall-clock time: it is the internal clock of the simulator. Central to all formalisms
discussed in this thesis is a state variable vector (keeping track of the current simulation
state), which is updated each time the simulated time is incremented by the simulator. The
frequency of these time increments depends on the time semantics of the formalism. We
distinguish three categories of timed formalisms, presented in Figure 4.4:

• A continuous-time formalism’s clock can have any real-number value. The state
function changes continuously and is defined for all simulated time instants. To
implement such formalisms on a computer, the continuous time function has to be
discretized and the state function sampled at equidistant points in time. A continuous-

47

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

time simulation implemented on a computer can be seen as a discrete-time simulation
with a sufficiently small step size. The resulting state function is a stepwise function,
approaching a continuous function.

• A discrete-time formalism’s clock is only defined at equidistant, discrete points in
simulated time. The state of the system is updated at those discrete points in time,
and is undefined in between two updates.

• A discrete-event formalism’s clock and state are updated at discrete points in time,
but they are not necessarily equidistant. The behaviour of such systems reacts to
events from the environment aside from its autonomous behaviour, which can change
the state of the system as well.

A last category consists of untimed formalisms, which do not have a notion of time: their
simulators do not have an “internal clock”. The behaviour modelled by these systems is
untimed, although of course, their computation is not instantaneous and has a wall-clock
time duration.

A debugger for simulation formalisms has to take into account the time semantics for that
formalism. The “stepping behaviour” will be different, depending on when and how often
the state is updated. For debugging operations, discrete-event formalisms additionally form
an interesting category, since they are reactive to events. These events can be local (raised
by one of the elements in the model) or can come from the environment. To debug such
simulations, the simulation state can be indirectly affected by providing an operation that
injects such an event at a particular instant in simulated time.

Structure

In a static-structure system, the structure of the system is not part of the runtime state of the
system; it is considered static. For example, the model in Figure 4.3 has static structure: its
number of blocks and their interconnections cannot change. In dynamic-structure systems,
however, the structure of the system can change over time. The formalisms to model
such systems allow to natively describe structure-changing behaviour: during simulation,
entities can appear and disappear and their interconnections might change. This behaviour
is encoded in the elements of the models: they often have the capability to decide that a
structure change is necessary, which is performed by a special state change function. This
state change does not necessarily affect the element that requested it. An example of a
dynamic-structure formalisms is SCCD, presented in Section 2.3.2. Objects implement
agent-like behaviour: each object has its state encoded in a set of variable values and its
behaviour controlled by a state machine. They can request the runtime to remove or add
objects, as well as connections between objects.

Debugging dynamic-structure systems can be challenging. Since entities appear and
disappear at runtime, the runtime state of the system is not as easily traced back to its design.
The runtime formalism, and consequently, the simulation and debugging environment,
differs significantly from the design formalism and environment. In those cases, it might be
necessary to look towards other artefacts created for the simulation system. For example,
many agent-based simulations are visualized using model-specific visualizations. We
discuss such possibilities in Section 4.4.

48

4.1. A LANGUAGE CLASSIFICATION

Determinism

A deterministic system’s behaviour is identical in consecutive simulation runs for the same
set of inputs (and configuration). A formalism has deterministic semantics if it only allows
users to model deterministic systems. In many cases, however, it is possible to model an
(unwanted) non-deterministic system if either:

• the semantics of the formalism are not well-defined (leading to implementation-
dependent behaviour);

• the semantics of the formalism leave the interleaving of concurrent elements to the
runtime system.

Such non-determinism can be the source of many failures in the system and can be notori-
ously difficult to debug. A non-deterministic formalism, however, includes non-determinism
in its execution semantics. At runtime, their semantics branch: the model encodes all pos-
sible execution paths, instead of just one. This can be particularly useful for modelling
(parts of) systems that are inherently non-deterministic, such as distributed computations,
unpredictable environments, and certain scheduling systems.

For deterministic formalisms, we assume the semantics are well-defined and faithfully im-
plemented by the simulator: unwanted non-determinism is ruled out. For non-deterministic
formalisms, debugging operations that explore the possible execution paths are neces-
sary.

Spatial Distribution

A system might be spatially distributed. For example, a city consists of a grid of roads,
buildings, parks, etc. Many of the properties such elements in the grid posses are very
similar, but their composition needs to be considered to be able to analyse the full system.
To avoid the tedious task of instantiating the spatially distributed elements in their grid,
specialized formalisms allow modellers to quickly define and change the parameters of
these models. Together, such networks of “basic” cells can exhibit complex emerging
behaviour. An example of a formalism that support spatial distribution natively is Cellular
Automata [214]. In computer simulation, CellDEVS [210] has been proposed to model
cellular automata. Models in this language are mapped onto traditional discrete-event
models, and as such, we do not consider their debugging in this thesis.

Hybrid Behaviour

A hybrid formalism combines two formalisms syntactically and semantically. At runtime,
the semantics of the formalisms are interleaved: a coordinator is responsible for the
communication between the two formalisms. Semantic adaptation might be necessary to
make the execution results of both formalisms compatible. A typical application for hybrid
formalisms is the embedding of one formalism in the other: a new syntactic element allows
to embed a complete model of one formalism into a model of the other formalism. This
creates a parent-child relation between the two formalisms, which at runtime often means
that one formalism acts as the “master”, while the other acts as the “slave”.

49

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

In such embedded formalisms, an operation has to be provided that can switch contexts,
similar to the step into operation of procedural languages. In this case, however, the context
switches not from one function to another, but from one language’s context to another. As
an example, consider the dataflow model shown in Figure 4.3 is a hybrid model, where the
function of each block is modelled using an appropriate language (for example, an action
language). At the level of the dataflow model as shown in the model, we are interested in
its behaviour as a formalism that allows algebraic loops. While executing the model in a
debugger, however, we might be interested to look inside the execution of each block. By
stepping inside the block’s computation, we switch contexts to, for example, a procedural
action language.

4.1.2 Definition of Semantics

We’ve covered the difference between operational and translational semantics in Sec-
tion 2.2.3. To reiterate, either a simulator is built that can execute models in the language
(operational semantics) or a translation is made to a language with known semantics (trans-
lational semantics). Operational semantics are implemented by a simulator (or executor). A
number of options exist to define the simulator: for example, by encoding its rules in an
action language, or by defining model transformation rules that directly modify the runtime
model. Translational semantics are most often implemented using a model transformation
to another formalism. We consider code generation a special case of translational semantics,
where the target language of the translation is a general-purpose programming language.
Code generation is often the last step in an engineering workflow where one of the deliver-
ables is a software component. The generated code is subsequently deployed onto hardware
and integrated in the rest of the system. Therefore, from a debugging perspective, code
generation is linked to deployment rather than simulation.

The user of a formalism is often not concerned with the implementation details of the
formalism’s semantics. The simulator is, as is the case for closed-source software, delivered
as a black box, which accepts a valid model as input and produces simulation results as
output. If the simulators are vendor-specific, intellectual property protection is another
reason for providing the simulator as a black box. In some cases, even the model is black-
box: in that case it is coupled with the simulator and offered to the user as a single package
with which can be experimented. Debugging in those cases is difficult: if the provided
interface does not offer the necessary control, there is no way to instrument the simulator
or model with appropriate debugging actions. White-box approaches, on the other hand,
expose the semantic definition. In those cases, the semantic definition can be altered and
instrumented with debugging support. In between black- and white-box approaches are
the grey-box approaches, where parts of the simulation algorithm are exposed through an
interface.

In the remainder of this work, we assume a white-box approach. This is reasonable, as
we are targeting language engineers and tool builders, who have access to the semantic
definition of a language. In case intellectual property needs to be protected, the developer
of the debugger has to construct the debugging interface in such a way as to hide the parts
they do not want to expose. These considerations, however, are outside of the scope of our
work, and we assume all details can be shared with the users of the debugger.

50

4.2. DEBUGGING OPERATIONS

Operations

SteppingBreakpoints

ForwardsBackwards

State

ControlObservation

TimeSteppingBreakpoints StateTime

Figure 4.5: A classification of debugging operations.

4.2 Debugging Operations

The previous section presented an overview of semantic variation points in simulation
languages. We already mentioned for each variation point how they might affect debugging.
This section divides useful debugging operations for simulations in different categories.
Some are transpositions from code debugging operations, while others are simulation-
specific.

The intent is to give an exhaustive overview of (potentially) useful debugging operations.
The categories discussed in this section are presented in Figure 4.5. At a high level, we
distinguish between observation of the state of simulation and control operations that
influence the behaviour of the simulation process. Observation is implemented in the
debugging-enhanced simulator and visualized by the debugging environment in the form
of a model. Control operations are similarly implemented in the debugging-enhanced
simulator and offered to the user in the debugging environment, in the form of interactive
elements such as buttons. Within each category, we distinguish between operations relating
to the steps of the simulation algorithm (discussed in Section 4.2.1), operations relating
to the state of simulation (discussed in Section 4.2.2), operations relating to the simulated
time (discussed in Section 4.2.3), and breakpoints (discussed in Section 4.2.4).

4.2.1 Stepping

In code debugging, stepping through the code is often used by the user to understand how
the state of the system evolves during execution: it gives a detailed view of the program’s
behaviour. To transpose such operations to simulation debugging, we consider steps that
give the user a view into the execution semantics of a simulator.

A formalism’s simulator updates the state at certain points in simulated time (depending on
the formalism’s time semantics). Figure 4.6a depicts the evolution of the state (variable)
over simulated time. Three big steps (state updates) are shown. A big step corresponds
to an iteration of the simulation algorithm, and after it has completed successfully, the
system is in a valid state. In between, however, a number of smaller computation steps
may be involved. This is visualized in the figure by the dashed arrows at time 2.3 in
the graph: each represents a phase in the computation of the next state. Another view is
presented in Figure 4.6b, where one big step is broken up into a number of small steps.
Simulated time stays constant in between small steps, and only increases after a big step
has completed.

51

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS
S

ta
te

 V
a
r
ia

b
le

 (
S

V
)

Simulated Time (ST)

2.3 30.8

(a) Small steps for a discrete-event
formalism.

S
im

u
la

te
d

 T
im

e

Simulation Step

5

"small step"

"big step"

4
3

2
1

0

(b) Another view of simulation steps: multiple steps
occur at the same simulated time instant.

Figure 4.6: Small steps: a view into the simulation algorithm.

The results of state updates are available to the user after simulation if a state trace of
the simulation is generated by the simulator. The phases of a big step (intermediate state
changes), however, are not communicated to the user in a simulation environment, since
they are implementation details of the simulator. Moreover, no control is offered to the user:
during simulation, the simulator executes autonomously. Stepping operations needs to be
implemented in a debugger, since stepping through a simulation’s execution can provide
valuable information to discover a defect.

We distinguish between two categories of steps. A big step and small step, as discussed
above, are steps of the simulator: they are phases in the computation of the dynamics of the
system. Such steps do not correspond to syntactic elements in the model, but rather, they
correspond to an execution that involves the complete model state. And, while we have
up to now considered only two such levels, a simulation algorithm can consist of many
more: a small step can be broken up into multiple smaller steps, that themselves are broken
up into even smaller steps. A different category of steps considers the syntactic scope of
elements and attaches stepping semantics to certain syntactic constructs. This is the case,
for example, in procedural languages, where a step into switches the context to the function
being called. Conversely, a step return steps out of the current function. Such steps group a
number of big steps and are only valid in certain contexts.

4.2.2 State

As explained, the system state evolves over (simulated) time during simulation. Usually,
the modeller knows the initial state (since it is captured in the design model and potentially
in a user-provided configuration that is used to initialize the runtime state of the simulation),
as well as the end state (communicated after the simulation has finished). Inspecting
the state during simulation is an important part of debugging, as it allows a user to see
how the system evolves over (simulated) time. This requires a debugger to communicate
intermediate runtime states to the user whenever a big step ends. And possibly, if more
detailed information is required, intermediate changes performed by small steps can be
communicated as well. The state of the system, however, might be (macroscopically)

52

4.2. DEBUGGING OPERATIONS

S

ta
te

 V
a
ri

a
b

le

Simulated Time

2.3 30.8 3.2

god event

Figure 4.7: A god event changes the simulation state and influences future state updates.

inconsistent in between big steps. This is the reason it is not communicated during
normal simulation: the inconsistent macroscopic states are not valid instances of the
runtime language and thus cannot be displayed. Instead, small step information has to
be visualized in a specialized language that extends the runtime language: a debugging
language. This debugging language adds concepts relating to the intermediate simulation
computations.

Aside from communicating the state at strategic points during simulation, a simulator can
allow users to manually change the state of the system. This helps in refuting hypotheses
related to the source of an error: changing the value of a suspect state variable and observing
how the system dynamics change can, for example, rule out that particular value as being the
cause of the error. We call such state changes god events, since they are an “outside force”
not present in the original model that changes the state of the system during simulation.
This is illustrated in Figure 4.7, where at simulated time instant 2.3 a god event manually
alters the state. The state that originally resulted from the state update at that time instant
is greyed out, and the new state is shown in red. The dynamics after the state change are
different as well, as the simulator considers the god event as a regular state update and
executes the semantics afterwards as usual.

4.2.3 Time

The notion of time plays a prominent role in model simulation. Simulated time differs
from the wall-clock time: it is, as already explained, the internal clock of the simulator.
Simulated time can, however, have a relation to the wall-clock time.

Program code is always executed as fast as possible (i.e., the speed of the program is
limited by the resources of the machine executing it and the operating system’s limitations).
Simulations, however, can either be run as-fast-as-possible, or in (scaled) real-time. The
latter is useful for simulating models of real-time systems which might be deployed as such
on a real-time device. In this case, there is a linear relation between the wall-clock time and
the simulated time. The different relations the simulated time can have to the wall-clock
time are depicted in Figure 4.8 (adapted from [142]).

53

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

0

1

2

3

4

5

1 2 3 4 5

S
im

u
la

te
d

 T
im

e
 (

S
T
)

Wall-Clock Time (WCT)

stop event

analytical time

(as fast as possible)
s > 1

s = 1

s < 1

(scaled) real-time:

ST = s * WCT

PAUSE

pause event

resume event

scale factor change

Figure 4.8: The different relations of simulated time to the wall-clock time.

In as-fast-as-possible simulation, there is no relation between simulated time and wall-
clock time, meaning that simulated time is simply a variable in the simulator. In real-time
simulation, simulated time is synchronized with the wall-clock time. This implies that the
simulation steps have a hard real-time deadline (i.e., the values of the runtime variables have
to be computed before the wall-clock time reaches the value of the simulated time). A scale
factor (in the figure depicted by the variable s) can be applied to speed up or slow down
simulation, while maintaining the linear relation between simulated time and wall-clock
time.

The mode of simulation has a direct effect on the debugging operations: both their avail-
ability and functioning.

• State visualization is only useful in real-time simulation. The intent of as-fast-as-
possible simulation is to execute the simulation quickly, and having to visualize the
state in between would put too high of a burden on the complete system’s execution
speed. Also, since the simulator executes as fast as the underlying platform allows,
the updates to the runtime model can occur very fast. Understanding the execution by
trying to interpret an uncontrollably fast visualization of the state updates is difficult.

• Pausing a simulation in real-time simulation has different behaviour than pausing a
simulation in as-fast-as-possible simulation. Figure 4.9 depicts the difference between
the two modes. In as-fast-as-possible mode (visualized by the stepwise function), the
computations of the next state (represented by the horizontal parts in the function)
are executed one after the other, without any waiting in between. This means that
if a pause is requested (denoted by the red vertical bar with “pause” next to it), the
simulation will be paused only after completion of that big step computation. Halting
immediately might otherwise leave the system in a (macroscopically) inconsistent
state. In real-time mode, the time needed to compute the next state is still there, but
now the simulator will wait in between these computation periods to synchronize

54

4.2. DEBUGGING OPERATIONS

S
im

u
la

te
d

 T
im

e
 (

S
T
)

Wall-Clock Time (WCT)

1.2 2 2.8 3.5 4

1
.2

2
2

.8
3

.5
4

pause pause pause

Figure 4.9: Pausing: difference between as-fast-as-possible and real-time simulation.

the simulated time with the wall-clock time. This is represented by the continuous
function, which tries to follow the ideally synchronized line, represented by the grey
dotted line. When a computation is performed, the wall-clock time advances, thus
desynchronizing the simulated time from the wall-clock time. This is represented by
the horizontal parts in the function. When the computation is finished, the simulator
will synchronize both times immediately, as depicted by the vertical parts. If a pause
is requested during a waiting period, the simulator immediately pauses. The result
is that the system will be in the “current” state, and not the “next”, as was the case
for as-fast-as-possible mode. The simulated time will be in between the previous
transition time and the next. Due to this difference, an as-fast-as-possible simulation
cannot pause at times in between two different simulated times. On the other hand,
real-time simulation can pause at virtually every point in simulated time. The notable
exception being the time at which transition functions are being computed.

Being able to control the relation between simulated time and the wall-clock time is an
important feature of a debugger. It allows users to inspect the execution semantics of
real-time systems (and, if necessary, speeding it up or slowing it down while retaining the
linear relation) visually, but also allows to quickly jump to a point of interest (using pausing
or breakpoints, discussed in the next subsection).

4.2.4 Breakpoints

A simulation can be paused manually, which halts the simulation in a (macroscopically)
consistent state. As discussed above, the behaviour of the pause operation can differ
depending on the execution mode of the simulator.

Pausing the simulation manually at a point of interest might be difficult, if the user is only

55

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

able to decide when to pause based on the state updates received from the simulator. Alter-
natively, breakpoints allow the user to automatically pause the execution when a condition
is satisfied. Breakpoints are transposed operations from code debugging, where breakpoints
are used to pause the program when a specific line of code is reached. Additionally, a
breakpoint can be augmented with a condition on the runtime state. Model debuggers can
expose, similarly, a way of setting breakpoints that depend on the simulation state and the
simulated time value.

In this thesis, we define a breakpoint as a function Br(state, time) which returns True if
the simulation should pause, and False otherwise. This includes the traditional notion of a
programming code breakpoint, since the currently executing line (the program counter) is
part of the runtime state of the program. A breakpoint has a name, to identify it when it was
triggered. It can also be enabled or disabled; additionally, it can be automatically disabled
when it triggers. This is useful if the breakpoint’s condition will remain true after it has
triggered once. In that case, if it would not be disabled automatically, it would continuously
trigger afterwards.

Breakpoints are evaluated when the system is in a consistent state. For simulation systems,
we have established that the state is consistent after a “step” (simulation iteration) has
ended (see Figure 5.14). A “big step” can consist of multiple smaller steps, but after such
a smaller step, the system might be in a macroscopically inconsistent state. Therefore,
breakpoints (and pauses) can only occur after a big step has ended. This is different from
programming code breakpoints, which are checked only when a certain line of code is
reached. This optimization is enabled by the operating system, which allows the program
to be instrumented with breakpoint instructions that interrupt the normal flow of control. In
general, a simulator cannot rely on such operating system functions, since the complete
simulation state has to be checked. There is, however, a possibility for “syntactic sugar” to
make it easier to place breakpoints at interesting locations. To do this, syntactic constructs
of the runtime model can be reused. For example, if a language has an explicit notion of
“state”, a breakpoint can be attached to that syntactic construct to only break when that
state was entered. Or, if the language has the capability to evaluate expressions on state
variables natively, a breakpoint can be attached to such expressions to break only when
the expression becomes true. But, the breakpoint still only can access the full simulation
state and simulation time in order to decide whether or not to pause. Many domain-specific
notations are possible for breakpoints; in this thesis, some possibilities are explored (see
Chapter 5 for examples), but no attempt is made to be exhaustive.

A more elaborate possibility for breakpoint conditions is to allow conditions on the full
simulation trace. This enables the specification of temporal properties, that, when they
evaluate to true, halt the simulation. These temporal properties can be compared to the
properties that can be specified using the ProMoBox approach. In this case, however, a user
specifies properties that should not hold, instead of those that should. An interesting use
case is the interplay of property checking, followed by debugging, where a property that
was not satisfied by the system is negated and set as a breakpoint condition. The simulation
can then run until the point where the property is not satisfied, at which point the interactive
debugging session is started. We leave such breakpoint conditions for future work, and
focus on breakpoints defined on the state and time of the simulation. Breakpoints are always
evaluated after a big step has ended (and the system is in a consistent state).

56

4.3. DE- AND RECONSTRUCTION OF MODEL SIMULATORS

4.3 De- and Reconstruction of Model Simulators

Developing debuggers for modelling languages, taking into account their diverse semantics,
is an inherently complex task. The interplay of formalism execution semantics, different
notions of simulated time such as (scaled) real-time and as-fast-as-possible execution,
the semantics of debugging operations, as well as user interaction through an interface
are all challenging to capture and implement correctly. Specifically, traditional software
engineering methods where such debuggers would be implemented using a programming
language, fall short. The essential complexity of the debugger is:

• its timed behaviour that implements the real-time execution semantics of the formal-
ism;

• its interaction with the user in two ways (a user can execute debugging operations,
interrupting the normal flow of the simulator, and the debugger provides updates to
the user through the debugging interface);

• its autonomous behaviour, implementing the semantics of the modelling language.

The combination of these behavioural properties is not easily expressed using programming
languages, as it is inherently concurrent and the interleaving of the different threads of
control is difficult to manage. Instead, we apply the multi-paradigm philosophy and model
the behaviour of the debugger at the most appropriate level of abstraction, using the most
appropriate formalism.

ALGORITHM 1: A generic simulation algorithm.
Input: Model to simulate (M), parameters (params).

1 time, state← initialize(M,params);
2 while not endCondition(M, time, state) do
3 state← simulatorStep(M, state);
4 time← incT ime(M, time);
5 end
6 return state, time;

Before we model the behaviour of debuggers, we need to examine their structure. At a
high level of abstraction, simulation algorithms are very similar, as they go through a set of
phases:

1. Initialization of simulation time and the simulation state;

2. Execution of simulation ‘steps’ until an end condition is satisfied (the core of the algo-
rithm, where a new state is computed based on the previous one, and the simulation
time is advanced);

3. Finalization where, for example, the final state of the simulation and the time at
which it ended is communicated to the user.

Algorithm 1 presents a generic simulation algorithm in pseudocode which encodes these
semantics. Most often, simulators are implemented in program code. And, while they
aren’t necessarily decomposed in the same functions as Algorithm 1, they can be converted

57

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

M

F

SIMF

(a) A model is simulated by an appropriate
simulator for its formalism.

M

F

SIMF\modal

EXECSC

SIMFmodal

SC

(b) The simulator is deconstructed by
extracting its modal part.

SIMFmodal SC

/ initialize()

[not endCondition()] / doStep()

[endCondition()] /
out::get_state()

SR

Mdebug SC

in::pause /
out::get_state()

in::resume

P S
in::stop /
out::get_state()

W

in::start

in::reset /
reInitialize()

R

SIMFmodal SC

in::pause /
out::get_state()

in::resume

P

/ initialize()

[not endCondition()] / doStep()

[endCondition()] /
out::get_state()

R S

R

S

in::stop /
out::get_state()

[IN(R/S)]

W

in::start

in::reset / reInitialize()

INSTRUMENT

(c) The modal part of the simulator is instrumented with debugging operations

Figure 4.10: De- and reconstruction of simulators.

into a similar form. This is the first step towards enhancing the algorithm with debugging
support. The simulation algorithm is decomposed into the following functions:

• initialize initializes the state of the system. This returns the initial state s0, conforming
to the runtime language, and t0, the simulated time at which simulation starts.

• endCondition returns true when the simulation is finished. It is a user-specified
function that receives the current state of the simulation (including the current
simulated time) as a parameter. Complex conditions can be modelled that combine
multiple state variables, but we do not consider temporal conditions on a state
trace. Such temporal conditions can only be modelled if the function has a memory
component, or if a full state trace is saved and passed to the end condition function.

• simulatorStep executes one step of the simulation algorithm, changing the state of
the system.

• incTime increases the simulated time according to the time semantics of the formal-
ism.

Any simulation algorithm for the types of formalisms discussed previously in this chapter
(Figure 4.10a) can be written in the form presented in Algorithm 1. This form separates the
modal part of the simulator (the flow of control, mainly consisting of the “main simulation
loop”) from the non-modal part.

This modal part can be “lifted out” and modelled in an appropriate formalism, for which
we choose Statecharts. Figure 4.11 shows the modal part of the generic simulator.

58

4.3. DE- AND RECONSTRUCTION OF MODEL SIMULATORS

initializing

/ self.initialize()

statechart {inports: in; outports: out}

running

stopped

[endCondition()] /

 finalize()

[not endCondition()] /

 simulatorStep(), incTime()

Figure 4.11: The modal part of the generic algorithm.

When this model is combined with an appropriate executor that implements the semantics
of the Statecharts formalism, and combined with the non-modal part of the simulator
(implemented in the functions called in the actions of the Statecharts transitions), we
obtain a version of the simulator that implements identical semantics. It is now simply
broken up in two parts (Figure 4.10b). The choice of which behaviour is model and which
behaviour is non-modal is up to the language engineer tasked with splitting up the behaviour.
But, there are a number of criteria that guide the decisions:

• Any behaviour that is to be interrupted in the debugging-enhanced simulator should
be modelled in the modal part of the simulator. For example, after every big step, a
pause can occur. Or, if the user is to given control beyond that (in the form of small
steps), the control flow of the algorithm is broken up into smaller components that
can be interrupted as well.

• Any behaviour which has time delays (for real-time simulation) should be modelled
in the modal part of the simulator.

• Any non-interruptible computations belong in the non-modal part of the simulator.

These criteria aid the language engineer in dividing the algorithm in its modal and non-
modal components.

In Figure 4.10c, the next step in creating a simulator which supports debugging is shown.
We merge the modal part of the simulator behaviour model with a model capturing the
debugging operations we want to add. This results in an instrumented model of the modal
behaviour of the simulator.

The last step consists of replacing the original modal part of the simulator with its instru-
mented version. For continuity reasons, the behaviour of the simulator remains unchanged
if the user does not make use of the debugging functionality. Extra behaviour has been
added, but running the simulator as before is still possible. In the example shown, the
debugger includes the concepts of start, pause, resume, and stop. The simulator only has
two states: R (Running), and S (Stopped). This is a trivial (and fictional) example, but it
demonstrates the process which we call de- and reconstruction of the simulator.

59

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

Instrumentation

Modelling
Environment

Communication
Layer

Model
Visualization

ModelLanguage Semantics Deployed
Application

Figure 4.12: The artefacts that can be instrumented with debugging support.

SC + AL

SIMFnon-modal

EXECSC

SIMFmodal

SC
AL

AL

Simulator

Model
F

Debugging UI

SC + AL

DebugUILibrary

DebugUIModal

SC
AL

EXECSC

AL

SC + AL

ModelUILibrary

ModelUIModal

SC
AL

EXECSC

AL

Model-Specific
Visualization UI

Figure 4.13: The generic architecture of a debugging environment for formalism F.

The result of reconstructing the simulator is an instrumented version of the original sim-
ulator, enriched with debugging capabilities. From this model, a debugging-enhanced
simulator for formalism F can be automatically generated using a Statecharts compiler.
The debugging-enhanced simulator has an extended interface, which allows a user to con-
trol and observe the simulation process using debugging operations. In the next section,
the debugger is placed in an architecture to implement a debugging environment for the
formalism.

4.4 Architecture

In Figure 4.12, we list the components that were constructed during the modelling and
simulation workflow (see Figure 2.9) as candidates to be instrumented with debugging
support. We consider all components, except the deployed application, as the scope of
our work is on model simulation, not deployment. To debug deployed applications would
require to instrument their code with appropriate code that talks back to a debugging
environment during execution, which has been covered in numerous related works (see
Chapter 3). Although work remains to be done on integrating these approaches with our
proposed solution, we focus on model simulation. These components are connected in an

60

4.4. ARCHITECTURE

architecture of our solution, and shown in Figure 4.13. It consists of three components,
whose behaviour is specified in Statecharts models (and definitions of their input and
output sets):

• The simulator, whose behaviour is described by

SSIMF
=< SIMFModal

, SIMFMem
, SIMFLibrary

,XSIMF
, YSIMF

>

• The debugging user interface, whose behaviour is described by

SDebugUI =< DebugUIModal,DebugUIMem,DebugUILibrary,XDebugUI, YDebugUI >

• The model-specific visualization interface, whose behaviour is described by

SModelUI =< ModelUIModal,ModelUIMem,ModelUILibrary,XModelUI , YModelUI >

which is instrumented with debugging operations.

The first two models, SSIMF
and SDebugUI , have to be defined once and can be reused to

debug any model created in the simulator’s formalism. The model SSIMF
is obtained from

an existing simulator by de- and reconstructing it (see the previous section). The model
SDebugUI is a behavioural description of a debugging environment, which is generated from
the definition of a debugging language, similar to the design, runtime, and output languages.
We rely on metamodelling environments such as AToMPM [192] to provide the necessary
infrastructure to obtain such a model from the definition of the language. In the architecture
presented in Figure 4.13, we only consider the generated behavioural description in the
form of a Statecharts model, and not the language definition. This language definition is
obtained by extending the runtime sub-language of the modelling language, and will be
discussed in the next chapter. The third model, SModelUI , is model-specific, and is created
by a user to visualize the state of a particular simulation system. This is particularly useful
in dynamic-structure simulations, for example those that model agent-like behaviour. The
model-specific visualization interface can visualize a runtime state of the simulation (a
model conforming to the runtime sub-language) and can be repurposed for debugging tasks,
if it is instrumented appropriately. We assume its behaviour is specified using Statecharts,
which allows us to reuse the techniques presented in the previous section to instrument the
model with debugging operations.

A communication layer is responsible for the communication between components. We do
not specify here what implementation technology should be used, but any (asynchronous)
inter-process communication mechanism, such as sockets, are suitable. Note that our
architecture does not keep the simulator, model-specific visualization, and the debugging
interface synchronized. Synchronization is necessary in the case of (scaled) real-time
simulation, since only in this mode the user can observe state changes while the simulation
is running. We observe that the simulator is the most computation-intensive component
in our architecture, while the visual interfaces (almost trivially) perform an update when
a state change is received. Synchronization is therefore unnecessary: if the simulator is
unable to compute the next state of the system in time during scaled real-time simulation,
the scale factor the user chose is too small. This can be detected by the simulator and a
notification can be given to the user. The communication layer is furthermore responsible
for translating events sent by components to events that are accepted by another component.
There are six translation functions:

61

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

• ZModelUI,SIM : YModelUI → XSIM translates output events of the model-specific
visualization UI (when the user interacts with the simulation by pressing a key, for
example) to input events of the simulator. These correspond to (real-time) interrupts
that are propagated to the model.

• ZSIM,ModelUI : YSIM → XModelUI translates output events of the simulator to
input events of the model-specific visualization. These correspond to output events
generated by the model as it is being simulated, which trigger a change in the
visualization.

• ZDebugUI,SIM : YDebugUI → XSIM translates output events of the debugging
UI (e.g., when the user presses a button in the debugging UI) to input events of
the simulator (representing debugging operations, such as a request to pause the
simulation).

• ZSIM,DebugUI : YSIM → XDebugUI translates output events of the simulator to
input events of the debugging UI. These correspond to debugging messages and
information that needs to be visualized in the debugging UI, such as state changes.

• ZDebugUI,ModelUI : YDebugUI → XModelUI translates output events of the debug-
ging UI to input events of the model-specific visualization UI.

• ZModelUI,DebugUI : YModelUI → XDebugUI translates output events of the model-
specific visualization UI to input events of the debugging UI.

By tying together the debugging-enhanced simulator, debugging environment, and model-
specific visualization, we can build advanced debugging environments for any formalism.
The next section explains the workflow for building such environments.

4.5 Workflow

In this section, we present a workflow for constructing the artefacts in the architecture
presented in the previous section. We start from an existing simulation kernel, a modelling
and simulation environment without debugging support, and a model-specific visualization
UI without debugging support, and enhance them with debugging support.

The workflow is modelled using an FTG+PM language in Figure 4.14. There are four tasks:
de- and reconstructing the simulation kernel (explained in Section 4.3), instrumenting the
modelling environment, instrumenting the model-specific visualization UI, and creating a
communication layer.

Once the debugging enhanced simulation kernel is developed, an interface for interacting
with it is needed. The debugging interface allows the user to control the simulation
algorithm using the set of debugging operations defined in Section 4.2 and implemented
in Section 4.3. This debugging interface is an extension of an already existing modelling
(and simulation) interface. We assume the design sub-language, runtime sub-language,
and output sub-language of the modelling language for which debugging is implemented
already exist—this means a model in the language can be designed, and its runtime state
can be displayed, as well as its simulation result. We reuse these parts of the modelling

62

4.5. WORKFLOW

:D
ec

o
n
st

ru
ct

S
im

:
A
ct

.
La

n
g
.

M
od

al
:

S
ta

te
ch

ar
ts

N
on

M
od

al
:

 A
ct

.
La

n
g
.

:R
ec

on
st

ru
ct

S
im

M
:

S
ta

te
ch

ar
ts

:I
n
st

ru
m

en
tS

M

:C
od

eG
en

S
im

M
_
In

st
r:

 S
ta

te
ch

ar
ts

C
on

st
ru

ct
D

eb
u
g
g
in

g
 E

n
vi

ro
n
m

en
t

:I
n
st

ru
m

en
tM

E
:I

n
st

ru
m

en
tV

E

M
E
n
vM

:
S
ta

te
ch

ar
ts

:V
E
n
vM

:
S
ta

te
ch

ar
ts

S
im

:
A
ct

.
La

n
g
.

M
E
n
vM

_
In

st
r:

 S
ta

te
ch

ar
ts

M
E
n
v_

In
st

r:
 A

ct
.

La
n
g
.

V
E
n
v_

In
st

r:
 A

ct
.

La
n
g
.

V
E
n
vM

_
In

st
r:

 S
ta

te
ch

ar
ts

:C
re

at
eC

o
m

m

C
om

m
La

ye
r:

 A
ct

.
La

n
g
.

:C
om

p
o
se

D
eb

u
g
E
n
v:

 A
ct

.
La

n
g
.

:C
od

eG
en

:C
od

eG
en

In
st

ru
m

en
tV

E

In
st

ru
m

en
tM

E

S
ta

te
ch

ar
ts

In
st

ru
m

en
tS

M

A
ct

.
La

n
g
.

D
ec

on
st

ru
ct

R
ec

on
st

ru
ct

C
od

eG
en

C
re

at
eC

om
m

C
om

p
os

e

m
od

el
 a

rt
ef

ac
t

m
an

u
al

 a
ct

iv
it
y

au
to

m
at

ic
 a

ct
iv

it
y

la
n
g
u
ag

e

m
an

u
al

 t
ra

n
sf

or
m

at
io

n

au
to

m
at

ic
 t

ra
n
sf

or
m

at
io

n

Figure 4.14: The workflow for constructing a debugging environment.

63

CHAPTER 4. MODELLING MODEL DEBUGGING ENVIRONMENTS

environment to implement debugging. We need to add a specialized debugging language,
however. Since we instrument the simulator of the language with debugging support, the
control and observation operations have to be available in the debugging environment. The
state of the simulation (computed after every big step) can already be displayed. For each
lower-level step (small step), however, a debugging-specific visualization has to be added in
the form of an element in a debugging language. This new language consists of a number of
elements that visualize the intermediate states of the simulation (which are not necessarily
well-defined runtime states of the formalism, and therefore, not present in the runtime
language). Additionally, breakpoints require a visual representation as well. The conditions
on which breakpoints pause the simulation naturally differ depending on the language, but
often breakpoints can be scoped to only consider parts of the model. This can be specified
in a visual debugging environment by connecting breakpoints to those elements.

To offer control to users, they need a way of sending debugging commands from the user
interface. In graphical modelling environments, actions are often presented to the user as
buttons in a toolbar. A debugging toolbar is added to graphical modelling environments to
allow users to communicate with the instrumented simulator. Since this is a 1-1 mapping
of the debugger’s interface to buttons in a toolbar, they can be trivially added to the
interface.

A model-specific visualization can also be reused for debugging purposes. While de- and
reconstructing the simulator and implementing a debugging interface are tasks a simulation
expert has to perform once, after which they can be reused, model-specific visualizations
need to be adapted by the domain expert that created them. For this to work, the domain
expert has to instrument the Statecharts model of the model-specific visualization UI with
appropriate transitions that raise events on its output port. A translation function, which
translates these events to input events of the debugging UI also has to be specified. The
same tasks have to be performed if the visualization UI has to respond to events from the
instrumented simulation kernel, such as state updates.

Summary

This section explains how model debugging environments can be constructed by extending
the state-of-the-art in language engineering. As a starting point, we consider existing
techniques for constructing design, simulation, and replay environments. From there,
we present an instrumentation approach for adding debugging support to an existing
implementation of the semantics of a modelling language in the form of a simulator. This
debugging-enhanced simulator is placed in an architecture that connects it with a debugging
environment (generated from the definition of a debugging language, which is an extension
of the modelling language’s runtime language) and other visualizations that can assist in
the debugging process. The debugging environment construction is guided by a workflow.
In the next chapter, we use the workflow, architecture, and instrumentation techniques to
develop debugging environments for a number of representative formalisms, demonstrating
that our approach is applicable for a wide variety of languages.

64

Chapter 5

Representative Formalisms

This chapter applies the techniques presented in the previous chapter to a number of carefully
chosen formalisms, to demonstrate feasibility. Each language is classified according to
its semantic properties that were discussed in Section 4.1. We cover a large variety of
semantically different languages. For each language, we explain their syntax (used to model
a design in the system) and their semantics (implemented operationally in a simulator or
translationally by a transformation that maps onto a formalism with known semantics). We
present each language’s simulator in pseudocode, and construct a set of useful debugging
operations. To implement the debugging operators, we de- and reconstruct the simulator
and instrument it. We then connect the simulator to a (graphical) debugging environment
that allows a user to interact with the debugger and display intermediate states of the
simulation.

Demonstrations, artefacts, and reports for all developed tools are available at http:
//msdl.cs.mcgill.ca/people/simonvm/phd_thesis.

Structure We present eight formalisms in this chapter. The goal of these eight for-
malisms is to cover as much as possible of the semantic variation points identified in
Section 4.1.

• Section 5.1 implements debugging for an explicitly modelled action language for-
malism. This formalism:

– is procedural (functions can call other functions);

– is untimed;

– is deterministic;

– has static structure;

– allows for environment interaction (through input/output functions).

• Section 5.2 implements debugging for Causal Block Diagrams, a dataflow language
in which mathematical equations can be modelled. This formalism:

http://msdl.cs.mcgill.ca/people/simonvm/phd_thesis
http://msdl.cs.mcgill.ca/people/simonvm/phd_thesis

CHAPTER 5. REPRESENTATIVE FORMALISMS

– allows to model algebraic loops (that need a specific schedule to be computed
in a consistent manner);

– implements discrete-time or continuous-time semantics (depending on the
types of blocks used in the instance models);

– is deterministic;

– has static structure.

• Section 5.3 implements debugging for Parallel DEVS, a discrete-event formalism
that is decomposed hierarchically into components that communicate using events.
This formalism:

– implements discrete-event semantics;

– is deterministic;

– has static structure.

• Section 5.4 implements debugging for Statecharts, a discrete-event formalism where
states are the main abstraction, which are composed hierarchically and orthogonally.
This formalism:

– implements discrete-event semantics;

– is deterministic;

– has static structure;

– allows for environment interaction (through input/output events).

• Section 5.5 implements debugging for Petrinets. This formalism:

– is untimed;

– is non-deterministic;

– has static structure.

• Section 5.6 implements debugging for Dynamic Structure DEVS, a dynamic-
structure extension of Parallel DEVS. This formalism:

– implements discrete-event semantics;

– is deterministic;

– has dynamic structure.

• Section 5.7 implements debugging for a hybrid formalism, composed of a discrete-
event and a continuous-time dataflow formalism. This formalism:

– is hybrid (through embedding).

– allows to model algebraic loops (that need a specific schedule to be computed
in a consistent manner);

66

5.1. ACTION LANGUAGE

– implements discrete-event semantics, combined with discrete- or continuous-
time semantics (depending on the types of blocks used in the instance models);

– is deterministic;

– has static structure.

• Section 5.8 implements debugging for a domain-specific language whose semantics
are implemented translationally, by mapping onto a formalism with known semantics.
This formalism:

– implements discrete-event semantics;

– is deterministic;

– has static structure.

Because of the translational definition of its semantics, the debug operations per-
formed on the domain-specific level have to be translated to the target formalism,
and the traces produced by the target formalism have to be translated to the domain-
specific level.

5.1 Action Language

Action language is a formalism similar to programming languages. It is often used to express
algorithmic, imperative code, when it is most appropriate. In this section, a debugger for a
procedural, sequential action language is constructed. We choose the action language of
the Modelverse [201] for the following reasons:

• It is minimal, but contains all essential functionality of a procedural, sequential
language. We avoid accidental complexity and can focus on the essential complexity
of constructing a debugger for such a language.

• Its syntax and semantics are explicitly modelled. The syntax is, similar to other
modelling languages, expressed in a metamodel. Its semantics are expressed using a
set of graph transformation rules that modify the structure of the execution state.

• Its definition is readily available, as well as its executor. This facilitates the instru-
mentation of the executor with debugging support.

The action language is a causal, untimed, deterministic, static-structure, procedural lan-
guage.

In the following subsections, we explain the syntax and semantics of the action language
and the execution support in the Modelverse. We then present a set of useful debugging
operations, inspired by code debugging operations. These debugging operations are imple-
mented using the de- and reconstruction technique and a (textual) debugging environment
is generated.

67

CHAPTER 5. REPRESENTATIVE FORMALISMS

5.1.1 Syntax and Semantics

The action language of the Modelverse is a minimal procedural, sequentially executed
language. A program in the Modelverse can consist of:

• If -statements that execute one (or none) of its child code blocks based on the evalua-
tion of its conditions.

• While-loops that execute a code block as long as its condition is satisfied.

• Break statements that break out of their enclosing loop by jumping to the instruction
that follows the loop.

• Continue statements that jump to the condition evaluation phase of its enclosing loop.

• Return statements that return from a function. A value can be returned if the function
is declared to have a return type.

• Function definitions that encapsulate a block of action code. They have a number of
typed parameters, and a return type.

• Function calls that refer to a previously defined function by name, and provide values
for the called function’s parameters.

• Variable declarations, either local or global. A variable is declared by stating its
name and type. After declaration, it has to be defined by assigning a value.

• Assignment statements that assign the result of evaluating an expression to a (previ-
ously declared) variable.

• Constants, of type integer, float, boolean, string, or action code.

• Blocking user input/output functions.

1 i n c l u d e ” i o . a l h ”

3 I n t e g e r f u n c t i o n f i b (param : I n t e g e r) :
i f (param <= 2) :

5 r e t u r n 1 !
e l s e :

7 r e t u r n (f i b (param − 1) + f i b (param − 2)) !

9 Void f u n c t i o n main () :
w h i l e (True) :

11 o u t p u t (f i b (i n p u t ()))

Listing 5.1: An example action language model modelling a function to compute Fibonacci
numbers.

An example action language model in a textual syntax is shown in Listing 5.1. The model
defines a recursive function to compute Fibonacci numbers. Its main function listens for
user input (a number) and outputs the result (the Fibonacci number corresponding to the
input parameter) back to the user. An action language model can define multiple functions,
as is the case here. When it is executed, the main function is called if it exists. If it does not,
then the first defined function is called.

68

5.1. ACTION LANGUAGE

ALGORITHM 2: The main loop of the Modelverse.

while True do
for t ∈ getTasks() do

while isActive(t) and iters < getMaxIters() do
executeRule(t);
iters← iters+ 1

end
end

end

The Modelverse [207] is a model repository and model management kernel. It is based
on a number of axioms, one of them being that every element is explicitly modelled. The
execution of the Modelverse is driven by a number of graph transformation rules that are
continuously executing user-defined programs (called tasks), which are stored as graph
structures. A compiler is responsible for translating a textual model definition to the graph
structure required by the Modelverse. The main execution loop of the Modelverse is shown
in Algorithm 2. It is an infinite loop which continuously advances the state of all its tasks
that have an instruction that needs to be executed. For each active task, a number of rules
associated to its currently executing statement are executed. This number is constrained by
a constant and allows the Modelverse to more efficiently execute tasks: if only one rule
were executed each time, the number of task switches would be high and consequently, the
performance low. Executing a rule in the Modelverse corresponds to executing a “phase”
of an instruction. An instruction (such as the evaluation of an expression) is broken up into
these smaller, more primitive phases, as they need to be modelled as graph rewriting rules.
For example, assigning an expression to a variable first needs to evaluate the expression,
then it needs to retrieve the variable’s location, and finally, assign the new value to it.

The rules that can be executed are listed below. For an in-depth discussion on the execution
semantics of the Modelverse, see [202].

• Execute a continue statement (in a while-loop). Consists of one phase, which sets the
instruction counter to the instruction that evaluates the condition of the while-loop.

• Execute a break statement (in a while-loop). Consists of one phase, which sets the
instruction counter to the instruction following the while-loop.

• Execute an if -statement. Consists of two phases: first, it moves the instruction pointer
to the condition, then, it evaluates the condition and correctly sets the instruction
pointer to either the first instruction of the true-block, and otherwise to the first
instruction of the false-block.

• Execute a while-statement. Consists of two phases: first, it moves the instruction
pointer to the condition, then, it evaluates the condition and correctly sets the instruc-
tion pointer to either the first instruction of the while-body, and otherwise to the first
instruction following the while-body.

• Resolve a variable. Consists of one phase: find the variable’s value and move the
instruction pointer to the next instruction.

69

CHAPTER 5. REPRESENTATIVE FORMALISMS

• Execute an assignment. Consists of three phases: first, it moves the instruction
pointer to the value expression, then, it resolves the variable, then, it evaluates the
value expression, and last, it assigns the value to the variable and sets the instruction
pointer to the next instruction.

• Execute a return statement. Consists of two phases: first, it moves the instruction
pointer to the value expression, then, it evaluates the value expression, retrieves the
previous frame from the stack to store the value, and last, it pops the current frame
from the stack.

• Evaluate a constant. Consists of one phase that simply returns the value of the
constant.

• Call a function. Consists of a number of phases depending on the number of parame-
ters: first, it checks whether there are any parameters and if so, executes a phase for
each parameter to evaluate its expression. Last, it initializes the function’s frame and
moves the instruction pointer to the first expression of the function.

The compiler built into the Modelverse already attaches to the nodes in the compiled
abstract syntax graph its line information, storing at which line and character position in
the source file the statement was defined. This information can be read and printed at times
when it is needed, for example if an exception occurs. Of course, in terms of debugging
support, this is limited, since we can only observe where the instruction pointer currently is.
Moreover, while a call stack is internally maintained by the Modelverse, to which a stack
frame is pushed each time a function is called, and popped from when the current function
returns, that information is not used when printing out errors.

5.1.2 Debugging Operations

We take inspiration from a well-established, advanced and actively developed debugger:
the GNU debugger (gdb)1. It allows developers to debug programs written in C or C++,
and has partial support for a number of other languages. This section presents an overview
of its capabilities, as it is a representative example of a code debugger. We do not list all of
gbd’s features, since we are interested only in the operations for interactive debugging. We
focus on its operations for taking control over the program’s control flow, how state can be
inspected, how state can be changed, and its record/replay capabilities.

Taking Control

A program is placed under control of gdb by executing the command gdb program, where
‘program’ is the program to debug. Alternatively, gdb can be attached to an already running
process. When gdb is started, it takes control over the process and a shell opens in which
the user can type commands. From that point on, the user can control the execution of the
program using multiple debugging operations, explained in the paragraphs below.

1https://www.gnu.org/software/gdb/

70

5.1. ACTION LANGUAGE

Breakpoints Breakpoints are automatic pauses on a state condition. They are set with the
break command. If no parameters are passed, a breakpoint is placed at the next instruction
to be executed in the current stack frame. A location (function name, line number, or an
address of an instruction) can be passed as parameter. Optionally, a condition can be passed.
In that case, the condition must evaluate to true in order for the breakpoint to trigger. A
tbreak is a special kind of breakpoint which is removed once it triggers. It is possible to list
all breakpoints, and to delete or disable them.

Watchpoints automatically pause the program when the value of some variable changes.
Typically, a user monitors whether a particular variable’s value changes by executing watch
foo, where ‘foo’ is the symbolic name for the variable. The rwatch command breaks the
program when a variable is read. The awatch command breaks the program when a variable
is read or written. It is possible to list all watchpoints, and to delete or disable them.

Catchpoints automatically pause the program when certain types of events occur. This
includes system calls, exceptions, and the loading of shared libraries.

Continuing If a program is paused, execution can be resumed in several ways.

• The continue command resumes continuous execution.

• The step command resumes execution until the program reaches a different source
line. Optionally, the user can specify how many steps are to be executed.

• The next command resumes execution until the program reaches a different source
line in the current stack frame. Optionally, the user can specify how many steps are
to be executed.

• The finish command resumes execution until the currently executing function returns.

• The until command resumes execution until a source line past the current line in the
current stack frame is reached. Optionally, the user can specify the location of the
line at which to stop execution.

• The advance command resumes execution up to a given location (not necessarily in
the same stack frame).

• The stepi command executes one machine instruction. Optionally, the user can
specify how many steps are to be executed.

• The nexti command executes one machine instruction, but if it is a function call, it
proceeds until the function returns. Optionally, the user can specify how many steps
are to be executed.

• The reverse-continue starts reversing the program’s execution.

• The reverse-step command reverses the program’s execution until the program
reaches a different source line. Optionally, the user can specify how many steps are
to be executed.

71

CHAPTER 5. REPRESENTATIVE FORMALISMS

• The reverse-next command reverses the program’s execution to the beginning of the
previous line executed in the current stack frame. Optionally, the user can specify
how many steps are to be executed.

• The reverse-finish command reverses the program’s execution until the point at which
the currently executing function was called.

• The reverse-stepi command executes one machine instruction in reverse. Optionally,
the user can specify how many steps are to be executed.

• The reverse-nexti command executes one machine instruction in reverse, but if it is a
return from a function, it reverses the program’s execution until the point at which
the function was called. Optionally, the user can specify how many steps are to be
executed.

Inspecting the State

The state of the system is made up of the variable’s values (data) and the execution state
(frames). Each time a function call is made, a new stack frame is constructed with the
location of the call in the program, the arguments of the call, and the local variables of
the function being called. To find out how a program got where it is, gdb provides the
backtrace operation, which prints out one line per frame for all frames on the stack, starting
from the current frame. Optionally, the full option can be passed to also print values of
local variables. A frame can be selected with the frame command. With the info command,
the user can print out a detailed description of the frame, including:

• The address of the frame.

• The address of the next frame down (called by this frame).

• The address of the next frame up (caller of this frame).

• The language in which the source code corresponding to this frame is written.

• The address of the frame’s arguments.

• The address of the frame’s local variables.

• The program counter saved in it (the address of execution in the caller frame).

• The registers that were saved in the frame.

The info args and info locals commands print information on all arguments and local
variables of the selected frame, respectively.

Using the print command, an expression is evaluated and its value printed in a format
appropriate to its data type.

72

5.1. ACTION LANGUAGE

Altering the State

To change the value of a variable, gdb provides the set var command. For example, set var
foo=5 would assign the value 5 to the variable foo (only if foo exists and 5 is a value that
can be assigned to it).

Manually changing the instruction pointer is done with the jump command. It allows to
resume execution at a specific location of the program.

State can be altered indirectly by using the signal command which sends a particular signal
(specified by name or number) to the program.

To return manually from a function, the return command can be used, optionally specifying
a return value.

Altering the Program

Programs run by gdb can be altered in several ways.

With the set write on command, the user can write to the loaded binary and patch it. This
can be useful for emergency repairs.

Newer versions of gdb also support on-demand compilation and injection of code. This is
achieved using the compile code command, whose argument is a valid line of source code.
The compiled code is executed immediately and removed when finished.

Record/Replay

With the record/replay functionality of gdb, users can record the execution of a program
and later replay it. Central to this process is the record command, which starts the record
and replay process. By default, it fully captures the execution trace and allows replaying
and reverse execution. While in this process, if the execution log includes the record for
the next instruction, gdb will not really execute the instruction, but instead take all events
that would happen normally from the execution log. If the execution log does not include
a record for the next instruction, it is executed normally and its result recorded for future
replay. The execution log can be traversed freely, and offers more control than the usual
stepping functions. The record goto command allows the user to go to a specific location
in the execution log. The record delete command deletes the subsequent execution log (in
replay mode) and starts recording a new one. Record/replay is stopped with the record stop
command.

Chosen Operations

We do not implement the full set of debugging operations offered by gdb, as we only
want to prove feasibility. Only forward operations are implemented: stepping backwards
in simulation or execution traces is covered in the next chapter. Similarly, we do not
allow on-demand compilation of code or patching of binaries. This technique, called

73

CHAPTER 5. REPRESENTATIVE FORMALISMS

live programming, is also discussed in the next chapter. What remains are the following
operations:

• attach the debugger to a running task, enabling other debugging operations;

• detach the debugger from a running task, disabling other debugging operations;

• execute a task as-fast-as-possible;

• pause a running task;

• execute a line step, which executes the task until the next source line in the currently
executing frame is reached (similar to gdb’s next command);

• execute a big step, which executes one rule (not present in gdb);

• execute a small step, which executes one phase of a rule (similar to gdb’s stepi
command);

• manage breakpoints: set a breakpoint at a source code line, optionally accompanied
by a state condition, remove a breakpoint, list all breakpoints, and toggle a breakpoint
(similar to gdb’s breakpoint facilities).

• read the values of all symbols in the current scope (similar to gdb’s state inspection
facilities).

The next subsection explains how those operations are implemented.

5.1.3 De- and Reconstructed Simulator

Figure 5.1 shows our executor, instrumented with debugging support. Our goal was to
support the operations presented in the previous subsection, while retaining the original
execution semantics implemented in the Modelverse. This means we had to introduce
points at which the algorithm can be interrupted (through stepping, breakpoints, etc.), as
well as provide information on the state to the user of the debugger. Important with this
formalism was to retain the possibility for users to interact with the running program that is
being debugged. To implement the set of debugging operations, we first introduced new
functions in the core algorithm of the Modelverse. We expanded the amount of debug
information that was stored: instead of only storing the currently executing line, we store a
complete call stack. When a function is called, a new item is pushed to the stack, and when
a function returns, the top-most entry of the call stack is removed. We also added a function
for retrieving the currently executing rule, and the currently executing phase.

The execution flow component is responsible for executing rules, and reading the
debug info associated with the execution. If the execution is running, it checks whether a
rule needs to be executed. In case there is no rule to be executed, it might be the case that
the program is waiting for input, so the executor goes to a timeout state that will recheck
the condition after one second has passed, or when input is received. In case there is a rule
to be executed, it executes one phase of a rule: a small step. This differs from the original
Modelverse execution loop presented in Algorithm 2, where for each task, a number of
rules are executed without interruption. For debugging purposes, this is no longer feasible:

74

5.1. ACTION LANGUAGE

m
a
in

e
x
e
c
u
ti
o
n
_
fl
o
w

in
it
ia

li
z
e

e
n
te

r:

in

it
ia

li
z
e
()

c
h
e
c
k
_
te

rm
in

a
ti
o
n

li
s
te

n
in

g

in
::

re
a
d
_
s
y
m

b
o
ls

 /

 o
u
t:

:s
y
m

b
o
ls

(g
e
t_

s
y
m

b
o
ls

()
)

s
ta
te
_
re
a
d
e
r

li
s
te

n
in

g

in
::

s
e
t_

in
p
u
t

/

s
e
t_

in
p
u
t(

p
a
ra

m
s
),

in

p
u
t_

re
c
e
iv

e
d

in
p
u
t_
m
o
n
it
o
r

p
a
u
s
e
d

e
x
e
c
u
ti
o
n
_
s
ta
te

s
t
a
t
e
c
h
a
r
t

{
in

p
o
rt

s
:

in
;

o
u
tp

o
rt

s
:

o
u
t}

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

in
::

li
s
t_

b
re

a
k
p
o
in

ts
 /

re

s
 =

 l
is

t_
b
re

a
k
p
o
in

ts
()

o
u
t:

:l
is

t_
b
p
s
_
re

s
u
lt
(r

e
s
)

b
re
a
k
p
o
in
t_
m
a
n
a
g
e
r

in
::

to
g
g
le

_
b
re

a
k
p
o
in

t
/

re

s
 =

 t
g
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:t
g
l_

b
p
_
re

s
u
lt
(r

e
s
)

in
::

a
d
d
_
b
re

a
k
p
o
in

t
/

re

s
 =

 a
d
d
_
b
p
(p

a
ra

m
s
)

o
u
t:

:a
d
d
_
b
p
_
re

s
u
lt
(r

e
s
)

ru
n
n
in

g

s
m

a
ll
_
s
te

p

li
n
e
_
s
te

p

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p

s
te

p
_
in

to

p
a
u
s
e
 /

 o
u
t:

:p
a
u
s
e
d
(g

e
t_

s
ta

c
k
()

)

b
ig

_
s
te

p
_
d
o
n
e
 /

o
u
t:

:b
ig

_
s
te

p
_
d
o
n
e
(g

e
t_

s
ta

c
k
()

,
g
e
t_

in
s
tr

u
c
ti
o
n
()

)

s
te

p
_
in

to
_
d
o
n
e
 /

o
u
t:

:s
te

p
_
in

to
_
d
o
n
e
(g

e
t_

s
ta

c
k
()

)

li
n
e
_
s
te

p
_
d
o
n
e
 /

o
u
t:

:l
in

e
_
s
te

p
_
d
o
n
e
(g

e
t_

s
ta

c
k
()

)

s
m

a
ll
_
s
te

p
_
d
o
n
e
 /

o
u
t:

:s
m

a
ll
_
s
te

p
_
d
o
n
e
(g

e
t_

s
ta

c
k
()

,
g
e
t_

in
s
tr

u
c
ti
o
n
()

,
g
e
t_

p
h
a
s
e
()

) b
re

a
k
p
o
in

t_
tr

ig
g
e
rs

 /

 o
u
t:

:b
re

a
k
p
o
in

t_
tr

ig
g
e
rs

(g
e
t_

b
p
_
n
a
m

e
()

,

g
e
t_

s
ta

c
k
()

)

in
::

s
te

p
_
in

to
 [

is
_
fu

n
c
ti
o
n
c
a
ll
(g

e
t_

in
s
tr

u
c
ti
o
n
()

)]

in
::

b
ig

_
s
te

p

in
::

c
o
n
ti
n
u
o
u
s

in
::

li
n
e
_
s
te

p

in
::

s
m

a
ll
_
s
te

p

li
s
te

n
in

g

in
::

a
d
d
_
li
s
te

n
e
r

/

a
d
d
_
li
s
te

n
e
r(

p
a
ra

m
s
)

o
u
tp
u
t_
m
o
n
it
o
r

c
h
e
c
k
in

g

ti
m

e
o
u
t

c
h
e
c
k
in

g
_
d
e
b
u
g
_
in

fo

c
h
e
c
k
in

g
_
li
n
e
_
s
te

p

c
h
e
c
k
in

g
_
s
te

p
_
in

to

c
h
e
c
k
in

g
_
b
ig

_
s
te

p

[l
in

e
_
s
te

p
_
d
o
n
e
()

]
/

li
n
e
_
s
te

p
_
d
o
n
e

[s
te

p
_
in

to
_
d
o
n
e
()

]
/

s
te

p
_
in

to
_
d
o
n
e

[b
ig

_
s
te

p
_
d
o
n
e
()

]
/

b
ig

_
s
te

p
_
d
o
n
e

c
h
e
c
k
in

g
_
s
m

a
ll
_
s
te

p

o
n
e
n
tr

y
:
r
a
is
e
 s

m
a
ll
_
s
te

p
_
d
o
n
e

[I
N

(s
im

u
la

ti
o
n
_
s
ta

te
/r

u
n
n
in

g
])

]

[r
u
le

_
to

_
e
x
e
c
u
te

()
]

/

 e
x
e
c
u
te

_
p
h
a
s
e
()

[n
o
t

ru
le

_
to

_
e
x
e
c
u
te

()
]

a
ft

e
r(

1
)

in
p
u
t_

re
c
e
iv

e
d

a
ft

e
r(

s
c
c
d
_
y
ie

ld
()

)

in
::

d
e
l_

b
re

a
k
p
o
in

t
/

re

s
 =

 d
e
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:d
e
l_

b
p
_
re

s
u
lt
(r

e
s
)

[n
o
t

li
n
e
_
s
te

p
_
d
o
n
e
()

]

[n
o
t

s
te

p
_
in

to
_
d
o
n
e
()

]

[n
o
t

b
ig

_
s
te

p
_
d
o
n
e
()

]

Figure 5.1: The de- and reconstructed action language executor.

75

CHAPTER 5. REPRESENTATIVE FORMALISMS

by attaching a debugger to a process, it is taken out of the “normal” execution loop of
the Modelverse, and only one small step (rule) is executed each iteration. This of course
decreases efficiency, but that is acceptable in a debugging context. After executing a rule,
the Statecharts model checks for each type of step (line step, step into, big step, small
step) whether one was completed. For example, we might have reached the next line by
executing a rule, which means a line step was completed. In that case, a line step done
event is raised. This event can trigger a transition in the execution state component:
if its active child state is line step, the state is switched to paused, which means
that the execution flow will wait until the execution state changes. Similar
behaviour is implemented for step into, big step, and small step.

The execution state keeps track of the execution state of a task. The task can be in
three main states: running, paused, and stopped. The running state distinguishes
between the mode selected by the user: either the user has requested to run the task
continuously, or he requested a step. In case a step was requested, the system transitions
to the paused state whenever that step type has finished. A big step, small step,
and line step can always be executed. A step into, however, is only allowed if the
next instruction is a function call. In continuous mode, the execution can be interrupted
by a pause command from the user. From any running state, if a breakpoint triggers,
the execution is paused and the user is notified.

We have four more parallel components:

• breakpoint manager is responsible for adding, removing, toggling and listing
breakpoints.

• input manager allows a user to send input to the debugged task.

• output manager allows a user to attach an output listener to the task.

• state reader accepts requests for reading the current variables and their values.

The following functions were implemented as the non-modal behaviour of the debug-
ger:

• rule to execute() is a Modelverse function that returns whether or not a rule needs to
be executed; in case the task is waiting for input, this method returns false.

• execute phase() is a Modelverse function that executes a single phase of a rule.

• line step done() is a function of the Statecharts model that checks whether a line
step has ended. It does this by reading the current debugging info and comparing to
the one saved when the user requested a line step. If the frame is the same, but the
line has incremented, or if the frame was removed, a line step was executed.

• step into done() is a function of the Statecharts model that checks whether a step
into has ended. It does this by reading the current debugging info and comparing to
the one saved when the user requested a step into. If a frame was added, or the line
has incremented, the step into was executed.

• big step done() is a function of the Statecharts model that checks whether a big
step has ended. It does this by checking the current phase: if the phase is finished,
the last small step of the big step was executed.

76

5.1. ACTION LANGUAGE

• get stack() is a Modelverse function that returns the current stack of frames.

• get instruction() is a Modelverse function that returns the currently executing instruc-
tion.

• get phase() is a Modelverse function that returns the currently executing phase.

• is functioncall() returns True if the passed instruction is a function call, otherwise it
returns False.

• breakpoint triggers() is a function of the Statecharts model that returns the break-
point name if it triggers based on the debug info (the currently executing line) and
the optional condition on the state.

• get symbols() is a Modelverse function that returns all symbol names in scope and
their values.

Summary We demonstrated in this subsection that the debugging operations described
in the previous subsection have been successfully added to the execution algorithm of the
Modelverse. In the next subsection, we couple the instrumented executor to a debugging
environment.

5.1.4 Debugging Environment

Figure 5.2 presents the user interface for the action language debugger. On the bottom,
the code implementing the Fibonacci function shown in Listing 5.1 is executed. Input is
passed to the function by typing a literal integer value (prepended by a backslash). The
function sends back the nth Fibonacci number, where n was the input of the user, and the
console application displays this output. In the window above, a debugger session is started.
The debugger has been attached to the Fibonacci process by executing the attach debugger
operation. It was then paused, and the stack pointer is at line 11, blocking on the input()
function. The input 4 is passed to the program in the bottom-most window, but no reply
is yet received, as the program execution is paused. The line contains three function calls.
The user issues a step into command and the program steps to the first line in a recursive
call to the Fibonacci function. It does not step into the input() function, as one might expect,
because this is a built-in function of the Modelverse. The read symbols command returns
all symbols that can be accessed in the current scope. In this case, the param variable has
the value 6. A big step command executes until the next instruction is reached, a resolve
instruction to resolve the param variable. A small step command executes one rule relating
to the resolve instruction. The last executed small step executes an access instruction to
retrieve the value of the params variable.

This debugging environment presents the debugging information at the most appropriate
level of abstraction, using the abstractions the user is familiar with. Users can issue
debugging commands by typing them, similarly to gdb. An extension of the debugger could
integrate with a textual editor to visually indicate the currently executing line, for example,
and offer a toolbar with buttons for each debugging operation. Such an interface is out of
scope for this work, as we have proven feasibility.

77

CHAPTER 5. REPRESENTATIVE FORMALISMS

Figure 5.2: The interface for the action language debugger.

78

5.2. CAUSAL BLOCK DIAGRAMS

Summary

This section demonstrates how debugging support can be implemented for an action
language. The action language exhibits the following semantic features of the feature
diagram presented in Figure 4.2:

• It is procedural (functions can call other functions).

• It allows for environment interaction (through input/output functions).

• It is untimed.

• It is deterministic.

• It has static structure.

The first two features are the most prominent for this formalism, and in this section, we
have demonstrated that our approach can support debugging for languages exhibiting these
features.

5.2 Causal Block Diagrams

Causal Block Diagrams (CBD) [33], also known as Synchronous Data Flow, is a visual
modelling language that provides abstractions to model mathematical expressions. It is a
causal, timed (continuous or discrete), static-structure, deterministic formalism that allows
for algebraic loops to be modelled.

5.2.1 Syntax and Semantics

The CBD language offers abstractions to model dataflow: data flows between elements
over time and is manipulated. A model in the design language of CBD consists of:

• blocks that model mathematical operators, expressions that evaluate to Boolean
values, memory, and constants;

• connectors between blocks: each block has one outgoing connector, and zero or more
incoming connectors.

Connecting blocks results in a network that can contain algebraic loops.

There are three different notions of time in CBDs:

1. Algebraic models, which do not have a notion of time, and are only capable of
modelling basic mathematical equations.

2. Discrete-time models, where time is updated by a fixed amount after each evaluation
of all blocks. The delay block introduces memory by providing the previous value of
its input signal on its output.

79

CHAPTER 5. REPRESENTATIVE FORMALISMS

Figure 5.3: The metamodel of the CBD language.

3. Continuous-time models, which can only be simulated after approximation. Time
is updated with a sufficiently small δt value, turning the model into a discrete-time
model where the state of the system is sampled sufficiently often to approach a
continuous function. The derivative and integrator blocks are added and their results
approach a continuous function.

An example continuous-time CBD model is shown in Figure 5.4a. It models a “harmonic
oscillator”, a model typically used to gauge the effect of simulation parameters on simulation
error. The following equations are modelled:

d2x
dt2 (t) = −x(t)
dx
dt (0) = 1

x(0) = 0

(5.1)

From left to right, the first integrator block receives as input the signal of d
2x
dt2 (t). It outputs

the value of dx
dt . Its initial condition is 1, which corresponds to the equation dx

dt (0) = 1.
The second integrator block receives as input the signal of dxdt (t). It outputs the value of
x. Its initial condition is 0, which corresponds to the equation x(0) = 0. Last, a loop is
created to model the equation d2x

dt2 (t) = −x(t). This loop can be algebraic, depending on
the integration method used, which requires it to be passed to a linear solver.

The design model also contains the simulation parameters, which specify the step size δt
to be used, and the number of simulation iterations. In our example, δt = 0.1 and 100

80

5.2. CAUSAL BLOCK DIAGRAMS

(a) A CBD model in a design environment.

(b) The CBD model initialized in a simulation environment.

Figure 5.4: An example CBD model, both its design and initialized runtime state.

81

CHAPTER 5. REPRESENTATIVE FORMALISMS

simulation iterations are to be executed. At the end of simulation, the simulated time will
be 10 (= 100 ∗ 0.1). At runtime, the connections between blocks carry signals: values as

ALGORITHM 3: The CBD simulator’s “main loop”.
Input: Model to simulate (model)
Output: Final state of the simulation and the simulated time

1 time← 0;
2 state← initialize state(model);
3 while not end condition(time, state) do
4 schedule← loop detect(dep graph(model));
5 for block in schedule do
6 compute block(state, block);
7 end
8 time← time+ δt;
9 end

10 return get state(), get time()

function over time. A CBD is simulated by updating the values of the outgoing signals of
all blocks each iteration. The pseudocode for the algorithm of the CBD simulator is shown
in Algorithm 3.

Four functions are central to the algorithm:

• loop detect computes all loops found in the CBD. A loop exists when the input
of a block is computed by another block reachable from the original block. The
function returns a collection of all blocks and loops, in the order that they need to
be computed. Only linear loops can be solved: if the model describes a nonlinear
system, a nonlinear solver would have to be used, which the simulator used does not
support.

• dep graph computes dependencies between blocks, which is needed for the loop
detection algorithm.

• compute block contains the code that performs each block’s computation on its input
signals, updating the value of its outgoing signals (for example, the current value
of the output signal of a sum block equals the sum of the current values of its input
signals).

Each time step, the simulator iterates over all blocks in the correct order and computes the
values of each block’s outgoing signals. The end condition depends on the simulated time.
It is modelled in the “simulation parameters” element in the graphical user interface (see
Figure 5.4). Here, the simulation will end after 100 time steps. The time increment (δt) is
set to 0.1. The model and parameters are compiled to the format the simulator requires and
is then initialized by the simulator. The initial state of the model can be displayed in an
appropriate runtime environment, as seen in Figure 5.4b. The runtime environment adds a
simulation info element, which contains the current step TS and the current simulated time
ST . When the simulator completes a run, it returns the final state, which is displayed in the
user interface. A mapping between elements in the user interface model and the compiled
model (and back) realizes this visualization.

82

5.2. CAUSAL BLOCK DIAGRAMS

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10

in
t1
.O
U
T
1

$time

$time---int1.OUT1

(a) The signal values of the
first integrator, which
approximates dx

dt
(t).

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10

in
t2
.O
U
T
1

$time

$time---int2.OUT1

(b) The signal values of the
second integrator, which

approximates x.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

in
t1
.O
U
T
1

int2

int2---int1.OUT1

(c) Plotting dx
dt
(t) versus x to

estimate simulation error.

Figure 5.5: Simulation results of the example CBD model.

The result of simulation is a set of time-indexed signal values for each block. Figure 5.5
plots the signal values of the first and second integrator. From the figure, we see that dxdt
approximates the cosine function, and x approximates the sine function. The third plot
is a parametric curve, where dx

dt (t) and x are plotted. Since these functions approximate
the cosine and sine function, the curve will approximate a circle with radius one (since
cos2(x) + sin2(x) = 1). But, with simulation error accumulating over time, the circle will
start to spiral, as can be seen from the figure.

5.2.2 Debugging Operations

We define the following debugging operations for the CBD formalism:

• [Continuous Simulation] runs the simulation until completion, and communicates
the final state of the simulation when finished.

• [Realtime Simulation] runs the simulation until completion, but synchronizes the
simulated time with the wall-clock time. The state is shown each time step, such that
the modeller can see how the system evolves over time. The speed depends on the δt
parameter, but a scale factor can be applied to slow down or speed up simulation.

• [Pause] interrupts a running simulation. In continuous simulation, the simulation
stops after the currently executing “big step” has finished, ensuring the system is in
a stable state. In realtime simulation, however, the simulation is paused as soon as
possible. This means that the simulator can be “in between” two big steps, as it might
have been waiting for the appropriate wall-clock time to elapse when the pause was
requested.

• [Big Step] advances the simulation with one “big step” (one iteration of the outer
while-loop) and communicates the state of the simulation.

• [Small Step] advances the simulation with one “small step” (one iteration of the
inner while-loop) and communicates the state of the simulation. This allows the user
to step through individual block computations.

• [Reset] allows the user to reset the simulation to the initial state.

83

CHAPTER 5. REPRESENTATIVE FORMALISMS

• [Breakpoints] can be modelled as elements that read the output value of a block in
the model. The breakpoint pauses the simulation when the output of its connected
element has a non-zero value. This allows users to model arbitrary conditions on
which the simulation needs to pause (as they can be modelled as a network of CBD
blocks) in the CBD model.

• If nonlinear (unsolvable) components are found, the debugger indicates which blocks
belong to that component, in order for the modeller to be notified so appropriate
changes can be made to the model.

5.2.3 De- and Reconstructed Simulator

Debugging a CBD simulation requires “lifting out” the outer while-loop, to implement
“big step” behaviour. On a more fine-grained level, the inner loop can be lifted out too, to
implement “small step” behaviour by exposing the computation of individual blocks.

Figure 5.6 presents the Statecharts model resulting from de- and reconstructing the CBD
simulation algorithm. Our goal was to support the operations presented in the previous
subsection, while retaining the original execution semantics implemented by the simulator.
This means we had to introduce points at which the algorithm can be interrupted (through
stepping, breakpoints, etc.), as well as provide information on the state to the user of the
debugger. Important in this formalism is the distinction between “big steps” (an iteration of
the while-loop of the simulator) and “small steps” (the computation of a single signal value).
The Statecharts model consists of four orthogonal components: simulation state,
simulation flow, reset monitor and breakpoint manager.

The simulation state orthogonal component determines in what execution mode the
simulator is. It describes how the user can influence the control flow of the simulation.
Two top-level states are defined: paused and running. The running state has three
substates, which encode the simulation modes: continuous, realtime, big step,
and small step. The simulator starts in the paused state, and can only transition to one
of the substates of running when a user event is received. Pausing is only possible when
running the simulation in continuous mode or in realtime mode. The debugging-enhanced
simulator does not allow pausing the simulation when computing a big step or small step,
as that could leave the simulator in a (globally) inconsistent state. Rather, the simulator
pauses automatically after every big step when in big step mode, and after every small step
in small step mode. When the simulation terminates, the simulation state transitions to the
paused state from any of the running states. Detecting termination is encoded in the
simulation flow orthogonal component, discussed below. Based on the simulation
state, the behaviour of the simulation flow will change.

The simulation flow orthogonal component determines the flow of a single sim-
ulation step, and explicitly encodes the invocation order of the non-modal functions.
This is an explicit representation of the control flow that was implemented in the
while-loop in the coded implementation. The orthogonal component consists of
four states: check termination, waiting, checking, and checking step.
In the check termination state, the simulator checks whether or not a next step
should be computed. This check inspects the state of the orthogonal component
simulation state. There are three possibilities:

84

5.2. CAUSAL BLOCK DIAGRAMS

m
a
in

s
im
u
la
ti
o
n
_
fl
o
w

in
it
ia

li
z
e

c
h
e
c
k
_
te

rm
in

a
ti
o
n

p
a
u
s
e
d

s
im
u
la
ti
o
n
_
s
ta
te

s
t
a
t
e
c
h
a
r
t

{
in

p
o
rt

s
:

in
;

o
u
tp

o
rt

s
:

o
u
t}

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

in
::

li
s
t_

b
re

a
k
p
o
in

ts
 /

re

s
 =

 l
is

t_
b
re

a
k
p
o
in

ts
()

o
u
t:

:l
is

t_
b
p
s
_
re

s
u
lt
(r

e
s
)

b
re
a
k
p
o
in
t_
m
a
n
a
g
e
r

in
::

to
g
g
le

_
b
re

a
k
p
o
in

t
/

re

s
 =

 t
g
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:t
g
l_

b
p
_
re

s
u
lt
(r

e
s
)

in
::

a
d
d
_
b
re

a
k
p
o
in

t
/

re

s
 =

 a
d
d
_
b
p
(p

a
ra

m
s
)

o
u
t:

:a
d
d
_
b
p
_
re

s
u
lt
(r

e
s
)

ru
n
n
in

g

s
m

a
ll
_
s
te

p

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p

p
a
u
s
e
 /

 o
u
t:

:p
a
u
s
e
d
(g

e
t_

s
ta

te
()

)

b
ig

_
s
te

p
_
d
o
n
e
 /

o
u
t:

:b
ig

_
s
te

p
_
d
o
n
e
(g

e
t_

s
ta

te
()

)

s
m

a
ll
_
s
te

p
_
d
o
n
e
 /

o
u
t:

:s
m

a
ll
_
s
te

p
_
d
o
n
e
(g

e
t_

c
o
m

p
u
te

d
_
c
o
m

p
o
n
e
n
t(

))

te
rm

in
a
te

in
::

b
ig

_
s
te

p

in
::

c
o
n
ti
n
u
o
u
s

in
::

s
m

a
ll
_
s
te

p

c
h
e
c
k
in

g

in
::

d
e
l_

b
re

a
k
p
o
in

t
/

re

s
 =

 d
e
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:d
e
l_

b
p
_
re

s
u
lt
(r

e
s
)

[e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

 /

 t

e
rm

in
a
te

[I
N

(r
e
a
lt
im

e
)

a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 d

e
la

y
()

 >
 0

]

[b
p
 =

 b
re

a
k
p
o
in

t(
)]

 /
 o

u
t:

:b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d
(b

p
),

 t
e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

w
a
it
in

g
a
ft

e
r(

d
e
la

y
()

)

[I
N

(p
a
u
s
e
d
)]

[I
N

(r
e
a
lt
im

e
)

 a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)

a
n
d
 d

e
la

y
()

 <
=

 0
]

[I
N

(r
u
n
n
in

g
)

a
n
d
 n

o
t

IN
(r

e
a
lt
im

e
)

 a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

[c
o
m

p
o
n
e
n
tL

e
ft

()
 a

n
d
 h

a
s
C
y
c
le

(n
e
x
tC

o
m

p
o
n
e
n
t(

))
 a

n
d
 n

o
t

is
L
in

e
a
r(

n
e
x
tC

o
m

p
o
n
e
n
t(

))
]

/

 o
u
t:

:n
o
n
L
in

e
a
r(

n
e
x
tC

o
m

p
o
n
e
n
t(

))
,

te
rm

in
a
te

c
h
e
c
k
in

g
_
s
te

p

c
h
e
c
k
in

g
_
b
ig

_
s
te

p

[b
ig

_
s
te

p
_
d
o
n
e
()

]
/

b
ig

_
s
te

p
_
d
o
n
e

c
h
e
c
k
in

g
_
s
m

a
ll
_
s
te

p

o
n
e
n
tr

y
:
r
a
is
e
 s

m
a
ll
_
s
te

p
_
d
o
n
e

[c
o
m

p
o
n
e
n
tL

e
ft

()
 a

n
d
 !

h
a
s
C
y
c
le

(c
o
m

p
o
n
e
n
t)

 o
r

is
L
in

e
a
r(

c
o
m

p
o
n
e
n
t)

 a
n
d
 I

N
(r

u
n
n
in

g
)]

 /

 c
o
m

p
u
te

B
lo

c
k
(n

e
x
tC

o
m

p
o
n
e
n
t(

))

e
n
te

r:

ti
m

e
 =

 0
;

s
ta

te
 =

 i
n
it
ia

li
z
e
_
s
ta

te
(m

o
d
e
l)

out::initialized(get_state())

re
s
e
t

in
::

re
s
e
t

[I
N

(p
a
u
s
e
d
)]

re
s
e
t_
m
o
n
it
o
r

re
a
lt
im

e
p
a
u
s
e
 /

 o
u
t:

:p
a
u
s
e
d
(g

e
t_

s
ta

te
()

)

in
::

re
a
lt
im

e

[n
o
t

b
ig

_
s
te

p
_
d
o
n
e
()

]

Figure 5.6: The de- and reconstructed CBD simulator.

85

CHAPTER 5. REPRESENTATIVE FORMALISMS

1. The simulator is running, but not in real-time. In that case, the next simulation step
can be computed.

2. The simulator is running in real-time. In that case, either the delay between two
simulation steps has passed, and the next simulation step can be computed. Or, the
delay has not passed, and the simulator has to wait. The simulator transitions to the
waiting state, and a transition is scheduled to fire after the delay has passed. But,
pausing needs to be possible while waiting. So, a transition is added which lets the
control go back to the check termination state when the user requests a pause.

3. A breakpoint triggers, in which case the simulation should pause.

The checking state is responsible for checking the next component: if it is nonlinear,
an event is raised to the user and the simulation is paused. Otherwise, the output of
the next block is computed. In checking step, a small step done event is always
raised, since a small step corresponds to the computing of one block. A big step done
event is raised if the last component of the current time step is computed. These events
can influence the simulation state orthogonal component. In the checking and
check termination states, the state of that orthogonal component is always checked to
ensure the next simulation step can be computed.

The reset monitor listens for user requests to reset the simulation, and allows it when
the simulation is paused.

The breakpoint manager can add, toggle, and delete breakpoints, as well as list all
currently defined breakpoints.

Summary We demonstrated in this subsection that the debugging operations described
in the previous subsection have been successfully added to the CBD simulator. In the next
subsection, we couple the instrumented executor to a debugging environment.

5.2.4 Debugging Environment

The debugging environment for the CBD formalism is shown in Figure 5.7. A toolbar
allows the user to access the functions of the debugging-enhanced simulator: it is marked in
red. The current state of the simulation (an instance of the runtime formalism) is displayed
on the canvas. For each signal (connection between blocks), its current value is displayed.
The model shown is paused, since a breakpoint triggered (represented by the small black
circle that is highlighted in blue). The breakpoint triggers when the simulated time equals
5.

To debug the model effectively, three elements were added as part of the debugging
language:

1. A plotter, of which three instances are shown. This element draws the value of a
signal of one of the blocks as it evolves over time. The plot is updated after every state
update coming from the simulator. In realtime simulation, the state is communicated
after every big step of the simulation algorithm. The state is also communicated
when the simulation terminates or pauses. The plots show the evolution of the state
variables up to the current point in simulated time.

86

5.2. CAUSAL BLOCK DIAGRAMS

Figure 5.7: The debugging environment for the CBD formalism.

2. A “simulation info” element, which is also instantiated on the canvas. It contains the
current simulation step (TS) and the simulated time (ST). As can be seen from the
figure, the simulation is currently halfway: the user has specified that 100 simulation
steps are to be executed, the current simulation step is 50.

3. A breakpoint element, which is used to model a condition on the runtime state of the
system at which the simulator has to automatically pause. The breakpoint can be
placed on the canvas and connected to a block. It triggers when the output of that
block is non-zero.

Summary

This section demonstrates how debugging support can be implemented for Causal Block
Diagrams. The language exhibits the following semantic features of the feature diagram
presented in Figure 4.2:

• It allows to model algebraic loops (that need a specific schedule to be computed in
a consistent manner).

• It implements discrete-time or continuous-time semantics (depending on the types
of blocks used in the instance models).

• It is deterministic.

• It has static structure.

The modelling of algebraic loops is the most prominent feature of this formalism, and in
this section, we have demonstrated that our approach can support debugging for languages
exhibiting this feature.

87

CHAPTER 5. REPRESENTATIVE FORMALISMS

5.3 Parallel DEVS

Parallel DEVS [38] is an extension of DEVS [221], a popular formalism for modelling
complex dynamic systems using a discrete-event abstraction. It is a causal, timed (discrete-
event), static-structure, deterministic formalism that allows to model systems that interact
with their environment through input and output functions.

5.3.1 Syntax and Semantics

The Parallel DEVS formalism consists of atomic models, which are connected in a coupled
model. The atomic models are behavioural (they exclusively model behaviour), while the
coupled models are structural (they exclusively model structure).

Atomic DEVS

An atomic DEVS model is a structure:

M =< X,S, Y, δint, δext, δconf , λ, ta >

The input set X denotes the set of admissible inputs of the model. The input set may have
multiple ports, denoted by m in this definition. X is a structured set

X = ×mi=1Xi

where each of the Xi denotes the admissible inputs on port i. The output set Y denotes the
set of admissible outputs of the model. The output set may have multiple ports, denoted by
l in this definition. Y is a structured set

Y = ×li=1Yi

where each of the Yi denotes the admissible outputs on port i. The state set S is the set of
admissible sequential states. Typically, S is a structured set

S = ×ni=1Si

The internal transition function δint defines the next sequential state, depending on the
current state. It is triggered after the time returned by the time advance function has passed
(in the simulation, not in wall-clock time). Note that this function does not require the
elapsed simulation time as an argument, since it will always be equal to the time advance
function.

δint : S → S

The output function λ maps the sequential state set onto an output bag. Output events are
only generated by a DEVS model at the time of an internal/confluent transition. This
function is called before the transition function is called, so the state that is used will be the
state before the transition happens.

λ : S → Y b

88

5.3. PARALLEL DEVS

The external transition function δext gets called whenever an external input (∈ X) is
received in the model. The signature of this transition function is

δext : Q×Xb → S

with Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}

with e the elapsed time since the last transition.

When the external transition function is called, the time advance function is called again
and the previously scheduled internal event is rescheduled with the new value. The time
advance function ta defines the simulation time the system remains in the current state
before triggering the output functions and internal transition functions.

ta : S → R+
0,+∞

Note that +∞ is included, since it is possible for a model to passivate in a certain state,
meaning that it will never have an internal transition in this state.

Should the internal and external transition function be called at exactly the same point in
simulated time, the confluent transition function is called instead. It is defined as

δconf : S ×Xb → S

The behaviour of atomic DEVS models is summarized in Figure 5.8.

Coupled DEVS

A coupled DEVS model is a structure:

M =< Xself , Yself , D, {Mi}, {Ii}, {Zi,j} >

With Xself and Yself the input and output set respectively.

D is the set of unique component references (names), the coupled model itself is not an
element of D.

{Mi} is the set of components containing the atomic DEVS structure of all subcomponents
referenced by elements in D.

{Mi|i ∈ D}

The set of influencees {Ii} determines the elements whose input ports are connected to
output ports of component i. Note that self is included in this definition, as a component
can send (receive) messages to (from) the coupled model itself.

{Ii|i ∈ D ∪ {self}}

A component cannot influence components outside of the current coupled model, nor can it
influence itself directly as self-loops are forbidden.

∀i ∈ D ∪ {self} : Ii ⊆ D ∪ {self}
∀i ∈ D ∪ {self} : i /∈ Ii

89

CHAPTER 5. REPRESENTATIVE FORMALISMS

ta(s2)

<<init>>

e

(s4, e)

ta(s1) = e

δint(s2)

δext((s2, e), x)

<<finalize>>

x1

s1

s2

s3

s4

y1

y2

λ(s2)
λ(s1)

t

t

t

S

X

Y

x2

δconf((s2, e), x)

Figure 5.8: Input, state, and output trajectories for an atomic DEVS model.

The couplings are further specified by the transfer functions Zi,j . These functions are
applied to the messages being passed, depending on the output and input port. These
functions allow for reuse, since they allow output events to be made compatible with the
input set of the connected models.

{Zi,j |i ∈ D ∪ {self}, j ∈ Ii}

DEVS was originally not intended to be a visual language, instead it relies on its mathemat-
ical description in the form of sets and transitions that modify these sets. To debug DEVS
models, however, a visual interface is helpful. We have developed such an interface, which
allows users to model and simulate (and debug) DEVS models. We start by describing the
graphical design environment. Figure 5.9 presents the metamodel for this Parallel DEVS
design formalism. It consists of the following elements:

• BaseDEVS is the superclass for the Coupled DEVS and Atomic DEVS classes. It
has the following attributes:

– name is the name of the model. It can be used in DEVS instances (see below)
to refer to their type.

– attributes is a list of attributes for this model.

90

5.3. PARALLEL DEVS

State

[>name>:>string
[>initial>:>bool
[>time_advance>:>code
[>output>:>code

BaseDEVS

[>name>:>string
[>attributes>:>list<,ATTRIBUTE>>=
[>parameters>:>list<,ARG>>=
[>__init__>:>code
[>position>:>list<int>>=>0]0
[>scale>:>list<int>>=>0]0

CoupledDEVS

Event

[>name>:>string
[>attributes>:>list<,ATTRIBUTE>>=
[>parameters>:>list<,ARG>>=
[>__init__>:>code

Port

[>name>:>string
[>position>:>list<int>>=>0]0

InputPort OutputPort

Simulation

[>end_condition>:>code

InternalTransition

* *

E
x
te
rn
a
lT
ra
n
s
it
io
n

*

*

p
o
rts

1
*

AtomicDEVS

states1 *

channel

* *

StateDefinition

[>name>:>string
[>attributes>:>list<,ATTRIBUTE>>=
[>parameters>:>list<,ARG>>=
[>initial_binding>:>list<map<[name]val]][string]string]>>>=
[>__init__>:>code

statedef*

1
ConfluentTransition

* *

DevsInstance

[>name>:>string
[>devs_type>:>string
[>parameter_binding>:>list<map<[name]val]][string]string]>>>=
[>position>:>list<int>>=>0]0
[>scale>:>list<int>>=>0]0

ports1 *

s
u
b
m
o
d
e
ls

1

*

Figure 5.9: The Parallel DEVS metamodel in AToMPM.

– parameters is a list of parameters passed to the constructor of this model.

– init is the constructor for this model. The constructor is responsible for
initializing the values of this model’s attributes. To do this, the code can access
the parameters by name.

– position and scale are visualization-specific attributes.

• Port is a class to represent the ports of DEVS models. There are two types of ports:
input ports and output ports. Each port has a name. Ports can be connected to
other ports through the channel association. Channels have one attribute: a transfer
function that translates events when they are transferred through the channel.

• CoupledDEVS instances can contain a number of submodels (which are instances
of other atomic/coupled DEVS models). Exactly one CoupledDEVS model should
have the name Root and is the root model used for simulation.

• DevsInstance is an instantiation of an atomic or coupled DEVS model, its type. The
type of a DevsInstance needs to be present in the same model. It has the following
attributes:

– name is the name of the instance. It has to be unique within the enclosing
coupled DEVS model.

– devs type is a reference to the instance’s type, an atomic or coupled DEVS
model. The type needs to be defined in the same model as the reference.

– parameter binding is a mapping of parameter names onto values passed to
the constructor of the DEVS model this is an instance of.

– position and scale are visualization-specific attributes.

• AtomicDEVS elements contain a number of states, and are connected to exactly one
state definition.

91

CHAPTER 5. REPRESENTATIVE FORMALISMS

• StateDefinition models the “template” of a state for an atomic DEVS model. It has
the following attributes:

– name is the name of this state definition.

– attributes is a list of attributes for this state definition. It is a list of “state
variables”. By default, all StateDefinition instances have one attribute: a name,
whose value corresponds to the name of the current state of the atomic DEVS
model.

– parameters is a list of parameters for the constructor, which is called when a
state change occurs.

– init is the code for the constructor.

• State instances model the discrete states of an atomic DEVS model. It has the
following attributes:

– name is the name of the state.

– initial denotes whether this is the initial state of the atomic DEVS model. There
is exactly one initial state for each atomic DEVS model.

– time advance is the block of code which computes the time the atomic DEVS
model should stay in this state before firing its internal transition. It should
return a positive floating point number, or∞.

– output is the block of code which computes the output that is generated when
a state transition occurs from this state. It should return a mapping between
port names and a list of event instances.

• InternalTransition instances connect two states with each other, and specifies which
state to transition to after the time advance of the source state has passed. It has two
attributes:

– condition allows to specify a condition which needs to evaluate to True in order
for the internal transition to be executed. Two internal transitions leaving the
same state should have non-overlapping conditions (to avoid non-determinism).

– action allows to specify an action when performing the transition. The action
can change the state attributes of the atomic DEVS model (that were defined in
the StateDefintition instance associated with the atomic DEVS model).

• ExternalTransition instances connect two states with each other, and specifies which
state to transition to after an input was received on an input port. It has two attributes:

– condition allows to specify a condition which needs to evaluate to True in order
for the internal transition to be executed. Two internal transitions leaving the
same state should have non-overlapping conditions.

– action allows to specify an action when performing the transition. The action
can change the state attributes of the atomic DEVS model (that were defined
in the StateDefintition instance associated with the atomic DEVS model). The
action code can access an input dictionary called inputs, which maps all port

92

5.3. PARALLEL DEVS

Job

+ jobSize : float return False

CoupledProcessor

p1
:Processor

p2
:Processor

p_in

p_out

p_in p_out

p_out
p_in

Root

g
:Generator cp

:CoupledProcessor

p
:Processor

p_in

p_in

p_out

p_out

p_out

c
:Collectorp_in

Generator

p_out

GeneratorState

generating

return 1

return {'p_out': [Job(0.3)]}

Processor

p_in

p_out

+ job : Job

ProcessorState

idle

return INFINITY

processing

return self.state.job.jobSize

return {'p_out': [self.state.job]}

return {"job": inputs['p_in'][0]}

Collector

p_in

+ nr_of_jobs : int

CollectorState

waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

Figure 5.10: The design model of the producer-consumer DEVS model.

names onto the bag of inputs that was received on that port, and the variable
elapsed, which contains the elapsed time since the last external transition.

• ConfluentTransition instances connect two states with each other, and specifies
which state to transition to when there is a conflict between internal and external
transition function. By default, the internal transition function is executed first,
followed by the external transition. It has two attributes:

– condition allows to specify a condition which needs to evaluate to True in order
for the confluent transition to be executed. Two confluent transitions leaving
the same state should have non-overlapping conditions.

– action allows to specify an action when performing the transition. The action
can change the state attributes of the atomic DEVS model (that were defined
in the StateDefintition instance associated with the atomic DEVS model). The
action code can access an input dictionary called inputs, which maps all port
names onto the bag of inputs that was received on that port, and the variable
elapsed, which contains the elapsed time since the last external transition.

• Simulation allows to specify an end condition for the simulation. The simulated
time can be accessed with the variable time. The current state of the model can be
accessed using the model variable.

In Figure 5.10, an example model specifying a producer-consumer system is shown in the
generated AToMPM modelling environment. It consists of the following atomic DEVS
models:

• Generator puts a new Job message on its output port every 0.3 simulated time
seconds.

• Collector accepts a Job message on its input port and counts the number of messages
it has received (by increasing its nr of jobs state variable).

93

CHAPTER 5. REPRESENTATIVE FORMALISMS

• Processor accepts a Job on its input port, does some computation on it for a prede-
termined amount of time, and then puts the Job message on its output port.

A CoupledProcessor consists of two connected processors. The Root coupled model is
composed of a generator, a coupled processor, a processor, and a collector. A Job event
template is defined that defines the structure of events passed between DEVS instances,
and the end condition is false, meaning that the simulation will run forever.

ALGORITHM 4: The Parallel DEVS simulator’s “main loop”.
Input: Model to simulate (model)

1 flatten model(model);
2 time← 0;
3 state← initialize state(model);
4 while not end condition(time, state) do
5 imminents← compute imminents(state);
6 selected component← select imminent(imminents);
7 events← compute output(selected component);
8 route events(events);
9 ext← compute externals(state, events);

10 for component in imminents ∪ ext do
11 compute next state(component, state);
12 end
13 time← time next(state);
14 end

To simulate Parallel DEVS models, the operational semantics of Parallel DEVS are
described in [38], in the form of an abstract simulator. An efficient version of the simulation
algorithm was introduced in [143] and implemented in tools such as PythonPDEVS [205]
and adevs [148]. It is based on direct connection and flattening of the model hierarchy. The
pseudocode for this algorithm is shown in Algorithm 4. A simulator computes the next
state of the system (a “step”) until its end condition is satisfied. Each step consists of the
following phases:

1. Compute the set of atomic DEVS models whose internal transitions are scheduled to
fire (imminent components).

2. Execute the output function for each imminent component, causing events to be put
on their output ports.

3. Route events from output ports to input ports, translating them in the process by
executing the transfer functions.

4. For each atomic DEVS model, determine the type of transition to execute, depending
on it being imminent, receiving input, or both.

5. Execute, in parallel, all enabled internal, external, and confluent transition functions.

6. Compute, for each atomic DEVS model, the time of its next internal transition
(specified by its time advance function).

During simulation, the value of an internal clock (the simulated time) is updated according
to the information encoded in the transition functions.

94

5.3. PARALLEL DEVS

Root

cp

p_in

p_out

p_out

p_in

p_out

p_in

p_in

p_out

p_in

ProcessorState

ProcessorState

ProcessorState

CollectorState

GeneratorState

p_out

g

generating

return 1

return {'p_out': [Job(0.3)]}

p1

processing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

p2

processing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

p

processing

return self.state.jobSize

return {'p_out': [self.state.job]}

idle

return INFINITY

return {"job": inputs['p_in'][0]}

c

waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

0.00

Figure 5.11: The runtime model of the producer-consumer DEVS model.

To represent Parallel DEVS model at runtime (i.e., during simulation), a runtime lan-
guage was created that extends the design language. This is necessary for a variety of
reasons:

• The need to keep track of runtime information, such as:

– The simulated time.

– The state information for each atomic DEVS model, consisting of its attribute
values and the name of the currently active state.

• To instantiate the references to coupled DEVS models, causing these references to
be expanded, making the complete structure explicit.

The design metamodel is augmented with the necessary runtime information. An automatic
exogenous transformation transforms any valid design of a DEVS model into a runtime
model by retyping the elements and expanding all references to atomic DEVS and coupled
DEVS models found in the root model: they are replaced by their definition. Figure 5.11
shows the resulting runtime model of the produce-consume example, of which the design is
shown in Figure 5.10.

5.3.2 Debugging Operations

For Parallel DEVS, we define the following debugging operations:

• [As-Fast-as-Possible Simulation] In this mode, the simulation runs as fast as the
underlying hardware can manage and the operating system will allow, until the end
condition is satisfied. It is comparable to running program code, which is always
run as fast as possible. At the end, the user can inspect the generated trace and any
metrics collected.

95

CHAPTER 5. REPRESENTATIVE FORMALISMS

• [Real-Time Simulation] In this mode, simulated time is synchronized with the wall-
clock time. For debugging purposes, a scale factor can be applied to speed up or
slow down simulation, while retaining the linear relation between simulated time
and wall-clock time. A scale factor of 1 corresponds to real-time, while a scale factor
smaller or greater than 1 slows down or speeds up simulation proportionally. State is
observed throughout real-time simulation after each iteration of the simulation loop.

• [Pause] Pausing a simulation allows to inspect the current state of the system and
enables other debugging operations, such as stepping and state modifications.

• [Big Step and Small Step] To transpose the notion of stepping, we turn to the
simulation algorithm shown in Algorithm 4. We define two types of steps: a “big
step” executes one simulation step (corresponding to an iteration of the while-loop).
Inside of the while-loop, a number of simulation phases, or “small steps”, are executed.
Providing control and feedback at this level allows the user to gain more insight into
the detailed model semantics.

• [God Event] A “god event” allows a user to change the value of a state variable of a
particular atomic Parallel DEVS model. This operation changes the current state
(si,curr, ei,curr) ∈ Qi to a new state (si,new, 0) ∈ Qi where Qi is the total state set
of the atomic Parallel DEVS model i.

• [Event Injection] A user can schedule the injection of an event (x, p) ∈ Xi at
a specified (future) simulated time instant t. Once time t is reached, the atomic
Parallel DEVS model i receives the input event x on its port p, triggering its external
transition function.

• [Breakpoints] A user can specify a breakpoint in the form of a condition on the
execution state of the Parallel DEVS simulation (including simulated time and
current (total) state information). A breakpoint is a function that returns True when
the simulation should pause, False in all other cases. When a breakpoint triggers, the
user is notified of the name of the triggered breakpoint, and the current state of the
simulation.

5.3.3 De- and Reconstructed Simulator

Figure 5.12 presents the Statecharts model of the debugging-enhanced Parallel DEVS
simulator. Our goal was to support the operations presented in the previous subsection,
while retaining the original execution semantics implemented by the simulator. This means
we had to introduce points at which the algorithm can be interrupted (through stepping,
breakpoints, etc.), as well as provide information on the state to the user of the debugger.
Important with this formalism was to support the different “phases” (small steps) that
occur throughout one “big step” (an iteration of the while-loop of the simulator). The
Statecharts model consists of two main orthogonal components: simulation state
and simulation flow.

The simulation state determines in what execution mode the simulator is. It de-
scribes how the user can influence the control flow of the simulation. Four modes are
defined: paused, continuous, realtime, and big step. The simulator starts in

96

5.3. PARALLEL DEVS

m
a
in

s
im
u
la
ti
o
n
_
fl
o
w

d
o
_
s
im
u
la
ti
o
n

fo
u
n
d
_
im

m
in

e
n
ts

e
n
te

r:

s
i
=

 s
e
le

c
t_

im
m

in
e
n
t(

im
m

)

e
n
te

r:

im

m
 =

 c
o
m

p
u
te

_
im

m
in

e
n
ts

(s
ta

te
)

s
e
le

c
te

d
_
im

m
in

e
n
t

e
n
te

r:

e
v
e
n
ts

 =
 c

o
m

p
u
te

_
o
u
tp

u
t(

s
e
le

c
te

d
_
c
o
m

p
o
n
e
n
t)

c
o
m

p
u
te

d
_
o
u
tp

u
t

e
n
te

r:

in

b
a
g
s
 =

 r
o
u
te

_
e
v
e
n
ts

(e
v
e
n
ts

)

ro
u
te

d
_
m

e
s
s
a
g
e
s

e
n
te

r:

e
x
t

=
 c

o
m

p
u
te

_
e
x
te

rn
a
ls

(s
ta

te
,

e
v
e
n
ts

)

fo
u
n
d
_
a
ll
_
tr

a
n
s
it
io

n
in

g

e
n
te

r:

s
ta

te
s
 =

 {
}

fo

r
c
o
m

p
o
n
e
n
t

in
 s

i
U

 e
x
t:

s
ta

te
s
 =

 s
ta

te
s
 U

 n
e
x
t_

s
ta

te
(c

o
m

p
o
n
e
n
t,

 s
ta

te
)

c
o
m

p
u
te

d
_
tr

a
n
s
it
io

n
s

[n
o
t

IN
(p

a
u
s
e
d
)]

[I
N

(p
a
u
s
e
d
)]

 /

 o

u
t:

:
im

m
in

e
n
ts

(i
m

m
)

in
::

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

 o

u
t:

:s
e
le

c
te

d
_
im

m
in

e
n
t(

s
i)

in
::

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

 o

u
t:

:o
u
tb

a
g
(e

v
e
n
ts

)

[n
o
t

IN
(p

a
u
s
e
d
)]

[n
o
t

IN
(p

a
u
s
e
d
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

 o

u
t:

:t
ra

n
s
it
io

n
in

g
(s

i
U

 e
x
t)

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

 o

u
t:

:n
e
w

_
s
ta

te
s
(s

ta
te

s
)

[n
o
t

IN
(p

a
u
s
e
d
)]

[n
o
t

IN
(p

a
u
s
e
d
)]

[n
o
t

IN
(p

a
u
s
e
d
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

 o

u
t:

:i
n
b
a
g
s
 (

in
b
a
g
s
)

in
it
ia

li
z
e

e
n
te

r:

ti
m

e
 =

 0
;

s
ta

te
 =

 i
n
it
ia

li
z
e
_
s
ta

te
(m

o
d
e
l)

c
h
e
c
k
in

g
_
te

rm
in

a
ti
o
n

[e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

 /

 t

e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

[I
N

(r
e
a
lt
im

e
)

a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 d

e
la

y
()

 >
 0

]

c
h
e
c
k
in

g
_
s
m

a
ll
_
s
te

p

[b
p
 =

 b
re

a
k
p
o
in

t(
)]

 /
 o

u
t:

:b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d
(b

p
),

 t
e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

w
a
it
in

g
a
ft

e
r(

d
e
la

y
()

)

[I
N

(p
a
u
s
e
d
)]

in::small_step

[bp = breakpoint()] /

 out::breakpoint_triggered(bp),

 out::termination_condition

[end_condition(time, state)

 and not breakpoint()] /

 out::termination_condition

in::god_event [IN(paused)] /

res=do_god_event(params)

 out::god_event_res(res)

c
h
e
c
k
_
te
r
m
in
a
ti
o
n

[n
o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

[I
N

(r
e
a
lt
im

e
)

 a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)

a
n
d
 d

e
la

y
()

 <
=

 0
]

[I
N

(c
o
n
ti
n
u
o
u
s
)

o
r

IN
(b

ig
_
s
te

p
)

 a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

[I
N

(r
e
a
lt
im

e
)

o
r

IN
(b

ig
_
s
te

p
)]

 /
 o

u
t:

:b
ig

_
s
te

p
_
d
o
n
e
(s

ta
te

s
),

 o
u
t:

:n
e
w

_
tn

(t
n
)

[I
N

(c
o
n
ti
n
u
o
u
s
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /
 o

u
t:

:n
e
w

_
tn

(t
n
)

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

in
::

d
e
l_

b
re

a
k
p
o
in

t
/

re

s
 =

 d
e
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:d
e
l_

b
p
_
re

s
u
lt
(r

e
s
)

b
re
a
k
p
o
in
t_
m
a
n
a
g
e
r

in
je

c
t

in
::

in
je

c
t

[I
N

(p
a
u
s
e
d
)]

 /

re

s
 =

 i
n
je

c
t(

p
a
ra

m
s
)

o
u
t:

:i
n
je

c
ti
o
n
_
re

s
u
lt
(r

e
s
)

in
je
c
ti
o
n
_
m
o
n
it
o
r

tr
a
c
e

in
::

tr
a
c
e
 /

 r

e
s
 =

 g
e
t_

tr
a
c
e
()

 o

u
t:

:t
ra

c
e
(r

e
s
)

tr
a
c
e
r_
m
o
n
it
o
r

in
te

rr
u
p
t

in
::

in
te

rr
u
p
t

/

ra

is
e
_
in

te
rr

u
p
t(

p
a
ra

m
s
)

in
te
rr
u
p
t_
m
o
n
it
o
r

li
s
te

n
in

g

in
::

a
d
d
_
li
s
te

n
e
r

/

a
d
d
_
e
v
e
n
t_

li
s
te

n
e
r(

p
a
ra

m
s
)

li
s
te
n
e
rs
_
m
o
n
it
o
r

re
s
e
t

in
::

re
s
e
t

[I
N

(p
a
u
s
e
d
)]

re
s
e
t_
m
o
n
it
o
r

p
a
u
s
e
d

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p

s
im
u
la
ti
o
n
_
s
ta
te

in
::

c
o
n
ti
n
u
o
u
s

re
a
lt
im

e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

,
o
u
t:

:a
ll
_
s
ta

te
s
(g

e
t_

s
ta

te
s
()

)

in
::

re
a
lt
im

e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

b
ig

_
s
te

p
_
d
o
n
e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

in
::

b
ig

_
s
te

p

s
ta
te
c
h
a
r
t

{
in

p
o
rt

s
:

in
;

o
u
tp

o
rt

s
:

o
u
t}

e
n
te

r:

tn

 =
 t

im
e
_
n
e
x
t(

s
ta

te
)

c
o
m

p
u
te

d
_
ti
m

e

in
::

to
g
g
le

_
b
re

a
k
p
o
in

t
/

re

s
 =

 t
g
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:t
g
l_

b
p
_
re

s
u
lt
(r

e
s
)

in
::

a
d
d
_
b
re

a
k
p
o
in

t
/

re

s
 =

 a
d
d
_
b
p
(p

a
ra

m
s
)

o
u
t:

:a
d
d
_
b
p
_
re

s
u
lt
(r

e
s
)

out::initialized(get_state())

Figure 5.12: The de- and reconstructed Parallel DEVS simulator.

97

CHAPTER 5. REPRESENTATIVE FORMALISMS

the paused state, and can only transition to one of the other states when a user event is
received. Pausing is only possible when running the simulation in continuous mode or in
realtime mode. The debugging-enhanced simulator does not allow pausing the simulation
when computing a big step or small step, as that could leave the simulator in a (globally)
inconsistent state. Rather, the simulator pauses automatically after every big step when
in big step mode, and small steps are manually controlled (discussed below). When the
simulation terminates (because the termination condition is satisfied, or due to a breakpoint),
the simulation state transitions to the paused state from any of the other states. Detect-
ing termination is encoded in the simulation flow orthogonal component, discussed
below. Based on the simulation state, the behaviour of the simulation flow changes.

The simulation flow orthogonal component determines the flow of the simulation
steps, and explicitly encodes the invocation order of the non-modal functions. This is
an explicit representation of the control flow that was implemented in the while-loop in
the coded implementation. The orthogonal component consists of two main components:
checking termination and do simulation. In the checking termination
state, the simulator checks whether or not simulation should continue. It has self-transitions
to manage god events (manual state changes), breakpoint detection, and checking whether
the end condition was satisfied. By defining these events to only be processed (using
transitions) in the checking termination state, we ensure god events are only
possible when a simulation “big step” is currently not executing. Breakpoints are de-
tected here because they need to immediately pause the simulation. If the detection
were performed in a different component, the detection result would have to be com-
municated to the simulation flow component, which might react late and already
be executing the next big step. To check whether the next simulation step can be exe-
cuted, the checking termination inspects the state of the orthogonal component
simulation state, and, if realtime simulation is selected, also checks whether the
next simulation step can already be performed, or if the simulation algorithm needs to
wait. In case we should wait for the next simulation step, the waiting state is entered.
Otherwise, the do simulation state is entered. If the simulation is executing in real
time and the delay has not passed, the simulator has to wait. The control transitions to the
waiting state, and a transition is scheduled to fire after the delay has passed. But, pausing
needs to be possible while waiting. So, a transition is added which lets the control go back
to the check termination state when the user requests a pause. In any other cases,
the next simulation step can be executed. The do simulation composite state traverses
through seven stages (encoded as states), each responsible for a part of the simulation
algorithm. Linking back to the original code implementation, the check termination
state is the condition of the while-loop, whereas do simulation is the body of the loop.
If the simulation is not paused, the phases are executed without any communication to the
user. When the simulation is paused, however, no automatic transition takes place. The
user can then manually step through the simulation phases using the “small step” opera-
tion. After every small step, relevant information is sent to the user to be displayed in a
debugging interface. The first small step is requested when the simulation flow is in
checking termination. In that case, there are two possibilities: either the simulation
is paused, or it has terminated. To detect these cases, a checking small step state
was created, to which the system transitions when the first small step is requested. Only if
the end condition is not satisfied and no breakpoints trigger is the first phase executed. At
the end of the do simulation state, there are three possibilities, each with a different

98

5.3. PARALLEL DEVS

Figure 5.13: The debugging toolbar for Parallel DEVS.

response to the user. If simulation is running in realtime or a big step was being executed,
all information is passed on to the user. Should simulation be done using a small step, only
a part of the information needs to be sent, as all other information has already been sent
during the previous steps. If simulation is running as fast as possible, no information is sent
to the user, as it would only slow down simulation.

Six additional orthogonal components are modelled:

• The reset monitor listens for user requests to reset the simulation, and allows it
when the simulation is paused.

• The breakpoint manager can add, toggle, and delete breakpoints, as well as
list all currently defined breakpoints.

• The injection monitor listens for user requests to inject an event on a port in
the model, and allows such injections if the simulation is paused.

• The interrupt monitor is used in real-time simulations for real-time interrupts
from the environment.

• The listeners monitor is used in real-time simulations for listening to events
on an output port.

• The tracer monitor can print the full textual trace of the simulation.

From this model, the code for the debugging-enhanced simulator can be generated using an
appropriate Statecharts compiler.

Summary We demonstrated in this subsection that the debugging operations described in
the previous subsection have been successfully added to the Parallel DEVS simulator. In the
next subsection, we couple the instrumented simulator to a debugging environment.

5.3.4 Debugging Environment

To support debugging, a toolbar was added to the runtime environment, shown in Figure 5.13.
By clicking on a button in this toolbar, a request is sent to the simulator, representing a
particular command. The simulator will perform the requested action, if allowed. As a
result, a reply is sent back to the debugging environment, which interprets the result and
modifies the runtime model accordingly. The toolbar supports ten operations, explained in
the following subsections.

99

CHAPTER 5. REPRESENTATIVE FORMALISMS

Simulate

Simulates the model as-fast-as-possible, until either the end condition evaluates to true,
one of the breakpoints triggers, or the user manually pauses the simulation. During as-
fast-as-possible simulation, state changes are not visualized, as this would significantly
slow down the simulation due to the overhead of visualization requests from the simulator
to AToMPM. Moreover, visually keeping track of state changes in as-fast-as-possible
simulation is difficult, and most likely not what this option is used for. It should rather be
used to quickly reach a breakpoint or the end of simulation.

Realtime Simulate

Simulates the model in real-time. This means that the scheduler will try to meet all real-time
deadlines, as specified in the time advance functions of the states in the atomic DEVS
models. The values returned by these functions are interpreted as seconds. It is possible to
pass a scale factor to real-time simulation. This floating point number specifies how much
faster (if the value is larger than 1) or slower (if the value is smaller than 1) the simulation
should be run. In other words, the scale factor specifies the linear relationship between
the wall clock time and the simulated time: if it is 1, they are equal, if it is 2, simulated
time advances twice as fast as wall clock time. During real-time simulation, the model’s
visualization is updated, meaning that the user can track the simulation process.

Pause

Pressing the pause button will result in a running (as-fast-as-possible or real-time) simulation
being paused as soon as possible. In as-fast-as-possible simulation, simulation is stopped
after the currently executing big step is finished. In real-time simulation, it is additionally
possible that the simulator is waiting until its next transition should be fired. The simulation
is then paused in this waiting phase. When the simulation is paused, the current state of the
model is visualized. Resuming is done by either stepping, as-fast-as-possible simulation, or
realtime simulation. Additionally, the scale factor can be changed when starting a realtime
simulation.

Big Step

When the simulation is paused, the user can choose to continue the simulation by stepping.
A big step computes output functions, the internal, external, and confluent transitions, and
schedules the next internal transition function. The simulation state at the end of the big
step is visualized in the simulation environment.

Small Step

A big step consists of six distinct phases. A small step allows to visualize these phases,
called small steps. We list below for each phase what happens, and how it is visualized.
The phases are shown in Figure 5.14.

100

5.3. PARALLEL DEVS

p 1.9

p_in

p_outprocessing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

c inf

p_in
waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

(a) Finding imminent components.
p 1.9

p_in

p_outprocessing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

c inf

p_in
waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

Job

(b) Generate their output.
p 1.9

p_in

p_outprocessing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

c inf

p_in
waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

Job

(c) Output routed from output to input port.
p 1.9

p_in

p_outprocessing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

c inf

p_in
waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

(d) Mark transition function to execute.
p 1.9

p_in

p_outprocessing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

c inf

p_in
waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

(e) Execute applicable transition function.
p inf

p_in

p_outprocessing

return self.state.jobSize

return {'p_out': [self.state.job]}
idle

return INFINITY

return {"job": inputs['p_in'][0]}

c inf

p_in
waiting

return INFINITY

return {"nr_of_jobs": self.state.nr_of_jobs + 1}

(f) Set time of next internal transition.

Figure 5.14: Sequence of small steps, forming a single big step.

101

CHAPTER 5. REPRESENTATIVE FORMALISMS

1. Computing all imminent components (those DEVS models whose internal transitions
are scheduled to execute). The imminent components are highlighted in blue.

2. Executing output functions for each imminent component, which results in events
being put on their output ports. To visualize this, an event is instantiated on the
position of the output port.

3. Routing events from output ports to input ports, while executing the transfer function.
Visually, the event instance is moved to the position of the input port.

4. Deciding which models will execute their external (or, in the case it is an imminent
component, confluent) transition function as a result of events on their input ports.
Atomic DEVS models that will execute their external transition function are coloured
red, those that will execute their confluent transition function are coloured purple.

5. Executing, in parallel, all enabled internal, external, and confluent transition functions.
The resulting state is highlighted in green, and the new values of its instance variables
are displayed.

6. Computing, for each atomic DEVS model, the time at which its internal transition
function is scheduled (which is specified in its time advance function). This value is
displayed next to a clock icon on top of each atomic DEVS model.

Reset

Resets the model and the simulation to their initial state. The initial state is visual-
ized.

Show Trace

During simulation, a textual trace is generated. By clicking this button, the trace will be
displayed in the debugging environment.

Insert God Event

A “god event” allows to manually change the value of a state variable. With this function-
ality, the environment allows to (visually) inspect and modify the internal state of DEVS
models during a debugging session.

Inject Events

Events can be injected when the simulation is paused by instantiating an event and connect-
ing it to the port at which the event should be injected. Optionally, the user can specify
the simulation time at which the event should be injected. By default, this is “now” (i.e.,
the current simulation time). Events are not injected until this button is clicked. Once
simulation is resumed, injected events are removed from the visual model. Once the time
for their injection is reached, they will reappear on the appropriate port.

102

5.3. PARALLEL DEVS

Figure 5.15: The debugging environment for Parallel DEVS.

Breakpoints

We offer two ways of defining a breakpoint, which pauses the simulation automatically
when the specified condition is fulfilled. A global breakpoint models such a condition. The
simulation breaks whenever the condition is satisfied. A local breakpoint also models a
state condition, but is additionally connected to a state. The breakpoint will only trigger
when both the condition is satisfied and the simulation enters the state the breakpoint is
connected to. This is comparable to breakpoints in code debugging that are associated to a
specific line of code. The user can configure whether the breakpoint should be automatically
disabled after triggering.

The debugging environment is shown in Figure 5.15. A breakpoint was triggered, repre-
sented by the black circle highlighted in blue. One of the components is about to execute
its internal transition function (the result of a small step). The model is flattened to show
its complete structure and the current state is visualized by highlighting, for each compo-
nent, the discrete state the component is in. The full textual state trace up to that point in
simulation is shown in the console.

Summary

This section demonstrates how debugging support can be implemented for Parallel DEVS.
The language exhibits the following semantic features of the feature diagram presented in
Figure 4.2:

• It implements discrete-event semantics.

• It is deterministic.

• It has static structure.

103

CHAPTER 5. REPRESENTATIVE FORMALISMS

OrthogonalComponent

+ name : string = OC_

State

+ name : string = S_

+ entryAction : code

+ exitAction : code

+ isStart : boolean

CompositeState BasicState
c
o
n
t
a
in

*

*

transition

*

*

containOC

**

HistoryState

+ name : string = H

+ type : ENUM(deep, shallow) = shallow

in
c
lu
d
e
s
*

*

*

transition

*

ocContain

* *

Port

+ name : string = P_

+ type : ENUM(input, output)

Figure 5.16: The metamodel for the Statecharts language.

The implementation of discrete-event semantics, as well as its decomposition in nested
blocks, are the most prominent features of this formalism. In this section, we have
demonstrated that our approach can support debugging for languages exhibiting these
features.

5.4 Statecharts

Statecharts is used throughout this thesis to model the timed, reactive, autonomous
behaviour of (debugging-enhanced) simulation kernels. It is a causal, timed (discrete-event),
static-structure, deterministic formalism.

5.4.1 Syntax and Semantics

The metamodel for Statecharts is shown in Figure 5.16. A Statecharts model consists of
the set of the system’s discrete states, and transitions between those states that model the
dynamics of the system.

A state has the following attributes:

• A unique name within its enclosing scope.

• An optional entry action that is executed when the state is entered.

• An optional exit action that is executed when the state is exited.

• A boolean value isStart to denote whether the state is the default state within its
enclosing scope.

States can be composed hierarchically in composite states as well as orthogonally in
parallel regions. Within each composite state, exactly one state is the default state. When

104

5.4. STATECHARTS

the composite state is entered, its default state is entered as well (except when a history
state is present in the composite state, see below). A parallel region is composed of multiple
composite states: upon entering the orthogonal region, all its child states are entered as
well. History states are used to remember the active child state of a composite state. When
the composite state is re-entered, the state that was originally active is restored. History
states can be shallow, remembering only the direct child of its parent state that was active,
or they can be deep, in which case they remember all active descendant states.

Transitions between states model the dynamics of the system. A transition is triggered by
an external event (coming from the environment), an internal event that was raised by an
orthogonal component, a timeout, or it is spontaneous. Events dictate the passing of time
in Statecharts: the clock is synchronized either with the timeout event, or with the time
at which an external interrupt arrives. An optional guard specifies an additional runtime
condition that must be satisfied in order for the transition to be enabled. An optional action
is executed when the transition is executed. When a transition is executed, its source state
(and its descendants) is (are) exited, and its target state (and its descendants) is (are) entered.
An algorithm determines the least common ancestor of the source and target states, and
also exits any states up to (but excluding) the least common ancestor, and enters any states
down from the least common ancestor to the target state.

As part of a transition’s execution, or when entering or exiting a state, an action can be
executed. An action is specified in an action language with imperative constructs for
modifying runtime variables (this language can be similar to the action language for which
a debugger was presented before, refer back to Section 5.1). Actions can also raise an
event. The scope of the raised event is either local, in which case it can trigger transitions
in components orthogonal to the component in which the event was raised, or the event can
be raised on an output port, in which it can be “sensed” by the environment. The interface
with the environment is specified using a set of named Ports. A port can either be used to
receive events from the environment (input ports) or send events to the environment (output
ports).

The behaviour of Statecharts models is summarized in Figure 5.17. The input-output
segments are similar to those of DEVS: there is a set of possible inputs X, a set of possible
outputs Y and a state set S. The state of the system evolves over time according to its
autonomous behaviour and the events it receives from the environment. One possible
state evolution is plotted: some state changes occur when an event is received from the
environment, others occur autonomously (after a timeout). Output to the environment is
optionally generated. A possible model, capturing all possible state evolutions of such a
system, is shown in Figure 5.17b. The model has one input port in and one output port
out. Three top-level states are modelled: s1, s2 (the default state), and s3. s2 has three
substates W (the default state), U , and D. We distinguish three different types of trigger
for transitions: an external event (triggering, for example, the transition from W to U), an
internal event (triggering, for example, the transition from s3 to s2, in this case a timeout)
and a spontaneous transition with a condition (triggering, for example, the transition from
s3 to s1). Actions can be modelled, but are optional.

The simulation algorithm for Statecharts is presented in Algorithm 5. Statecharts is a
“Big-Step Modelling Language” (BSML) [51]. Its semantics are controlled by a series of
big steps, which consist of smaller computation steps. The execution of a BSML model
is a sequence of big steps. Before a big step starts, and after a big step has executed, it

105

CHAPTER 5. REPRESENTATIVE FORMALISMS

ALGORITHM 5: The Statecharts simulator’s “main loop”.
Input: Model to simulate (model)

1 time← 0;
2 state← initialize state(model);
3 while not end condition(time, state) do
4 δt ← time next(model, state);
5 if δt =∞ then
6 wait for input();
7 break;
8 end
9 decrease event time(state, delta t);

10 due← get due events(state);
11 for event in due do
12 next big step(event);
13 reset combo step();
14 reset small step();
15 while True do
16 next combo step();
17 candidates← get candidates(state);
18 if candidates then
19 next small step();
20 candidate← select candidate(candidates);
21 execute transition(candidate);
22 set small stepped();
23 set combo stepped();
24 end
25 if has combo stepped() then
26 set big stepped();
27 else
28 output events(state);
29 add internal events(state);
30 break;
31 end
32 end
33 end
34 time← time+ δt;
35 end

106

5.4. STATECHARTS

X

Y

time

time

time

S

x3

x2

x1

y4

y3

y2

y1

s2

s3

s1

(a) Input-output segments of a discrete-event
system modelled with Statecharts.

s2

W

U D

s1

in::x2 /
raise out::y3

[cond1()] /
raise out::y1

[con
d

1 ()] /
ra

ise
 ou

t::y
1

[con
d

2 ()]

s3

in
::key_

en
ter /

ra
ise

 ou
t::y

2

after(3
s)

in::x3 /
raise out::y4

in::x3 /
raise out::y4

in::x2 /
raise out::y3

statechart {inports: in; outports: out}

(b) Example Statecharts model, a possible
model of the behaviour described by the input-
output segments on the left.

Figure 5.17: The example model and its input-output segments trace.

can sense input from the environment, but during a big step, no new input to the model
can be provided. In Statecharts, a big step begins when an external event is received or a
timeout occurs. A big step consists of zero or more small steps. A small step consists of
exactly one execution of a transition. Small steps are grouped in combo steps: a combo step
executes small steps until no transition is enabled by the current event from the environment
or locally raised events in previous small steps. Combo steps are useful if events raised
by concurrent transitions (in small steps) can be visible throughout the combo step, or to
execute multiple spontaneous transitions.

The algorithm is implemented using the following functions:

• initialize state() initializes the time and the state of the simulation.

• end condition() returns True if the simulation’s end condition is satisfied. For State-
charts models, which often describe systems that run indefinitely, this function often
returns False.

• time next() returns the time at which the next event is scheduled: in case an external
event was received, that time is now, otherwise, it is the time at which the next
timeout occurs.

107

CHAPTER 5. REPRESENTATIVE FORMALISMS

• wait for input() blocks until input from the environment is received.

• decrease event time() decreases the “remaining time” of all running timers.

• get due events() returns the due events, which are either internally raised events,
events received from the environment, or timeouts.

• get candidates() returns the transitions that are triggered by the due event.

• select candidate() selects one transition from the set.

• next big step() starts a new big step.

• next combo step() starts a new combo step, which receives the events that were raised
in the previous combo step, and can trigger transitions in this combo step.

• next small step() starts a new small step.

• reset combo step() resets the combo step state, clearing any internally events.

• reset small step() resets the small step state, clearing any internally raised events.

• set small stepped() sets the stepped flag for the currently executing small step to
True.

• set combo stepped() sets the stepped flag for the currently executing combo step to
True.

• set big stepped() sets the stepped flag for the currently executing big step to True.

• has combo stepped() returns the value of the stepped flag for the currently executing
combo step.

The runtime metamodel for the Statecharts language extends the design metamodel’s
State class with an isCurrent attribute, which signifies the state is active. An active state is
visualized by highlighting it in green.

5.4.2 Debugging Operations

We define the following debugging operations for debugging Statecharts models:

• [As-Fast-as-Possible Simulation] In this mode, the simulation runs as fast as the
underlying hardware can manage and the operating system will allow, until the end
condition is satisfied. It is comparable to running program code, which is always run
as fast as possible. At the end, the user can inspect the runtime state in which the
system ended.

• [Real-Time Simulation] In this mode, simulated time is synchronized with the wall-
clock time. For debugging purposes, a scale factor can be applied to speed up or
slow down simulation, while retaining the linear relation between simulated time
and wall-clock time. A scale factor of 1 corresponds to real-time, while a scale factor
smaller or greater than 1 slows down or speeds up simulation proportionally. State is
observed throughout real-time simulation after each iteration of the simulation loop.

108

5.4. STATECHARTS

• [Pause] Pausing a simulation allows to inspect the current state of the system and
enables other debugging operations, such as stepping and state modifications.

• [Time Step, Big Step, Combo Step, and Small Step] To transpose the notion of
stepping, we turn to the simulation algorithm shown in Algorithm 5. In the case of
Statecharts, we implement four types of steps:

– A time step executes one step of the system which changes its simulated time
value and consists of a number of big steps.

– A big step executes one step of the system for an external event (since events
can arrive at the same time, multiple big steps can occur at the same time instant,
forming a time step).

– A combo step executes transitions until none are enabled.

– A small step executes one enabled transition.

• [God Event] A “god event” allows a user to change the value of a state variable of
the Statecharts model’s memory.

• [Event Injection] A user can inject an event on one of the input ports of the State-
charts model at the “current” time.

• [Breakpoints] A user can specify a breakpoint in the form of a condition on the
execution state of the Statecharts simulation (including simulated time and current
(total) state information). In contrast to code debugging, we do not allow the sim-
ulation to break on a specific line of code. Instead, the simulation can be paused
automatically when a condition on the simulation state is satisfied. We allow the user
to scope the breakpoint, by only evaluating the breakpoint when a specified state is
entered. A breakpoint is a function that returns True when the simulation should
pause, False in all other cases.

5.4.3 De- and Reconstructed Simulator

Figure 5.18 presents the Statecharts model of the debugging-enhanced Statecharts
simulator. Our goal was to support the operations presented in the previous subsection,
while retaining the original execution semantics implemented by the simulator. This means
we had to introduce points at which the algorithm can be interrupted (through stepping,
breakpoints, etc.), as well as provide information on the state to the user of the debugger.
Important in this formalism is the decomposition of instance models into hierarchical
states and orthogonal regions, that exchange information through events. This requires
the simulator to be broken up into multiple nested loops for ever-smaller “steps” that need
to be supported. The Statecharts model consists of two main orthogonal components:
simulation state and simulation flow.

The simulation state determines in what execution mode the simulator is. It
describes how the user can influence the control flow of the simulation. Two main
modes are defined: paused and running. Within running, six substates are defined:
continuous, realtime, time step, big step, combo step, and small step.

109

CHAPTER 5. REPRESENTATIVE FORMALISMS

m
a
in

in
it
ia

li
z
e

e
n
te

r:

ti
m

e
 =

 0
;

s
ta

te
 =

 i
n
it
ia

li
z
e
_
s
ta

te
(m

o
d
e
l)

c
h
e
c
k
in

g
_
te

rm
in

a
ti
o
n

[e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

 /

 t

e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

[I
N

(r
e
a
lt
im

e
)

a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 d

e
la

y
()

 >
 0

]

[b
p
 =

 b
re

a
k
p
o
in

t(
)]

 /
 o

u
t:

:b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d
(b

p
),

 t
e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

w
a
it
in

g
a
ft

e
r(

d
e
la

y
()

)

[I
N

(p
a
u
s
e
d
)]

in::god_event [IN(paused)] /

 res = do_god_event(params)

 out::god_event_res(res)

c
h

e
c
k
_

te
r
m

in
a
ti

o
n

[I
N

(r
e
a
lt
im

e
)

 a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)

a
n
d
 d

e
la

y
()

 <
=

 0
]

[I
N

(r
u
n
n
in

g
)

a
n
d
 n

o
t

IN
(r

e
a
lt
im

e
)

 a
n
d
 n

o
t

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

li
s
te

n
in

g

in
::

a
d
d
_
li
s
te

n
e
r

/

a
d
d
_
e
v
e
n
t_

li
s
te

n
e
r(

p
a
ra

m
s
)

li
s
te
n
e
rs
_
m
o
n
it
o
r

s
ta

te
c
h

a
r
t

{
in

p
o
rt

s
:

in
;

o
u
tp

o
rt

s
:

o
u
t}

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

in
::

d
e
l_

b
re

a
k
p
o
in

t
/

re

s
 =

 d
e
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:d
e
l_

b
p
_
re

s
u
lt
(r

e
s
)

b
re
a
k
p
o
in
t_
m
a
n
a
g
e
r

in
::

to
g
g
le

_
b
re

a
k
p
o
in

t
/

re

s
 =

 t
g
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:t
g
l_

b
p
_
re

s
u
lt
(r

e
s
)

in
::

a
d
d
_
b
re

a
k
p
o
in

t
/

re

s
 =

 a
d
d
_
b
p
(p

a
ra

m
s
)

o
u
t:

:a
d
d
_
b
p
_
re

s
u
lt
(r

e
s
)

out::initialized(get_state())

p
a
u
s
e
d

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p

in
::

c
o
n
ti
n
u
o
u
s

ti
m

e
_
s
te

p
_
d
o
n
e
 /

 o
u
t:

:t
im

e
_
s
te

p
_
d
o
n
e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

in
::

ti
m

e
_
s
te

p

re
a
lt
im

e
in

::
re

a
lt
im

e

ru
n
n
in

g

s
m

a
ll
_
s
te

p

c
o
m

b
o
_
s
te

p

ti
m

e
_
s
te

p

in
::

b
ig

_
s
te

p

c
o
m

b
o
_
s
te

p
_
d
o
n
e
 /

 o
u
t:

:c
o
m

b
o
_
s
te

p
_
d
o
n
e

in
::

c
o
m

b
o
_
s
te

p

in
::

s
m

a
ll
_
s
te

p

b
ig

_
s
te

p
_
d
o
n
e
 /

 o
u
t:

:b
ig

_
s
te

p
_
d
o
n
e

s
m

a
ll
_
s
te

p
_
d
o
n
e
 /

 o
u
t:

:s
m

a
ll
_
s
te

p
_
d
o
n
ec
h
e
c
k
in

g

e
x
e
c
u
te

T
ra

n
s
it
io

n

[h
a
s
C
a
n
d
id

a
te

s
()

 a
n
d
 I

N
(r

u
n
n
in

g
)]

s
m

a
ll
_

s
te

p

/
e
x
e
c
u
te

T
ra

n
s
it
io

n
,

s
m

a
ll
_
s
te

p
_
d
o
n
e

c
o

m
b

o
_

s
te

p

c
h
e
c
k
in

g

[not hasCandidates() and comboStepped()] /

 combo_step_done

[I
N

(r
u
n
n
in

g
)]

b
ig

_
s
te

p

c
h
e
c
k
in

g
[I

N
(r

u
n
n
in

g
)]

[not hasCandidates() and bigStepped()] /

 big_step_done

ti
m

e
_

s
te

p

c
h
e
c
k
in

g
[I

N
(r

u
n
n
in

g
)

a
n
d
 e

v
e
n
t_

d
u
e
()

]

d
o

_
s
im

u
la

ti
o

n

c
h
e
c
k
in

g
[I

N
(t

im
e
_
s
te

p
)

/
o
u
t:

:d
u
e
_
e
v
e
n
ts

(g
e
t_

d
u
e
_
e
v
e
n
ts

()
]

[n
o
t

IN
(t

im
e
_
s
te

p
)

[n
o
t

e
v
e
n
t_

d
u
e
()

]
/

ti
m

e
_
s
te

p
_
d
o
n
e

s
im
u
la
ti
o
n
_
fl
o
w

s
im
u
la
ti
o
n
_
s
ta
te

in
je

c
t

in
::

in
je

c
t

/

re

s
 =

 i
n
je

c
t(

p
a
ra

m
s
)

o
u
t:

:i
n
je

c
ti
o
n
_
re

s
u
lt
(r

e
s
)

in
je
c
ti
o
n
_
m
o
n
it
o
r

re
s
e
t

in
::

re
s
e
t

[I
N

(p
a
u
s
e
d
)]

re
s
e
t_
m
o
n
it
o
r

Figure 5.18: The de- and reconstructed Statecharts simulator.

110

5.4. STATECHARTS

The simulator starts in the paused state, and can only transition to one of the other states
when a user event is received. Pausing is only possible when running the simulation in
continuous mode or in realtime mode. The debugging-enhanced simulator does not allow
pausing the simulation when computing a big step or small step, as that could leave the
simulator in a (globally) inconsistent state. Rather, the simulator pauses automatically after
every time step when in time step mode, after every big step when in big step mode, after
every combo step when in combo step mode, and after every small step when in small
step mode. When the simulation terminates (because the termination condition is satisfied,
or due to a breakpoint), the simulation state transitions to the paused state from any of
the other states. Detecting termination is encoded in the simulation flow orthogonal
component, discussed below. Based on the simulation state, the behaviour of the simulation
flow will change.

The simulation flow orthogonal component determines the flow of the simulation
steps, and explicitly encodes the invocation order of the non-modal functions. This is
an explicit representation of the control flow that was implemented in the while-loops
in the coded implementation. The orthogonal component consists of two main compo-
nents: check termination and do simulation. In the check termination
state, the simulator checks whether or not simulation should continue. It has self-transitions
to manage god events (manual state changes), breakpoint detection, and checking whether
the end condition was satisfied. By defining these events to only be processed (using
transitions) in the checking termination state, we ensure god events are only pos-
sible when a simulation “time step” is currently not executing. Breakpoints are de-
tected here because they need to immediately pause the simulation. If the detection
were performed in a different component, the detection result would have to be com-
municated to the simulation flow component, which might react late and already
be executing the next time step. To check whether the next simulation step can be ex-
ecuted, the checking termination inspects the state of the orthogonal component
simulation state, and, if realtime simulation is selected, also checks whether the
next simulation step can already be performed, or if the simulation algorithm needs to
wait. In case we should wait for the next simulation step, the waiting state is entered.
Otherwise, the do simulation state is entered. If the simulation is executing in real
time and the delay has not passed, the simulator has to wait. The control transitions to
the waiting state, and a transition is scheduled to fire after the delay has passed. But,
pausing needs to be possible while waiting. So, a transition is added which lets the control
go back to the check termination state when the user requests a pause. In any other
cases, the next simulation step can be executed. The do simulation composite state
contains a hierarchy of states, one for each type of step. Control starts in the checking
state, which checks whether a time step was requested. If it was, it sends all currently
due events as debug information. Otherwise, it transitions normally to the time step
state. In the time step state, the algorithm checks whether the simulation is still running
and an event is due. If no event is due, it transitions back to the check termination
state, since the time step ended. If an event is due, the next big step is executed. The
big step state simply transitions to the combo step state if the simulation is running.
The combo step state simply transitions to the small step state if the simulation
is running. The small step state checks whether the simulation is running and there
are candidate transformations left. If there are, it executes one of them and generates
the small step done event. If there are no more candidates left, it transitions back to

111

CHAPTER 5. REPRESENTATIVE FORMALISMS

Figure 5.19: The debugging toolbar for Statecharts.

the combo step state if a combo step was executed, and to the big step state if a
big step was executed. These states implement the nested while-loops of the original
algorithm.

Four more orthogonal regions implement several debugging functions:

• The reset monitor listens for user requests to reset the simulation, and allows it
when the simulation is paused.

• The breakpoint manager can add, toggle, and delete breakpoints, as well as
list all currently defined breakpoints.

• The injection monitor listens for user requests to inject an event on an input
port of the model.

• The listeners monitor is used in real-time simulations for listening to events
on an output port.

From this model, the code for the debugging-enhanced simulator can be generated using an
appropriate Statecharts compiler.

Summary We demonstrated in this subsection that the debugging operations described in
the previous subsection have been successfully added to the Statecharts simulator. In the
next subsection, we couple the instrumented simulator to a debugging environment.

5.4.4 Debugging Environment

To support debugging, a toolbar was added to the runtime environment, shown in Figure 5.19.
By clicking on a button in this toolbar, a request is sent to the simulator, representing a
particular command. The simulator will perform the requested action, if allowed. As a
result, a reply is sent back to the debugging environment, which interprets the result and
modifies the runtime model accordingly. The toolbar supports ten operations, explained in
the following subsections.

Simulate

Simulates the model as-fast-as-possible, until either the end condition is satisfied, one of the
breakpoints triggers, or the user manually pauses the simulation. During as-fast-as-possible
simulation, state changes are not visualized, as this would significantly slow down the
simulation due to the overhead of visualization requests from the simulator to AToMPM.
Moreover, visually keeping track of state changes in as-fast-as-possible simulation is

112

5.4. STATECHARTS

difficult, and most likely not what this option is used for. It should rather be used to quickly
reach a breakpoint or the end of simulation.

Realtime Simulate

Simulates the model in real-time. This means that the scheduler will try to meet all real-time
deadlines, as specified in the timed transitions of the Statecharts model. It is possible to
pass a scale factor to real-time simulation. This floating point number specifies how much
faster (if the value is larger than 1) or slower (if the value is smaller than 1) the simulation
should be run. In other words, the scale factor specifies the linear relationship between
the wall clock time and the simulated time: if it is 1, they are equal, if it is 2, simulated
time advances twice as fast as wall clock time. During real-time simulation, the model’s
visualization is updated, meaning that the user can track the simulation process.

Pause

Pressing the pause button will result in a running (as-fast-as-possible or real-time) simulation
being paused as soon as possible. In as-fast-as-possible simulation, simulation is stopped
after the currently executing big step is finished. In real-time simulation, it is additionally
possible that the simulator is waiting until its next transition should be fired. The simulation
is then paused in this waiting phase. When the simulation is paused, the current state of the
model is visualized. Resuming is done by either stepping, as-fast-as-possible simulation, or
realtime simulation. Additionally, the scale factor can be changed when starting a realtime
simulation.

Time Step, Big Step, Combo Step, Small Step

When the simulation is paused, the user can choose to continue the simulation by stepping.
The time step, big step, combo step, and small step buttons execute one step of the specified
type. When the step has completed, the new state of the system is visualized.

Reset

Resets the model and the simulation to their initial state. The initial state is visual-
ized.

Inject Events

Events can be injected on an input port. The event has two parameters: a name and a list of
parameter values that can be received by the transition triggered by the event.

Insert God Event

A “god event” allows to manually change the value of a state variable.

113

CHAPTER 5. REPRESENTATIVE FORMALISMS

Figure 5.20: The debugging environment for the Statecharts formalism.

Breakpoints

We offer two ways of defining a breakpoint, which pauses the simulation automatically
when the specified condition is fulfilled. A global breakpoint models such a condition. The
simulation breaks whenever the condition is satisfied. A local breakpoint also models a
state condition, but is additionally connected to a state. The breakpoint will only trigger
when both the condition is satisfied and the simulation enters the state the breakpoint is
connected to. This is comparable to breakpoints in code debugging that are associated to a
specific line of code. The user can configure whether the breakpoint should be automatically
disabled after triggering.

Figure 5.20 shows the debugging environment for Statecharts. It displays the runtime
state of the model, in this case the behavioural model of a digital watch. The current state is
visualized by highlighting the active state(s). The current simulated time is shown as well.
A (global) breakpoint was triggered, and is highlighted in blue.

Debugging the Debugger Since we create a debugger for Statecharts, and its behaviour
is defined as a Statecharts model, a particular application of this debugger would be to
debug itself. We need three components for this to work, and place them in the architecture

114

5.5. PETRINETS

shown in Figure 4.13:

1. The debugging enhanced simulator for the Statecharts language, shown in Fig-
ure 5.18. This simulator is then instructed to simulate its own definition (a State-
charts model).

2. The visual debugging environment for Statecharts, with the visual representation
(runtime model) of the model loaded.

3. The visual debugging environment, loaded a second time, but now acting as a model-
specific visualization UI. In that environment, we can load a different Statecharts
model to debug. The state of the debugger will be appropriately update in the
Debugging UI component.

In this case, we have a nested simulation (and debugging session) of Statecharts models:
the debugging UI (as model-specific visualization UI) loads a Statecharts model to be
debugged, but itself is being debugged by a second debugging UI (and simulator) for the
same formalism. This is not an issue, as long as proper translation functions are defined to
“unpack” the events coming from the simulator. In the debugging UI, state updates can be
displayed as they are received from the simulator, but in the model-specific visualization UI,
the state information inside that event needs to be unpacked in order to visualize the state
of the model that is being debugged there. Incidentally, this scales to arbitrary numbers of
“debuggers inside of debuggers”, if such use cases would exist.

Summary

This section demonstrates how debugging support can be implemented for Statecharts.
The language exhibits the following semantic features of the feature diagram presented in
Figure 4.2:

• It implements discrete-event semantics.

• It allows for environment interaction (through input/output events).

• It is deterministic.

• It has static structure.

The implementation of discrete-event semantics, its decomposition in nested states, as well
as its interaction with the environment, are the most prominent features of this formalism. In
this section, we have demonstrated that our approach can support debugging for languages
exhibiting these features.

5.5 Petrinets

Petrinets is a formalism that allows to express non-deterministic behaviour natively. From
a debugging point of view, it is an interesting formalism to create a debugger for, since
its execution semantics consider all possible execution paths of the model, not just one,

115

CHAPTER 5. REPRESENTATIVE FORMALISMS

Place

- name: String

- tokens: Integer

Transition

- name: String

P2T

T2P

(a) The design meta-
model for the Petrinets
formalism.

3

free

0

producing

start producing

end producing

0

produced

3

waiting

0

consuming

start consuming

end consuming

3

max items

(b) Example Petrinets model for a producer-consumer system.

Figure 5.21: The language definition and example model for the Petrinets language.

as is the case for the other formalisms presented in this chapter. It is a causal, untimed,
static-structure, non-deterministic formalism.

5.5.1 Syntax and Semantics

The syntax of the design language of Petrinets is shown as a metamodel in Figure 5.21a.
Petrinets models consist of:

• a number of named places, that can contain tokens (an integer value);

• a number of named transitions;

• a number of directed edges connecting places to transitions and transitions to places
that have a weight (an integer value).

An example model is shown in Figure 5.21b. It models a simple producer-consumer system,
where products are produced and consumed in a non-deterministic order.

ALGORITHM 6: The Petrinets analyser’s “main loop”.
Input: Model to simulate (model)

1 state← initialize state(model);
2 while not end condition(model, state) do
3 unexplored markings← find unexplored markings(model, state);
4 chosen marking ← choose marking(unexplored markings);
5 enabled transitions← find enabled transitions(model, state);
6 chosen transition← choose transition(enabled transitions);
7 new marking ← fire transition(model, state, chosen transition, chosen marking);
8 state← add marking to state(state, new marking, chosen transition)

9 end

The semantics of a Petrinets model are defined by a reachability graph, encoding all its
possible execution paths. This reachability graph, which consists of a set of reachable

116

5.5. PETRINETS

markings, is produced by an analyser. In such a reachability graph, a marking contains a
number of tokens for each place. These markings are connected: a link denotes that the
destination marking can be reached from the source marking when the transition identified
by the link is triggered. The pseudocode of a Petrinets analyser is shown in Algorithm 6.
It starts by initializing the state of the reachability graph with the initial marking of the
Petrinets model. Then, it continuously adds markings to the reachability graph until no
more markings can be added (i.e., all paths in the semantics of the Petrinets model have
been explored). To add a marking to the reachability graph, the algorithm goes through a
number of phases:

1. The reachability graph is queried for the set of unexplored markings. These markings
can potentially generate a new marking by executing one of the enabled transitions
that are enabled when that marking is loaded into the model.

2. One of these markings is chosen randomly.

3. The model is queried to see which transitions are enabled if the marking is loaded
into the model. A transition can be triggered when all of its input places contains at
least the same amount of tokens as the weight of the links connecting the places to
the transition. Transitions that are already identified by an outgoing link from the
loaded marking are no longer considered, as their firing would result in an identical
marking.

4. One of these transitions is chosen randomly.

5. A new marking is created by firing the transition. When the transition fires, its
subtracts the number of tokens from all its input places equal to the weight of the
link that connects them to the transition, and adds a number of tokens in all its output
places equal to the weight of the links that connects the transition to these places
(resulting in a new reachable marking).

6. The new marking is added to the reachability graph and connected to the chosen
marking.

The description of this analyser is naive, since the semantics of a Petrinets model are
defined as its full reachability graph. With non-trivial models, this analyser might have
to run for unacceptably long amounts of time, or not finish its analysis at all, since the
reachability graph might be infinite. More advanced model checkers, such as SPIN [84], do
not consider the full state space, but instead analyse it with regards to a given property the
user wants to check. This allows the tool to direct the search for a state where the property is
not satisfied, thus making the analysis much more efficient. In the remainder of this section,
we assume a naive implementation of a full state space generator, to demonstrate how
non-deterministic formalisms can be debugged. In future work, the debugging operations
that are described here can be integrated in more advanced model checkers.

5.5.2 Debugging Operations

We define the following debugging operations:

117

CHAPTER 5. REPRESENTATIVE FORMALISMS

• [Continuous Operation] executes the reachability graph construction algorithm
until the full reachability graph has been generated (this is equivalent to running the
analyser without debugging support).

• [Step] executes one analysis “step”: it generates one additional reachable node in the
reachability graph.

• [Manual] allows the user to fully control the analyser through the visual interface.
The debugging-enhanced analyser will expose these phases in the algorithm and
allow the user to control them:

1. The analyser communicates all markings that are “unexplored”. An unexplored
marking has at least one enabled, non-explored transition. The user chooses
one of these markings by communicating its identifier.

2. When the user has chosen one of the unexplored markings, the marking is loaded
into the Petrinets model and the analyser communicates which transitions are
enabled (and unexplored) in that particular marking. The user chooses one of
these transitions by communicating its identifier.

3. The analyser executes the transition and updates the reachability graph.

This mode is most interesting to go (back) to a (partially) unexplored node in the
reachability graph and continue its construction from that point interactively, explor-
ing a particular branch in the execution semantics of the system.

• [Breakpoints] allow the user to automatically pause the analysis when a certain
condition on the state (i.e., the structure of the reachability graph) is reached. From
there, the user can use one of the above operations to resume the construction of the
reachability graph.

5.5.3 De- and Reconstructed Simulator

The de- and reconstructed analyser, implementing the debugging operations, is presented in
Figure 5.22. Our goal was to support the operations presented in the previous subsection,
while retaining the original execution semantics implemented by the simulator. This
means we had to introduce points at which the algorithm can be interrupted (through
stepping, breakpoints, etc.), as well as provide information on the state to the user of the
debugger. An important feature to support with this formalism was the manual guiding of
the reachability graph construction: the user needs to be able to choose, while debugging,
in which direction the graph is constructed. It consists of two main orthogonal components:
simulation state and simulation flow.

The simulation state determines in what execution mode the simulator is. It de-
scribes how the user can influence the control flow of the simulation. Two top-level
modes are defined: paused and running. The running state has three substates:
continuous, manual, and big step. The simulator starts in the paused state, and
can only transition to one of the other states when a user event is received. When the simu-
lation terminates (because the termination condition is satisfied, or due to a breakpoint), the

118

5.5. PETRINETS

m
a
in

s
im
u
la
ti
o
n
_
fl
o
w

d
o

_
s
im

u
la

ti
o

n

fo
u
n
d
_
u
n
e
x
p
lo

re
d
_
m

a
rk

in
g
s

in
it
ia

li
z
e

e
n
te

r:

ti
m

e
 =

 0
;

s
ta

te
 =

 i
n
it
ia

li
z
e
_
s
ta

te
(m

o
d
e
l)

c
h
e
c
k
_
te

rm
in

a
ti
o
n

[e
n
d
_
c
o
n
d
it
io

n
(t

im
e
,

s
ta

te
)

a
n
d
 n

o
t

b
re

a
k
p
o
in

t(
)]

 /

 t

e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

[b
p
 =

 b
re

a
k
p
o
in

t(
)]

 /

 o
u
t:

:b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d
(b

p
),

 t
e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

in
::

d
e
l_

b
re

a
k
p
o
in

t
/

re

s
 =

 d
e
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:d
e
l_

b
p
_
re

s
u
lt
(r

e
s
)

b
re
a
k
p
o
in
t_
m
a
n
a
g
e
r

p
a
u
s
e
d

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p

s
im
u
la
ti
o
n
_
s
ta
te

in
::

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p
_
d
o
n
e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

in
::

b
ig

_
s
te

p

s
ta

te
c
h

a
r
t

{
in

p
o
rt

s
:

in
;

o
u
tp

o
rt

s
:

o
u
t}

in
::

to
g
g
le

_
b
re

a
k
p
o
in

t
/

re

s
 =

 t
g
l_

b
p
(p

a
ra

m
s
)

o
u
t:

:t
g
l_

b
p
_
re

s
u
lt
(r

e
s
)

in
::

a
d
d
_
b
re

a
k
p
o
in

t
/

re

s
 =

 a
d
d
_
b
p
(p

a
ra

m
s
)

o
u
t:

:a
d
d
_
b
p
_
re

s
u
lt
(r

e
s
)

s
e
le

c
te

d
_
m

a
rk

in
g

fo
u
n
d
_
e
n
a
b
le

d
_
tr

a
n
s
it
io

n
s

s
e
le

c
te

d
_
tr

a
n
s
it
io

n

c
o
m

p
u
te

d
_
n
e
w

_
m

a
rk

in
g

c
h
e
c
k
in

g
_
m

a
n
u
a
l

[I
N

(m
a
n
u
a
l)

]
/

 u
m

 =
 f
in

d
_
u
n
e
x
p
lo

re
d
_
m

a
rk

in
g
s
(m

o
d
e
l,

 s

ta
te

),

 o
u
t:

:u
n
e
x
p
lo

re
d
_
m

a
rk

in
g
s
(u

m
)

m
a
n
u
a
l

in
::

m
a
n
u
a
l

ru
n
n
in

g

in
::

m
a
n
u
a
l_

d
o
n
e

[n
o
t

IN
(m

a
n
u
a
l)

]
/

 u
m

 =
 f
in

d
_
u
n
e
x
p
lo

re
d
_
m

a
rk

in
g
s
(m

o
d
e
l,

 s

ta
te

)

in
::

s
e
le

c
t_

m
a
rk

in
g
 [

IN
(m

a
n
u
a
l)

]
/

 s
m

 =
 g

e
t_

m
a
rk

in
g
(p

a
ra

m
s
)

[n
o
t

IN
(m

a
n
u
a
l)

]
/

 s
m

 =
 s

e
le

c
t_

m
a
rk

in
g
(u

m
)

[I
N

(m
a
n
u
a
l)

]
/

 e
t

=
 f
in

d
_
e
n
a
b
le

d
_
tr

a
n
s
it
io

n
s
(s

m
),

 o
u
t:

:e
n
a
b
le

d
_
tr

a
n
s
it
io

n
s
(e

t)

[n
o
t

IN
(m

a
n
u
a
l)

]
/

 e
t

=
 f
in

d
_
e
n
a
b
le

d
_
tr

a
n
s
it
io

n
s
(s

m
)

in
::

s
e
le

c
t_

tr
a
n
s
it
io

n
 [

IN
(m

a
n
u
a
l)

]
/

 t
 =

 g
e
t_

tr
a
n
s
it
io

n
(p

a
ra

m
s
)

[n
o
t

IN
(m

a
n
u
a
l)

]
/

 t
 =

 s
e
le

c
t_

tr
a
n
s
it
io

n
(e

t)

[I
N

(m
a
n
u
a
l)

]
/

 n
m

 =
 c

o
m

p
u
te

_
n
e
w

_
m

a
rk

in
g
(s

ta
te

,
t)

,

 o
u
t:

:n
e
w

_
m

a
rk

in
g
(n

m
)

[n
o
t

IN
(m

a
n
u
a
l)

]
/

 n
m

 =
 c

o
m

p
u
te

_
n
e
w

_
m

a
rk

in
g
(s

ta
te

,
t)

a
ft

e
r(

s
c
c
d
_
y
ie

ld
()

)
/

a
d
d
_
m

a
rk

in
g
_
to

_
s
ta

te
(n

m
),

 b
ig

_
s
te

p
_
d
o
n
e

out::initialized(get_state())

[I
N

(r
u
n
n
in

g
)]

Figure 5.22: The de- and reconstructed Petrinets analyser.

119

CHAPTER 5. REPRESENTATIVE FORMALISMS

simulation state transitions to the paused state from any of the other states. Detecting ter-
mination is encoded in the simulation flow orthogonal component, discussed below.
Based on the simulation state, the behaviour of the simulation flow changes.

The simulation flow orthogonal component determines the flow of the simulation
steps, and explicitly encodes the invocation order of the non-modal functions. This is
an explicit representation of the control flow that was implemented in the while-loop in
the coded implementation. The orthogonal component consists of two main components:
check termination and do simulation. In the check termination state,
the simulator checks whether or not simulation should continue. It has self-transitions
to manage breakpoint detection, and checking whether the end condition was satisfied.
Breakpoints are detected here because they need to immediately pause the simulation. If
the detection were performed in a different component, the detection result would have
to be communicated to the simulation flow component, which might react late and
already be executing the next big step. To check whether the next simulation step can
be executed, the check termination inspects the state of the orthogonal component
simulation state. If the running state is active, the next simulation step can be
executed. The do simulation composite state traverses through five stages (encoded
as states), each responsible for a part of the simulation algorithm. Linking back to the
original code implementation, the check termination state is the condition of the
while-loop, whereas do simulation is the body of the loop. If the simulation is not in
manual mode, the phases are executed without any communication to the user. When the
simulation is in manual mode, however, no automatic transition takes place. The user can
then manually step through the simulation phases using several operations:

1. The user receives all unexplored markings with the unexplored markings event.

2. The user chooses one unexplored marking and communicates that choice with the
select marking event.

3. The user receives all enabled transitions with the enabled transitions event.

4. The user chooses one enabled transition and communicates that choice with the
select transition event.

5. The user receives the newly created marking with the new marking event.

The breakpoint manager can add, toggle, and delete breakpoints, as well as list all
currently defined breakpoints.

Summary We demonstrated in this subsection that the debugging operations described
in the previous subsection have been successfully added to the Petrinets simulator. In the
next subsection, we couple the instrumented simulator to a debugging environment.

5.5.4 Debugging Environment

The visual modelling, analysis, and debugging interface is shown in Figure 5.23. At the
top, the modelling interface for Petrinets is shown with a loaded model that describes a
producer-consumer system (1). A toolbar allows to edit the model (2). Below, the (partial)

120

5.5. PETRINETS

Figure 5.23: The interface of the Petrinets debugger.

121

CHAPTER 5. REPRESENTATIVE FORMALISMS

reachability graph is shown (3). A toolbar allows the user to control the analysis using the
operations defined in the previous subsection (4). In the screenshot, the user is manually
controlling the analysis algorithm and has selected the bottom-most marking (highlighted
in yellow). In the Petrinets model, the marking is loaded in the places, and the enabled
transitions are highlighted in green. By clicking one of them, the transition is chosen to be
fired, and a new (up to now unexplored) marking is added to the reachability graph.

Summary

This section demonstrates how debugging support can be implemented for Petrinets. The
language exhibits the following semantic features of the feature diagram presented in
Figure 4.2:

• It is non-deterministic.

• It is untimed.

• It has static structure.

Its non-determinism is the most prominent feature of this formalism. In this section, we
have demonstrated that our approach can support debugging for languages exhibiting this
feature.

5.6 Dynamic-Structure DEVS

A number of formalisms have been proposed to model dynamic changes in the structure of
systems using discrete-event abstractions [11, 196]. Dynamic Structure DEVS was intro-
duced by Barros [10] as an extension of the DEVS formalism. Dynamic Structure DEVS
is a causal, timed (discrete-event), dynamic-structure, deterministic formalism.

5.6.1 Syntax and Semantics

The syntax of Dynamic Structure DEVS is similar to Parallel DEVS, with added support
for dynamically varying structure. The basic building blocks of Dynamic Structure DEVS
are atomic models, which can be composed hierarchically in coupled (network) models,
whose structure can change during simulation.

An atomic Dynamic Structure DEVS model is a structure < X,S, Y, δint, δext, λ, τ >,
where:

X = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values. IPorts is a
set of input port names. Each port p has an associated set of possible input values
Xp;

S is a set of sequential states;

122

5.6. DYNAMIC-STRUCTURE DEVS

Y = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values. OPorts is a
set of output port names. Each port p has an associated set of possible output values
Yp;

δint: S → S is the internal transition function;

τ : S → R+
0 is the time advance function;

δext: Q×X → S is the external transition function, where:

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ τ(s)} is the total state set, with e the time elapsed
since the last transition.

λ : S → Y is the output function.

A coupled Dynamic Structure DEVS model is a structure < χ,Mχ >, where χ is a
reference to the network executive, andMχ its model. Mχ is an atomic Dynamic Structure
DEVS model< Xχ, Sχ, Yχ, δintχ , δextχ , λχ, τχ >. A state sχ ∈ Sχ is defined by the tuple
(X∆, Y∆, D, {Mi}, {Ii}, {Zi,j},Ξ, θ), where:

∆ is the Dynamic Structure DEVS dynamic structure network;

X∆ = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values of the
Dynamic Structure DEVS dynamic structure network. IPorts is a set of input port
names. Each port p has an associated set of possible input values Xp;

Y∆ = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values of the
Dynamic Structure DEVS dynamic structure network. OPorts is a set of output
port names. Each port p has an associated set of possible output values Yp;

D is a set of component references (χ /∈ D);

Mi is the Dynamic Structure DEVS atomic model of component i, for all i ∈ D;

Ii is the set of influencees of component i, for all i ∈ D ∪ {χ,∆} (with i /∈ Ii);

Zi,j is the transfer function, for all i ∈ D ∪ {χ,∆}, and for all j ∈ Ii, where:

Z∆,j : X∆ → Xj ;

Zi,∆: Yi → Y∆;

Zi,j : Yi → Xj ;

Zk,χ(y) 6= φ ⇒ Zk,j(y) = φ, for k ∈ D ∪ {∆}, y ∈ Yk, and for all
j ∈ Ik\{χ} with φ the non-event.

Ξ: Π→ D ∪ {χ} is the select function, with Π = 2D∪χ\{} and Ξ(A) ∈ A;

θ are other state variables not defined before.

For a Dynamic Structure DEVS to be legitimate, only a finite number of events can
differ from the non-event φ in any finite time interval. Dynamic Structure DEVS is
closed under coupling: each coupled Dynamic Structure DEVS model can be transformed
into a behaviourally equivalent atomic Dynamic Structure DEVS model. This allows
nesting of Dynamic Structure DEVS coupled models to arbitrary depth. Intuitively,

123

CHAPTER 5. REPRESENTATIVE FORMALISMS

Dynamic Structure DEVS allows to model DEVS networks whose structure can change
over time. Conceptually, the network executive is responsible for controlling these changes,
by changing its state when receiving input events. Changes can be made to:

• The input and output sets X∆ and Y∆, by, for example, removing or adding ports.

• The set of component references D, by removing or adding components.

• The set of component models {Mi|i ∈ D}, by updating a component model with
a new version. The structure of atomic models (including its input and output sets
X and Y , state set S, transition functions δint and δext, output function λ, and time
advance function τ) can thus be changed.

• The set of influencees {Ii|i ∈ D} by updating, adding, or deleting connections
between components over which events can be sent or received.

• The set of transfer functions Zi,j .

As an example, we model a simple particle interaction simulation, in which a number
of particles move in a constrained space, bouncing off walls and each other when they
collide. The user can interact with the simulation by sending events on the input port of the
Dynamic Structure DEVS model.

Below, we list the requirements of the simulation system as they are implemented:

• A field holds a number of moving particles at any point in time. It has a width w and
height h defining the boundaries that constrain the movement of the particles, with
the top-left corner at (0, 0) and the bottom-right corner at (w, h).

• A new particle is created every second.

• When a particle is created, it chooses a random radius r ∈]5.0, 30.0[, a random (2D)
position within the boundaries of the field ((x, y) with x ∈]r, w−r[and y ∈]r, h−r[),
and a random velocity (vx, vy) ∈ ([−75.0, 75.0], [−75.0, 75.0]). Its colour is set to
red.

• At each frame, a particle updates its current position according to its velocity.

• 2.5 seconds after it was created, a particle changes its colour to black.

• At a random point in time, each particle selects itself for deletion, which results in its
colour changing to yellow, its velocity to 0, and it being deleted after 2.5 seconds.

• When two particles collide, their colour changes to blue, and a new particle is created.
The colliding particles swap their velocity vectors (bouncing off each other). The
particles request, with a certain probability, for a new particle to be created.

• When a particle bounces against one of the sides of the field, it negates the normal
component of its velocity to move in the other direction.

• When a particle receives an event corresponding to a user clicking on it, its colour is
changed to orange and its velocity to 0. The particle becomes “selected”.

• When a previously selected particle receives a “delete” event, it is deleted.

124

5.6. DYNAMIC-STRUCTURE DEVS

listening

in::create_particle(creation_params) /
 create_particle(creation_params)

in
::d

elete_
p
article(p

article_
id

) /
 d

elete_
p
article(p

article_
id

)

in
::

u
p
d
at

e_
ti
m

e(
n
ew

_
ti
m

e)
 /

 u

p
d
at

e_
ti
m

e(
n
ew

_
ti
m

e)

ui::key_pressed(key) [key == DELETE] /
 delete_selected()

statechart {inports: ui, in}

initialize_vis()

(a) The Statecharts model of
the window.

statechart {inports: ui, in; outports: out}

running

in
::

m
ov

e_
p
ar

ti
cl

e(
n
ew

_
p
os

)
/

 m

ov
e_

to
(n

ew
_
p
os

)

in
::color_

p
article(color) /

 set_
co

lor(colo
r)

ui::mouse_click(button) [button == LEFT] /
 out::particle_clicked(particle_id)

initialize_vis()

(b) The Statecharts model of a
particle’s visualization.

(c) A screenshot of the model-specific visualization interface.

Figure 5.24: The model-specific visualization UI—models and generated application.

This system clearly exhibits dynamic structure behaviour, and the Dynamic Structure
DEVS formalism is an appropriate choice to represent its dynamic-structure behaviour.
Our model consists of one top-level coupled model called Field, whose set of input ports
IPorts = {INTERRUPT}, which the user can send events to (such as “select”, “delete”)
and set of output ports OPorts = {POS OUT,COLOR OUT, TIME OUT}, which
are used to communicate state updates to the user during simulation. At the start of
simulation, the Field creates two atomic models:

• The PositionManager is responsible for keeping track of the positions of each particle
and detecting collisions. It receives the positions of particles when they are updated,
and has an output port for each of the particles (resulting in a dedicated channel
to communicate collisions detected to only the involved particles). Its set of input
ports IPorts = {INTERRUPT, POS IN} and its initial set of output ports
OPorts = {TIME OUT}.

• The ParticleSpawner creates a new particle each second. It also has an input port to
which particles can send a request to create a new particle.

A particle has a set of input ports IPorts = {COLLISION DETECT} (which is
connected to the dedicated output port of the PositionManager) and a set of output ports
OPorts = {SPAWNER COMM,POS OUT,COLOR OUT}. The first is used to
communicate with the ParticleSpawner, the last two to communicate the position and colour
of the particle to the PositionManager and the user.

We show a suitable model-specific visualization in Figure 5.24, whose behaviour is specified
using Statecharts. Figure 5.24a shows the Statecharts model of the top-level window,

125

CHAPTER 5. REPRESENTATIVE FORMALISMS

which receives events generated by the simulation model (i.e., position and colour updates,
as well as creation and deletion of particles) and user events (i.e., mouse clicks and key
presses) that are translated to output events. Each particle’s visualization behaviour is
controlled by a separate Statecharts model (shown in Figure 5.24b), created by the
window when the particle is created.

An abstract simulator for a parallel version of Dynamic Structure DEVS was defined
in [12]. An efficient version of the simulation algorithm was introduced in [143] and
was implemented in a number of simulation tools, including adevs [148] and Python-
PDEVS [204, 206].

ALGORITHM 7: The Dynamic Structure DEVS simulator’s “main loop”.
Input: Model to simulate (model)

1 flatten model(model);
2 time← 0;
3 state← initialize state(model);
4 while not end condition(time, state) do
5 imminents← compute imminents(state);
6 selected component← select imminent(imminents);
7 events← compute output(selected component);
8 route events(events);
9 ext← compute externals(state, events);

10 for component in imminents ∪ ext do
11 compute next state(component, state);
12 end
13 for component in imminents ∪ ext do
14 compute new structure(component, state);
15 end
16 time← time next(state);
17 end

The pseudo-code of a possible simulation algorithm for Dynamic Structure DEVS is
shown in Algorithm 7. For efficiency reasons, the model is flattened (line 1), which avoids
the use of simulators for atomic models that need to be coordinated by simulators for
coupled models. The algorithm initializes the state and the clock of the simulation on
line 3 and then simulates the model, stepping through simulated time, until the simulation
experiment’s end condition is satisfied. One iteration of the while loop (lines 4–17) is a
simulation “step” and consists of eight phases:

1. [Line 5] Compute the imminent components (i.e., the components that have their
internal transition function scheduled at the current simulated time);

2. [Line 6] Select one imminent component;

3. [Line 7] Compute the output events of the imminent component;

4. [Line 8] Route the events along port connections, executing their transfer function;

5. [Line 9] Compute the set of components that will execute their external transition
function as they react to incoming events;

126

5.6. DYNAMIC-STRUCTURE DEVS

6. [Lines 10-12] Compute the state of all transitioning components in arbitrary order;

7. [Lines 13-15] Execute a “model transition” function for each transitioning compo-
nent. This function can alter the component’s structure, but not its state. Model
transitions are executed up the model’s hierarchy until the root model is reached.

8. [Line 16] Compute the next simulated time value. The new value depends on the
transition function(s) invoked: in case of an internal transition, the τ function of the
transition component is invoked. In case of an external (realtime) interrupt, the time
at which the interrupt took place needs to be taken into account.

5.6.2 Debugging Operations

We define the following debugging operations for Dynamic Structure DEVS, similar to
the ones defined for Parallel DEVS in Section 5.3:

• [As-Fast-as-Possible Simulation] In this mode, the simulation runs as fast as the
underlying hardware can manage and the operating system will allow, until the end
condition is satisfied. It is comparable to running program code, which is always run
as fast as possible. It is supported by most simulation kernels, as a user of the kernel
generally wants to run the simulation without seeing intermediate results. At the end,
the user can inspect the generated trace and any metrics collected.

• [Real-Time Simulation] For timed models, which, when deployed on “target” hard-
ware, will run in real-time, simulating the system in real-time is a useful feature. In
that case, simulated time is synchronized with the wall-clock time. For debugging
purposes, a scale factor can be applied to speed up or slow down simulation, while
retaining the linear relation between simulated time and wall-clock time. A scale
factor of 1 corresponds to real-time, while a scale factor smaller or greater than 1
slows down or speeds up simulation proportionally.

• [Pause] Pausing a simulation allows to inspect the current state of the system and
enables other debugging operations, such as stepping and state modifications.

• [Big Step and Small Step] To transpose the notion of stepping, we turn to the
simulation algorithm shown in Algorithm 7. In the case of Dynamic Structure
DEVS, we implement two types of steps: a “big step” executes one simulation step
(corresponding to an iteration of the while-loop). Inside of the while-loop, a number
of simulation phases, or “small steps”, are executed. Providing control and feedback
at this level allows the user to gain more insight into the detailed model semantics.

• [God Event] A “god event” allows a user to change the value of a state variable of
a particular atomic Dynamic Structure DEVS model. This operation changes the
current state (si,curr, ei,curr) ∈ Qi to a new state (si,new, 0) ∈ Qi where Qi is the
total state set of the atomic Dynamic Structure DEVS model i. This change is
performed by an “outside force” not present in the original dynamics of the model,
hence the name.

• [Event Injection] A user can schedule to inject an event (x, p) ∈ Xi at a specified
(future) simulated time instant t. Once time t is reached, the atomic Dynamic

127

CHAPTER 5. REPRESENTATIVE FORMALISMS

``````````````Structural Change

Debugging
Operation (1)

Pau
se

(2)
Big

Step

(3)
Small

Step

(4)
Rese

t

(5)
God

Eve
nt

(6)
Inj

ec
t E

ve
nt

(7)
Brea

kp
oin

t

(8)
Visu

ali
za

tio
n

Add or Remove State Variable Y Y Y Y Y Y N N
Add or Remove Port Y Y Y Y Y N N N
Add or Remove Connection Y Y Y Y Y Y N N
Add or Remove Component Y Y Y Y Y N N N
Change Transition Function Y Y Y Y Y Y Y N
Change Output Function Y Y Y Y Y Y Y N
Change Time Advance Function Y Y Y Y Y Y Y N
Change Transfer Function Y Y Y Y Y Y Y N
Change Select Function Y Y Y Y Y Y Y N

Table 5.1: Structural changes and their effect on debugging.

Structure DEVS model i receives the input event x on its port p, triggering its
external transition function.

• [Breakpoints] A breakpoint is used in code debugging to pause the execution of the
program when a specific line of code is reached, and when its associated (optional)
condition is satisfied. As the program counter is part of the execution state of the
program, a breakpoint pauses the program automatically when a state condition is
satisfied. We transpose breakpoints to the Dynamic Structure DEVS formalism
by allowing the user to specify conditions on the execution state of the Dynamic
Structure DEVS simulation (including access to time and current (total) state
information). In contrast to code debugging, we do not allow the simulation to break
on a specific line of code. Instead, the simulation can be paused automatically when
a condition on the simulation state is satisfied. A breakpoint is a function that returns
True when the simulation should pause, False in all other cases, and it receives five
parameters:

1. The current simulation time;

2. The current state of the simulation system, which is an aggregation of the states
of its atomic Dynamic Structure DEVS components, as well as the current
structure of the system;

3. The names of atomic Dynamic Structure DEVS models that executed a
transition function in the iteration preceding the triggering of the breakpoint;

4. The output generated by the atomic Dynamic Structure DEVS models that ex-
ecuted their internal transition function in the iteration preceding the triggering
of the breakpoint;

5. The input received by the atomic Dynamic Structure DEVS models that exe-
cuted their external transition function in the iteration preceding the triggering
of the breakpoint.

When a breakpoint is triggered, these values are passed to the user in order to help
the user understand why the breakpoint was triggered.

128



5.6. DYNAMIC-STRUCTURE DEVS

As Dynamic Structure DEVS allows the structure of the modelled system to change during
simulation, certain debugging operations that were defined for Parallel DEVS, which relied
on the static structure of the system, might become meaningless. In Table 5.1, we identify
the debugging operation that must be changed to accommodate Dynamic Structure DEVS.
The first column lists all possible changes to the structure that are allowed by the Dynamic
Structure DEVS formalism. Each column corresponds to a debugging operation. Each
cell is either green (Y), meaning the operation is never affected by the structure change,
or red (N), meaning the operation can be affected by the structure change. A number of
debugging operations are unaffected:

(1) [Pause] Pausing a simulation is independent of structural changes. It pauses the
simulation as soon as possible, either after the currently executing big step, or, in the
case of real-time simulation, potentially during a waiting period. This ensures the
system is in a stable (or quiescent) state that can be inspected by the user.

(2)-(3) [Big Step and Small Step] Stepping through a simulation is similarly unaffected.
It can be compared to manually pausing after each iteration, or after the execution
of a simulation phase. An additional small step (corresponding to lines 13-15 in
Algorithm 7) was added for communicating the structural changes to the user, but
the functioning of the small step operation is not affected by changes in the system
structure during simulation.

(4) [Reset] Resetting the simulation restores the initial state of the system.

(5) [God Event] A god event changes the value of a state variable. While components
and their variables can be added and/or removed during simulation, a god event is
only accepted when the simulation is paused. At that moment, the user is aware
of the current structure of the system, and is only allowed to change the value of
instance variables that exist.

In contrast, three debugging operations are affected, and will have to implement additional
checks to ensure they still function as intended:

(6) [Event Injection] A user can inject an event on an input port at a specified point
in (future) simulation time. Two changes have an effect on this operation: when a
component or a port that is the recipient of an injected event is removed before the
injection time is reached, that injection becomes invalid. We solve this by ignoring
the injected event in case the input port was not found.

(7) [Breakpoints] When modelling a breakpoint, the user is not aware of future structural
changes. The breakpoint might attempt to access a component, its ports, or its
variables that in the meantime are removed. We disable the breakpoint automatically
when it tries accessing a non-existent component and warning the user.

(8) [Visualization] As the visualization is responsible for displaying the state of the
system, and that state now contains the structure of the system, it is affected by all
operations that change the structure of the system. The visualization of the state has to
be appropriately updated when components, variables, ports, components (and their
functions) are added, removed, or changed. The point in time when the visualization
is updated depends on the mode of simulation. In as-fast-as-possible simulation, the
visualization is updated at the end of simulation. In real-time simulation and while

129



CHAPTER 5. REPRESENTATIVE FORMALISMS

the user is big stepping, the visualization is updated after each big step. When the
user is small stepping, the visualization is updated after each small step. Although
not every small step has an effect on the state of the system, additional information
concerning the simulation algorithm is displayed.

5.6.3 De- and Reconstructed Simulator

The debugging-enhanced simulator for the Dynamic Structure DEVS formalism is shown
in Figure 5.25. Our goal was to support the operations presented in the previous subsection,
while retaining the original execution semantics implemented by the simulator. This means
we had to introduce points at which the algorithm can be interrupted (through stepping,
breakpoints, etc.), as well as provide information on the state to the user of the debugger.
Important in this formalism is its support for dynamic structure, which requires ways
of communicating the structural changes that occur after a “big step” has ended to the
user of the debugger. The Statecharts model accepts (user) events on an input port in
and communicates the simulation results on an output port out. It consists of two main
orthogonal components: simulation state and simulation flow.

The simulation state determines in what execution mode the simulator is. It de-
scribes how the user can influence the control flow of the simulation. Four modes are
defined: paused, continuous, realtime, and big step. The simulator starts in
the paused state, and can only transition to one of the other states when a user event is
received. Pausing is only possible when running the simulation in continuous mode or in
realtime mode. The debugging-enhanced simulator does not allow pausing the simulation
when computing a big step or small step, as that could leave the simulator in a (globally)
inconsistent state. Rather, the simulator pauses automatically after every big step when
in big step mode, and small steps are manually controlled (discussed below). When the
simulation terminates (because the termination condition is satisfied, or due to a breakpoint),
the simulation state transitions to the paused state from any of the other states. Detect-
ing termination is encoded in the simulation flow orthogonal component, discussed
below. Based on the simulation state, the behaviour of the simulation flow changes.

The simulation flow orthogonal component determines the flow of the simulation
steps, and explicitly encodes the invocation order of the non-modal functions. This is
an explicit representation of the control flow that was implemented in the while-loop in
the coded implementation. The orthogonal component consists of two main components:
checking termination and do simulation. In the checking termination
state, the simulator checks whether or not simulation should continue. It has self-transitions
to manage god events (manual state changes), breakpoint detection, and checking whether
the end condition was satisfied. By defining these events to only be processed (using
transitions) in the checking termination state, we ensure god events are only
possible when a simulation “big step” is currently not executing. Breakpoints are de-
tected here because they need to immediately pause the simulation. If the detection
were performed in a different component, the detection result would have to be com-
municated to the simulation flow component, which might react late and already
be executing the next big step. To check whether the next simulation step can be exe-
cuted, the checking termination inspects the state of the orthogonal component
simulation state, and, if realtime simulation is selected, also checks whether the

130



5.6. DYNAMIC-STRUCTURE DEVS

m
a
in

s
im
u
la
ti
o
n
_
fl
o
w

d
o
_
s
im
u
la
ti
o
n

fo
u
n
d
_
im

m
in

e
n
ts

e
n
te

r:

  
s
i 
=

 s
e
le

c
t_

im
m

in
e
n
t(

im
m

)

e
n
te

r:

  
im

m
 =

 c
o
m

p
u
te

_
im

m
in

e
n
ts

(s
ta

te
)

s
e
le

c
te

d
_
im

m
in

e
n
t

e
n
te

r:

  
e
v
e
n
ts

 =
 c

o
m

p
u
te

_
o
u
tp

u
t(

s
e
le

c
te

d
_
c
o
m

p
o
n
e
n
t)

c
o
m

p
u
te

d
_
o
u
tp

u
t

e
n
te

r:

  
in

b
a
g
s
 =

 r
o
u
te

_
e
v
e
n
ts

(e
v
e
n
ts

)

ro
u
te

d
_
m

e
s
s
a
g
e
s

e
n
te

r:

  
e
x
t 

=
 c

o
m

p
u
te

_
e
x
te

rn
a
ls

(s
ta

te
, 

e
v
e
n
ts

)

fo
u
n
d
_
a
ll
_
tr

a
n
s
it
io

n
in

g

e
n
te

r:

  
s
ta

te
s
 =

 {
}

  
fo

r 
c
o
m

p
o
n
e
n
t 

in
 s

i 
U

 e
x
t:

  
  
s
ta

te
s
 =

 s
ta

te
s
 U

 n
e
x
t_

s
ta

te
(c

o
m

p
o
n
e
n
t,

 s
ta

te
)

c
o
m

p
u
te

d
_
tr

a
n
s
it
io

n
s

e
n
te

r:

  
s
c
s
 =

 {
}

  
fo

r 
c
o
m

p
o
n
e
n
t 

in
 s

i 
U

 e
x
t:

  
  
s
c
s
 =

 s
c
s
 U

 c
o
m

p
u
te

_
n
e
w

_
s
tr

u
c
tu

re
(c

o
m

p
o
n
e
n
t,

 s
ta

te
)

c
o
m

p
u
te

d
_
s
tr

u
c
tu

re

e
n
te

r:

  
tn

 =
 t

im
e
_
n
e
x
t(

s
ta

te
)

[n
o
t 

IN
(p

a
u
s
e
d
)]

[I
N

(p
a
u
s
e
d
)]

 /

  
 o

u
t:

: 
im

m
in

e
n
ts

(i
m

m
)

in
::

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

  
 o

u
t:

:s
e
le

c
te

d
_
im

m
in

e
n
t(

s
i)

in
::

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

  
 o

u
t:

:o
u
tb

a
g
(e

v
e
n
ts

)

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

  
 o

u
t:

:t
ra

n
s
it
io

n
in

g
(s

i 
U

 e
x
t)

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

  
 o

u
t:

:n
e
w

_
s
ta

te
s
(s

ta
te

s
)

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

  
 o

u
t:

:s
tr

u
c
tu

ra
l_

c
h
a
n
g
e
s
(s

c
s
)

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /

  
 o

u
t:

:i
n
b
a
g
s
 (

in
b
a
g
s
)

in
it
ia

li
z
e

e
n
te

r:

  
ti
m

e
 =

 0
; 

s
ta

te
 =

 i
n
it
ia

li
z
e
_
s
ta

te
(m

o
d
e
l)

c
h
e
c
k
in

g
_
te

rm
in

a
ti
o
n

[e
n
d
_
c
o
n
d
it
io

n
(t

im
e
, 

s
ta

te
) 

a
n
d
 n

o
t 

b
re

a
k
p
o
in

t(
)]

 /

  
 t

e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 

[I
N

(r
e
a
lt
im

e
) 

a
n
d
 n

o
t 

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
, 

s
ta

te
) 

a
n
d
 d

e
la

y
()

 >
 0

]

c
h
e
c
k
in

g
_
s
m

a
ll
_
s
te

p

[b
p
 =

 b
re

a
k
p
o
in

t(
)]

 /
 o

u
t:

:b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d
(b

p
),

 t
e
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 

w
a
it
in

g
a
ft

e
r(

d
e
la

y
()

)

[I
N

(p
a
u
s
e
d
)]

in::small_step

[bp = breakpoint()] /

   out::breakpoint_triggered(bp),

   out::termination_condition 

[end_condition(time, state)

 and not breakpoint()] /

   out::termination_condition 

in::god_event [IN(paused)] /

res=do_god_event(params)

   out::god_event_res(res)

c
h
e
c
k
_
te
r
m
in
a
ti
o
n

[n
o
t 

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
, 

s
ta

te
) 

a
n
d
 n

o
t 

b
re

a
k
p
o
in

t(
)]

[I
N

(r
e
a
lt
im

e
)

 a
n
d
 n

o
t 

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
, 

s
ta

te
) 

a
n
d
 n

o
t 

b
re

a
k
p
o
in

t(
) 

a
n
d
 d

e
la

y
()

 <
=

 0
]

[I
N

(c
o
n
ti
n
u
o
u
s
) 

o
r 

IN
(b

ig
_
s
te

p
)

 a
n
d
 n

o
t 

e
n
d
_
c
o
n
d
it
io

n
(t

im
e
, 

s
ta

te
) 

a
n
d
 n

o
t 

b
re

a
k
p
o
in

t(
)]

[I
N

(r
e
a
lt
im

e
) 

o
r 

IN
(b

ig
_
s
te

p
)]

 /
 o

u
t:

:b
ig

_
s
te

p
_
d
o
n
e
(s

ta
te

s
),

 o
u
t:

:n
e
w

_
tn

(t
n
),

 o
u
t:

:s
tr

u
c
tu

ra
l_

c
h
a
n
g
e
s
(s

c
s
)

[I
N

(c
o
n
ti
n
u
o
u
s
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
)]

 /
 o

u
t:

:n
e
w

_
tn

(t
n
)

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

in
::

d
e
l_

b
re

a
k
p
o
in

t 
/

  
re

s
 =

 d
e
l_

b
p
(p

a
ra

m
s
)

  
o
u
t:

:d
e
l_

b
p
_
re

s
u
lt
(r

e
s
)

b
re
a
k
p
o
in
t_
m
a
n
a
g
e
r

in
je

c
t

in
::

in
je

c
t 

[I
N

(p
a
u
s
e
d
)]

 /

  
re

s
 =

 i
n
je

c
t(

p
a
ra

m
s
)

  
o
u
t:

:i
n
je

c
ti
o
n
_
re

s
u
lt
(r

e
s
)

in
je
c
ti
o
n
_
m
o
n
it
o
r

tr
a
c
e

in
::

tr
a
c
e
 /

  
 r

e
s
 =

 g
e
t_

tr
a
c
e
()

  
 o

u
t:

:t
ra

c
e
(r

e
s
)

tr
a
c
e
r_
m
o
n
it
o
r

in
te

rr
u
p
t

in
::

in
te

rr
u
p
t 

/

  
ra

is
e
_
in

te
rr

u
p
t(

p
a
ra

m
s
)

 

in
te
rr
u
p
t_
m
o
n
it
o
r

li
s
te

n
in

g

in
::

a
d
d
_
li
s
te

n
e
r 

/

  
a
d
d
_
e
v
e
n
t_

li
s
te

n
e
r(

p
a
ra

m
s
)

li
s
te
n
e
rs
_
m
o
n
it
o
r

re
s
e
t

in
::

re
s
e
t 

[I
N

(p
a
u
s
e
d
)]

re
s
e
t_
m
o
n
it
o
r

p
a
u
s
e
d

c
o
n
ti
n
u
o
u
s

b
ig

_
s
te

p

s
im
u
la
ti
o
n
_
s
ta
te

in
::

c
o
n
ti
n
u
o
u
s

re
a
lt
im

e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

, 
o
u
t:

:a
ll
_
s
ta

te
s
(g

e
t_

s
ta

te
s
()

)

in
::

re
a
lt
im

e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

b
ig

_
s
te

p
_
d
o
n
e

te
rm

in
a
ti
o
n
_
c
o
n
d
it
io

n
 /

 o
u
t:

:t
e
rm

in
a
te

in
::

b
ig

_
s
te

p

s
ta
te
c
h
a
r
t

{
in

p
o
rt

s
:

in
;

o
u
tp

o
rt

s
:

o
u
t}

c
o
m

p
u
te

d
_
ti
m

e

in
::

to
g
g
le

_
b
re

a
k
p
o
in

t 
/

  
re

s
 =

 t
g
l_

b
p
(p

a
ra

m
s
)

  
o
u
t:

:t
g
l_

b
p
_
re

s
u
lt
(r

e
s
)

in
::

a
d
d
_
b
re

a
k
p
o
in

t 
/

  
re

s
 =

 a
d
d
_
b
p
(p

a
ra

m
s
)

  
o
u
t:

:a
d
d
_
b
p
_
re

s
u
lt
(r

e
s
)

Figure 5.25: The de- and reconstructed Dynamic Structure DEVS simulator.

131



CHAPTER 5. REPRESENTATIVE FORMALISMS

next simulation step can already be performed, or if the simulation algorithm needs to
wait. In case we should wait for the next simulation step, the waiting state is entered.
Otherwise, the do simulation state is entered. If the simulation is executing in real
time and the delay has not passed, the simulator has to wait. Control is passed to the
waiting state, and a transition is scheduled to fire after the delay has passed. But, pausing
needs to be possible while waiting. So, a transition is added which lets the control go back
to the check termination state when the user requests a pause. In any other cases,
the next simulation step can be executed. The do simulation composite state traverses
through seven stages (encoded as states), each responsible for a part of the simulation
algorithm. Linking back to the original code implementation, the check termination
state implements the condition of the while-loop, whereas do simulation implements
the body of the loop. If the simulation is not paused, the phases are executed without
any communication to the user. When the simulation is paused, however, no automatic
transition takes place. The user can then manually step through the simulation phases
using the “small step” operation. After every small step, relevant information is sent to
the user to be displayed in a debugging interface. The first small step is requested when
the simulation flow is in checking termination. In that case, there are two
possibilities: either the simulation is paused, or it has terminated. To detect these cases,
the system transitions to a checking small step state when the first small step is
requested. Only if the end condition is not satisfied and no breakpoints trigger is the first
phase executed. At the end of the do simulation state, there are three possibilities,
each with a different response to the user. If simulation is running in realtime or a big
step was being executed, all information is passed to the user. If the current simulation
iteration is ended by a small step, only a part of the information needs to be sent; all other
information has already been sent during previous steps. If simulation is running as fast as
possible, no information is sent to the user, as it would only slow down simulation.

Six additional orthogonal components are modelled:

• The reset monitor listens for user requests to reset the simulation, and allows it
when the simulation is paused.

• The breakpoint manager can add, toggle, and delete breakpoints, as well as
list all currently defined breakpoints.

• The injection monitor listens for user requests to inject an event on a port in
the model, and allows such injections if the simulation is paused.

• The interrupt monitor is used in real-time simulations for real-time interrupts
from the environment.

• The listeners monitor is used in real-time simulations for listening to events
on an output port.

• The tracer monitor can print the full textual trace of the simulation.

From this model, the code for the debugging-enhanced simulator can be generated using an
appropriate Statecharts compiler.

Summary We demonstrated in this subsection that the debugging operations described
in the previous subsection have been successfully added to the Dynamic Structure DEVS

132



5.6. DYNAMIC-STRUCTURE DEVS

Figure 5.26: A screenshot of the debugging interface.

simulator. In the next subsection, we couple the instrumented simulator to a debugging
environment.

5.6.4 Debugging Environment

Once the debugging enhanced simulation kernel is developed, an interface for interacting
with it is needed. This section presents a basic visual debugging interface. The debugging
interface allows for full control over the simulation algorithm using the set of debugging
operations defined in the previous sections.. A screenshot of the interface is shown in
Figure 5.26.

At the top, a toolbar allows the user to interact with the running simulation by pressing
buttons. Below that, information related to the running simulation is visualized: the current
simulated time and the current set of breakpoints are shown at the top, and below that, the
current structure of the system. Each Dynamic Structure DEVS model is represented by
a rectangle. The name of each component is displayed (coupled models have their names
printed in italics), as well as their interface in the form of input (green) and output (purple)
ports. Hovering over a port displays the name of the port as well as any incoming or
outgoing connections to other ports. Hovering over (atomic) models displays their current
state. The next time (“TN”) at which an internal transition is scheduled is displayed above
each atomic model. This is not the case for coupled models (such as Field): they do not
have an internal transition function, and their next transition time is the minimum of its
constituent components’ next transition times. Clicking on an input port allows the user to
inject an event. Right-clicking on an atomic model allows the user to insert a god event,
which changes the value of a state variable. The hierarchical structure of the Dynamic

133



CHAPTER 5. REPRESENTATIVE FORMALISMS

Structure DEVS model is displayed as a tree—children of a coupled Dynamic Structure
DEVS model are shown below their parent. Models at the same level are staggered, to
allow for more elements to be displayed side-by-side. Additionally, this layout helps with
the drawing of incoming and outgoing connections between ports. While the example
shows a two-level tree, this is not necessarily always the case: the tree can be arbitrarily
deep (depending on the current model structure).

When the user executes a small step, the instrumented simulation kernel communicates
useful information regarding the executed phase. The debugging interface then visualizes
this information. This visualization, including an explanation of each small step, is shown
in Table 5.2. Small steps allow the user to debug the system at a more fine-grained level,
inspecting more closely what happens during a simulation step.

The behaviour of the debugging interface is modelled using Statecharts as well. Each user
action corresponds to an input event to this model and is translated to an output event that
is sent to the instrumented simulator. Conversely, any events sent from the instrumented
simulator serve as input to the Statecharts model of the debugging interface.

We observe that the visualization previously defined for the simulation system is a good
candidate for instrumentation. We instrument the models in Figure 5.24a and Figure 5.24b
to handle two cases:

• When the simulation is reset, the initial state of the visualization has to be restored
as well. To implement this, an event handler is defined in the Statecharts model
of the window, and a translation is provided between the reset output event of the
debugging UI and the newly defined input event of the model-specific visualization
UI.

• When the simulation is paused, the domain expert might want to find out which atomic
DEVS model in the debugging UI (see Figure 5.26) corresponds to a particle on the
screen. To implement this, an event handler is defined in the particle Statecharts
model, to raise an output event when the user right-clicks. A translation is provided
between this newly defined output event and an input event of the debugging UI
which results in showing the state of the atomic model corresponding to the particle.

Summary

This section demonstrates how debugging support can be implemented for Dynamic
Structure DEVS. The language exhibits the following semantic features of the feature
diagram presented in Figure 4.2:

• It has dynamic structure.

• It is deterministic.

• It is implements discrete-event semantics.

Its dynamic structure is the most prominent feature of this formalism. In this section, we
have demonstrated that our approach can support debugging for languages exhibiting this
feature.

134



5.6. DYNAMIC-STRUCTURE DEVS

(1) All imminent components are
highlighted in blue.

(2) Only the selected imminent
component is highlighted in blue.

(3) The output message(s) generated by
the imminent component are shown
beneath the corresponding port(s).
Clicking the message will log its

contents in the console.
(4) The message is routed from the

output port(s) to the input port(s) along
the connections, and translated in the

process.

(5) All transitioning components are
highlighted: red for components that will
execute their external transition function,

blue for those that will execute their
internal transition function.

(6) The new state of the components is
computed (no visual change, but

hovering over the atomic models will
show their new state).

(7) Structural changes are displayed: an
atomic model was created.

(8) The time at which the next internal
transition function is scheduled is

updated for each component.

Table 5.2: Small step visualization: the eight phases of a simulation iteration.
These correspond to the steps of the simulation algorithm in Algorithm 7 (lines 5– 16).

135



CHAPTER 5. REPRESENTATIVE FORMALISMS

BaseBlock

+ name : string

CBD

+ name : string

c
o
n
t
e
n
t
s

1

*

State

+ name : string = S_

+ isStart : boolean

CBDState

contains

1 1

T
im
e
d
T
r
a
n
s
it
io
n

*

*

E
v
e
n
t
T
r
a
n
s
it
io
n

*

*

W
h
e
n
T
r
a
n
s
it
io
n

*

*

Figure 5.27: The metamodel for the Hybrid Automata language.

5.7 Hybrid TFSA-CBD

In order to observe the global behaviour of systems that exhibit both discrete and continuous
behaviour, the system’s behavioural models that describe the continuous and discrete parts
of the behaviour are coupled. Since they conform to different formalisms, however, their
interaction needs to be determined. It can consist of input/output variables that can be
accessed by both models during their coupled simulation—as in co-simulation [65], or they
can be more complex, realized through boundary concepts that do not belong to any of
the coupled formalisms—as in co-modelling [18, 86]. We focus on the latter, and present
a combination of Timed Finite State Automata with Causal Block Diagrams (from
now on called Hybrid Automata). To debug this language, we need to combine debugging
support for the two individual languages, as well as take into account the boundary concepts
defined in the combination. Hybrid Automata is a causal, timed (discrete-event), hybrid
(embedded), static-structure, deterministic formalism.

5.7.1 Syntax and Semantics

The Hybrid Automata formalism inherits its syntax from both T-FSA and CBD. Its meta-
model is shown in Figure 5.27, and is divided into three parts:

1. The syntax of T-FSA (upper-left part of the figure) has one class: the State. A
state has a unique name, and one state of the model is the initial state. States are
connected by transitions, which model the dynamics of the system. Two types of
transition are defined: the TimedTransition, which is triggered by a timeout, and the
EventTransition, which is triggered by an event coming from the environment.

2. The syntax of CBD (right part of the figure), which has a CBD class which contains
a number of uniquely named blocks. For brevity, we have not included the subclasses
of the BaseBlock class. The full CBD metamodel was presented in Figure 5.3.

3. A “glue” syntax that connects the two metamodels and defines the boundary concepts.
A CBDState class is defined as a subclass of the T-FSA State class. Such a state con-

136



5.7. HYBRID TFSA-CBD

Legend

Initial State

Pass_Up

T-FSA State CBD State

e
Event State Event

Started

Neutral

Pass_Down
Driver_Down

Driver_Up

Obj_Detected

stop or

p_up

d_down

d_up

p_d
own

stop or

stop or

d_down d_up

st
op

 o
r

or

S

(a) Example hybrid model of the power window system.

when(Fo100 −+)

p_up

d_up

after(1.0)

stop

0 2 4 6 8

Time (s)

E
v

e
n

t

2.0

Started

Neutral

Pass_Down

Driver_Up

Pass_up

Obj_Detected

0 2 4 6 8

Time (s)

S
ta

te

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8

Time (s)

H
e
ig

h
t 

(m
)

(b) Example trace.

Figure 5.28: The example model and its simulation trace.

tains a full CBD model. An additional transition type is defined: the WhenTransition,
triggered when a value of the CBD model crosses a boundary.

The “glue” part of the syntax is introduced to accommodate communication between the
two formalisms. It is assumed here that the language engineer creating the hybrid language
introduces this syntax manually, and also defines its semantics properly in the hybrid
simulation algorithm (see the discussion later in this chapter). A more repeatable way
of combing two languages would consider the “glue” as a third language (or language
fragment), which includes its syntax and semantics. A three-way (automatic) merge of
the fragments would then result in the hybrid language: both its syntax and semantics. To
perform such merges automatically and properly is an area of active research [141], and we
consider the integration of hybrid language engineering (using fragments) with debugging
as future work.

Figure 5.28a shows the (partial) hybrid model for a power window system. The overall
modes of the power window are depicted as a T-FSA. The Driver Down state’s CBD model
is expanded, representing the dynamics of the window when going down. The model
is initialized in the Started state, which is a CBDState that initializes the values for the
variables v0 andw0. It then transitions to the T-FSA state Neutral, the only state in the model
that does not contain a CBD model. Five events can be raised by the environment:

1. d up signifies that the driver pressed the button to make the window go in the upwards
direction.

137



CHAPTER 5. REPRESENTATIVE FORMALISMS

2. d down signifies that the driver pressed the button to make the window go in the
downwards direction.

3. p up signifies that the passenger pressed the button to make the window go in the
upwards direction.

4. p down signifies that the passenger pressed the button to make the window go in the
downwards direction.

5. stop signifies that either the driver or the passenger has released a button.

In the model, four states are defined that correspond to the modes the window can be in,
based on the events it receives from the environment:

1. Driver Up models the dynamics of the system when the driver has requested the
window to go in the upwards direction.

2. Driver Down models the dynamics of the system when the driver has requested the
window to go in the downwards direction.

3. Pass Up models the dynamics of the system when the passenger has requested the
window to go in the upwards direction.

4. Pass Down models the dynamics of the system when the passenger has requested the
window to go in the downwards direction.

If an object is detected (modelled by a transition that is triggered when the force exerted
on the window crosses a boundary), the dynamics of the system are governed by the
Obj Detected state, where the window is lowered automatically. The variables v0 and w0

model the velocity and the position of the window, respectively. Multiple transitions are
modelled that detect when the window has reached the down position (w0 ≤ 0) or the up
position (w0 > 0.6).

An example behavioural trace of the system (the result of simulation) is shown in Fig-
ure 5.28b. The system starts in the Started state and immediately transitions to the Neutral
state autonomously. A p up event is received, and the state changes to Pass Up. The
window starts going up, as the value of the height variable (w0) increases. At some point,
the passenger stops pressing the button, and the system returns to the Neutral state. The
window stops moving. Some time later, a d up event is received, and the window starts
moving up again. At some point in time, however, a force is detected, and the system
transitions to its Obj Detected state. The window moves down for two seconds and then
remains at its position.

The hybrid Hybrid Automata simulator is a merge of the algorithm for T-FSA presented in
Algorithm 8 and the CBD simulator in Algorithm 3. Intuitively, the simulation algorithm
can be broken down as follows:

• The simulation is initialized as in the T-FSA algorithm, with one difference: the
δt parameter is set to the minimum of the δt parameters for the two simulators,
guaranteeing the same level of accuracy as in the individual simulators.

• An outer-while loop executes the model until an end state has been reached, or if at
any point, the currently executing CBD model has reached its maximum number of
iterations.

138



5.7. HYBRID TFSA-CBD

ALGORITHM 8: The T-FSA simulator.
Input: Model to simulate (M ), a time-annotated list of events (evs), a time step (δt)

1 time← 0;
2 elapsed← 0;
3 state← initialize state(M);
4 while not end condition(M, time, state) do
5 continue← True;
6 while continue do
7 (evs, ei)← popEventAt(evs, t);
8 if ei = ∅ then
9 tr ← selectT imedTransition(M, state, elapsed);

10 else
11 tr ← selectEventTransition(M, state, ei);
12 end
13 if tr 6= ∅ then
14 elapsed← 0;
15 continue← True;
16 state← targetState(M, tr);
17 else
18 continue← False;
19 end
20 end
21 time← time+ δt;
22 end

• At the start of a big step, the algorithm checks whether the current state contains a
CBD model. If this is the first time the state was entered, the model is initialized.
Then, its next iteration is computed, by invoking the child CBD model’s simulator.

• After the iteration is computed, the algorithm checks whether any state events occur:
these are boundaries that are crossed by continuous variables in the CBD simulation.
These boundary crossings are translated to T-FSA events and can trigger a transition.
The naive algorithm for this boundary crossing considers that the boundary is crossed
exactly following a big step. This, of course, might not be the case. State event
location [152] is the general technique for computing the exact point at which the
boundary was crossed. This requires to go back and forth in the simulation of the
continuous model to exactly pinpoint the simulated time instant when the boundary
cross occurred.

• A T-FSA small step is executed as usual: the next event is read from the environment
and a transition is executed if any is enabled. Transitions can now also be triggered
by state events, but events from the environment get priority.

This can be seen as a protocol which meaningfully combines the semantics of both sim-
ulators and is implemented by the hybrid simulator, which appropriately calls its child
simulators. The implementation of this protocol is made possible only when the child
simulators’ interface provides adequate control. A more detailed discussion of language
and simulator composition for hybrid languages can be found in [141].

139



CHAPTER 5. REPRESENTATIVE FORMALISMS

5.7.2 Debugging Operations

We define the following debugging operations, divided into three categories: T-FSA debug-
ging operations, CBD debugging operations, and Hybrid Automata operations.

Timed Finite State Automata

• [As-Fast-as-Possible Simulation] In this mode, the simulation runs as fast as the
underlying hardware can manage and the operating system will allow, until the end
condition is satisfied. It is comparable to running program code, which is always
run as fast as possible. At the end, the user can inspect the generated trace and any
metrics collected.

• [Real-Time Simulation] In this mode, simulated time is synchronized with the wall-
clock time. For debugging purposes, a scale factor can be applied to speed up or
slow down simulation, while retaining the linear relation between simulated time
and wall-clock time. A scale factor of 1 corresponds to real-time, while a scale factor
smaller or greater than 1 slows down or speeds up simulation proportionally. State is
observed throughout real-time simulation after each iteration of the simulation loop.

• [Pause] Pausing a simulation allows the user to inspect the current state of the system
and enables other debugging operations, such as stepping and state modifications.

• [Big Step and Small Step] To transpose the notion of stepping, we turn to the simu-
lation algorithm shown in Algorithm 8. In the case of Statecharts, we implement
two types of steps:

– A big step executes transitions until none are enabled.

– A small step executes one enabled transition.

• [God Event] A “god event” allows a user to change the value of a state variable of
the T-FSA model’s memory.

• [Event Injection] A user can inject an event on one of the input ports of the T-FSA
model at the “current” time.

• [Breakpoints] A user can specify a breakpoint in the form of a condition on the
execution state of the T-FSA simulation (including simulated time and current (total)
state information). In contrast to code debugging, we do not allow the simulation to
break on a specific line of code. Instead, the simulation can be paused automatically
when a condition on the simulation state is satisfied. We allow the user to scope the
breakpoint, by only evaluating the breakpoint when a specified state is entered. A
breakpoint is a function that returns true when the simulation should pause, false in
all other cases.

Causal Block Diagrams

The CBD simulator is in control when the simulation is in a CBDState. The CBD simulator’s
semantics, and its debugging operations, were presented in Section 5.2. A CBD “big step”

140



5.7. HYBRID TFSA-CBD

is executed continuously until an external event comes in, or a state condition is satisfied.
State conditions are checked by the Hybrid Automata simulator, which requests the CBD
simulator to execute one big step repeatedly. For debugging purposes, we define the
following operations:

• [Continuous Simulation] runs the simulation until an external event comes in, or a
state condition is satisfied.

• [Pause] interrupts the running simulation. In continuous simulation, the simulation
stops after the currently executing “big step” has finished, ensuring the system is in a
stable state.

• [Big Step] advances the simulation with one “big step” (one iteration of the outer
while loop) and communicates the state of the simulation.

• [Small Step] advances the simulation with one “small step” (one iteration of the
inner while loop) and communicates the state of the simulation. This allows the user
to step through individual block computations.

• [Breakpoints] can be modelled as elements that read the output value of a block in
the model. The breakpoint pauses the simulation when the output of its connected
element has a non-zero value. This allows users to model arbitrary conditions (as
they can be modelled as a network of CBD blocks) in the CBD model on which to
pause.

Hybrid Automata

The hybrid Hybrid Automata simulator is a merge of the algorithm for T-FSA presented in
Algorithm 8 and the CBD simulator in Algorithm 3. Since the hybrid formalism is obtained
by embedding the CBD formalism into the T-FSA formalism, the T-FSA simulator can
be seen as the “master”, while the CBD simulator is the “slave”. In our case, this means
the T-FSA simulator is in control, and the CBD simulator is only called when needed (i.e.,
if a T-FSA state contains a CBD model). The debugging operations at the hybrid level
are identical to the T-FSA debugging operations. We add, however, a way of switching
between simulators using a step into operation. This operation is enabled if the simulation
is paused and the current T-FSA state contains a CBD model.

5.7.3 De- and Reconstructed Simulator

We introduced the simulation algorithms for the T-FSA and CBD formalisms in Algorithm 8
and Algorithm 3. At a high level of abstraction, these algorithms are very similar, as they
go through a set of phases:

1. Initialization of the simulated time and the simulation state;

2. Execution of simulation ‘steps’ until an end condition is satisfied, which forms the
core of the algorithm, where a new state is computed based on the previous one, and
the simulation time is advanced;

141



CHAPTER 5. REPRESENTATIVE FORMALISMS

initializing

/ self.initializeState(),

  self.initializeTime()

statechart {inports: in; outports: out}

running stopped

[endCondition()] /

self.finalizeSimulation(),

out::state, out::time

[not endCondition()] /

 self.simulationStep(), self.incTime()

+ initializeState()

+ initializeTime()

+ endCondition()

+ simulationStep()

+ incTime()

+ finalizeSimulation()

Figure 5.29: The canonical form of the generic simulation algorithm.

3. Finalization where, for example, the final state of the simulation and the time at
which it ended is communicated to the user.

ALGORITHM 9: Generic simulation algorithm.
Input: Model to simulate (M ), list of parameters (params)
initialize(params);
while not endCondition() do

executeStep();
end
finalize();
return getState(), getT ime()

These phases yield a generic template, shown in Algorithm 9. Converting this high-level
control flow to a SCCD model is possible using the ‘de- and reconstruction’ technique
presented in Section 4.3 and was applied to multiple formalisms in the previous sections.
The result is shown in Figure 5.29: we model a class Simulator which has the necessary
attributes and methods (whose implementation depends on the formalism being simulated).
The behaviour of this class is modelled in a Statecharts model which executes the phases
of simulation outlined above.

Hierarchical Canonical Representation

For the purposes of debugging, as well as simulator composition, we need to refine the
instruction executeStep() in Algorithm 9. There is a single notion of ‘step’: it is a
computation which brings the simulation from a state to the next and increases the simulated
time. Upon closer inspection of Algorithm 8 and Algorithm 3, an additional level of ‘steps’
can be discerned. Each ‘step’ (from now on: ‘big step’) consists of a series of ‘small
steps’. In the case of T-FSA, a ‘big step’ executes as many transitions as possible, while a
‘small step’ executes one such transition. In the case of CBD, a ‘big step’ computes the
new value of all signals in the model, while a ‘small step’ computes the value of a single
signal. This means the executeStep() function can be expanded as a while-loop, which
is preceded by an initialization phase and succeeded by a finalization phase. In [141], the
authors differentiate analogously between a ‘macro’ and a ‘micro’ step, and propose a
flattened canonical form of the simulator. We propose an different, hierarchical, canonical
form, where each level is modelled in a separate SCCD class, following the template of
Figure 5.29.

As an example, Figure 5.30 demonstrates the hierarchical canonical form for the T-FSA

142



5.7. HYBRID TFSA-CBD

child

parent

child

parent

child

parent

SimulatorTFSA

methods, attributes

behaviour (SC)

SimulatorTFSA_BS

methods, attributes

behaviour (SC)

SimulatorTFSA_SS

methods, attributes

behaviour (SC)

SimulatorTFSA_Trans

methods, attributes

behaviour (SC)

ex
ec
ut
e

...

...

execute

execute

result

result

execute

resultresult

execute

execute
result

result

Figure 5.30: The hierarchical structure of the T-FSA simulator.

SimulatorHybrid
methods, attributes

behaviour (SC)

SimulatorTFSA SimulatorTFSA_BS SimulatorTFSA_SS SimulatorTFSA_Trans
child

parent

child

parent

child

parent
methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

SimulatorCBD SimulatorCBD_BS SimulatorCBD_SS SimulatorCBD_Block
child

parent

child

parent

child

parent
methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

ch
ild

_t
fs
a

child_cbd

pa
re

nt

parent

Figure 5.31: The de- and reconstructed T-FSA-CBD simulator.

simulator: instead of having one Simulator class, we have four: one for each level. The
top-level simulator creates a new big step simulator and requests it to compute the next
iteration of the simulation until the simulation end condition is satisfied. The big step
simulator in turn creates a new small step simulator and requests it to compute the next
state until the big step end condition is satisfied (i.e., no more transitions are enabled). The
small step simulator creates the lowest level simulator, which is simply a function call that
executes a transition. Each level finalizes and communicates its results to the level above
when its end condition is satisfied. The user can start the simulation (by instantiating the
top-level simulator) and wait until it finishes execution, and inspect its results.

Analogously, a hierarchical canonical version for the CBD simulator can be constructed
and instrumented with debugging support. By enhancing the simulation algorithm(s) with
debugging support, their interfaces change, giving more control to the user to interrupt and
control the simulation algorithm with debugging operations, outlined in Section 5.7.2. This
interface is used to create a debugging-enhanced hybrid simulator.

In Figure 5.31, the hierarchical composition of the hybrid simulator is shown. The protocol
of the simulation algorithm, as well as boundary concepts (such as state event detection)
is implemented by the hybrid simulator. It has two child simulators, whose behaviour it
controls through their exposed debugging interfaces. The continuous and realtime modes
of the child simulators are no longer used, since that would not allow the hybrid simulator
to do state event detection. Instead, the hybrid simulator controls its child simulators by
letting them perform individual (small or big) steps.

The hybrid simulation algorithm can be fit into the generic template of Figure 5.29. The
concept of ‘big step’, ‘small step’, state, and time operations remain unchanged from the
‘master’ T-FSA algorithm, whose semantics were used as a starting point for the Hybrid
Automata simulator. The Hybrid Automata simulator processes states containing a CBD
model as normal T-FSA states, and it controls how simulated time advances. The hybrid
simulator is responsible for invoking the CBD simulators for states containing a CBD state.

143



CHAPTER 5. REPRESENTATIVE FORMALISMS

Figure 5.32: The user interface for the Hybrid Automata language.

God events can enable a transition at the T-FSA level.

Certain debugging operations are also valid at the CBD level, however. A user debugging a
hybrid simulation might want to step through CBD block computations or change a signal
value through a (CBD) god event. Because of the hierarchical nature of the formalism
(CBD models are contained in T-FSA states), we define a step into debugging operation.
This operation is valid when the simulation is paused, and the current T-FSA state contains
a CBD model. It switches the execution context to the CBD simulator and enables regular
debugging interaction at that level. The user can then execute a big step, a small step, or a
god event. When a big step finishes, control is returned to the hybrid simulator.

Summary We demonstrated in this subsection that the debugging operations described
in the previous subsection have been successfully added to the hybrid T-FSA-CBD sim-
ulator. In the next subsection, we couple the instrumented simulator to a debugging
environment.

5.7.4 Debugging Environment

The debugging environment is a console application, shown in Figure 5.32. It is a proof-
of-concept, which demonstrates debugging for hybrid formalisms is possible using our
modified de- and reconstruction approach. A visual debugging environment can be de-
veloped, and would be a combination of a FSA debugging environment (similar to the
Statecharts debugging environment presented in Section 5.4) and a CBD debugging
environment (see Section 5.2).

144



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

At the start, the simulation is initialized to the Started state. This is a CBDState instance,
and a step into command allows the user to step through individual block computations.
After three small steps, the values of all blocks in the state are computed: a CBD big step
ends, and with that, a T-FSA big step as well, bringing the system to the Neutral state. The
user then adds a breakpoint, that automatically pauses the simulation when the clock of the
T-FSA simulator has a value larger than 0.5. The simulation is then run in continuous mode,
and the breakpoint triggers at time 0.49. This is expected, as in realtime mode, the time
that is checked is the next transition time in T-FSA, not the current time. So, the breakpoint
pauses the simulation one big step “early”. Two big steps later, the simulation is in the
Pass up state. The user steps into this state, since it contains a CBD model, and executes a
big step. The step computes all values of the blocks.

Summary

This section demonstrates how debugging support can be implemented for a hybrid for-
malism that combines T-FSA with Causal Block Diagrams. The language exhibits the
following semantic features of the feature diagram presented in Figure 4.2:

• It is hybrid (through embedding).

• It allows to model algebraic loops (that need a specific schedule to be computed in
a consistent manner).

• It implements discrete-event semantics, combined with discrete- or continuous-
time semantics (depending on the types of blocks used in the instance models).

• It is deterministic.

• It has static structure.

Its hybrid nature is the most prominent feature of the formalism, as that requires the
construction of a coordinator that manages the interaction between the two individual
formalisms’ simulators (using “glue” constructs). In this section, we have demonstrated
that our approach can support debugging for languages exhibiting this feature.

5.8 A Domain-Specific Formalism for Production Systems

This section presents a domain-specific language for describing Armoured Personnel
Carrier (APC) production lines (called the ProductionSystem DSL). This language differs
from the previous languages for which we presented a debugger, which were general-
purpose, whose semantics were operationally defined. In contrast, the ProductionSystem
language’s semantics is defined translationally, by mapping onto a formalism with known
semantics. The ProductionSystem language is a causal, timed (discrete-event), static-
structure, deterministic formalism.

145



CHAPTER 5. REPRESENTATIVE FORMALISMS

Machine

Processor

Collector

Generator

Assembler

QualityControl

Repair

ConveyorBelt

- capacity: Integer

M_to_Conv

QC_To_Conv Conv_to_Conv

Conv_To_M

Operator

Part
Gen_To_Part

Wheels

Body

MachineGun

WaterCannonTracks

Item

*

1..1

0..10..1

0..1 0..1

0..1 0..1

0..1 1..1

Figure 5.33: The metamodel of the ProductionSystem design language.

5.8.1 Syntax and Semantics

The ProductionSystem DSL has the following syntax requirements:

• A production system is a set of connected machines and conveyor belts.

• A conveyor belt carries (unfinished) products.

• All machines, except the collector, are connected to exactly one conveyor belt on
which they can put parts and/or assembled products.

• Machines can either generate the parts of a APC (wheels, tracks, bodies, machine
guns or water cannons), process parts and/or assembled products, or collect assembled
products.

• Machines that process can be assemble machines, quality control machines or repair
machines.

• Machines that process are connected to exactly one conveyor belt from which they
take products that are to be processed.

• Machines that process can be operated by an operator.

• Conveyor belts can be connected.

• Quality control machines are a special kind of machine, as they can put products that
need to be reworked on a different conveyor belt.

Figure 5.33 shows the metamodel implementing the requirements of this design language
as a class diagram. The design language enables a modeller to build a production system
consisting of machines (that either generate parts, process parts, or collect finished products),
that are connected by conveyor belts. Operators are modelled as stand-alone entities; they
are not connected to machines in the design language as this is a runtime concern only. The
design language only allows to define a number of operators that are available at runtime

146



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

to operate processors. Generators are connected to the part they generate, to avoid having
to define many subclasses. Conveyor belts have a capacity: the number of items they can
carry. Conveyor belts cannot have any items placed on them in the design language, as that
is a runtime concern.

The ProductionSystem DSL has the following semantic requirements:

• There is only one direction in which products can be moved from one conveyor belt
to the other.

• Products can move from a conveyor belt to a connected conveyor belt.

• Generators can put generated APC parts on their outgoing conveyor belt.

• Processors can only process when there is an operator at the machine.

• An operator can move from one machine to the other if the required (unfinished)
part(s) is/are ready for that machine.

• An assemble machine with an operator can take two tracks, a body and a machine
gun from its input conveyor belt and process them into a war APC that is put on
the output conveyor belt, or can take four wheels, a body and a water cannon from
its input conveyor belt and process them into a riot APC that is put on the output
conveyor belt.

• A repair machine with an operator can take an (unfinished) product from its input
conveyor belt, repair it, and put it on the output conveyor belt.

• A quality control machine with an operator can take an assembled item from its input
conveyor belt. In case the item is not broken, it puts the item on its normal output
conveyor belt. In case the item is broken, it puts the item on its other output conveyor
belt for pieces that need to be reworked.

ALGORITHM 10: The simulation algorithm for the ProductionSystem DSL.
Input: Model to simulate (model)

1 time← 0;
2 state← initialize state(model);
3 while not endCondition(state, time) do
4 while not endConditionProductionSystemStep(state, time) do
5 while not endConditionMachineStep(state, time) do
6 while not endConditionBigStep(state, time) do
7 transitioning ← find transitioning elements(model, state, time);
8 output← compute output(model, state, time, transitioning);
9 state← compute new state(model, state, time, transitioning);

10 end
11 time← increment time(model, state, time)

12 end
13 end
14 end

Now, an operational definition of the simulation algorithm for the ProductionSystem
language has to be provided. However the simulator is implemented (operationally or

147



CHAPTER 5. REPRESENTATIVE FORMALISMS

translationally), we need a specification of its intended behaviour, which will later be used
to define useful debugging operations. The simulator has the responsibility of initializing
the runtime state and time, simulate the system until an end condition specified by the user
has been satisfied, and return the resulting state at the end of simulation. The specification
of the simulation algorithm is shown in Algorithm 10. During simulation, the state of the
system is updated according to the required semantics defined above. The smallest steps of
the simulation algorithm performs the following actions:

1. Find all elements that will perform an action. This can include:

• Generators that are ready to generate an item. We assume a certain (randomized)
delay between items being generated.

• Items that can be moved from a conveyor belt to the next conveyor belt or a
machine. We assume a fixed delay for an item to remain on a conveyor belt
(proportional to the conveyor belt’s capacity).

• Machines that are ready to process, for which a (free) operator has to be found.

• Machines that are ready to process and have an operator operating them; we
assume a (randomized) delay for each machine to perform its task.

2. Compute the output of each element that performs an action. This can be, for example,
an item that moves from one conveyor belt to the next.

3. Compute the new state of all elements that perform a transition.

We further define the following steps:

• A big step is a succession of one or more small step(s). After a big step ends, the
time is incremented.

• A machine step is a succession of one or more big steps, and ends when one of the
following is true:

– A processor is ready, meaning it has received the necessary item(s).

– A processor starts processing, meaning an operator was found to operate the
processor.

– A processor ends processing, meaning the item it worked on is placed on its
output conveyor belt.

• A production system step is a succession of one or more machine steps, and ends
when a new finished product is received by a collector.

This algorithm can be implemented operationally in a suitable language, but we choose to
translationally map ProductionSystem models to the discrete-event formalism Parallel
DEVS (for which a debugger was presented in Section 5.3).

Figure 5.34 illustrates how translational semantics work. We start by explaining the black-
box approach presented in Figure 5.34a. We assume a target language with known semantics,
whose design language, runtime language, and output language are described by the
metamodels MMTrg D, MMTrg R, and MMTrg O. Four operations are defined:

148



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

MMTra_Src_Trg

SEMDenMMSrc_D MMTrg_D

SEMOp

MMTrg_OMMSrc_O
MAPO_O

MMSrc_R MMTrg_R

INIT

D_To_RTrg

SEMSrc

D_To_RSrc

(a) Translational semantics: black box.

MMTra_Src_Trg

SEMDenMMSrc_D MMTrg_D

INIT

SEMStep

MMTrg_OMMSrc_O
MAPO_O

MMSrc_R MMTrg_R
MAPO_R

D_To_R

SEMSrc

D_To_RSrc

(b) Translational semantics: white box.

Figure 5.34: Translational semantics.

1. SEMDen transforms valid models in the source design language described by
MMSrc D to valid models in the target design language described by MMTrg D.
This produces a traceability model conforming to MMTra Src Trg that keeps track
of the mapping information between the source and target model.

2. D To R transforms valid design models in the target language to valid runtime
models. This is most often a retype operation, since the runtime model is an extension
of the design model. In some cases, the operation can be more involved, including
exposing structural runtime information of design elements, such as in the Parallel
DEVS debugger (see Section 5.3).

3. INIT initializes the runtime model: this is the first step in the operational semantics.

4. SEMOp is a black-box transformation which produces, from an initial system state,
a state trace of the system behaviour in the output language MMTrg O.

5. MAPO O maps the output trace of the target language back to an output trace in
the source language. It uses the forward mapping information stored in a model
conforming to MMTra Src Trg to back-translate the model. The result is a trace
is a domain-specific simulation trace, using a technique similar to back-annotation,
implemented by Hegedüs et al. [79].

Translational semantics allow to reuse existing infrastructure to simulate models. If done
correctly, however, a user of the source language needs not know that the semantics are
defined translationally: from the outside, a request for simulating a model in the source
language results in an output model just the same as it would do if the semantics had been
defined operationally. Instead of defining SEMOp Src operationally, we can deduce from
Figure 5.34a the following equation:

SEMOp Src(MSrc) = (MAPO O ◦ SEMOp ◦ INIT ◦D To R ◦ SEMDEN )(MSrc)

In our discussion, we have omitted intermediate runtime states of the source model and
assume the user is only interested in the output model. For debugging purposes, however,
we need to be able to inspect intermediate states. This is facilitated by defining two more
operations:

149



CHAPTER 5. REPRESENTATIVE FORMALISMS

:Generator

1

:Part

2

:Gen_To_Part3

1

:Part

2

:Gen_To_Part3

:AtomicDEVS

- name = get_identifier('1')

- initialState = 'generating'

- timeAdvance = 

      return rand(0.5, 1.5)

- outputFnc = 

      if (state == 'generating'):

          return {'g_out': {'type': get_type('2'),

                                    'broken': False,

                                    'id': gen_id()}}

4

:PS2DEVS_typelink
:Generator

: DEVSInstance

- type = get_identifier('1')

- name = get_identifier('1') + '_instance'

:PS
2D

EV
S
_instancelink

5

6

7

Figure 5.35: A rule that maps a generator onto its corresponding Parallel DEVS structure.

1. SEMStep breaks open the black-box of SEMOp by exposing the iterations of the
simulation algorithm as steps. The output trace conforming to MMTrg O is no
longer constructed in one operation. Instead, it is constructed iteratively by taking the
current state (an instance of MMTrg R) and the current (partial) trace (an instance
of MMTrg O), and producing the new state (an instance of MMTrg R) and the new
(partial) trace (an instance of MMTrg O).

2. MapO R takes a (partial) trace (an instance of MMTrg O) and the traceability infor-
mation encoded in an instance of MMTra Src Trg and produces a new runtime state
in the source language (an instance of MMTrg O), as well as a new trace model in
the source language (an instance of MMSrc O). These functions allow to construct a
domain-specific trace iteratively based on the semantics of the target language.

To implement the semantics of the ProductionSystem DSL, we choose to map to the
Parallel DEVS formalism. This is a natural choice, as 1) the users of the ProductionSystem
DSL are mainly interested in throughput information (for which the Parallel DEVS
formalism is well-suited), and 2) the semantics of Parallel DEVS are closely related, but
sufficiently general to serve as a semantic domain. The translational mapping needs to be a
total function. We explain below how the mapping is implemented:

• All model elements are mapped to (one or more) DEVSInstance instances. The type
of these instances, an AtomicDEVSBlock, is either generated once for those elements
whose behaviour is identical, or specific to this instance.

• A model element is linked to its type (an AtomicDEVSBlock) and its instance (a
DEVSInstance) through traceability links.

• Two AtomicDEVSBlock instances are defined statically for operators and for conveyor
belts of capacity 1. This means all operators and all conveyor belts share their
behaviour.

A conveyor belt in Parallel DEVS holds an item it receives through its input port for
1 time unit. It then sends it to the next connected instance.

An operator in Parallel DEVS starts by waiting for a message on its input ports.
If it receives a “query” message, it replies stating whether it is currently free to

150



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

work or not. If it receives a “request” message, a machine requests the operator to
work at that machine. In case the operator is free when the message arrives, the
operator is allocated to that machine. The operator sends a message to the machine
to acknowledge that the request was honoured. In case the operator is not free, he
queues the request and waits until he is free again to honour the request. An operator
is notified by the machine if his job has finished; the operator receives a “release”
message.

• Operators are mapped to a DEVSInstance with type the AtomicDEVSBlock defining
the behaviour of operators.

• Conveyor belts are mapped to a number of connected DEVSInstances equal to their
capacity. The type of these instances is the AtomicDEVSBlock defining the behaviour
of conveyor belts. This is a 1-n mapping: one instance in the DSL is represented by
multiple instances in the semantic domain.

• Each generator is mapped to a AtomicDEVSBlock generated specifically for them: the
generated type knows which type of item to generate, and does this after a randomized
period of time has passed. The generator is also mapped to a DEVSInstance of the
generated type. This instance is connected to the (first) DEVSInstance of its outgoing
conveyor belt.

• Each collector is similarly mapped to an AtomicDEVSBlock and a DEVSInstance of
that type. The collector receives finished products on its input port and increments its
corresponding state variable(s) when that happens.

• Each processor is similarly mapped to an AtomicDEVSBlock and a DEVSInstance
of that type. A processor can be “ready”: for assemblers, this means the necessary
parts have arrived to start producing an APC; for quality control machines and
repair machines, this means a finished product has arrived on its input port. When
a processor is ready, it searches for a free operator by sending messages to the
operators according to the protocol previously described. Once an operator is found,
the processor can start “working”. The processor is completes processing after a
randomized time interval. Assemblers put the finished product (which, with a random
chance, can be broken) on their output port. Quality control machines put the finished
product on the correct output port, depending on whether the product was broken or
not. Repair machines put the repaired product on their output port.

These rules are encoded in a model transformation. An example rule is shown in Figure 5.35.
It shows how a generator is transformed to its type and instance in Parallel DEVS. To be
able to identify the type of each generator, the identifier of the generator (which is unique
in the model being transformed) is taken as type name. The instance has the same name,
with the string ‘ instance’ appended.

5.8.2 Debugging Operations

We define the following debugging operations:

• [Continuous Simulation] In this mode, the simulation runs as fast as the underlying
hardware can manage and the operating system will allow, until the end condition

151



CHAPTER 5. REPRESENTATIVE FORMALISMS

is satisfied. It is comparable to running program code, which is always run as fast
as possible. At the end, the user can inspect the generated trace and any metrics
collected.

• [Real-Time Simulation] In this mode, simulated time is synchronized with the wall-
clock time. For debugging purposes, a scale factor can be applied to speed up or
slow down simulation, while retaining the linear relation between simulated time
and wall-clock time. A scale factor of 1 corresponds to real-time, while a scale factor
smaller or greater than 1 slows down or speeds up simulation proportionally. State is
observed throughout real-time simulation after each iteration of the simulation loop.

• [Pause] Pausing a simulation allows to inspect the current state of the system and
enables other debugging operations, such as stepping and state modifications.

• [ProductionSystem Step, Machine Step, Big Step, Small Step] To transpose the
notion of stepping, we turn to the simulation algorithm shown in Algorithm 10.
We define four types of steps, corresponding to the three while-loops and the low-
level computation steps. A ProductionSystem Step executes one simulation step
(corresponding to an iteration of the outer while-loop): it completes the creation of
a finished product. A Machine Step executes the system until one of the machines
in the production system changes its state (ready, start processing, end processing).
A Big Step executes a number of small steps, which are phases in the simulation
algorithm. There are three such phases: find all elements that will perform an action,
compute the output of each element that performs an action, and compute the new
state of all elements that perform a transition. After every phase, relevant information
is communicated to the user.

• [Breakpoints] A user can specify a breakpoint in the form of a condition on the
execution state of the ProductionSystem simulation (including simulated time and
current (total) state information). A breakpoint is a function that returns True when
the simulation should pause, False in all other cases. When a breakpoint triggers, the
user is notified of the name of the triggered breakpoint, and the current state of the
simulation.

5.8.3 Implementation

This section explains our approach to implement a debugger for the ProductionSystem
DSL. We explained the abstract syntax of the language, the abstract simulation algorithm,
the translational mapping to Parallel DEVS, and the desired debugging operations. To
implement the debugger for ProductionSystem, we reuse the debugger defined for the
Parallel DEVS formalism.

Figure 5.36 presents the workflow for our approach, which is similar to back-annotation.
We illustrate with our running example, which maps a production system language onto
Parallel DEVS.

First, a design in the domain-specific language is created. This design model is subsequently
transformed to a semantic domain, in our case Parallel DEVS. To start simulating, the

152



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

model artefact

manual activity

automatic activity

language

manual transformation

automatic transformation

ProductionSystemDesign ParallelDEVSDesign

ProductionSystemRuntime ParallelDEVSRuntime

ProductionSystemTrace ParallelDEVSTrace

PS2DEVS

InitializePS InitializeDEVS

Simulate

PS2DEVS_Trace

Translate

ConstructModel

:ConstructModel

:ProductionSystemDesign

:PS2DEVS
:ParallelDEVSDesign

:PS2DEVS_Trace

:InitializePS
:ProductionSystemRuntime

:InitializeDEVS

:ParallelDEVSRuntime

:Simulate
:ParallelDEVSTrace

:Translate

:ProductionSystemTrace

:PS2DEVS_Trace

Figure 5.36: Workflow: translating a target output model back to the domain-specific level.

ProductionSystem model is initialized, resulting in the first snapshot of the domain-
specific trace. The Parallel DEVS model also has to be initialized: since the initialization
can depend on the initial state of the ProductionSystem model, a translation has to be
made from the ProductionSystem state to the Parallel DEVS state. Once the models
are initialized, the simulator starts simulating the Parallel DEVS model; this results in
a trace. With back-annotation, the trace can be translated back to a ProductionSystem
trace.

A debugging-enhanced simulator adds control and observation support to the simulation
process. The trace no longer is communicated to the user at the end of simulation; instead,
the trace is built incrementally and, depending on the operations the user performs, com-
municated at certain points in time. The translation between event traces is in that case
no longer a model transformation that runs once. Instead, a debugger for the Production-
System provides similar levels of interactive support, meaning that the generation of the
ProductionSystem trace also needs to be incremental. The debugger for the Production-
System language can reuse the debugging support offered by the Parallel DEVS debugger
for both offering domain-specific debugging operations, as well as translating the (partial)
trace to communicate to the user.

Two concepts are necessary to implement the desired debugging behaviour: event detectors
and state propagators. These are explained in the next subsections.

153



CHAPTER 5. REPRESENTATIVE FORMALISMS

Ttrg

Tsrc

D1 D2 D3 D4 D5

ignored

D6 D7 D8 D9

Figure 5.37: Detection: discrete-event.

Event Detection

Event detection is concerned with interpreting the events coming from the lower-level
debugger. A series of such events can correspond to an event at the DSL level. These DSL
events convey a state change of the DSL model. Detectors are defined for all high-level
events of interest. The detectors are not responsible for translating the low-level state to a
DSL state; that is the task of the propagators, explained in the next subsection.

Figure 5.37 shows graphically a trace of a discrete-event target formalism Ftrg with time
base Ttrg. Time flows from left to right, and at non-equidistant points in time, a state change
is observed, either in the generated state trace, or while debugging the model. The goal
is to detect patterns in this event trace and generate events that result in state changes in
the state trace of the source language Fsrc with time base Tsrc (which is translationally
mapped onto Ftrg). In the figure, we assume that Tsrc and Ttrg are equal: they are both
discrete-event.

We exhaustively discuss the possible relations between the two event traces: we explain us-
ing detectors D1 through D9. Some relations are not possible or not relevant for debugging.
We explain why this is the case and which relations we do consider.

• D1 is the trivial case: a state update at the target level corresponds to a state update
at the source level.

• D2 detects that one or more consecutive state updates at the target level correspond
to a single state update at the source level. The state update at the source level
immediately triggers once the last state update of interest at the target level is
received.

• D3 is an autonomous detector: it triggers without any event at the target level.
Information is added to the source event trace which has no corresponding target
events. This is not a useful detector, as we assume no information can be conjured
without any relation to the target state trace.

• D4 detects that one event at the target level corresponds to multiple events at the
source level. This means that the debugger of the source formalism adds information
in between state updates of the target level, information which is not available at
the target level. This might be useful in certain cases. Assume that in our running

154



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

D1 D2 D3 D4 D5 D7 D8 D9D6

ignored Ttrg

Tsrc

Figure 5.38: Detection: discrete-time.

example, we want to add animation: instead of an item moving from one conveyor
belt to the next instantaneously (modelled by a departure and an arrival event that
occur a non-zero amount of time apart), we show a fluent motion of the item (i.e., a
path interpolation between departure and arrival). This means the semantics were
only partially implemented translationally: operational information is added at the
source level. We do not consider such cases, as they would require an approach
similar to hybrid debugging. If animation cannot be expressed in the target language,
the target language should be changed, potentially to a combination of multiple
languages.

• D5 detects that an event on the target level corresponds to an event ‘in the past’ of
the source level. Because of causality constraints, we consider such detectors invalid,
as it is impossible to insert events in the past.

• D6 and D7 are two detectors that map multiple target events onto single source
events, but those target events arrive out-of-order. No causality is violated, however,
and such detectors can be useful.

• D8 is an example of an m-n detector: in this case, 3 target events trigger 2 source
events. The issue with this detectors is that they trigger when the last event is received.
Otherwise, they should be modelled using one or multiple detectors such asD2. Now,
this detector schedules events in the past, leading to the same conclusion as for D5.

• D9 both schedules events in the past and in the future. Causality problems also occur
with events in the future: assume another detector that affects the same element as the
last event scheduled by D9, but occurring before it. Consistency is not guaranteed.

• Events at the target level can also be ignored: this is useful in case the target level
contains too much detail (transient states at the source level).

This discussion is also valid in case the detectors do not deal with state updates, but
with other events coming from the target debugger. Examples include the triggering of
breakpoints and small step information. From the discussion above, we conclude that n− 1
relations from target event traces to source event traces are allowed. These events can be
interleaved, but no information can be added, meaning that no events can be autonomously
scheduled. Scheduling events in the future or inserting events in the past is also not
allowed.

155



CHAPTER 5. REPRESENTATIVE FORMALISMS

Strg

Ssrc

1
2

ignored

3

5

4

Figure 5.39: Propagation.

Figure 5.38 demonstrates how the time bases for the source and target formalisms can
differ. The target formalism is still a discrete-event formalism, but the source formalism is
discrete-time. The detectors remain the same, and so do our conclusions: D3, D4, D5, D8,
and D9 are not considered valid detectors. For the valid detectors, however, their detection
often occurs ‘in-between’ the discrete time state updates. In that case, they are delayed
until a discrete-time update occurs at the source level. This seems similar to scheduling
events in the future, potentially violating causality if another detector schedules an event
before that point is reached. In this case, however, all detectors schedule their events in the
future. The relative order of simultaneous events is critical information, to ensure that the
simulator can process them in order at the discrete state update times.

To implement detectors, they can be specified using temporal properties. These properties
reason over a trace of events and match when the property is satisfied. A well-known
language for expressing temporal properties is LTL, as implemented in model checkers such
as SPIN [84]. More recently, ProMoBox [136] offers a domain-specific property language,
allowing to define temporal properties using domain-specific syntax in the form of structural
patterns that are connected using temporal operators. We model detectors using ProMoBox,
after which the definitions are translated to a (query) model transformation that progressively
matches the property while the trace is updated by the debugger. Currently, that translation
is performed manually, but in the future we envision a fully automatic translation from
ProMoBox properties to an operational form used to detect such events.

State Propagation

Detecting events at the source level is the first step towards translating the state trace from
the target level to the source level. The next step is to process the information in the state
update(s) and propagate that information from the target level to the source level.

Multiple relations between the target and source level states are possible. These are
illustrated in Figure 5.39: the state set Strg is mapped onto the state set Ssrc. The size of
both sets was chosen deliberately: we assume the DSL is an abstraction whose state space
is smaller compared to that of the target level. In some cases they might be equally large,

156



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

but the source state space will never be larger.

We distinguish five possible state mappings, discussed next.

1. A 1-1 mapping, the basic case: one element in the state space of the target is mapped
onto an element in the state space of the source.

2. An n-1 mapping: multiple elements in the state space of the target are mapped onto
one element in the source state space. This aggregation operation is relevant, since
we assume the source is an abstraction.

3. A 1-n mapping: one element in the state space of the target is mapped onto multiple
elements in the source state space. This implies the source is a refinement of the
target: information is necessarily added in the translation from target to source. But
that information has to be stored somewhere. And if it is not in the target state space,
it is not explicitly modelled but implicitly added in the state mapping. We do not
consider such cases.

4. A m-n mapping: this is a generalization of the previous cases, and as long there is an
abstraction relation between source and target states, our approach covers it.

5. A source state that is not the result of the translation of a target state. As was the
case for the 1-n mapping, information is retrieved from somewhere that is not the
target state space. We do not consider such cases and assume all information can be
retrieved from the target state space.

To implement propagators, a relation between elements in target states and elements in
source states has to be defined, and operationally implemented to maintain that relation. One
possibility consists of defining that relation declaratively, using, for example, triple graph
grammars [179]. These definitions can be executed using an engine, ensuring that source
and target states are constantly synchronized. Another possibility is to define propagators
operationally using model transformation rules. Since propagation only needs to occur
when a detector detects a domain-specific event, those are the points in time at which the
state is propagated. Defining propagators as imperative transformation rules is therefore a
natural choice.

A ProductionSystem Debugger

To define detectors and propagators that implement debugging support for the Production-
System DSL, we have to examine the interface provided by the Parallel DEVS debugger.
To reiterate, the debugger accepts the following events:

• continuous runs the simulation as-fast-as-possible.

• realtime runs the simulation in real-time, optionally scaled.

• pause halts the simulation: either after the current big step ends, or as-fast-as-possible
if, during realtime simulation, the simulator is in a waiting period.

• big step executes one iteration of the simulation algorithm.

• small step executes one phase of the current iteration.

157



CHAPTER 5. REPRESENTATIVE FORMALISMS

• add breakpoint, del breakpoint, and toggle breakpoint manages breakpoints: they
can be added (which requires a name for the breakpoint, and a function which returns
whether or not the breakpoint triggers based on the current state), they can be deleted,
and they can be enabled or disabled.

• inject injects an event on a specified port.

• trace returns the full state trace.

• reset resets the simulation.

The debugger returns the following events:

• terminate: the simulation terminated.

• breakpoint triggered: a breakpoint was triggered. Communicates the name of the
breakpoint that triggered.

• all states: returns the current state of all components in the model.

• big step done: a big step ended.

• imminents, selected imminent, outbag, inbags, transitioning, new states, new tn:
after each phase of a simulation iteration, an event is sent which contains the infor-
mation that was computed during that phase.

The debugger for ProductionSystem is implemented by big stepping through the simula-
tion of the Parallel DEVS model. After each big step, the information received from the
Parallel DEVS debugger is passed to the detectors, and if one detects an event at the level
of the DSL, the state information is propagated. We do not consider real-time simulation.
This would require the simulator for ProductionSystem to have autonomous (operational)
behaviour, implementing the waiting periods. We focus on the challenges arising from
implementing a debugger for a formalism whose semantics are implemented translationally,
and refer to our previous research for instrumenting operational semantics with real-time
behaviour.

The following detectors are defined:

• A big step is detected when a big step in the Parallel DEVS simulator ends and one
or more of the following conditions hold:

– an item is received (from a machine or another conveyor belt) at the first
DEVSInstance corresponding to a conveyor belt;

– an item is received (from a machine or another conveyor belt) by the DEVSIn-
stance corresponding to a processor or a collector;

– an operator starts working at a processor, which is denoted by the state of
the DEVSInstance corresponding to the processor storing the identifier of the
operator in its state;

– the state of the DEVSInstance corresponding to a processor changes to waiting,
ready, or working.

158



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

• A machine step is detected when a big step in the Parallel DEVS simulator ends
and the state of the DEVSInstance corresponding to a processor changes to waiting,
ready, or working.

• A production system step is detected when an item is received by the DEVSInstance
corresponding to a collector from its incoming conveyor belt.

• The end condition of simulation is detected when a big step in the Parallel DEVS
simulator ends and the end condition (on the current ProductionSystem state) is
satisfied.

Multiple detectors can detect an event: if a machine step is detected, so is a big step. But,
if the user is executing a machine step, all big steps are ignored until a machine step is
detected. If multiple conditions are satisfied for a big step (for example, two conveyor belts
each receive an item in the same big step), these steps are aggregated: only one big step is
detected at the DSL level.

Figure 5.40 shows one detector and associated propagator: the moving of an item on and
between conveyor belts. The detector is defined as follows: if a DEVSInstance, connected
through a traceability link with a ConveyorBelt, that has no incoming connections from
another DEVSInstance that is connected to that same ConveyorBelt has a non-null value
for its ‘item’ state variable after that state variable has been null, a new item is detected. In
our example, a conveyor belt is defined with capacity 3, and is mapped to 3 DEVSInstances
that can each hold one item. The first big step event coming from the target debugger has
an item arriving in the first DEVSInstance. Since this item is new (it is not connected yet
to the conveyor belt in the ProductionSystem model), the detector detects this as a big
step. The propagator translates the runtime state of the target model: an item is created and
connected to the conveyor belt. A next big step of the Parallel DEVS simulator moves the
item from the first DEVSInstance to the second. The detector does not detect a DSL step:
the event is ignored, but remembers that the item state variable of the first DEVSInstance is
now null. In the last big step of the Parallel DEVS simulator, a new item is received by the
first DEVSInstance. Again, a new item is created and connected to the conveyor belt. Using
this detector and propagator, the state of a conveyor belt is an aggregation of the state of a
number of elements in the Parallel DEVS model.

Figure 5.41 shows the detection of an operator starting to work on an assembler. There
are five big steps involved, relating to the protocol which exists between a processor and
operators:

1. A processor which is ready starts looking for an operator by sending a ‘query’
message to all operators.

2. The operators respond whether or not they are free.

3. The processor receives all responses and chooses an operator; the processor sends a
‘request’ message to that operator.

4. Eventually, the operator allocates itself to the processor.

5. The processor starts working.

159



CHAPTER 5. REPRESENTATIVE FORMALISMS

D

T
sr

c

:C
on

ve
yo

rB
el

t

- 
ca

p
ac

it
y 

=
 3

:I
te

m
:C

on
v_

To
_
I <

<
tr

ig
g
er

s>
>

T
tr

g

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

tr
an

sp
or

ti
n
g
"

- 
it
em

 =
 g

et
_
in

c_
it
em

()

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
ai

ti
n
g
"

:C
on

ve
yo

rB
el

t

- 
ca

p
ac

it
y 

=
 3

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
ai

ti
n
g
"

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

1

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

tr
an

sp
or

ti
n
g
"

- 
it
em

 =
 g

et
_
in

c_
it
em

()

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
ai

ti
n
g
"

:C
on

ve
yo

rB
el

t

- 
ca

p
ac

it
y 

=
 3

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
ai

ti
n
g
"

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

2

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

tr
an

sp
or

ti
n
g
"

- 
it
em

 =
g
et

_
in

c_
it
em

()

:C
on

ve
yo

rB
el

t

- 
ca

p
ac

it
y 

=
 3

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
ai

ti
n
g
"

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

tr
an

sp
or

ti
n
g
"

- 
it
em

 =
 g

et
_
in

c_
it
em

()

3

DP

ig
n
or
ed

:C
on

ve
yo

rB
el

t

- 
ca

p
ac

it
y 

=
 3

:I
te

m
:C

on
v_

To
_
I

:I
te

m

:C
on

v_
To

_I

P <
<

tr
ig

g
er

s>
>

Figure 5.40: Detection and propagation: conveyor belt.

160



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

:A
ss

em
b
le

r

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

lo
ok

in
g
_
fo

r_
op

"

:O
p
er

at
or

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

{'
ty

pe
':
 'q

ue
ry

'}

1
:A

ss
em

b
le

r

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

lo
ok

in
g
_
fo

r_
op

"

:O
p
er

at
or

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

{
't
yp

e'
: 

'r
es

po
n
se

',

  
'fr

ee
':
 s

el
f.
st

at
e[

'n
am

e'
] 

=
=

 'w
ai

ti
n
g'

}

2

:A
ss

em
b
le

r

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

se
n
d
in

g
_
re

q
_
to

_
op

"

:O
p
er

at
or

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

{'
ty

pe
':
 'r

eq
ue

st
'}

3
:A

ss
em

b
le

r

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
ai

ti
n
g
_
fo

r_
op

"

:O
p
er

at
or

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

{
't
yp

e'
: 

'a
llo

ca
te

'}

- 
st

at
e 

=
 "

al
lo

ca
ti
n
g
"

4
:A

ss
em

b
le

r

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

w
or

ki
n
g
"

:O
p
er

at
or

:P
S
2
D

E
V
S
_
in

st
an

ce
lin

k

: 
D

E
V
S
In

st
an

ce

- 
st

at
e 

=
 "

al
lo

ca
te

d
"

5

 

D

T
sr

c

:A
ss

em
b
le

r
:O

p
er

at
or

:O
p
_
To

_
M

- 
st

at
e 

=
 "

w
or

ki
n
g
"

P

<
<

tr
ig

g
er

s>
>

T
tr

g

Figure 5.41: Detection and propagation: operator.

161



CHAPTER 5. REPRESENTATIVE FORMALISMS

The propagation is 1-1: the state of the Parallel DEVS elements representing the assembler
and operator are mapped trivially to the DSL level. Detection, however, is n-1: multiple big
steps are needed to detect that an operator has moved to a processor.

Implementing small steps is done similarly, but when a small step is requested by the
user (at the ProductionSystem level), the system invokes Parallel DEVS small steps.
We define three small steps, or phases, according to the ProductionSystem language’s
semantics:

1. Find all elements that will perform an action.

2. Compute the output of each element that performs an action. This can be, for example,
an item that moves from one conveyor belt to the next.

3. Show the new state of all elements that perform a transition.

These small steps are implemented by detecting small step events coming from the Parallel
DEVS debugger, in particular the following phases:

1. The transitioning message lists all components that will transition in the next step
and can be translated, through the traceability links, to elements in the Production-
System model that will perform an action.

2. The outbags message lists all output generated by transitioning components. This
output can be translated to items being transported between elements in the Produc-
tionSystem model.

3. The new states and new tn messages are used to update the state of the components
in the ProductionSystem model.

With detection and propagation, we build a debugger for the ProductionSystem DSL,
while only relying on the traceability information that was a side effect of the translational
mapping, and the debugging interface provided by the Parallel DEVS debugger.

Figure 5.42 presents the generated debugging environment for the ProductionSystem
language. It is a textual console application, which allows a user to input debugging
commands and displays the propagated state when a higher-level event is detected. In
the example session, the user is “big stepping” through the simulation at the level of
the production system. The states of the conveyor belts change as items are placed on
them by generators, or passed from a connected conveyor belt. The generated interface
demonstrates that it is possible to debug systems at the level of their operational semantics,
even if the actual implementation uses translational semantics behind the screens. A more
appropriate (graphical) interface can replace this proof-of-concept textual interface to debug
ProductionSystem models using visualizations that are more familiar to the users of the
language.

Summary

The goal of this chapter was to validate the de- and reconstruction approach for developing
modelling language debuggers by applying the techniques presented in the previous chapter

162



5.8. A DOMAIN-SPECIFIC FORMALISM FOR PRODUCTION SYSTEMS

Figure 5.42: The interface for the ProductionSystem debugger.

to a number of formalisms with diverse semantics. We created debuggers for the following
formalisms:

• A procedural, sequential action language, to demonstrate the feasibility of our ap-
proach on traditional programming languages.

• Causal Block Diagrams, in which data flow can be modelled with blocks and
signals. Blocks can form algebraic loops, which requires a (linear) solver to solve
the set of equations they represent. This requires a particular ordering of block
computations; this schedule needs to be presented by the debugger to the user.

• Parallel DEVS, a discrete-event formalism, which consists of components that
communicate using events. A debugger for this language has to be able to show the
communication patterns and the state changes of the components.

163



CHAPTER 5. REPRESENTATIVE FORMALISMS

• Statecharts, a discrete-event formalism that is often used to describe the timed,
reactive, autonomous behaviour of systems. It consists of states that can be composed
hierarchically and orthogonally. Their semantics are intricate due to the interleaving
of events raised and transitions executed in orthogonal components, as well as events
coming from the environment.

• Petrinets, a formalism that is used to model non-deterministic behaviour. The
semantics of Petrinets models branch: a debugger needs to be able to explore such
branches.

• Dynamic Structure DEVS, an extension of Parallel DEVS in which structure-
varying behaviour can be specified, often used to model multi-agent systems. A
debugger for this formalism has to provide extra (visual) information to manage
simulation entities being created and destroyed.

• Hybrid Automata, a hybrid formalism that exhibits both timed, reactive behaviour, as
well as continuous behaviour. Since the two formalisms are hierarchically combined,
a debugger needs to be able to switch contexts.

• A domain-specific language whose semantics are defined translationally, by mapping
onto a formalism with known semantics (with an associated debugger). Since the
simulator is not defined operationally, it cannot be instrumented as was the case for
the other formalisms. Instead, a debugger needs to interpret state updates coming
from the debugger for the target language.

By doing so, this chapter demonstrates the applicability of our approach by covering
most of the language features in Section 4.1. We do not cover formalisms with spatial
distribution semantics (such as Cellular Automata [214]), nor do we cover a-causal
languages. We assume cellular automata are equivalent to discrete-event models (such
as implemented by CellDEVS [210]), and as such, they do not present a new challenge
for debugging. A-causal model debugging, on the other hand, has been covered by other
researchers extensively. We refer the interested reader to the many references on this
topic [26, 27, 157, 159, 186]). Additionally, while we show how to debug formalisms
whose semantics are defined operationally and translationally, we do not consider the
special case where the semantics are defined by code generation. Again, we refer to related
work [47, 117, 216]. We also do not cover black-box simulators. From the debugger
presented in Section 5.7, we can deduce that a grey-box approach is sufficient (white-box is
not required) if the interface of the simulator exposes sufficient operations to manipulate
the state of the simulation, and provides information on the current state of the simulation
and its trace.

In the next chapter, we consider two advanced debugging techniques that are not im-
plemented in the debuggers we presented up to now: omniscient debugging and live
modelling.

164



Chapter 6

Advanced Techniques

In the previous two chapters, we presented a generic technique for constructing interactive
debugging environments for simulation formalisms, which includes a workflow, architecture,
and a structured approach to instrument an existing simulator with debugging support. We
applied our technique to a number of representative formalisms to demonstrate feasibility.
The debuggers all have support for a roughly equivalent set of debugging operations that
can be categorized according to what they control: there are operations for observing
and controlling simulated time, observing and modifying the simulation state, observing
and controlling simulation steps, and breakpoints. This chapter explores two advanced
debugging techniques: omniscient debugging and live modelling. Omniscient debugging
adds a step back operation to a debugger, which allows users to step back in simulated time.
Live modelling allows a user to change the design model of a running simulation. It merges
the new design with the runtime state, such that from that point on, the simulation is run
with the new model.

Structure Section 6.1 explains how omniscient debugging support can be added to a
debugging-enhanced simulator. It acknowledges the overhead involved, and discusses a
generic technique for selectively saving partial traces, to limit the memory consumption.
Section 6.2 explains how live modelling can be implemented, by first deconstructing the
live programming approach into necessary artefacts and operations, and transposing these
to simulation languages.

6.1 Omniscient Model Debugging

In Section 5.3, we presented a debugger for Parallel DEVS. We now extend this debugger
with a step back operation. Stepping back in time causes the simulation to revert to the
state before the last big step. This is realized through state saving: every consecutive state
is stored in memory. When requested, previous states are put in place again, and the global
simulation state is reverted. This is done through serialization of the state, and subsequent
deserialization when restoring the state. We call this technique Full State Saving: the



CHAPTER 6. ADVANCED TECHNIQUES

complete model state is stored after each transition. Such a state saving technique is naive,
however, and this section focuses on optimizing the implementation, to lower the threshold
for the modeller to use it. All experiments in this section were performed on a desktop
computer with an Intel i5-4570 (3.2 GHz) processor, 16GB of DDR3-1600 main memory
and a 500GB 7200 rpm HDD.

6.1.1 Stepping Back

In contrast to the usual debugging operations, omniscient debugging goes back in time.
This grants more freedom to modellers, as they can now traverse the simulation trace in
two directions. As users are discovering the benefits, omniscient debugging is gaining
popularity. Two ways of stepping back in time exist: taking a single simulation step back,
or jumping to an arbitrary point in simulated time. We discuss stepping back in time
in the context of the extended Parallel DEVS debugger. While Full State Saving is a
relatively easy technique for implementing omniscient debugging, it is not efficient, both
memory-wise and computation-wise, as at each step, the full state of the model is stored.
A small, but significant, optimization can be made: only the state of atomic models that
execute a transition is stored. We call this slightly optimized algorithm Copy State Saving.
It doesn’t store a single consistent state, but only timestamped partial states. These partial
states can be combined into a single consistent global state. This decreases both time and
memory consumption, as unchanged states are not serialized and stored again.

Despite omniscient debugging’s advantages, there are severe performance limitations. First,
omniscient debugging is plagued with memory issues [19, 43, 162]. Storing the complete
simulation trace eventually leads to memory exhaustion, as trace size only increases. When
simulators run out of memory, simulation halts. This makes it impossible to simulate
large-scale models using omniscient debugging. Most omniscient debuggers tackle this
problem in a lossy way. Either they use a time window, where only the most recent states
are retained, or they only store part of the state. Both approaches are lossy: it is impossible
to go beyond the fixed time window, or to access untracked parts of the model state.

Second, omniscient debuggers have low simulation performance [116, 161]. The primary
overhead is in serializing and storing model states after each transition. Contrary to
memory consumption, high time overhead does not prevent a model from being simulated.
Nonetheless, it might become impossible to simulate the model within reasonable time
bounds.

While the memory problem is obvious given the stored amount of data, the time problem is
less obvious. For our Parallel DEVS debugger, Figure 6.1 shows the difference between
turning omniscient debugging on and off, dependent on the size of the state. It shows an
aggregation of 20 simulation runs of a benchmark Parallel DEVS model with a varying
model state size. Without omniscient debugging, the model is simulated as-fast-as-possible.
With omniscient debugging, the model is simulated as-fast-as-possible, but after each “big
step” (state update), the current simulation state is saved to disk. We see that execution time
increases as the state history increases, due to the serialization overhead of state saving
becoming the bottleneck. This increase is linear, as the serialization routine used has linear
complexity in terms of the state size. The variance observed throughout the runs was
minimal, and is therefore not shown.

166



6.1. OMNISCIENT MODEL DEBUGGING

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5000  10000  15000  20000  25000  30000  35000

S
im

ul
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

)

Model state (Bytes)

Influence of omniscient debugging

With omniscient debugging
Without omniscient debugging

Figure 6.1: Overhead of omniscient debugging in forward simulation.

This overhead is always present when the option for omniscient debugging is provided, even
when it is never actually used. The sporadic use of omniscient debugging, therefore, does
not warrant the significant overhead on the more frequent forward simulation operations.
The other option would be for users to select upfront whether they want to use omniscient
debugging or not. This is not always known upfront, and even when users know so,
simulation becomes too slow for practical use when enabled.

6.1.2 Optimization

We now optimize the state saving algorithm described previously. Before we do so,
we go back to the core problem: “how to jump back to an arbitrary point in history?”.
This is the same problem encountered in Time Warp [87], which we will now further
investigate.

Relation to Time Warp

In parallel simulation, synchronization protocols are frequently used to allow different
simulation nodes to be at different points in simulated time [58, 59], increasing parallelism.
Time Warp is one such optimistic synchronization protocol. In Time Warp, each compu-
tational node simulates as fast as possible, ignoring the possibility for external events. If

167



CHAPTER 6. ADVANCED TECHNIQUES

such an event occurs anyway, simulation is rolled back to a point right before the event was
supposed to be processed. The event is then processed as usual, circumventing the causality
problem. Rollbacks significantly resemble our core problem: a way to jump to arbitrary
points in the past simulated time. We base our omniscient debugging algorithm on those
defined for optimistic synchronization.

In the context of Time Warp, several algorithms were created [39, 165, 169], with varying
degrees of stored data. Full State Saving stores a complete model snapshot at each transition,
as discussed before. Copy State Saving stores a snapshot of a specific model that changes its
state, as discussed before. Incremental State Saving stores only the difference between two
subsequent states, in the form of a reverse operation. During a rollback, all state changes
need to be undone in reverse order. This makes the size of the rollback (i.e., the amount of
steps that need to be rolled back) influence the time taken for the rollback. Periodic State
Saving will, instead of storing the model state after every transition, only store the state
periodically. During a rollback, we select the closest state before the requested time, and
simulate from then on. This assumes determinism in the simulation algorithm, as otherwise
it is not guaranteed that the same choices are made.

There are different non-functional requirements between Time Warp and omniscient debug-
ging. First, Time Warp solves the memory problem by using a window-based approach.
Contrary to omniscient debugging, however, optimistic synchronization can place a lower
bound on the states that will be accessed, using the Global Virtual Time (GVT), allowing it
to use a window. This is not the case with omniscient debugging, as we cannot know what
state the user wants to go back to. Second, rollbacks occur often in Time Warp, and need
to be processed fast to prevent cascading rollbacks [59]. This is again not the case with
omniscient debugging, where backwards steps happen only rarely and performance is less
of an issue.

For Time Warp, the main disadvantage of periodic state saving is that it requires forward
simulation for each backward step. This makes a backward step take longer than a forward
step (as one includes the other). But although this is a substantial problem for Time Warp,
omniscient debugging is used interactively and only rarely. Whereas a latency of 0.1
seconds is too much for Time Warp, even latencies up to half a second might be tolerable
during omniscient debugging. Since periodic state saving’s disadvantages are minimal
for omniscient debugging, we use this algorithm for our implementation of omniscient
debugging.

Periodic State Saving for Omniscient Debugging

Our algorithm is based on Periodic State Saving: instead of storing the state of models
at transition-time (as in copy state saving), we store the full simulation state after a fixed
interval. This does not influence the forward simulation algorithm at all, as storing the
model state happens independent of forward simulation. For backward steps, we search the
most recently saved simulation state, revert to it, and forward simulate from there up to the
requested time. Users can configure the interval, thus influencing performance.

The checkpointing interval is defined in wall-clock time, instead of simulated time. While
simulated time provides deterministic points in the simulation where snapshots are made,
using the wall-clock time takes into account a possibly changing simulation pace. Time

168



6.1. OMNISCIENT MODEL DEBUGGING

becomes becomes

A

B

C

a1 a2 a3 a4 a5

b1 b3 b4

c1 c2 c4

0 1 2 3 4 5 6 7 8

c3

b2

Figure 6.2: Overview of periodic state saving approach.
Green states (light) are stored, red (dark) states are not. Yellow lines indicate a point at

which a snapshot is made.

efficiency, and latency, is expressed in wall-clock time, as that is the actual time that the
modeller will have to wait for operations. Defining the interval in number of events executed
would also be possible, but has similar disadvantages as basing it on simulated time.

We also allow users to configure the maximally allowed memory use. When simulation
uses more memory, the oldest full model snapshots are compressed and persisted to disk.
Since these old snapshots are very unlikely to be necessary, and responsive performance
is all that we require, there is no significant disadvantage to disk storage. This way, the
full disk space becomes available for use by omniscient debugging, without any noticeable
performance impact.

We consider this approach and its configuration options in two dimensions: time and
memory.

Time Before we talk about optimizing time, we reason about which operations to opti-
mize: making one operation faster potentially makes other operations slower. In general,
forward simulation steps are far more common than backward simulation steps. Forward
steps happen at a high frequency, as they are automatically invoked. Backwards steps
happen only rarely and are invoked interactively by the user. Whereas thousands of forward
steps can be requested in a single second, backward steps occur only rarely: the modeller
must analyse the model to decide whether to step back again or not, and must press a button
to invoke the next step. Optimizing forward simulation should thus be our priority, on the
condition that backwards steps remain responsive enough for interactive use.

It is clear from our approach that we prioritize forward simulation: the forward simulation
algorithm is unaware of any omniscient debugging, and thus experiences no overhead.
Sometimes, minor pauses are noticeable in the simulation, which are used to serialize the
complete state. When rolling back, the latest snapshot is selected and simulation is restarted
from there on. This is shown in Figure 6.2, where only three snapshots are made. Any
rollback will be changed to a reset of a snapshotted state, and forward simulation continues
from there on. For example, when rolling back to time 6, state a4 is missing, making us roll
back to time 4, where a snapshot was previously made. From here, the transition function
resulting in a4 is executed again, to yield the total state at time 6, as requested.

Backwards steps, however, are clearly penalized, as they now require a forward simulation
phase, in which the latest consistent snapshot must be simulated up to the requested point in

169



CHAPTER 6. ADVANCED TECHNIQUES

time. The time taken for the forward simulation phase is bounded by the snapshot interval:
with snapshots every x seconds (of forward simulation), a rollback never requires more than
x seconds of forward simulation to reach the desired state, as otherwise another snapshot
would have been closer.

The user is free to configure the interval between consecutive snapshots. Setting a longer
interval between two snapshots results in:

1. lower memory consumption, since snapshots are saved less frequently;

2. faster forward simulation, since less serialization pauses occur;

3. slower backward simulation, since less states are saved, requiring more forward
simulation to reach the requested rollback time.

Memory We consider two types of memory: main memory and disk. While main memory
is fast and easy to use, it is relatively small compared to the hard disk. Main memory size
is therefore a problem, as all objects are stored in main memory by default.

Our approach tackles this by writing old state snapshots to disk, freeing up main memory.
It is unlikely for old snapshots to be accessed, and since the additional delay is only in the
order of tens of milliseconds, we can easily store old states to disk. Only a single snapshot
is loaded from disk, as all snapshots are self-contained. Recent snapshots, having a higher
chance of being accessed, stay in main memory. As we provide a lossless approach, we
must keep these older states available for when a jump to them is requested, however small
the chance of accessing them is.

Writing data to hard disk is possible for both copy state saving and periodic state saving. For
copy state saving, the state of each model is managed individually, thus requiring as many
disk accesses as there are atomic models. For periodic state saving, the full state at some
point in time is managed as a single block of data, requiring a single disk access.

Although reading and writing data to disk does not seem very attractive from a performance
view, performance is good due to asynchronous I/O. During forward simulation, where
performance really matters, we only do sporadic writes to main memory. We only write
to disk when main memory usage passes the defined threshold. These writes happen
asynchronously and can therefore be considered (almost) instantaneous, as it will be
buffered by the Operating System (OS). Reading data is the more expensive operation, but
that only happens once per backward step. Including access and transfer times, reading
data still feels interactive, as it only adds milliseconds to the total time of a rollback. The
cost of the forward simulation phase is many times higher.

Long-running Simulations Even now, our approach cannot handle arbitrarily long run-
ning simulations: just like main memory, disk space eventually runs out. Despite opti-
mizations to increase the capacity of our storage media, such as file compression, this only
delays the point where memory inevitably runs out. There are two directions to solve this
problem.

The first possibility is to further extend storage media through existing technologies, such
as adding more disks or storing it in the cloud. Whereas this technology exists and is

170



6.1. OMNISCIENT MODEL DEBUGGING

sufficiently mature, this again merely delays the point where memory runs out: neither of
these approaches has an infinite capacity, though it can be increased on-demand.

The second possibility truly tackles infinitely running simulations, at the cost of increased
latency for omniscient debugging operations. By pruning away intermediate snapshots per-
sisted to disk, we gain more storage space for future snapshots. This comes at a cost, since
each snapshot was there to guarantee the initially defined latency. Whereas our approach
still works even with less snapshots, latency increases (but remains bounded). For example,
when removing every other snapshot, average latency doubles, though memory consump-
tion halves. This can keep going on, though latency doubles each time. Nonetheless, we
can bound the time it takes to reach the requested state. This differs from a window-based
approach: our approach is lossless. Our approach is also guaranteed to never be slower than
restarting the simulation completely, as a restart always represents the worst case situation,
in which there is no closer snapshot available.

6.1.3 Performance Evaluation

We now evaluate this algorithm in our Parallel DEVS debugger. We evaluate several kinds
of resources, operations, and models. For resources, we measure CPU time needed for
operations, main memory consumption, and disk space used. For operations, we consider
the time needed for a forward step, a backward step, and a random jump to the past. For
models, we define a minimal, synthetic benchmark model with a configurable state size. As
the model is synthetic, we have disabled compression for these benchmarks, as it would
skew the results: the data would either be trivially compressed (e.g., all zero values), or not
compressed at all (e.g., full random).

First, we focus on the initial goal: minimizing time and space overhead of omniscient
debugging. Second, we discuss trade-offs: omniscient debugging operations become
slower. Finally, we vary the size of the benchmark model to measure the influence on
performance.

For all dimensions, our benchmark model is the same simple coupled DEVS model with a
configurable number of atomic models. Each of these atomic models has a configurable
state size. The atomic models are configured to do an internal transition after a (uniformly
distributed) time advance has passed. The structure of the coupled model (i.e., how these
atomic models are coupled) is irrelevant to the discussion and is therefore not discussed
further.

6.1.3.1 Omniscient Debugging Overhead

The first advantage of our approach is decreased simulation overhead for forward simulation.
In our problem statement, Figure 6.1 indicated the performance impact of omniscient
debugging. Such overhead is unacceptable for complex and long-running simulations.
Certainly since it is always imposed, even if no omniscient debugging features are actually
used when debugging.

Our solution is periodic state saving, which significantly influences forward simulation
speed, as shown in Figure 6.3. Figure 6.3 is an updated version of Figure 6.1, now including

171



CHAPTER 6. ADVANCED TECHNIQUES

 0.1

 1

 10

 100

 0  5000  10000  15000  20000  25000  30000  35000

S
im

ul
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

)

Model state (Bytes)

Influence of omniscient debugging

copy state saving
periodic state saving 0.1s
periodic state saving 0.5s
no omniscient debugging

Figure 6.3: Overhead of omniscient debugging (logarithmic scale).

results for periodic state saving with two different configurations. Again, the graph shows
an aggregation of 20 simulation runs of a benchmark Parallel DEVS model with a varying
model state size. The variance observed throughout the runs was minimal, and is therefore
not shown. Depending on the desired responsiveness of omniscient debugging operations,
a latency of 0.5 seconds might be tolerable. In that case, forward simulation has barely any
overhead, while a backwards step takes up to 0.5 seconds. Even with a latency of only 0.1
seconds forward simulation significantly outperforms copy state saving.

Memory and Disk Consumption

The prime concern with omniscient debugging is memory consumption, as the full state
trace must remain accessible. But whereas copy state saving needs many different states
to create a consistent snapshot, this is not needed with periodic state saving. Only one
snapshot is stored every so often, which is guaranteed to be consistent. This drastically
decreases memory consumption.

To demonstrate the difference between copy state saving and periodic state saving, we
compare the performance results of both approaches in Figure 6.4. The results were
obtained from a single simulation run, instead of an aggregate of multiple runs. We did
this to clearly show, in the graph, the points in simulation time when the state is saved,
illustrated by a “jump” in the plot. In an aggregate, these jumps would be smoothed, making
it impossible to see the the points in time when a state save occurs.

172



6.1. OMNISCIENT MODEL DEBUGGING

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  100  200  300  400  500  600  700  800  900 1000

M
ai

n 
m

em
or

y 
us

ag
e 

(K
B

)

Simulation time

Memory use during simulation for copy state saving

Main memory consumption
Disk consumption

(a) Memory use of copy state saving.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900  1000

M
ai

n 
m

em
or

y 
us

ag
e 

(K
B

)

Simulation time

Memory use during simulation for periodic state saving

Main memory consumption
Disk consumption

(b) Memory use of periodic state saving.

Figure 6.4: Memory usage of the two approaches.

The results for copy state saving are shown in Figure 6.4a, plotting the evolution of main
memory and disk consumption. Main memory consumption increases linearly as new data
is saved at each simulation step, and the cumulative number of simulation steps increases
linearly due to the uniform time between transitions. After some time, data is moved from
main memory to disk in big chunks. These points in time are clearly identifiable in the figure
as the points where main memory consumption decreases and disk consumption increases.
Note that, at simulated time 1000, approximately 70 megabytes of disk space is used to
store all intermediate states. While this does not seem much, these figures are obtained
after less than a minute of simulation on a simple model. For long running simulations with
realistic models, disk space quickly runs out. Additionally, writing this much data to disk
quickly becomes infeasible to be buffered by the OS.

Figure 6.4b shows results for exactly the same model, but with periodic state saving. Our
first observation is that main memory remains constant most of the time, only increasing at
points where a full snapshot is taken. Since a single copy of the simulation state is already
too large according to our defined space constraint, the data is immediately swapped to
disk afterwards. Another interesting observation is the total memory: a mere 800 kilobytes.
Only four copies of the state are stored, being much less memory intensive than saving all
intermediate states, even incrementally. As the time between two transitions is uniformly
distributed, there is some (emergent) synchronization between the wall-clock time and
simulated time, resulting in equidistantly spaced snapshots.

Jump Latency

Periodic state saving excels in memory consumption and simulation overhead. The draw-
back is slower backward steps: some forward simulation is necessary to get to the desired
state.

The latency for jumps backward in time is shown in Figure 6.5a. Again, as in Figure 6.4, the

173



CHAPTER 6. ADVANCED TECHNIQUES

results were obtained from a single simulation run, to clearly see how the latency “jumps”.
If an aggregate were plotted, the plots would again be smoothed, making it impossible to
observe these jumps. For this benchmark, the model is simulated up to simulated time 100.
From that point, we measure how long it takes to jump to a specific point in its state history.
This point is seen on the x axis. Copy state saving has a near-constant delay, no matter
to which point in simulated time is being jumped. This is to be expected, as each state is
stored in memory and can just be retrieved. Cost of retrieval from memory, and even from
disk, is negligible compared to the cost of forward simulation.

For periodic state saving, results are far worse: most points in simulated time require
computation time for the forward simulation phase. This is to be expected: only some full
states are stored in memory, and these will be the points to which a rollback occurs. From
our results, these points seem to be somewhere around simulated time 0, 39, 75, and 89.
Executing a rollback could, in the worst case, be to a point in time right before a snapshot
is made (e.g., time 38). We can also deduce from the results that our interval between
two snapshots was 0.5 seconds, as a jump never takes longer than 0.5 seconds. Note the
snapshot at time 89, which should not have occurred until the latency reaches almost 0.5s.
This is probably caused by other functionality of the simulator (such as compressing and
writing snapshots to persistent storage), which is taken into account in the interval, but
doesn’t contribute to simulation progression.

Influence of Model Size

Finally, we analyse the influence of the total size of the model on both state saving options,
in terms of memory consumption. There are two dimensions influencing the size of the
model: the number of atomic DEVS models, and the size of each model’s state. Model
state size was previously studied in Figure 6.3.

Figure 6.5b presents result for a varying number of atomic DEVS models. These results
are an aggregate from 20 simulation runs. The variance observed throughout the runs was
minimal, and is therefore not shown. Increasing the number of atomic DEVS models barely
influences periodic state saving, as snapshots are only taken infrequently. Copy state saving
is significantly impacted, as it stores, for n models, n history queues containing all previous
states of the model. Increasing the number of atomic DEVS models also increases the
number of executed transitions, requiring even more serialization and storage.

6.1.4 Conclusion

Despite the increasing popularity of omniscient debugging in the programming language
domain, other domains are reluctant to incorporate it. For Parallel DEVS, our debugging
environment is, to the best of our knowledge, the only simulation tool to implement it.
Although fully implemented, performance was a major consideration, even if omniscient
debugging is only used sparingly. Performance considerations exist in terms of memory
and time efficiency. With naive algorithms, even small models become difficult to simulate
due to its resource consumption. We therefore set out to find algorithms to cut down the
overhead in terms of forward simulation performance and memory consumption.

174



6.2. LIVE MODELLING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80  90  100

La
te

nc
y 

(s
)

Jump destination time

Jumping to specific points in time

copy
periodic

(a) Jump latency for copy and periodic state
saving.

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 0  100  200  300  400  500  600  700  800  900 1000

M
ai

n 
m

em
or

y 
us

ed
 (

K
B

)

Number of atomic DEVS models

Influence of number of atomic DEVS models

copy
Periodic

(b) Influence of number of atomic models on
memory consumption.

Figure 6.5: Comparing latency and the influence of model size.

We presented periodic state saving, combined with swapping to disk, as a lossless technique
to restore state histories in a tolerable time. Forward simulation overhead was significantly
reduced at the cost of slower omniscient debugging operations. Omniscient debugging
operations do become slower, though they remain responsive for interactive use. Our
synthetic benchmarks validated our expectations.

6.2 Live Modelling

In this section, we transpose the essence of live programming onto the modelling domain.
We deconstruct the traditional live programming process, and reconstruct it in the context
of modelling by applying concepts and techniques from live programming to executable
modelling languages. The method presented in this section provides structure for language
engineers who want to make their language live, which is currently still often considered a
black art, even in the programming domain [28]. Our approach distils all aspects of liveness
into a single operation, which we term sanitization.

Despite mostly being presented as a debugging operation in this section, live modelling
can be applied to other situations as well, such as education. Providing support for “live
modelling” was identified as a key feature to advance the usability of model-driven tech-
niques [104].

This section is organized as follows. Section 6.2.1 presents an introduction to live program-
ming, explaining the process in general. Section 6.2.2 introduces the necessary background
on live programming and deconstructs it into its basic concepts. Section 6.2.3 transposes
these concepts to live modelling, and presents reusable artefacts, operations, and a workflow
for turning any modelling language live. Section 6.2.4 applies these techniques to two
example languages.

175



CHAPTER 6. ADVANCED TECHNIQUES

6.2.1 Introduction to Live Programming

Live, or interactive, programming aims to bridge the “gulf of evaluation” [114, 200]. It
allows users to update the source code of an application while it is running, with changes
being applied instantly in the running application. There is therefore no need to man-
ually recompile, restart, and rerun their program up to the point of execution when the
modification was made. This has several advantages, such as decreasing the length of
the edit-compile-debug cycle, and offering users immediate insight in the effect of code
changes. An example of live programming, as implemented by ElmScript [46], can be seen
at http://debug.elm-lang.org/.

Basically, the process of live programming is as follows:

1. A developer writes code in a programming language.

2. The (valid) code is compiled to instructions for the specific machine.

3. The instructions are loaded into memory, and storage is allocated for execution.

4. The program is executed, which performs operations on the program and its state.

5. The developer modifies the code of the program while it is running.

6. The modified code is compiled to new instructions.

7. The program merges its old instructions and state with the new instructions.

8. The program executes the new instructions.

With the exception of the 7th item, these steps are identical to the workflow of normal
programming. Normally, however, the new instructions are only executed in a new invo-
cation of the program. The merge operation, therefore, is the only new operation in live
programming (from a functional point of view). It alters a running program to incorporate
changes unknown at compilation time, by merging the updated set of instructions with
the old state of the running program. Specifically, new instructions that do not have an
execution context are merged with old instructions and their associated execution state. As
data is also merged, such as the value of variables, information from the old program must
be combined with the new instructions.

Data merging is intentionally left vague, and many approaches exist. Three categories were
proposed [130], depending on how much data is copied: no live programming, recorded
event, and real-time. We illustrate all three with a game example, similar to the ElmScript
example. The game is a simple platform game, where the jump height of the character
is updated during execution. The game’s current state is shown in Figure 6.6a, where
the character jumped onto the platform and, in the meantime, collected one coin. If the
character were to jump, the coin is collected and the score is increased to 2.

No live programming is the most basic, where no information is passed between executions.
Upon recompilation, the currently running application is terminated and restarted. This
approach does not implement live programming at all, and can easily be replicated without
any modification to the programming language itself. All that is required is an automatic
restart of the application after a change is detected. In the game example, the character
is respawned at the beginning and the score is re-initialized to zero. This is shown in

176

http://debug.elm-lang.org/


6.2. LIVE MODELLING

SCORE: 1

(a) Original configura-
tion.

SCORE: 0

(b) No live program-
ming.

SCORE: 0

(c) Recorded event.

SCORE: 1

(d) Real-time.

Figure 6.6: State of the game before and after decreasing the jump height parameter.

Figure 6.6b, where the character has respawned and all coins have been reset as well. From
this point onwards, the jump height is reduced and the character will be unable to jump on
the platform. In conclusion, no state is retained.

Recorded event takes over the history of all inputs sent to the old running application. The
new program is then executed with these simulated events, making it as if the inputs sent
to the old program were sent to the new program. This approach is used in programming
languages such as ElmScript [46]. For performance reasons, the program is often not
completely re-executed, but only dependent functions are re-evaluated. In the game example,
our character might switch location and score, depending on what these values would be if
the exact same inputs were given in the new application. When the jump height parameter
is decreased, we suddenly find the character below the platform, instead of on top of it.
This is shown in Figure 6.6c, where we see the character below the platform: the jump we
did before did not reach the same height, which made the character unable to reach the
platform. Subsequent actions, such as moving to the right, were still replicated, but in a
different context: below instead of on top of the platform. In conclusion, the input history
part of the state is retained.

Real-time takes over the complete history of the old running program, but merges in new
instructions to be used in the future. The new program is effectively a rewritten version of
the old program, which just continues computation. This approach is used in programming
languages such as Smalltalk [64], and is often also termed fix and continue. In the game
example, our character will be at the same location and have the same score as before,
but changes will take effect from that point onwards. When the jump height parameter is
decreased, we find it impossible to jump as high as we could before, though our current
location remains unchanged. This is shown in Figure 6.6d, where we see no immediate
change. From this point onwards, however, we are unable to get the coin right above
us, as the character can no longer jump that high. In conclusion, the complete state is
retained.

6.2.2 Deconstructing Live Programming

The first step in our work is the deconstruction of the live programming process. This
process consists of artefacts (i.e., files or structures in memory) and modifications (i.e.,
operations on these artefacts).

177



CHAPTER 6. ADVANCED TECHNIQUES

Artefacts

We distinguish three artefacts: code, instructions, and the running program.

The code is the textual notation that represents a program, created by the developer. Code
is often persisted as a text file. It is the only artefact programmers should edit; they should
not edit any subsequent (automatically generated) artefacts. An example is a C++ source
code file.

The instructions are the result of compiling the code. They consist of a set of instructions
and data, which can be interpreted by the machine. Execution-time concepts are not yet
considered: variables have no value, nor is there a currently executing line of code. The
compiled program is only an “intermediate” form: it is an optimized version of the original
code, and is easier to read for a computer. As part of the compilation process, the program is
instrumented with extra information, such as mapping variables to registers. An example is
a compiled C++ program, expressed in ELF. These instructions are semantically equivalent
to the original code.

The running program is the actual program loaded in memory, including its state. It
is executed by the machine and is very similar to the compiled program, but it includes
runtime information (the state). Multiple versions of the same program can execute at the
same time without sharing state (i.e., memory): each program runs independently of the
others. Even when the instructions are changed (i.e., in self-modifying code), these changes
only take effect on the running instance. Thus, program execution can be defined as the
continuous updating of the artefact itself. An example is the memory used for executing an
ELF file, encompassing both the instructions and the execution data.

Operations

We distinguish five operations between these artefacts: compilation, initialization, execution,
modification, and merging.

Compilation (code to instructions) transforms a human-readable piece of code to a machine-
readable representation. This process involves steps such as making implementation deci-
sions and register allocation. The generated machine code remains semantically equivalent
to the original code.

Initialization (instructions to running program) loads a compiled program into memory
and initializes its state at the start of execution. Apart from initializing the state, the machine
code is copied to memory.

Execution (modification of running program) modifies the program by changing the data,
or by changing the instructions (self-modifying programs). Execution typically only alters
the state of the variables contained in the program.

Modification (modification of code) represents the changes a user makes to the original
source code artefact. Arbitrary changes are supported, as long as the result is still a valid
instance of the original language (i.e., it can be compiled).

Merging (instructions and running program to a running program) merges the state of a
running program with an updated set of instructions. The merge operation is specific to

178



6.2. LIVE MODELLING

code

C++

code'

m
o
d
ify

instructions

instructions'

ELF

compile

compile

init

merge

running

program

Running

Code
exec

exec

running

program'

Figure 6.7: Diagrammatic overview of live programming.
Full lines represent operations, dotted lines represent typing relations.

live programming: the currently executed program is merged with the updated instructions.
Afterwards, the “new” program resumes execution where the “old” program left off, thereby
replacing it. This can be seen as a generalization of the initialization operation: as part of
the merge, the state is initialized for new instructions, while it is modified if instructions
are removed or updated. We therefore consider initialization a merge with an “empty
program”.

The live programming process is shown in Figure 6.7, where we explicitly mention the type
of artefacts for a specific scenario. That way, the signature of the operations becomes appar-
ent. While live programming environments often offer additional features for performance
reasons, such as incremental compilation, these are not functionally required.

6.2.3 Transposing to Live Modelling

Taking the diagrammatic process presented in Figure 6.7, we generalize to the domain of
modelling. We port these concepts to the modelling domain: instead of using programming
languages and execution on actual machines, we make it platform-independent. Whereas
we used a language such as C++ before, we now assume the artefacts as instances of
an executable metamodel. Our approach is a generalization: it can also be applied to
programming languages, since they can be seen as executable modelling languages. Their
syntax is defined in the language’s grammar (cf. metamodel), while their semantics is
defined by their mapping onto machine code.

Artefacts

First, we transpose the artefacts, which gives us three kinds of models: the design
model (code), partial runtime model (instructions), and full runtime model (running pro-
gram).

The Design Model is the equivalent of the code. Similar to code, it is the only artefact that
the user can edit, and thus also the one that is seen as the “master” copy of the program.
We show two example design models in different languages. An example T-FSA model

179



CHAPTER 6. ADVANCED TECHNIQUES

idle armed detected

Arm

Disable  

PersonDetected

WrongCode

CorrectCode /

DisableAlarm
sounding

after 10s /

SoundAlarm
WrongCode

CorrectCode /

DisableAlarm

(a) Example FSA model of a home security alarm system.

+

-

x y

t - Δt z
IC

(b) Example CBD model, contain-
ing an algebraic loop.

Figure 6.8: Example design models.

is shown in Figure 6.8a, where a simple home security alarm system is modelled. In the
idle mode, the alarm system can be armed by the user. If someone is detected in the armed
mode, the alarm goes off, until the user inputs the correct combination. The alarm can be
disabled by sending the Disable event, but only when no intrusion is detected. Figure 6.8b
presents an example CBD model, modelling the following equations:


y(t) = x(t) + w(t)

w(t) = −y(t)

z(t) =

{
x(t) if t = 0

y(t− 1) if t > 0

(6.1)

The equation for y is reduced to y = x − y, which is a direct feedback loop (termed
“algebraic loop”). The CBD formalism handles linear algebraic loops natively, solving
y = x− y automatically and generating the necessary code.

The Partial Runtime Model is the equivalent of the instructions. Similar to instructions, it
has the same meaning as the design model, though it might be pre-processed. If operational
semantics is defined for this formalism directly, it can be seen as a retyping operation. In
general, however, the structure of both languages might vary significantly (as was the case
with C++ and ELF). In both the FSA and CBD languages, the partial runtime models are
equivalent to the design models, since both languages have operational semantics (they are
not compiled).

The (Full) Runtime Model is the equivalent of the running program. Similar to the running
program, the full runtime model is a copy of the partial runtime model, extended with
additional elements representing the execution state. In Figure 6.9, the full runtime models
of the running examples are shown. For FSAs (Figure 6.9a), a pointer to the current state
is added. In the figure, the model is currently in the detected state. For execution, the
model is updated by changing the current state based on the input events received from the
environment. For CBDs (Figure 6.9b), more runtime information is added, as they have
a notion of time, represented by the number of iterations. The t variable is incremented
each time an iteration is executed. Each iteration, the signal values are (re)computed
based on the new input values. For most blocks, their output signal value only depends on
their current input values and hence they are stateless. One exception is the delay block,

180



6.2. LIVE MODELLING

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /

DisableAlarm
current

PersonDetected /

SoundAlarm

(a) The full runtime model of the example
FSA model, during execution.

+

-

x y

t - Δt
mem = 1

t = 5

z
IC

(b) The full runtime model of the example
CBD model, during execution.

Figure 6.9: The full runtime models of the examples.

whose output value depends on its input value in the previous iteration. A mem runtime
variable keeps track of this value, which must be initialized as well. Other exceptions are
the integration and derivation blocks, for which similar data needs to be remembered and
initialized.

Operations

Second, we transpose the various operations on these artefacts: retyping (compilation),
simulation (execution), modification (modification), sanitization (initialization and merg-
ing).

The Retype operation is the equivalent of the compile operation. Similar to compilation, it
creates a semantically equivalent copy of a model, while retyping it to a runtime model.
It does not necessarily have to be a trivial retyping, as potentially the design and partial
runtime model have a different structure (e.g., flattening hierarchy). Retyping is thus also
responsible for making this translation. As explained before, the partial runtime models
for both the FSA language and CBD language do not contain additional information. The
retyping operation is therefore trivial in this case.

The Simulation operation is the equivalent of the execution operation. Simulation computes
the next state of the full runtime model and updates it in-place. For the FSA language,
the next state of the model is computed by processing an event from the environment, and
executing an enabled transition by changing the current state and (optionally) raising output
events to the environment. For the CBD language, there is no external input or output. The
next state of the model is computed by, for each block, computing the output signal value
based on its input values. This requires detecting loops and solving them if they represent a
set of linear equations. For delay blocks, the output value is equal to its value in memory
(or the initial condition at the first iteration when the memory value has not been set yet).
The memory value is overwritten by the current input value of the delay block. At the end
of computing the next value of all blocks’ output signal values, the iteration counter is
incremented. Note that, as we are operating on models, and not on generated code, we do
not need to consider the technical aspects of executing a newly generated piece of code: the
model is updated in-place and the simulation algorithm picks up these changes in the next

181



CHAPTER 6. ADVANCED TECHNIQUES

step.

The Modification operation is the equivalent of the modification operation in programming.
Similar to modification in the programming domain, users can only modify the design
model. Since all other artefacts are automatically generated, the design model is the only
artefact they are familiar with. While the user never edits the partial or full runtime models
directly, the design model can be freely modified. For the FSA language, users can change
the triggers on transitions, remove transitions, create new states, and so on. A modified
FSA design model is shown in Figure 6.10a. For the CBD language, users can instantiate
new blocks, delete existing blocks, add or remove dependencies, and so on. A modified
CBD design model is shown in Figure 6.11a. For both languages, the design models must
conform after the modifications.

The Sanitization operation is the equivalent of the merge operation. While it is indeed
a merge operation, it was renamed to sanitization to prevent confusion with the existing
term model merging [23]. The operation creates a full runtime model from a (new) partial
runtime model and an (old) full runtime model. As the sanitization is domain-specific, it is
difficult to make general claims about this operation: it is whatever the language engineer
wants it to be. Nonetheless, the sanitization function can be sure that both input models will
conform to their metamodel (which the language engineer can define), and must ensure its
output conforms to the full runtime metamodel. Sanitization includes initialization (where
the runtime state is empty) and the live modelling “merge”, where the runtime state is
taken into account. As discussed previously, sanitization is fundamental to live modelling
support.

The sanitization operation is largely dependent on the kind of state to be merged (i.e.,
implicit or explicit), but remains a language-specific operation. Therefore, a manually
defined version needs to be created for each new language. Nonetheless, our decomposition
has shown that this is the only operation that needs to be added, in order to provide live
modelling for that formalism. Depending on how the sanitization operation is implemented,
any of the three types of live modelling (i.e., none, recorded event, or realtime) can be
implemented. We leave open the medium in which this operation is expressed (e.g.,
procedurally using code or declaratively using model transformations). The presented code
snippets therefore do not restrict sanitization to a procedural approach. In this subsection,
we present the sanitization operations for both types of state (i.e., explicit and implicit state),
using our running example: the FSA and CBD formalisms. For both, we present realtime
live modelling. Note that, similar to live programming, sanitization can only happen when
the state is consistent (i.e., after an execution step has ended and before the next execution
step has started).

For explicit states, the user can manipulate the execution state by altering the design model.
While only the full runtime model has knowledge of which state is the current state (as
there is no notion of “execution” in the design model), it is possible to remove the state in
the design model that corresponds to the “current” state in the full runtime model. In that
case, the state of the running system after the merge is undefined. Changes to any other
aspect of the design model do not affect the state of the running system, and are trivially
reproduced in the full runtime model.

Resolving an undefined current state is the core task of the sanitization operation. There are
three options: reset the explicit state to the initial state, prompt the user for a new value,

182



6.2. LIVE MODELLING

idle

armed

Arm

Disable

(a) Modified design
model.

idle

armed

Arm

Disable

current

(b) Automatic resolution.

idle

armed

Arm

Disable

current

(c) Manual resolution to
“armed” state.

Figure 6.10: Sanitization in FSA models.

ALGORITHM 11: The FSA sanitize operation.

Function SanitizeFSA(Mnew
P ,Mold

F )
if isInitialized() then

currState← getCurrentState(Mold
F );

if not currState ∈Mnew
P then

if automaticResolution then
currState← getInitialState(Mnew

P );
else

if disallowChange then
raise Exception;

else
currState← userChoice(Mnew

P );
end

end
end

else
currState← initializeState(Mnew

P );
end

end

or disallow the change completely. For the new design model in Figure 6.10a and the
old full runtime model in Figure 6.9a, the first two options are presented. Figure 6.10b
shows automatic resolution where, in this case, the system chooses the default state (the
“idle” state) as the new current state. Figure 6.10c shows manual resolution, where the user
chooses the “armed” state as the new current state. Algorithm 11 shows the pseudocode of
the sanitize operation for FSAs.

Changes resulting in an undefined current state could also be explicitly disallowed. We did
not pursue the direction of disallowing design model changes, however, as we explicitly
want all modifications to be possible.

For implicit states, the user has no direct access to the execution state, as it is distributed
over the model. In contrast to explicit state modelling languages, where the state is either
completely removed or completely untouched, we now must keep the state consistent across
all modifications. In all cases, however, the sanitization algorithm can manage all changes

183



CHAPTER 6. ADVANCED TECHNIQUES

+

-

x y
 

t - Δt

2

x

z
IC

(a) New design model.

+

-

x y
 

t - Δt z

2

x

mem = 1

t = 5

IC

(b) Sanitized runtime model.

Figure 6.11: Sanitization in CBD models.

automatically: enough information is retained to be able to make corrections to the new
state.

In our example CBD language, only operations on the integration, derivation, and delay
blocks have any influence on the implicit state. Since each block and connection has its
own signal and memory, removing a block or connection only affects that specific signal.
In further simulation steps, however, the change will of course have its effects on other
elements as well, as it propagates through the system. It is possible, however, to add new
parts to the state (i.e., add new blocks or connections) or remove parts of the state.

ALGORITHM 12: The CBD sanitize operation.

Function SanitizeCBD(Mnew
P ,Mold

F )
forall block ∈Mnew

P do
if block ∈Mold

F then
oldSignal← getSignal(Mold

F , block);
setSignal(Mnew

P , block, oldSignal);
else

initializeSignal(Mnew
P , block);

end
end
if isInitialized() then

iterations← getNumberOfIterations(Mold
F );

setNumberOfIterations(Mnew
P , iterations);

else
initializeNumberOfIterations(Mnew

P );
end

end

When sanitizing, we take the structure from the partial runtime model, which we augment
with the runtime data from the full runtime model. In the case of CBD, the runtime
information consists of (1) the current simulation time; and (2) the memory of delay blocks,
derivators, and integrators. Blocks that were not present in the full runtime model are
initialized as usual, since they are new. Blocks that were present, however, have their state
copied from the full runtime model. The pseudocode of the sanitize operation for CBDs is
shown in Algorithm 12.

184



6.2. LIVE MODELLING

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /

DisableAlarm
current

PersonDetected /

SoundAlarm

idle armed

Arm

Disable

Design 1

Runtime 2Design 2

Runtime 1

modify

retype

merge

simulate

retype

simulate

merge

Runtime 0

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /

DisableAlarm

PersonDetected /

SoundAlarm

idle armed

Arm

Disable

current

Partial Runtime 1

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /

DisableAlarm

PersonDetected /

SoundAlarm

Partial Runtime 2

idle armed

Arm

Disable

Figure 6.12: Overview of our approach applied to an FSA model.

An example of sanitization is shown in Figure 6.11. In this figure, we see the new design
model in Figure 6.11a, and the resulting full runtime model in Figure 6.11b. The full
runtime model consists of the structure of the partial runtime model, combined with the
values of the old full runtime model. In this case, the value of the t variable (representing
the current iteration of the simulation), as well as the memory value of the delay block, are
copied.

Workflow

Figure 6.12 presents an overview of the approach, applied to an FSA model. More
generally, Figure 6.13 shows an FTG+PM model describing both the different formalisms
and processes of live modelling for any executable modelling language. Noteworthy is
the sanitize operation, which has a dual colour: it is mostly automatic, though it can be
manual for explicit states when the user is prompted. In the process models, simulation and
modification run concurrently: modifications can be made throughout simulation. This is
typical for live modelling, in contrast to the mostly linear development process of a single
model in ordinary modelling.

6.2.4 Examples

To assess feasibility of our approach, we implemented live modelling for the two running
examples. Our prototype consists of two visual modelling and simulation front-ends: one
for the FSA language, and one for the CBD language. All operations are defined in
the Modelverse [207], our metamodelling tool. The environments allow designing and
simulating models in these languages. The result of simulation (i.e., the state of the system)
is plotted in the environment in real-time. We reused existing simulators and augmented
them with pause and resume operations. Then, we implemented the sanitize operation
as described in the previous section. Even during simulation, users can edit the design
model in exactly the same way as if simulation was not running: all operations are allowed.
When the design model is changed, the changes are sent to the simulator, which first checks

185



CHAPTER 6. ADVANCED TECHNIQUES

language
manual operation
automatic operation

model artefact
manual activity
automatic activity

ModelSystem

Partial
Runtime

Design

Full
Runtime

Retype

Sanitize

Simulate

M
od
ifyD
esig

n

:ModelSystem

:Design

:PartialRuntime

:Retype

:FullRuntime

:ModifyModel

:Sanitize

φ

:Design

:Retype

:PartialRuntime

:Sanitize

:Simulate

FTG PM

Figure 6.13: Overview of our approach, as an FTG+PM model.

whether the model is valid. If it is not, an error message is shown and the user has to fix the
model before continuing simulation. If it is, the sanitize operation is executed, and the user
can resume execution.

The implementation of our FSA live modelling environment is shown in Figure 6.14. There
are two views: the model editing view (left), and the model simulation view (right). In the
editing view, the visual representation of the design model can be modified. The model
simulation view shows three traces: the timed input events, the current state throughout
time, and the timed output events. Although FSA models are untimed, input events can be
raised by the user to the model. The state of the system is constant in between such events;
the time plotted on the x-axis is wall-clock time. The FSA model itself is oblivious of the
current time.

Updates to the design model only influence the future of the simulation run. They can
be applied at any point in time, even if simulation is not paused. Each edit that results
in a valid model produces an intermediate model. If simulation is running while making
edits, simulation continues on these intermediate models as well. When changes break
the conformance of the model (e.g., a delay block without initial condition), simulation is
automatically paused as it cannot continue in a non-conforming configuration. The user is
notified of this problem and will be able to continue simulation as soon as the model con-
forms again. This guarantees that all subsequent operations happen on a conforming model,
and therefore guarantees a consistent model as input for the sanitization operation.

Our implementation of the CBD live modelling environment is shown in Figure 6.15. It is

186



6.2. LIVE MODELLING

Modify

[idle]

arm

[idle] armed detected

arm

detected/alarm wrong

correct/disableAlarmdisable

disable

armed

Figure 6.14: Implementation of live modelling for FSAs.

187



CHAPTER 6. ADVANCED TECHNIQUES

Modify

Figure 6.15: Implementation of live modelling for CBDs.

188



6.2. LIVE MODELLING

very similar in design to the interface for FSA, and indeed they share a large portion of
their code. Again, the model edit view is on the left, and the model simulation view is on
the right. When changes are made to the model, they are immediately propagated to the
running simulation. Plots show the value of a “probed” signal (corresponding to a block
with a magnifying glass icon in the model). It is therefore possible for plots to appear or
disappear throughout simulation, when a probe block is added/removed during simulation.
This is a design consideration of the UI if it wants to support live modelling.

Summary

This chapter discusses two techniques: omniscient debugging, which allows a user to step
back in the simulation trace, and live modelling, which allows users to adapt the design
model at runtime, after which the new design is used for the remainder of simulation.
Omniscient debugging is usually not memory-efficient, since it needs to keep track of the
full simulation trace in order to step back to arbitrary points in that trace. We presented
a method that is rooted in optimistic simulation algorithms for keeping the memory and
performance overhead low, while still allowing to step back to arbitrary points in the trace.
For live modelling, we deconstructed the live programming approach into its artefacts and
operations, and transposed those onto modelling formalisms. A workflow allows language
engineers to make their languages live based on our generic techniques.

189





Chapter 7

Conclusion

This thesis set out to contribute to the state-of-the-art in language engineering and mod-
elling tool construction by providing techniques for developing model debugging environ-
ments.

We motivate this research by investigating the state-of-the-art in debugging (software)
systems. We note that, as software complexity rises, traditional debugging approaches
developed for procedural, sequential code are no longer sufficient. When the code is
concurrent, or deployed on a parallel or distributed platform, subtle (non-deterministic)
synchronization errors can occur. Additionally, software increasingly interacts with an
environment, and has to control hardware components. These embedded system are
increasingly complex: they can exhibit concurrent, non-deterministic, and continuous
behaviour.

Researchers have attempted to overcome the limitations of sequential debuggers by com-
bining multiple debuggers for each thread of control to coordinate them. Quickly, though,
such approaches fail to provide efficient debugging support due to the sheer number of
threads that need to be controlled and visualized, their complex communication patterns,
and behavioural changes in the code due to instrumentation for debugging. Debuggers
often have to provide alternate views of system execution by hiding certain details and
presenting the results at a more abstract level. Other techniques analyse the program to
partly automate the debugging process. Such techniques are, however, not often used by
developers, who still prefer to interactively debug their systems.

Model-Driven Engineering (MDE) is a system development method which focuses on the
essential complexity of a problem, instead of on how the system is implemented. Models
are first-class citizens, which provide a higher level of abstraction. System developers
choose a modelling language that is most appropriate to design the different aspects of the
system. These models are not guaranteed to be without failures (which means one of their
properties was not satisfied), and providing debugging support for them is crucial, taking
into account their semantic properties.

The first contribution of this thesis is a technique, called the de- and reconstruction of simu-
lators, to instrument existing simulators (implemented in program code) with debugging
support. The technique builds an explicit model of the control flow of the simulator, and



CHAPTER 7. CONCLUSION

at that higher level of abstraction, facilitates the task of instrumenting its behaviour with
the often complex debugging behaviour. The instrumented model reflects at what points
in the simulation algorithm the user can interrupt it, and the hierarchy between different
types of “steps” (big steps, small steps, etc.). We identified this “stepping behaviour” as
a necessary condition for debugging, since a step clearly delineates at which points the
simulation is in a consistent state (and identifies which debugging operations are enabled).
A crucial difference in the way semantics is defined was identified as well: in case the
semantics are defined operationally, the simulator’s definition reflects its dynamics, and the
instrumentation can be performed naturally. On the other hand, in case the semantics are
defined by mapping onto a formalism with known semantics (translational semantics), this
operational view can no longer be deduced from its definition. We developed a method that
views the simulator as a “grey box”, whose interface exposes the stepping behaviour as if it
was implemented operationally. Behind the screen, however, the semantics are implemented
translationally. We developed a method to translate domain-specific debug operations to
target-level operations, and to translate target-level traces to domain-specific traces. This
enables the debugging of formalism whose semantics are defined translationally.

The second contribution is a workflow and architecture, which guide language engineers
that want to create complex, often visual, debugging environments for their language. We
identified three key components in the architecture of a model debugger:

• The instrumented simulator, which accepts events that influence the execution of
the simulation algorithm, and returns events that communicate in which state the
simulation is.

• A debugging interface, which is an extension of the runtime interface for the language.
It shows the current state of the simulation and allows the user to communicate with
the simulator using a toolbar.

• A model-specific visualization, which shows the state of the simulation using a
user-specified visualization, and can be instrumented with model-specific debugging
support.

These three components are connected by a communication interface, which translates
output events from each component to input events for other components. The workflow,
lastly, guides language engineers that want to enhance their language with debugging
support. It consists of a number of phases, and a number of artefacts that are created in
these phases.

The third contribution demonstrates feasibility, by building model debugging environments
for a diverse set of languages. We first presented a classification of languages based on
their semantic properties. We then assembled a set of representative formalisms, whose
semantic features cover the identified semantics properties. We applied our techniques
to build debugging environments for six general-purpose modelling languages (whose
semantics are defined operationally): action language, CBD, Parallel DEVS, Statecharts,
Petrinets, and Dynamic Structure DEVS. We presented a modified technique for building
hybrid debuggers as combinations of two debuggers and apply this to a Hybrid Automata
formalism. We developed an extension to our technique for domain-specific languages
whose semantics are defined translationally, by mapping onto a formalism with known
semantics (and for which a debugger exists). By building debugging environments for

192



such a diverse set of modelling languages, we demonstrated that our approach is generally
applicable.

The fourth contribution focuses on two advanced debugging techniques: live modelling (a
transposition of live programming) and omniscient model debugging. To implement these
debugging operations, we similarly provided a workflow, an architecture, and techniques
that are generic, such that they are applicable to any modelling language.

Our contributions can be used in multiple areas of future work. We highlight a number of
them in this conclusion.

Improving Parallel, Distributed, Code Debuggers

The techniques presented in this thesis take a step back and generalize debugging for
languages with varying semantics. They allow system developers to debug the system at the
most appropriate level of abstraction, using the abstractions the program was specified with.
Most systems are, however, specified in a programming language. As debugging orthogonal,
parallel, and distributed systems is challenging with the current level of debugging support
in traditional code debuggers, a potential for future work could be to improve debugging
techniques for these systems using the techniques presented in this thesis.

ALGORITHM 13: A short program that can be run in parallel.
Input: Semaphores S1, S2

1 acquire(S1);
2 do critical section1();
3 release(S1); acquire(S2);
4 do critical section2();
5 release(S2);

To illustrate how this could work, Algorithm 13 presents an example parallel program,
adapted from [99]. A synthetic algorithm is defined with two critical sections: the functions
do critical section1() and do critical section2(). We assume this algorithm can be
deployed to multiple threads, and the semaphores ensure no two threads will enter a critical
section at the same time. To debug such systems efficiently, its inherent non-determinism
needs to be taken into account: from one run to the other, a different interleaving of acquires,
releases, and executions of critical sections is possible. In their paper [99], Kobler et al.
define a way of “swapping” a particular ordering of acquire-release cycles in an execution
trace, to check whether the system behaves differently.

A system developer, however, might be interested in all execution paths, and the ability to
explore these execution paths interactively. Also, within one execution paths, the developer
might be interested to step inside the actual code executing in the critical section(s). This
is an application of two languages for which we implemented debugging techniques in
this thesis. On the one hand, Petrinets can be used to model the non-determinism of the
concurrent program. On the other hand, action code needs to be modelled that implements
the code for the critical section. This means the Petrinets debugger needs to be combined
with an action language debugger (in an “embedding” way, as we have seen in Section 5.7)
to model the complete system behaviour. Figure 7.1 presents a possible Petrinets model

193



CHAPTER 7. CONCLUSION

S1

S2

T1_Inactive

T1_CS1 T1_CS2

T3_Inactive

T3_CS1

T3_CS2

T2_Inactive

T2_CS1

T2_CS2

a1_1 a1_2

r1_1 r1_2

Figure 7.1: A Petrinets model of a program with three threads and two semaphores.

for the concurrent program of Algorithm 13, deployed onto three threads. Two places S1

and S2 model the semaphores: if a token is present, the semaphore is not acquired. The
three threads are modelled using three places each: Tx Inactive models whether thread x
is active or not, Tx CS1 models whether thread x is currently executing the first critical
section, and Tx CS2 models whether thread x is currently executing the second critical
section. Acquiring a semaphore is necessary to start executing a critical section. After a
critical section is executed, the semaphore is released by returning the token. This model
can be debugged (and the non-deterministic paths explored) using the debugger presented in
Section 5.5. When a critical section is entered (a token is present in the appropriate place),
however, the code for that critical section is executed. A hybrid language can be created
that combines Petrinets with action language, and a debugging interface can be created
as in Section 5.7. The user would then be able to step into the execution to investigate
potential bugs.

Validation of Debugging Interfaces

We have demonstrated how interactive debugging environment can be constructed. In the
future, these techniques can be used to construct debugging environment for other languages,
and in other (commercial) environments. Since these languages and environments have
a user base, it is important to evaluate the debugging techniques that were implemented.
Several questions can be asked:

• Which debugging operations do the users prefer? For example: a “small step”
operation might never be used, or a different type of debugging information might be
requested by the users. These debugging operations can be rapidly prototyped using
our de- and reconstruction technique.

• How can the debugging process best be presented (graphically) to the user? This
has to do with the level of detail, but also the layout of presentation. An example

194



of a creative layout for visualizing DEVS execution can be found in [122]. Our
architecture allows the components involved in the debugging process to be replaced,
enhanced, and adapted at will. Ultimately, this architecture enables the construction
of a library of reusable components from which simulation and domain experts may
pick and choose to build debugging environments.

• How does debugging fit into the overall system development process? How can the
transition from the debugging environment back to the design environment be as
smooth as possible? This couples the advanced debugging techniques such as live
modelling to the interactive debugging techniques presented in this thesis.

These studies can quantify the usefulness of different debuggers. These debuggers can be
rapidly prototyped using our techniques.

Hybrid Language Engineering

We discussed hybrid language debugging in one particular case: a combination of a discrete-
event formalism with a continuous-time formalism, where one is embedded into the other.
Many more possibilities exist, for example the combination of a non-deterministic for-
malism with an action language, as discussed above. The semantics of these formalisms
can be interleaved in more exotic ways, leading to defects that are more difficult to debug.
And, the interactions between the formalisms can be more complex as well. If semantic
adaptation is necessary, that can involve non-trivial computation. A possible future direc-
tion of research can look at these interactions (communication) as well as the possible
interleaving of the semantics, and come up with general concepts for debugging such hybrid
formalisms.

A hybrid language can be seen as the combination of three language “fragments”: the two
languages that are combined, and an “interaction language”. We already assume the two
languages that are combined have debugging support, but the interaction language can
have debugging support defined for it as well. To sensibly merge these languages, their
simulation algorithms, and their debuggers, is a challenging task.

For performance reasons, the layered structure for the debugger we presented in Section 5.7
is not ideal. Instead, a flattened version of the algorithm, as presented in [141] might be
more suited. The instrumentation of this simulation algorithm (in its canonical form) is
more complicated, however. Future research could look into these two challenges for hybrid
language debugging.

Debugging for Co-Simulation

In co-simulation, such as implemented by the FMI standard [1], a set of black-box models
are simulated by a master algorithm. Since there is no way of accessing the implementation
of the models (mainly for protecting intellectual property), our approach for instrument-
ing the simulator with debugging support is no longer applicable. These co-simulation
standards, however, define a particular interface for the black-box models that allows the

195



CHAPTER 7. CONCLUSION

master algorithm to control and observe them to some extent. Implementing debugging with
that limited amount of information is challenging, and could be impossible (especially for
small step semantics). Research into how the master algorithm can implement debugging
operations that control the individual black-box models is needed.

Debugging with Optimizations

Debugging optimized code is challenging. As the code is translated from its high-level
specification to its low-level deployable form, it is transformed progressively by rearranging,
replacing, or completely removing statements. Maintaining traceability to the original
program code is difficult or impossible, which means traditional debuggers cannot be
used to debug the code. A possible line of future work can extend the debugging of
formalisms with translational semantics, since the optimization transformations are similar
to the semantic mapping of a formalism to a (lower-level) formalism. Related work in
program debugging can be found in techniques for deoptimizing optimized code (on-stack
replacement) [83] for debugging such functions, since optimized code hides certain interrupt
points the user might be interested in.

Debugging for Evolving Languages

The de- and reconstruction approach presented in this thesis has been applied to languages
whose syntax and semantics are well-known. As such, they can be regarded as static, and de-
and reconstructed by modelling them as a Statecharts model. If the language definition
evolves, however, the definition of the debugger might be inconsistent: certain syntax
elements the debugger expects might no longer be present, or the semantics of the formalism
were changed in such a way that makes the debugger’s execution of the models invalid.
The general problem of a language’s evolution and the co-evolution of its artefacts (models,
editors, compilers, etc.) has been extensively researched [78, 137]. The co-evolution of
the debugger is an area of future work which requires the de- and reconstruction to be
(partially) automated. In that case, the semantic definition can change, generating a new
version of the formalism’s semantics, updating its Statecharts model. This is related to
the future work on “language fragments”, as there, the semantics are generically modelled
in a “canonical form” which clearly distinguishes between macro and micro steps. If
such standard representation for the execution semantics of a language is developed, the
(automatic) instrumentation with debugging support will be facilitated.

196



Bibliography

[1] The Functional Mockup Interface. https://www.fmi-standard.org/. Ac-
cessed: 2013-09-12. Cited on page 195.

[2] N. A. ALLEN, C. A. SHAFFER, AND L. T. WATSON, Building modeling tools that
support verification, validation, and testing for the domain expert, in Proceedings of
the 37th Winter Simulation Conference, WSC ’05, Winter Simulation Conference,
2005, pp. 419–426. Cited on page 35.

[3] J. ARMSTRONG, The development of Erlang, in Proceedings of the Second ACM
SIGPLAN International Conference on Functional Programming, ICFP ’97, New
York, NY, USA, 1997, ACM, pp. 196–203. Cited on page 34.

[4] C. ARTHO, Iterative delta debugging, International Journal on Software Tools for
Technology Transfer, 13 (2011), pp. 223–246. Cited on page 30.

[5] A. ASGHAR, A. POP, M. SJÖLUND, AND P. FRITZSON, Efficient Debugging of
Large Algorithmic Modelica Applications, in Proceedings of MATHMOD 2012 -
7th Vienna International Conference on Mathematical Modelling, 2012. Cited on
page 35.

[6] M. BAGHERZADEH, N. HILI, AND J. DINGEL, Model-level, platform-independent
debugging in the context of the model-driven development of real-time systems, in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, New York, NY, USA, 2017, ACM, pp. 419–430. Cited on page 35.

[7] S. M. BALLE, B. R. BRETT, C.-P. CHEN, AND D. LAFRANCE-LINDEN, Extending
a traditional debugger to debug massively parallel applications, Journal of Parallel
and Distributed Computing, 64 (2004), pp. 617 – 628. Cited on page 31.

[8] N. BANDENER, C. SOLTENBORN, AND G. ENGELS, Extending DMM behavior
specifications for visual execution and debugging, in Software Language Engineering
- Third International Conference, SLE 2010, Eindhoven, The Netherlands, October
12-13, 2010, Revised Selected Papers, 2010, pp. 357–376. Cited on pages 4 and 38.

[9] A. BARIŠIĆ, V. AMARAL, M. GOULÃO, AND B. BARROCA, Quality in use of
domain-specific languages: A case study, in Proceedings of the 3rd ACM SIG-
PLAN Workshop on Evaluation and Usability of Programming Languages and Tools,
PLATEAU ’11, ACM, 2011, pp. 65–72. Cited on page 10.

https://www.fmi-standard.org/


BIBLIOGRAPHY

[10] F. J. BARROS, Dynamic structure discrete event system specification: a new for-
malism for dynamic structure modeling and simulation, in Proceedings of the 27th
Winter Simulation Conference, Dec. 1995, pp. 781–785. Cited on page 122.

[11] F. J. BARROS, Modeling formalisms for dynamic structure systems, ACM Trans.
Model. Comput. Simul., 7 (1997), pp. 501–515. Cited on page 122.

[12] , Abstract simulators for the DSDE formalism, in Proceedings of the 30th
Winter Simulation Conference, WSC ’98, Los Alamitos, CA, USA, 1998, IEEE
Computer Society Press, pp. 407–412. Cited on page 126.

[13] P. C. BATES, Debugging heterogeneous distributed systems using event-based mod-
els of behavior, ACM Trans. Comput. Syst., 13 (1995), pp. 1–31. Cited on page 31.

[14] B. BERTHOMIEU AND F. VERNADAT, Time petri nets analysis with TINA, in Third
International Conference on the Quantitative Evaluation of Systems - (QEST’06),
Sept 2006, pp. 123–124. Cited on page 36.

[15] J. BÉZIVIN, In Search of a Basic Principle for Model-Driven Engineering, Novatica
Journal Special issue, V (2004), pp. 1–5. Cited on pages 1 and 8.

[16] A. BLOUIN, B. COMBEMALE, B. BAUDRY, AND O. BEAUDOUX, Kompren: Mod-
eling and Generating Model Slicers, Software and Systems Modeling, (2012). Cited
on page 4.

[17] B. BOOTHE, Efficient algorithms for bidirectional debugging, in Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, PLDI ’00, 2000, pp. 299–310. Cited on page 33.

[18] F. BOULANGER, C. HARDEBOLLE, C. JACQUET, AND D. MARCADET, Semantic
Adaptation for Models of Computation, in 11th International Conference on Appli-
cation of Concurrency to System Design (ACSD), 2011, pp. 153–162. Cited on
page 136.

[19] E. BOUSSE, J. CORLEY, B. COMBEMALE, J. GRAY, AND B. BAUDRY, Supporting
efficient and advanced omniscient debugging for xDSMLs, in Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2015, New York, NY, USA, 2015, ACM, pp. 137–148. Cited on pages 4, 38,
and 166.

[20] E. BOUSSE, T. MAYERHOFER, B. COMBEMALE, AND B. BAUDRY, A Generative
Approach to Define Rich Domain-Specific Trace Metamodels, in 11th European
Conference on Modelling Foundations and Applications (ECMFA), L’Aquila, Italy,
July 2015. Cited on page 38.

[21] A. BRAGDON, K. ROWAN, J. JACOBSEN, AND R. DELINE, Debugger canvas:
Industrial experience with the code bubbles paradigm, in ICSE 2010, International
Conference on Software Engineering, June 2010. Cited on page 29.

[22] S. BRESLAV, R. GOLDSTEIN, A. TESSIER, AND A. KHAN, Towards visualiza-
tion of simulated occupants and their interactions with buildings at multiple time
scales, in Proceedings of the Symposium on Simulation for Architecture & Urban
Design, SimAUD ’14, San Diego, CA, USA, 2014, Society for Computer Simulation
International, pp. 5:1–5:8. Cited on page 24.

198



BIBLIOGRAPHY

[23] G. BRUNET, M. CHECHIK, S. EASTERBROOK, S. NEJATI, N. NIU, AND M. SA-
BETZADEH, A manifesto for model merging, in Proceedings of the 2006 International
Workshop on Global Integrated Model Management, GaMMa ’06, New York, NY,
USA, 2006, ACM, pp. 5–12. Cited on page 182.

[24] J. BRÜNING, M. GOGOLLA, L. HAMANN, AND M. KUHLMANN, Evaluating and
Debugging OCL Expressions in UML Models, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012, pp. 156–162. Cited on page 37.

[25] C. BUCHANAN AND K. KEEFE, Simulation debugging and visualization in the
Möbius modeling framework, in Quantitative Evaluation of Systems, G. Norman
and W. Sanders, eds., vol. 8657 of Lecture Notes in Computer Science, Springer
International Publishing, 2014, pp. 226–240. Cited on page 39.

[26] P. BUNUS AND P. FRITZSON, A debugging scheme for declarative equation based
modeling languages, in Practical Aspects of Declarative Languages, S. Krishna-
murthi and C. Ramakrishnan, eds., vol. 2257 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2002, pp. 280–298. Cited on pages 35 and 164.

[27] P. BUNUS AND P. FRITZSON, Semi-automatic fault localization and behavior
verification for physical system simulation models, in Proceedings of the 18th IEEE
International Conference on Automated Software Engineering, Oct 2003, pp. 253–
258. Cited on pages 35 and 164.

[28] S. BURCKHARDT, M. FÄHNDRICH, AND J. KATO, It’s alive! continuous feedback
in UI programming, in Proceedings of PLDI ’13, 2013, pp. 95–104. Cited on pages
34 and 175.

[29] P. BURGESS, M. LIVESEY, AND C. ALLISON, Debugging and dynamic modification
of embedded systems, in Proceedings of the Twenty-Ninth Hawaii International
Conference on System Sciences, vol. 1, Jan 1996, pp. 489–498 vol.1. Cited on
page 33.

[30] M. M. BURNETT, J. W. ATWOOD, JR., AND Z. T. WELCH, Implementing level
4 liveness in declarative visual programming languages, in Proceedings of Visual
Languages ’98, 1998, pp. 126–133. Cited on page 34.

[31] C. CAERTS, R. LAUWEREINS, AND J. PEPERSTRAETE, PDG: a process-level
debugger for concurrent programs in the GRAPE rapid prototyping environment, in
Rapid System Prototyping, 1993. Shortening the Path from Specification to Prototype.
Proceedings., Fourth International Workshop on, Jun 1993, pp. 17–30. Cited on
page 31.

[32] D. ÇETINKAYA, A. VERBRAECK, AND M. D. SECK, Model continuity in discrete
event simulation: A framework for model-driven development of simulation models,
ACM Trans. Model. Comput. Simul., 25 (2015), pp. 17:1–17:24. Cited on page 23.

[33] F. E. CELLIER, Continuous system modeling, Springer-Verlag, New York, 1991.
Cited on pages 2, 8, 13, and 79.

[34] S. CHANDRA, E. TORLAK, S. BARMAN, AND R. BODIK, Angelic debugging, in
Proceedings of the 33rd International Conference on Software Engineering, ICSE
’11, New York, NY, USA, 2011, ACM, pp. 121–130. Cited on page 30.

199



BIBLIOGRAPHY

[35] R. N. CHARETTE, This Car Runs on Code, IEEE Spectrum, (2009). Cited on pages
1 and 7.

[36] Y.-P. CHENG, J.-F. CHEN, M.-C. CHIU, N.-W. LAI, AND C.-C. TSENG, xDIVA:
A debugging visualization system with composable visualization metaphors, in Com-
panion to the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications, OOPSLA Companion ’08, New York, NY,
USA, 2008, ACM, pp. 807–810. Cited on page 29.

[37] A. CHIŞ, M. DENKER, T. G ÎRBA, AND O. NIERSTRASZ, Practical domain-specific
debuggers using the moldable debugger framework, Comput. Lang. Syst. Struct., 44
(2015), pp. 89–113. Cited on page 38.

[38] A. C. CHOW, Parallel DEVS: A parallel, hierarchical, modular modelling formalism
and its distributed simulator, Transactions of the SCS, 13 (1996), pp. 55–67. Cited
on pages 88 and 94.

[39] J. CLEARY, F. GOMES, B. UNGER, Z. XIAO, AND R. THUDT, Cost of state saving
& rollback, SIGSIM Simululation Digest, 24 (1994), pp. 94–101. Cited on page 168.

[40] J. CORLEY, Debugging for model transformations, in Proceedings of the MODELS
2013 Doctoral Symposium co-located with the 16th International ACM/IEEE Con-
ference on Model Driven Engineering Languages and Systems (MODELS 2013),
Miami, USA, October 1, 2013., 2013, pp. 17–24. Cited on page 36.

[41] , Exploring omniscient debugging for model transformations, in Joint Proceed-
ings of MODELS 2014 Poster Session and the ACM Student Research Competition
(SRC) co-located with the 17th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2014), Valencia, Spain, September 28 -
October 3, 2014., 2014, pp. 63–68. Cited on page 36.

[42] J. CORLEY, B. P. EDDY, AND J. GRAY, Towards efficient and scalabale omniscient
debugging for model transformations, in Proceedings of the 14th Workshop on
Domain-Specific Modeling, DSM ’14, ACM, 2014, pp. 13–18. Cited on page 36.

[43] J. CORLEY, B. P. EDDY, E. SYRIANI, AND J. GRAY, Efficient and scalable om-
niscient debugging for model transformations, Software Quality Journal, (2016),
pp. 1–42. Cited on pages 4, 36, and 166.

[44] J. H. CROSS, II, T. D. HENDRIX, D. A. UMPHRESS, L. A. BAROWSKI, J. JAIN,
AND L. N. MONTGOMERY, Robust generation of dynamic data structure visu-
alizations with multiple interaction approaches, Trans. Comput. Educ., 9 (2009),
pp. 13:1–13:32. Cited on page 29.

[45] J. CUNHA, J. LOURENÇO, J. VIEIRA, B. Moscão, AND D. PEREIRA, A framework
to support parallel and distributed debugging, in High-Performance Computing and
Networking, P. Sloot, M. Bubak, and B. Hertzberger, eds., vol. 1401 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 1998, pp. 708–717. Cited
on page 31.

[46] E. CZAPLICKI, Elm: Concurrent FRP for functional GUIs. https:
//www.seas.harvard.edu/sites/default/files/files/
archived/Czaplicki.pdf, 2012. Cited on pages 34, 176, and 177.

200

https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf


BIBLIOGRAPHY

[47] V. DJUKIĆ, A. POPOVIĆ, AND Z. LU, Run-time code generators for model-level
debugging in domain-specific modeling, in Proc. DSM, ACM, 2016, pp. 1–7. Cited
on page 164.

[48] D. DOTAN AND A. KIRSHIN, Debugging and testing behavioral UML models, in
Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications Companion, OOPSLA ’07, New York, NY, USA,
2007, ACM, pp. 838–839. Cited on page 37.

[49] J. EDWARDS, Subtext: Uncovering the simplicity of programming, in Proceedings of
OOPSLA ’05, 2005, pp. 505–518. Cited on page 34.

[50] J. ENGBLOM, A review of reverse debugging, in System, Software, SoC and Silicon
Debug Conference (S4D), 2012, Sept 2012, pp. 1–6. Cited on page 33.

[51] S. ESMAEILSABZALI, N. A. DAY, J. M. ATLEE, AND J. NIU, Deconstructing the
semantics of big-step modelling languages, Requirements Engineering, 15 (2010),
pp. 235–265. Cited on pages 20 and 105.

[52] R. EWALD AND A. M. UHRMACHER, SESSL: A domain-specific language for
simulation experiments, ACM Transactions on Modeling and Computer Simulation,
24 (2014), pp. 11:1–11:25. Cited on page 23.

[53] R. S. FABRY, How to design a system in which modules can be changed on the fly,
in Proceedings of ICSE ’76, 1976, pp. 470–476. Cited on page 34.

[54] E. C. FREUDER, R. J. WALLACE, AND T. E. NORDLANDER, Debugging con-
straint models with metamodels and metaknowledge, Constraint Modelling and
Reformulation (ModRef09), (2009), p. 45. Cited on page 38.

[55] P. FRITZSON AND P. BUNUS, Modelica - a general object-oriented language for
continuous and discrete-event system modeling and simulation, in Proceedings 35th
Annual Simulation Symposium. SS 2002, April 2002, pp. 365–380. Cited on pages
35 and 46.

[56] E. FROMENTIN, N. PLOUZEAU, AND M. RAYNAL, An introduction to the analysis
and debug of distributed computations, in Algorithms and Architectures for Parallel
Processing, 1995. ICAPP 95. IEEE First ICA/sup 3/PP., IEEE First International
Conference on, vol. 2, Apr 1995, pp. 545–553 vol.2. Cited on page 31.

[57] L. FUENTES, J. MANRIQUE, AND P. SÁNCHEZ, Pópulo: A tool for debugging UML
models, in Companion of the 30th International Conference on Software Engineering,
ICSE Companion ’08, New York, NY, USA, 2008, ACM, pp. 955–956. Cited on
page 37.

[58] R. M. FUJIMOTO, Parallel discrete event simulation, Communications of the ACM,
(1990), pp. 30–53. Cited on page 167.

[59] , Parallel and Distribution Simulation Systems, John Wiley & Sons, Inc.,
1st ed., 1999. Cited on pages 167 and 168.

[60] S. GABMEYER, P. KAUFMANN, M. SEIDL, M. GOGOLLA, AND G. KAPPEL, A
feature-based classification of formal verification techniques for software models,
Software & Systems Modeling, (2017). Cited on page 2.

201



BIBLIOGRAPHY

[61] GDB, GDB reversible debugging. https://www.gnu.org/software/gdb/
news/reversible.html, 2009. Cited on page 33.

[62] GDB DEVELOPERS, Gdb: The GNU project debugger. https://www.gnu.
org/software/gdb/news/reversible.html, 2017. Cited on page 28.

[63] L. GEIGER AND A. ZNDORF, Graph based debugging with fujaba, Electronic Notes
in Theoretical Computer Science, 72 (2002), p. 112. Cited on page 36.

[64] A. GOLDBERG AND D. ROBSON, Smalltalk-80: The Language and Its Implemen-
tation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.
Cited on pages 34 and 177.

[65] C. GOMES, Foundations for Continuous Time Hierarchical Co-simulation, in ACM
Student Research Competition (ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems), Saint Malo, Brittany, France, 2016,
p. to appear. Cited on page 136.

[66] R. GORE, P. F. REYNOLDS JR., D. KAMENSKY, S. DIALLO, AND J. PADILLA,
Statistical debugging for simulations, ACM Transactions on Modeling and Computer
Simulation, 25 (2015), pp. 16:1–16:26. Cited on page 39.

[67] P. GRAF AND K. MÜLLER-GLASER, Dynamic mapping of runtime information
models for debugging embedded software, in Rapid System Prototyping, 2006.
Seventeenth IEEE International Workshop on, June 2006, pp. 3–9. Cited on page 37.

[68] P. GRAF, C. REICHMANN, AND K. D. MÜLLER-GLASER, Towards a Platform for
Debugging Executed UML-Models in Embedded Systems, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005, pp. 238–241. Cited on page 37.

[69] H. GRÖNNIGER, H. KRAHN, B. RUMPE, M. SCHINDLER, AND S. VÖLKEL,
Text-based modeling, in Proceedings of the 4th International Workshop on Software
Language Engineering, 2007. Cited on page 34.

[70] E. GUNTER AND D. PELED, Temporal debugging for concurrent systems, in Tools
and Algorithms for the Construction and Analysis of Systems, J.-P. Katoen and
P. Stevens, eds., vol. 2280 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2002, pp. 431–444. Cited on page 32.

[71] B. HAILPERN AND P. SANTHANAM, Software debugging, testing, and verification,
IBM Systems Journal, 41 (2002), pp. 4–12. Cited on page 27.

[72] C. M. HANCOCK, Real-Time Programming and the Big Ideas of Computational
Literacy, PhD thesis, Massachusetts Institute of Technology, 2003. Cited on page 34.

[73] D. HAREL, Statecharts: a visual formalism for complex systems, Science of Com-
puter Programming, 8 (1987), pp. 231–274. Cited on pages 2, 8, 13, and 17.

[74] D. HAREL AND H. KUGLER, The Rhapsody semantics of Statecharts (or, on the
executable core of the UML), in Integration of Software Specification Techniques
for Applications in Engineering, vol. 3147 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2004, pp. 325–354. Cited on page 20.

[75] D. HAREL AND A. NAAMAD, The STATEMATE Semantics of Statecharts, ACM
Trans. Softw. Eng. Methodol., 5 (1996), pp. 293–333. Cited on page 20.

202

https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html


BIBLIOGRAPHY

[76] D. HAREL, A. PNUELI, J. P. SCHMIDT, AND R. SHERMAN, On the formal se-
mantics of Statecharts, in Proceedings of the 2nd IEEE Symposium on Logic in
Computer Science, 1987, pp. 54–64. Cited on page 19.

[77] D. HAREL AND B. RUMPE, Meaningful modeling: What’s the semantics of “seman-
tics”?, Computer, 37 (2004), pp. 64–72. Cited on page 9.

[78] R. HEBIG, D. E. KHELLADI, AND R. BENDRAOU, Approaches to co-evolution of
metamodels and models: A survey, IEEE Transactions on Software Engineering, 43
(2017), pp. 396–414. Cited on page 196.

[79] A. HEGEDUS, G. BERGMANN, I. RATH, AND D. VARRO, Back-annotation of sim-
ulation traces with change-driven model transformations, in 8th IEEE International
Conference on Software Engineering and Formal Methods, 2010, pp. 145–155. Cited
on pages 40 and 149.

[80] M. HIBBERD, M. LAWLEY, AND K. RAYMOND, Forensic debugging of model
transformations, in Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, MODELS’07, Berlin, Heidelberg,
2007, Springer-Verlag, pp. 589–604. Cited on page 36.

[81] F. HILKEN, M. GOGOLLA, L. BURGUEÑO, AND A. VALLECILLO, Testing models
and model transformations using classifying terms, Software & Systems Modeling,
(2016). Cited on page 2.

[82] K. HINDRIKS, Debugging is explaining, in PRIMA 2012: Principles and Practice
of Multi-Agent Systems, I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara, eds.,
vol. 7455 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012,
pp. 31–45. Cited on page 32.

[83] U. HÖLZLE, C. CHAMBERS, AND D. UNGAR, Debugging optimized code with
dynamic deoptimization, in Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation, New York, NY, USA, 1992,
ACM, pp. 32–43. Cited on page 196.

[84] G. J. HOLZMANN, The model checker SPIN, IEEE Trans. Softw. Eng., 23 (1997),
pp. 279–295. Cited on pages 117 and 156.

[85] A. HOPKINS AND K. MCDONALD-MAIER, Debug support for complex systems
on-chip: a review, Computers and Digital Techniques, IEE Proceedings -, 153 (2006),
pp. 197–207. Cited on page 33.

[86] A. JANTSCH AND I. SANDER, Models of computation and languages for embedded
system design, IEE Proceedings - Computers and Digital Techniques, 152 (2005),
pp. 114–129(15). Cited on page 136.

[87] D. R. JEFFERSON, Virtual time, ACM Transactions on Programming Languages and
Systems, 7 (1985), pp. 404–425. Cited on page 167.

[88] M. JUKŠS, C. VERBRUGGE, AND H. VANGHELUWE, Transformations debug-
ging transformations, in Proceedings of MODELS 2017 Satellite Event: Work-
shops (ModComp, ME, EXE, COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa,
MDETools, FlexMDE, MDEbug), Posters, Doctoral Symposium, Educator Sympo-
sium, ACM Student Research Competition, and Tools and Demonstrations co-located

203



BIBLIOGRAPHY

with ACM/IEEE 20th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2017), 2017. Cited on page 37.

[89] P. KACSUK, R. LOVAS, AND J. KOVÁCS, Systematic debugging of parallel pro-
grams in DIWIDE based on collective breakpoints and macrosteps, in Euro-Par99
Parallel Processing, P. Amestoy, P. Berger, M. Daydé, D. Ruiz, I. Duff, V. Frayssé,
and L. Giraud, eds., vol. 1685 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 1999, pp. 90–97. Cited on page 31.

[90] P. KAUFMANN, M. KRONEGGER, A. PFANDLER, M. SEIDL, AND M. WIDL, A
SAT-based debugging tool for state machines and sequence diagrams, in Software
Language Engineering, B. Combemale, D. Pearce, O. Barais, and J. Vinju, eds.,
vol. 8706 of Lecture Notes in Computer Science, Springer International Publishing,
2014, pp. 21–40. Cited on page 37.

[91] S. KELLY AND J.-P. TOLVANEN, Domain-specific modeling: enabling full code
generation, John Wiley & Sons, 2008. Cited on pages 2, 8, and 37.

[92] P. KEMPER, A trace-based visual inspection technique to detect errors in simulation
models, in Simulation Conference, 2007 Winter, Dec 2007, pp. 747–755. Cited on
page 39.

[93] P. KEMPER AND C. TEPPER, A Petri net approach to verify and debug simulation
models, in Simulation and Verification of Dynamic Systems, D. M. Nicol, C. Priami,
H. R. Nielson, and A. M. Uhrmacher, eds., Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2006, Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany. Cited on page 39.

[94] S. KENT, Model Driven Engineering, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2002, pp. 286–298. Cited on pages 1 and 8.

[95] Y. P. KHOO, J. S. FOSTER, AND M. HICKS, Expositor: Scriptable time-travel
debugging with first-class traces, in Proceedings of the 2013 International Confer-
ence on Software Engineering, ICSE ’13, Piscataway, NJ, USA, 2013, IEEE Press,
pp. 352–361. Cited on page 29.

[96] G. KISTNER AND C. NUERNBERGER, Developing user interfaces using SCXML
Statecharts, in Proceedings of the 1st EICS Workshop on Engineering Interactive
Computer Systems with SCXML, D. Schnelle-Walka, S. Radomski, T. Lager, J. Bar-
nett, D. Dahl, and M. Mühlhäuser, eds., 2014, pp. 5–11. Cited on page 23.

[97] A. KLEPPE, A language description is more than a metamodel, in Fourth Inter-
national Workshop on Software Language Engineering, 2007. Cited on pages 8
and 10.

[98] A. J. KO AND B. A. MYERS, Debugging reinvented: Asking and answering why and
why not questions about program behavior, in Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, New York, NY, USA, 2008, ACM,
pp. 301–310. Cited on page 30.

[99] R. KOBLER, D. KRANZLMÜLLER, AND J. VOLKERT, Debugging OpenMP pro-
grams using event manipulation, in OpenMP Shared Memory Parallel Programming,

204



BIBLIOGRAPHY

R. Eigenmann and M. Voss, eds., vol. 2104 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2001, pp. 81–89. Cited on pages 32 and 193.

[100] A. KOCH AND A. ZNDORF, Graphical debugging of distributed applications: Using
UML object diagrams to visualize the state of distributed applications at runtime,
in 2015 3rd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), Feb 2015, pp. 223–230. Cited on page 31.

[101] E. KRAEMER AND J. STASKO, The visualization of parallel systems: An overview,
Journal of Parallel and Distributed Computing, 18 (1993), pp. 105 – 117. Cited on
page 31.

[102] D. KRAHL, Debugging simulation models, in Simulation Conference, 2005 Proceed-
ings of the Winter, Dec 2005, pp. 7 pp.–. Cited on page 39.

[103] A. KRASNOGOLOWY, S. HILDEBRANDT, AND S. WTZOLDT, Flexible debugging
of behavior models, in Proceedings of the 2012 IEEE International Conference on
Industrial Technology (ICIT), March 2012, pp. 331–336. Cited on page 37.

[104] A. KUHN, G. C. MURPHY, AND C. A. THOMPSON, An exploratory study of forces
and frictions affecting large-scale model-driven development, in Proceedings of the
15th International Conference on Model Driven Engineering Languages and Systems,
MODELS’12, Berlin, Heidelberg, 2012, Springer-Verlag, pp. 352–367. Cited on
page 175.

[105] T. KÜHNE, Matters of (meta-) modeling, Software & Systems Modeling, 5 (2006),
pp. 369–385. Cited on pages 10 and 37.

[106] T. KÜHNE, G. MEZEI, E. SYRIANI, H. VANGHELUWE, AND M. WIMMER, Explicit
transformation modeling, in Proceedings of the 2009 International Conference on
Models in Software Engineering, MODELS’09, Berlin, Heidelberg, 2010, Springer-
Verlag, pp. 240–255. Cited on page 12.

[107] Y. LAURENT, R. BENDRAOU, AND M.-P. GERVAIS, Executing and debugging UML
models: An fUML extension, in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, SAC ’13, New York, NY, USA, 2013, ACM, pp. 1095–1102.
Cited on pages 4 and 37.

[108] E. A. LEE, The problem with threads, Computer, 39 (2006), pp. 33–42. Cited on
page 17.

[109] E. A. LEE, Cyber physical systems: Design challenges, in 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), May 2008, pp. 363–369. Cited on pages 1 and 8.

[110] R. LENCEVICIUS, On-the-fly query-based debugging with examples, in Proceedings
Fourth International Workshop on Automated Debugging, 2000. Cited on page 29.

[111] R. LENCEVICIUS, U. HÖLZLE, AND A. K. SINGH, Query-based debugging of
object-oriented programs, in Proceedings of the 12th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’97, New York, NY, USA, 1997, ACM, pp. 304–317. Cited on page 29.

205



BIBLIOGRAPHY

[112] , Dynamic query-based debugging of object-oriented programs, Automated
Software Engg., 10 (2003), pp. 39–74. Cited on page 29.

[113] M. LESKE, A. CHIŞ, AND O. NIERSTRASZ, Improving live debugging of concurrent
threads through thread histories, Science of Computer Programming, (2017). Cited
on page 31.

[114] H. LIEBERMAN AND C. FRY, Bridging the gulf between code and behavior in
programming, in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 1995, pp. 480–486. Cited on page 176.

[115] M. H. V. LIEDEKERKE AND N. M. AVOURIS, Debugging multi-agent systems,
Information and Software Technology, 37 (1995), pp. 103 – 112. Cited on page 32.

[116] A. LIENHARD, T. G ÎRBA, AND O. NIERSTRASZ, Practical object-oriented back-in-
time debugging, in Proceedings of the 22nd European Conference on Object-Oriented
Programming, ECOOP ’08, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 592–615.
Cited on pages 33 and 166.

[117] R. T. LINDEMAN, L. C. KATS, AND E. VISSER, Declaratively defining domain-
specific language debuggers, in Proceedings of the 10th ACM International Con-
ference on Generative Programming and Component Engineering, GPCE ’11, New
York, NY, USA, 2011, ACM, pp. 127–136. Cited on pages 37 and 164.

[118] A. LUANGSODSAI AND C. FOX, Concurrent statechart slicing, in Computer Science
and Electronic Engineering Conference (CEEC), 2010 2nd, Sept 2010, pp. 1–7. Cited
on page 35.

[119] L. LÚCIO, S. MUSTAFIZ, J. DENIL, B. MEYERS, AND H. VANGHELUWE, The
formalism transformation graph as a guide to Model Driven Engineering, Tech.
Report SOCS-TR-2012.1, McGill University, March 2012. Cited on page 16.

[120] L. LÚCIO, S. MUSTAFIZ, J. DENIL, H. VANGHELUWE, AND M. JUKSS, FTG+PM:
An Integrated Framework for Investigating Model Transformation Chains, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 182–202. Cited on page 16.

[121] C.-K. LUK, R. COHN, R. MUTH, H. PATIL, A. KLAUSER, G. LOWNEY, S. WAL-
LACE, V. J. REDDI, AND K. HAZELWOOD, Pin: Building customized program
analysis tools with dynamic instrumentation, in Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’05, New York, NY, USA, 2005, ACM, pp. 190–200. Cited on page 29.

[122] M. MALEKI, R. WOODBURY, R. GOLDSTEIN, S. BRESLAV, AND A. KHAN,
Designing DEVS visual interfaces for end-user programmers, SIMULATION, 91
(2015), pp. 715–734. Cited on pages 36 and 195.

[123] R. MANNADIAR AND H. VANGHELUWE, Debugging in domain-specific modelling,
in Software Language Engineering, B. Malloy, S. Staab, and M. van den Brand, eds.,
vol. 6563 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011,
pp. 276–285. Cited on page 37.

[124] G. MARCEAU, G. H. COOPER, J. P. SPIRO, S. KRISHNAMURTHI, AND S. P. REISS,
The design and implementation of a dataflow language for scriptable debugging,
Automated Software Engg., 14 (2007), pp. 59–86. Cited on page 29.

206



BIBLIOGRAPHY

[125] M. MARTIN, B. LIVSHITS, AND M. S. LAM, Finding application errors and
security flaws using PQL: A Program Query Language, in Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, New York, NY, USA, 2005, ACM,
pp. 365–383. Cited on page 29.

[126] W. MAYER AND M. STUMPTNER, Model-based debugging – state of the art and
future challenges, Electron. Notes Theor. Comput. Sci., 174 (2007), pp. 61–82. Cited
on page 30.

[127] W. MAYER AND M. STUMPTNER, Evaluating models for model-based debugging,
in Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, Washington, DC, USA, 2008, IEEE Computer
Society, pp. 128–137. Cited on page 30.

[128] T. MAYERHOFER, Testing and debugging UML models based on fUML, in Pro-
ceedings of the 34th International Conference on Software Engineering, ICSE ’12,
Piscataway, NJ, USA, 2012, IEEE Press, pp. 1579–1582. Cited on pages 4 and 37.

[129] S. MCDIRMID, Living it up with a live programming language, in Proceedings of
OOPSLA ’07, 2007, pp. 623–638. Cited on page 34.

[130] , Usable live programming, in Proceedings of Onward! 2013, 2013, pp. 53–61.
Cited on pages 34 and 176.

[131] C. E. MCDOWELL AND D. P. HELMBOLD, Debugging concurrent programs, ACM
Comput. Surv., 21 (1989), pp. 593–622. Cited on page 30.

[132] K. MEHNER, JaVis: A UML-based visualization and debugging environment for
concurrent Java programs, in Software Visualization, S. Diehl, ed., vol. 2269 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2002, pp. 163–175.
Cited on page 31.

[133] S. J. MELLOR AND M. BALCER, Executable UML: A Foundation for Model-Driven
Architectures, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002. Cited on page 37.

[134] T. MENS AND P. VAN GORP, A taxonomy of model transformation, Electron. Notes
Theor. Comput. Sci., 152 (2006), pp. 125–142. Cited on page 11.

[135] T. MÉSZÁROS, P. FEHÉR, AND L. LENGYEL, Visual debugging support for graph
rewriting-based model transformations, in Proceedings of Eurocon 2013, Interna-
tional Conference on Computer as a Tool, Zagreb, Croatia, July 1-4, 2013, IEEE,
2013, pp. 482–488. Cited on page 36.

[136] B. MEYERS, R. DESHAYES, L. LUCIO, E. SYRIANI, H. VANGHELUWE, AND
M. WIMMER, ProMoBox: A framework for generating domain-specific property
languages, in Software Language Engineering, vol. 8706 of Lecture Notes in Com-
puter Science, Springer International Publishing, 2014, pp. 1–20. Cited on pages 2,
11, 40, 41, and 156.

[137] B. MEYERS AND H. VANGHELUWE, A framework for evolution of modelling
languages, Science of Computer Programming, 76 (2011), pp. 1223 – 1246. Special
Issue on Software Evolution, Adaptability and Variability. Cited on page 196.

207



BIBLIOGRAPHY

[138] P. J. MOSTERMAN AND H. VANGHELUWE, Computer automated multi-paradigm
modeling: An introduction, Simulation, 80 (2004), pp. 433–450. Cited on pages 2
and 8.

[139] T. MURATA, Petri nets: Properties, analysis and applications, Proceedings of the
IEEE, 77 (1989), pp. 541–580. Cited on pages 2, 13, and 36.

[140] S. MUSTAFIZ, J. DENIL, L. LÚCIO, AND H. VANGHELUWE, The FTG+PM
framework for multi-paradigm modelling: An automotive case study, in Proceedings
of the 6th International Workshop on Multi-Paradigm Modeling, MPM ’12, New
York, NY, USA, 2012, ACM, pp. 13–18. Cited on page 16.

[141] S. MUSTAFIZ, C. GOMES, B. BARROCA, AND H. VANGHELUWE, Modular Design
of Hybrid Languages by Explicit Modeling of Semantic Adaptation, in Proceedings
of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S
Symposium, DEVS ’16, San Diego, CA, USA, 2016, pp. 29:1—-29:8. Cited on
pages 137, 139, 142, and 195.

[142] S. MUSTAFIZ AND H. VANGHELUWE, Explicit modelling of Statechart simula-
tion environments, in Summer Simulation Multiconference, Society for Computer
Simulation International (SCS), July 2013, pp. 445 – 452. Cited on pages 35 and 53.

[143] A. MUZY AND J. J. NUTARO, Algorithms for efficient implementations of the DEVS
& DSDEVS abstract simulators, in 1st Open International Conference on Modeling
& Simulation (OICMS), 2005, pp. 273–279. Cited on pages 94 and 126.

[144] S. NARAYANASAMY, G. POKAM, AND B. CALDER, Bugnet: Continuously record-
ing program execution for deterministic replay debugging, SIGARCH Comput.
Archit. News, 33 (2005), pp. 284–295. Cited on page 32.

[145] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, Software errors cost
U.S. economy $59.5 billion annually, October 2002. Cited on pages 3 and 27.

[146] N. NETHERCOTE AND J. SEWARD, Valgrind: A framework for heavyweight dynamic
binary instrumentation, in Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, New York, NY,
USA, 2007, ACM, pp. 89–100. Cited on page 29.

[147] C. B. NIELSEN, P. G. LARSEN, J. FITZGERALD, J. WOODCOCK, AND J. PELESKA,
Systems of systems engineering: Basic concepts, model-based techniques, and
research directions, ACM Comput. Surv., 48 (2015), pp. 18:1–18:41. Cited on pages
1 and 8.

[148] J. NUTARO, adevs. http://sourceforge.net/projects/adevs/. Cited
on pages 94 and 126.

[149] R. A. OLSSON, R. H. CRAWFORD, AND W. W. HO, A dataflow approach to
event-based debugging, Softw. Pract. Exper., 21 (1991), pp. 209–229. Cited on
page 29.

[150] C. M. PANCAKE, Graphical support for parallel debugging, in Software for Parallel
Computation, J. Kowalik and L. Grandinetti, eds., vol. 106 of NATO ASI Series,
Springer Berlin Heidelberg, 1993, pp. 216–228. Cited on page 31.

208

http://sourceforge.net/projects/adevs/


BIBLIOGRAPHY

[151] C. M. PANCAKE AND S. UTTER, Models for visualization in parallel debuggers, in
Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomput-
ing ’89, New York, NY, USA, 1989, ACM, pp. 627–636. Cited on page 31.

[152] T. PARK AND P. I. BARTON, State event location in differential-algebraic models,
ACM Trans. Model. Comput. Simul., 6 (1996), pp. 137–165. Cited on page 139.

[153] D. PAVLETIC AND K. HALBAUER, Interactive debugging for extensible languages
in multi-stage transformation environments, in Proceedings of the 2nd International
Workshop on Executable Modeling co-located with ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2016),
T. Mayerhofer, P. Langer, E. Seidewitz, and J. Gray, eds., vol. 1760, CEUR, 2016,
pp. 19–25. Cited on page 38.

[154] D. PAVLETIC, M. VOELTER, S. A. RAZA, B. KOLB, AND T. KEHRER, Extensible
debugger framework for extensible languages, in Reliable Software Technologies –
Ada-Europe 2015: 20th Ada-Europe International Conference on Reliable Software
Technologies, Madrid Spain, June 22-26, 2015, Proceedings, J. A. de la Puente and
T. Vardanega, eds., Cham, 2015, Springer International Publishing, pp. 33–49. Cited
on page 38.

[155] M. PETRE, Why looking isn’t always seeing: Readership skills and graphical
programming, Commun. ACM, 38 (1995), pp. 33–44. Cited on page 34.

[156] E. PLANAS, J. CABOT, AND C. GMEZ, Lightweight and static verification of UML
executable models, Computer Languages, Systems & Structures, 46 (2016), pp. 66 –
90. Cited on page 2.

[157] A. POP AND P. FRITZSON, A portable debugger for algorithmic Modelica code,
in Proceedings of the 4th International Modelica Conference, G. Schmitz, ed., Mar.
2005. Cited on pages 35 and 164.

[158] A. POP, M. SJÖLUND, A. ASGHAR, P. FRITZSON, AND C. FRANCESCO, Static
and Dynamic Debugging of Modelica Models, in Proceedings of the 9th International
Modelica Conference, Nov. 2012, pp. 443–454. Cited on page 35.

[159] A. POP, M. SJÖLUND, A. ASHGAR, P. FRITZSON, AND F. CASELLA, Integrated
Debugging of Modelica Models, Modeling, Identification and Control, 35 (2014),
pp. 93–107. Cited on pages 35 and 164.

[160] A. POTANIN, J. NOBLE, AND R. BIDDLE, Snapshot query-based debugging, in
Proceedings of the 2004 Australian Software Engineering Conference, ASWEC ’04,
Washington, DC, USA, 2004, IEEE Computer Society, p. 251. Cited on page 29.

[161] G. POTHIER AND E. TANTER, Back to the future: Omniscient debugging, IEEE
Software, 26 (2009), pp. 78–85. Cited on page 166.

[162] G. POTHIER, E. TANTER, AND J. PIQUER, Scalable omniscient debugging, in
Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07, ACM, 2007, pp. 535–552.
Cited on pages 33 and 166.

[163] K. POUGET, P. LOPEZ CUEVA, M. SANTANA, AND J.-F. MEHAUT, Interactive
debugging of dynamic dataflow embedded applications, in Parallel and Distributed

209



BIBLIOGRAPHY

Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th Interna-
tional, May 2013, pp. 345–354. Cited on page 33.

[164] D. POUTAKIDIS, M. WINIKOFF, L. PADGHAM, AND Z. ZHANG, Debugging and
testing of multi-agent systems using design artefacts, in Multi-Agent Programming:,
A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H. Bordini, eds., Springer US,
2009, pp. 215–258. Cited on page 32.

[165] B. R. PREISS, W. M. LOUCKS, AND I. D. MACINTYRE, Effects of the checkpoint
interval on time and space in time warp, ACM Trans. Model. Comput. Simul., 4
(1994), pp. 223–253. Cited on page 168.

[166] W. PUGH, The Java memory model is fatally flawed, Concurrency: Practice and
Experience, 12 (2000), pp. 445–455. Cited on page 13.

[167] J. RESSIA, A. BERGEL, AND O. NIERSTRASZ, Object-centric debugging, in Soft-
ware Engineering (ICSE), 2012 34th International Conference on, June 2012, pp. 485–
495. Cited on page 29.

[168] F. ROGIN AND R. DRECHSLER, High-level debugging and exploration, in Debug-
ging at the Electronic System Level, Springer Netherlands, 2010, pp. 71–104. Cited
on page 39.

[169] R. RÖNNGREN AND R. AYANI, Adaptive checkpointing in time warp, SIGSIM
Simul. Dig., 24 (1994), pp. 110–117. Cited on page 168.

[170] M. RONSSE, K. DE BOSSCHERE, AND J. CHASSIN DE KERGOMMEAUX, Execution
replay and debugging, in Proceedings of the Fourth International Workshop on
Automated Debugging (AADEBUG 2000), M. Ducassé, ed., Aug. 2000. Cited on
page 32.

[171] J. RUMBAUGH, I. JACOBSON, AND G. BOOCH, Unified Modeling Language Ref-
erence Manual, The (2nd Edition), Pearson Higher Education, 2004. Cited on
page 2.

[172] D. A. SADILEK AND G. WACHSMUTH, Prototyping Visual Interpreters and Debug-
gers for Domain-Specific Modelling Languages, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 63–78. Cited on page 38.

[173] Y. SAITO, Jockey: A user-space library for record-replay debugging, in Proceedings
of the Sixth International Symposium on Automated Analysis-driven Debugging,
AADEBUG’05, New York, NY, USA, 2005, ACM, pp. 69–76. Cited on page 32.

[174] E. SANDEWALL, Programming in an interactive environment: The “Lisp” experi-
ence, ACM Comput. Surv., 10 (1978), pp. 35–71. Cited on page 34.

[175] J. SCHÖNBC̈K, G. KAPPEL, M. WIMMER, A. KUSEL, W. RETSCHITZEGGER, AND
W. SCHWINGER, Tetrabox - a generic white-box testing framework for model trans-
formations, in 2013 20th Asia-Pacific Software Engineering Conference (APSEC),
vol. 1, Dec 2013, pp. 75–82. Cited on page 4.

[176] J. SCHÖNBÖCK, Testing and Debugging of Model Transformations, PhD thesis,
E188 Institut für Softwaretechnik und Interaktive Systeme, 2012. Cited on page 36.

210



BIBLIOGRAPHY

[177] J. SCHÖNBÖCK, G. KAPPEL, A. KUSEL, W. RETSCHITZEGGER, W. SCHWINGER,
AND M. WIMMER, Catch me if you can – debugging support for model transforma-
tions, in Proceedings of the 2009 International Conference on Models in Software
Engineering, MODELS’09, Berlin, Heidelberg, 2010, Springer-Verlag, pp. 5–20.
Cited on page 36.

[178] J. SCHÖNBÖCK, G. KAPPEL, M. WIMMER, A. KUSEL, W. RETSCHITZEGGER,
AND W. SCHWINGER, Debugging model-to-model transformations, in 2012 19th
Asia-Pacific Software Engineering Conference, vol. 1, Dec 2012, pp. 164–173. Cited
on page 36.

[179] A. SCHÜRR, Specification of graph translators with triple graph grammars, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995, pp. 151–163. Cited on pages 11
and 157.

[180] B. SELIC, The pragmatics of model-driven development, Software, IEEE, 20 (2003),
pp. 19–25. Cited on pages 1 and 8.

[181] S. SENDALL AND W. KOZACZYNSKI, Model transformation: The heart and soul of
model-driven software development, IEEE Software, 20 (2003), pp. 42–45. Cited on
page 11.

[182] B. SIEGMUND, M. PERSCHEID, M. TAEUMEL, AND R. HIRSCHFELD, Studying the
advancement in debugging practice of professional software developers, in Software
Reliability Engineering Workshops (ISSREW), 2014 IEEE International Symposium
on, Nov 2014, pp. 269–274. Cited on page 30.

[183] J. SILVA, A survey on algorithmic debugging strategies, Advances in Engineering
Software, 42 (2011), pp. 976 – 991. Cited on page 30.

[184] S. SINGH AND L. SINGH, Study of current program slicing techniques, in Conflu-
ence The Next Generation Information Technology Summit (Confluence), 2014 5th
International Conference -, Sept 2014, pp. 810–814. Cited on page 29.

[185] M. SJÖLUND, F. CASELLA, A. POP, A. ASGHAR, P. FRITZSON, W. BRAUN,
L. OCHEL, B. BACHMANN, AND P. MILANO, Integrated Debugging of Equation-
Based Models, in Proceedings of the 10th International ModelicaConference, 2014,
pp. 195–204. Cited on page 35.

[186] M. SJÖLUND AND P. FRITZSON, Debugging Symbolic Transformations in Equation
Systems, in EOOLT, Linköping Electronic Conference Proceedings vol. 56, 2011,
pp. 67–74. Cited on pages 35 and 164.

[187] D. STEWART AND M. M. CHAKRAVARTY, Dynamic applications from the ground
up, in Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, 2005, pp. 27–
38. Cited on page 34.

[188] L. STOCKMANN, Debugging models in the context of automotive software de-
velopment, in Proceedings of the Doctoral Symposium of the ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems,
M. Chechik and D. Kolovos, eds., 29 Sept. 2015. Cited on page 34.

[189] J. E. STOY, Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, MA, USA, 1977. Cited on page 14.

211



BIBLIOGRAPHY

[190] Y. SUN AND J. GRAY, End-user support for debugging demonstration-based model
transformation execution, in Modelling Foundations and Applications, P. Van Gorp,
T. Ritter, and L. Rose, eds., vol. 7949 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2013, pp. 86–100. Cited on page 36.

[191] E. SYRIANI AND H. VANGHELUWE, A modular timed graph transformation lan-
guage for simulation-based design, Software & Systems Modeling, 12 (2013),
pp. 387–414. Cited on page 11.

[192] E. SYRIANI, H. VANGHELUWE, R. MANNADIAR, C. HANSEN, S. VAN MIERLO,
AND H. ERGIN, AToMPM: A web-based modeling environment, in Joint Proceedings
of MODELS’13 Invited Talks, Demonstration Session, Poster Session, and ACM
Student Research Competition co-located with the 16th International Conference
on Model Driven Engineering Languages and Systems (MODELS 2013), vol. 1115,
CEUR, Sept. 2013, pp. 21–25. Cited on pages 10 and 61.

[193] S. L. TANIMOTO, VIVA: A visual language for image processing, Journal of Visual
Languages and Computing, 1 (1990), pp. 127–139. Cited on page 34.

[194] H. THANE, D. SUNDMARK, J. HUSELIUS, AND A. PETTERSSON, Replay Debug-
ging of Real-Time Systems Using Time Machines, in Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS’03), IEEE Computer Soci-
ety, 2003, pp. 288–295. Cited on page 33.

[195] J. TSAI, K.-Y. FANG, H.-Y. CHEN, AND Y.-D. BI, A noninterference monitor-
ing and replay mechanism for real-time software testing and debugging, Software
Engineering, IEEE Transactions on, 16 (1990), pp. 897–916. Cited on page 33.

[196] A. M. UHRMACHER, Dynamic structures in modeling and simulation: A reflective
approach, ACM Trans. Model. Comput. Simul., 11 (2001), pp. 206–232. Cited on
page 122.

[197] Z. UJHELYI, A. HORVATH, AND D. VARRO, Towards dynamic backward slicing of
model transformations, in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, Washington, DC, USA,
2011, IEEE Computer Society, pp. 404–407. Cited on page 36.

[198] D. UNGAR AND R. B. SMITH, Self: The power of simplicity, SIGPLAN Not., 22
(1987), pp. 227–242. Cited on page 34.

[199] M. G. J. VAN DEN BRAND, B. CORNELISSEN, P. A. OLIVIER, AND J. J. VINJU,
TIDE: A generic debugging framework — tool demonstration —, Electron. Notes
Theor. Comput. Sci., 141 (2005), pp. 161–165. Cited on page 38.

[200] T. VAN DER STORM, Semantic deltas for live DSL environments, in Proceedings of
the 1st International Workshop on Live Programming, LIVE ’13, Piscataway, NJ,
USA, 2013, IEEE Press, pp. 35–38. Cited on pages 38 and 176.

[201] Y. VAN TENDELOO, Foundations of a multi-paradigm modelling tool, in Proceedings
of the ACM Student Research Competition at MODELS 2015 co-located with the
ACM/IEEE 18th International Conference MODELS 2015, 2015. Cited on page 67.

[202] Y. VAN TENDELOO, B. BARROCA, S. VAN MIERLO, AND H. VANGHELUWE,

212



BIBLIOGRAPHY

Modelverse specification, tech. report, University of Antwerp, 2016. Cited on
page 69.

[203] Y. VAN TENDELOO, S. VAN MIERLO, B. MEYERS, AND H. VANGHELUWE,
Concrete syntax: A multi-paradigm modelling approach, in Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering, SLE
2017, New York, NY, USA, 2017, ACM, pp. 182–193. Cited on page 9.

[204] Y. VAN TENDELOO AND H. VANGHELUWE, The modular architecture of the
Python(P)DEVS simulation kernel, in TMS-DEVS, SpringSim, 2014, pp. 387–392.
Cited on page 126.

[205] Y. VAN TENDELOO AND H. VANGHELUWE, PythonPDEVS: a distributed Parallel
DEVS simulator, in Proceedings of the 2015 Spring Simulation Multiconference,
SpringSim ’15, Society for Computer Simulation International, 2015, pp. 844–851.
Cited on page 94.

[206] Y. VAN TENDELOO AND H. VANGHELUWE, An overview of PythonPDEVS, in JDF
2016, 2016, pp. 59–66. Cited on page 126.

[207] Y. VAN TENDELOO AND H. VANGHELUWE, The Modelverse: a tool for multi-
paradigm modelling and simulation, in Proceedings of the 2017 Winter Simulation
Conference, WSC 2017, IEEE, Dec. 2017, pp. 944 – 955. Cited on pages 69 and 185.

[208] H. VANGHELUWE, Foundations of modelling and simulation of complex systems,
ECEASST, 10 (2008). Cited on page 8.

[209] H. VANGHELUWE AND G. VANSTEENKISTE, A multi-paradigm modeling and simu-
lation methodology: formalisms and languages, in Proceedings of the 1996 European
Simulation Symposium (Genoa), Society for Computer Simulation International,
1996, pp. 168–172. Cited on page 16.

[210] G. WAINER AND N. GIAMBIASI, Timed Cell-DEVS: Modeling and Simulation of
Cell Spaces, Springer New York, New York, NY, 2001, pp. 187–214. Cited on pages
49 and 164.

[211] P. WANG, X. ZHANG, P. HAO, AND Y. ZHANG, Towards the multithreaded deter-
ministic replay in program debugging, in Information Science and Digital Content
Technology (ICIDT), 2012 8th International Conference on, vol. 1, June 2012,
pp. 139–144. Cited on page 32.

[212] R. WILLE, M. SOEKEN, AND R. DRECHSLER, Debugging of inconsistent UM-
L/OCL models, in 2012 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2012, pp. 1078–1083. Cited on page 38.

[213] M. WIMMER, A. KUSEL, J. SCHOENBOECK, G. KAPPEL, W. RETSCHITZEGGER,
AND W. SCHWINGER, Reviving QVT relations: Model-based debugging using
colored Petri nets, in Model Driven Engineering Languages and Systems, A. Schürr
and B. Selic, eds., vol. 5795 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2009, pp. 727–732. Cited on page 36.

[214] S. WOLFRAM, Cellular automata as models of complexity, Nature, 311 (1984),
pp. 419 EP –. Cited on pages 49 and 164.

213



BIBLIOGRAPHY

[215] W. E. WONG AND V. DEBROY, A survey of software fault localization, tech. report,
University of Texas, Dallas, 2009. Cited on page 29.

[216] H. WU, J. GRAY, AND M. MERNIK, Grammar-driven generation of domain-specific
language debuggers, Software: Practice and Experience, 38 (2008), pp. 1073–1103.
Cited on pages 37 and 164.

[217] Z. XING, J. SUN, Y. LIU, AND J. S. DONG, SpecDiff: Debugging formal specifi-
cations, in Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, ASE ’10, New York, NY, USA, 2010, ACM, pp. 353–354.
Cited on page 36.

[218] Y. XIONG, Z. HU, H. ZHAO, H. SONG, M. TAKEICHI, AND H. MEI, Supporting
automatic model inconsistency fixing, in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE ’09, New York, NY, USA,
2009, ACM, pp. 315–324. Cited on page 38.

[219] F. ZALILA, X. CRÉGUT, AND M. PANTEL, A transformation-driven approach to
automate feedback verification results, in Proceedings of the Third International
Conference on Model and Data Engineering - Volume 8216, MEDI 2013, New York,
NY, USA, 2013, Springer-Verlag New York, Inc., pp. 266–277. Cited on page 40.

[220] C. ZAMFIR AND G. CANDEA, Execution synthesis: A technique for automated
software debugging, in Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, New York, NY, USA, 2010, ACM, pp. 321–334. Cited on
page 32.

[221] B. P. ZEIGLER, Theory of Modelling and Simulation, Krieger Publishing Co., Inc.,
Melbourne, FL, USA, 1984. Cited on pages 2, 8, 13, 36, 43, and 88.

[222] M. V. ZELKOWITZ, Reversible execution, Commun. ACM, 16 (1973), pp. 566–566.
Cited on page 34.

[223] A. ZELLER, Why Programs Fail: A Guide to Systematic Debugging, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2005. Cited on pages 2, 3, and 28.

[224] A. ZELLER AND D. LÜTKEHAUS, DDD - a free graphical front-end for UNIX
debuggers, SIGPLAN Not., 31 (1996), pp. 22–27. Cited on page 29.

[225] Y. ZHANG AND B. XU, A survey of semantic description frameworks for program-
ming languages, SIGPLAN Notices, 39 (2004), pp. 14–30. Cited on page 13.

[226] K. ZUROWSKA AND J. DINGEL, Language-specific model checking of UML-RT
models, Software & Systems Modeling, 16 (2017), pp. 393–415. Cited on page 2.

214


	Introduction
	Motivation
	Contributions
	Structure

	Background
	Multi-Paradigm Modelling
	Building Modelling and Simulation Tools
	Syntax of Modelling Languages
	Model Transformation
	Semantics of Modelling Languages
	Modelling Workflows with FTG+PM

	Modelling System Behaviour with Statecharts
	Harel Statecharts
	SCCD: Extending Statecharts with Dynamic Structure

	Modelling and Simulation Workflow

	State of the Art
	Program Debugging
	Scientific Debugging
	Debugging Concurrent Programs
	Debugging Embedded Systems
	Omniscient Debugging
	Live Programming

	Model Debugging
	Executable Modelling
	Domain-Specific Modelling
	Non-Executable Modelling

	Simulation Debugging
	Back-Translation of Traces

	Modelling Model Debugging Environments
	A Language Classification
	Semantic Features
	Definition of Semantics

	Debugging Operations
	Stepping
	State
	Time
	Breakpoints

	De- and Reconstruction of Model Simulators
	Architecture
	Workflow

	Representative Formalisms
	Action Language
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	Causal Block Diagrams
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	Parallel DEVS
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	Statecharts
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	Petrinets
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	Dynamic-Structure DEVS
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	Hybrid TFSA-CBD
	Syntax and Semantics
	Debugging Operations
	De- and Reconstructed Simulator
	Debugging Environment

	A Domain-Specific Formalism for Production Systems
	Syntax and Semantics
	Debugging Operations
	Implementation


	Advanced Techniques
	Omniscient Model Debugging
	Stepping Back
	Optimization
	Performance Evaluation
	Omniscient Debugging Overhead

	Conclusion

	Live Modelling
	Introduction to Live Programming
	Deconstructing Live Programming
	Transposing to Live Modelling
	Examples


	Conclusion

