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ABSTRACT
With the emergence of parallel computational infrastructures
at low cost, reducing simulation time becomes again an issue
of the research community in modeling and simulation. This
paper presents a method to improve simulation time through
handling the structure of the model. This operation consists in
partitioning the graph models based on several criteria. In this
work, we use the DEVS formalism which is a discrete event
formalism with a modular and hierarchical structure of mod-
els. To improve simulation time, we use partitioning methods.
We will present the partitioning method chosen to achieve this
division and quantify the resulting time savings. Many tests
are performed from graphs with different sizes and shapes.
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INTRODUCTION
Modeling and analysis of complex system dynamics is now
a full science. Models derived therefrom are becoming in-
creasingly complex in terms of components (sub-models) and
interactions. Therefore, we need to develop both modeling
tools and efficient simulators. However, this process leads
to the increase in computation demand and therefore, the in-
crease of computation time.

Multi-modeling is a response to the increased complexity
of the models [12]. The multi-modelling approach allows
to couple heterogeneous models (i.e. each models can use
different formalisms). DEVS [15] Discrete Event Specifica-
tion is a good candidate to develop the multi-modeling ap-
proach [11]. DEVS is a discrete events modeling and simula-
tion theory with a hierarchical approach. The global model,
called structure of the model in DEVS terminology, is a graph
of coupled models.

To improve simulation computation time, the DEVS com-
munity provides several simulation algorithms and softwares
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based on classical distributed and parallel computing algo-
rithms or techniques [2, 3, 5] for example, in the CD++ plat-
form [13].

In this paper, we propose to transform and optimise the struc-
ture of the model provided by the modeler into a new one,
optimised for the simulation. These works show how possi-
ble it is to design a graph of simulators which guarantees a
high level of performance DEVS algorithms.

In the first part, we describe the DEVS formalism and we
show how models are structured. We will have a focus on the
kernel of some algorithms to understand what we are looking
for to optimise. Then we show how it is possible to make a
partition of the graph model to optimise the simulation algo-
rithms. And to finish, various tests will be offered by illustra-
tion of the results.

DEVS MODELING AND SIMULATION
As we mentioned in the introduction, DEVS [15] is a high
level formalism based on the discrete events for the modeling
of complex discrete and continuous systems. The model is
a network of interconnections between atomic and coupled
models. These models are in interaction via time-stamped
events exchanges.

In this section, we present the Parallel-DEVS (PDEVS) for-
malism [4]. PDEVS is an extension of the classic DEVS. It
introduces the concept of simultaneity of events essentially
by allowing bags of inputs to the external transition function.
Bags can collect inputs that are built at the same date, and
process their effects in future bags. This formalism offers a
solution to manage simultaneous events that could not be eas-
ily managed with Classic DEVS. For a detailed description,
we encourage to read the section 3.4.2 in chapter 3 and the
section 11.4 in chapter 11 of Zeigler’s book [15].

PDEVS defines an atomic model as a set of input and output
ports and a set of state transition functions:

M = 〈X,Y, S, δint , δext , δcon , λ, ta〉

With: X , Y , S are respectively the set of input values, output
values and sequential states

ta : S → R+
0 is the time advance function

δint : S → S is the internal transition function

1030



δext : Q×Xb → S is the external transition function
where:
Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
Q is the set of total states,
e is the time elapsed since last transition
Xb is a set of bags over elements in X

δcon : S ×Xb → S is the confluent transition
function, subject to δcon(s, ∅) = δint(s)

λ : S → Y is the output function

If no external event occurs, the system will stay in state s
for ta(s) time. When e = ta(s), the system changes to the
state δint(s). If an external event, of value x, occurs when the
system is in the state (s, e), the system changes its state by
calling δext(s, e, x). If it occurs when e = ta(s), the system
changes its state by calling δcon(s, x). The default confluent
function δcon definition is:

δcon(s, x) = δext(δint(s), 0, x)

The modeler can prefer the opposite order:

δcon(s, x) = δint(δext(s, ta(s), x))

Indeed, the modeler can define its own function.

Every atomic model can be coupled with one or several other
atomic models to build a coupled model. This operation can
be repeated to form a hierarchy of coupled models. A coupled
model is defined by:

N = 〈X,Y,D, {Md}, {Id}, {Zi,d}〉

WhereX and Y are input and output ports, D the set of mod-
els and:

∀d ∈ D,Md is a PDEVS model
∀d ∈ D ∪ {N}, Id is the influencer set of d :

Id ⊆ D ∪ {N}, d /∈ Id,∀d ∈ D ∪ {N},
∀i ∈ Id, Zi,d is a function,

the i-to-d output translation:
Zi,d : X → Xd, if i = N

Zi,d : Yi → Y, if d = N

Zi,d : Yi → Xd, if i 6= N and d 6= N

The influencer set of d is the set of models that interact with
d and Zi,d specifies the types of relations between models i
and d.

PDEVS is an operational formalism. This means that the for-
malism is executable and thus it provides algorithms for its
execution. These algorithms define the sequence of the differ-
ent functions of the PDEVS structure. Moreover, the atomic
and coupled models are respectively associated with simula-
tors and coordinators. The aim of simulators is to compute the
various functions while the coordinators manage the synchro-
nisation of exchanges between simulators (or coordinators in
a hierarchical view). A PDEVS feature is the possibility to
parallelize the set of events to reduce time calculation.

The association between the modeler’s structure of the model
and the simulator hierarchy may be underperformant and/or
not easily suitable to distribute or to parallel the simulation
over a calculator:

• The coordinators sub-graphs can be not balanced i.e.
schedulers sizes may be not balanced.

• Atomic models and simulators with high output frequency
must be move closer to reduce overhead of events between
simulator and the hierarchy of coordinators.

• In the same way, atomic models with expensive internal or
external transition (in term of computation time) must be
placed alone to use more processing resources.

Figure 1 shows an simple example of an optimised graph.

Figure 1. At left a typical DEVS model provides by modeler and at
right a optimised graph for simulation.

Minimisation of the models hierarchy provides an optimised
graph. TIn order to have as much coupled models in the
penultimate level as there are available processors , the hi-
erarchy is modified. Moreover, this coupled models are built
to equalize the computation time between processors and for
minimizing their interactions.

INTEGRATION OF THE GRAPH PARTITIONING IN DEVS
SIMULATION
Our approach consists to transform the model structure in an-
other in order to be optimized for parallelization. For this,
we introduce partitioning algorithms. This work is possible
thanks to the closure under coupling property of DEVS [15].
This property formally describes the coupled model is equiv-
alent to an atomic model. Thus an atomic model can be move
into a new coupled model and all the hierarchy of coupled
model can be merge into a unique coupled model.

This coupled model can be represented by an oriented graph
where each vertex is an atomic model and edges represente
the communication network between them. We use undi-
rected graph partitioning methods to create the partition. The
first step converts the oriented graph in a unoriented graph, in
order to apply our methods.

The following subsections present a summary of partitioning
graph theory.

Generality on the graph partitioning
The k-way graph partitioning allows to cut a graph G =
(V,E) (V vertices set, E edges set) into k subgraphs
{G1, G2, . . . , Gk}, while respecting one or more ”objective
function”. Thus, this cutting provides k subsets of vertices
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called partition. To be good quality, a partition must respect
some conditions : the parts weight must be similar and con-
nections between parts must be minimal.

In our works, connections represent the information flow be-
tween models of different parts. In order to quantify this flow,
each edge have a weight reflecting the data proportion trans-
mitted between its models. The vertex weight enable to quan-
tify the execution time of a model. Slower is a model, bigger
is his weight. The following subsection present the objective
functions used for partitioning.

The objective functions
The objective functions are criterions which give the parti-
tioning quality. More it’s little than the partition quality is
good. It revolve around two concepts: cost cutting between
partition parts and parts weight.

Given two subsets V1, V2 ⊆ V and Pk a partition of V , the
cut cost between two parts (1) and for a partition (2) is defined
by :

Cut(V1, V2) =
∑

v1∈V1,v2∈V2

weight(v1, v2) (1)

Cut(Pk) =
∑
i<j

Cut(Vi, Vj) (2)

The Cut is the edges sum connecting the partition parts. This
objective function was already used by Brian Kernighan and
Shen Lin in [8].

Another function allows simultaneous management the min-
imization of the cut cost and weight balance between parts :
the ratio cut. It’s introduced by Yen-Chuen Wei and Chung-
Kuan Cheng in [14].

Ratio(Pk) =

k∑
i=1

Cut(Vi, V − Vi)
weight(Vi)

(3)

In our works, we seek to minimize this objective function.

The main methods of the graph partitioning
There are lot of methods of graph partitioning. The main
categories are: greedy methods, spectral methods, meta-
heuristics and region expanding methods. We search a sim-
ple and effective method to minimize the ratio cut. For create
partitions we used the concept of neighbourhood. It’s why,
we choosed an expanding region method : the Greedy Graph
Growing Partitioning (GGGP).

The GGGP method is an amelioration of the ”Graph Growing
Partitioning” method introduced in [7]. GGGP is a bisection
method, which aims to divide the vertices set of the graph
into two parts of equal weight. Given two vertices sets Ver-
tex source (Vs) and Vertex destination (Vd), where Vs include
all vertices and Vd is empty at the initial step. The algorithm
starts by a randomly selection of a vertex in Vs and moves it
in Vd. The neighbor vertices of Vd, not included in Vd, which
give a maximum gain are moved from Vs to Vd. The process
stops when the weight of Vd is equal to the half weight of
graph vertices.

Our method is a variation of GGGP because it’s extended for
reduce the ratio cut and not simply the edge-cut. To realize
a k-way partitioning it was necessary to create a recursive
application.

As Charles Edmond Bichot reports in his book [1], the major
problem of this method is that it gives good results only on
graphs of small size (less than 200 vertices). In order to apply
this method on large graphs, it is necessary to reduce its size
without changing its structure. We propose to implement a
multilevel schemes, presented in [7].

Multilevel Graph Partitioning
The multilevel create quickly a graph partition of big size us-
ing three phases presented in the figure 2 :

Figure 2. Multilevel Graph Bisection

• Coarsening: Graph reduction by successive vertices match-
ing, while keeping the nature of the original graph.

• Partitioning: Creating of a partition Pk of the coarsening
graph using a partitioning heuristic.

• Uncoarsening: Projection of the partition Pk on each con-
traction graph levels. But after each projection it’s neces-
sary to realise a refinement for keep a good quality.

Our multilevel implementation is inspired by algorithms of
the literature. For some of them, we have developed tech-
niques to reduce the random selections. The following sub-
section present these steps.

Coarsening Phase
This step create a graph base {G1, · · · , Gn} by successive
matching of vertices. In our multilevel, we have use the
Heavy Edge Matching introduced in [7].

Partitioning Phase
The partitioning phase use the GGGP method described in
last section. It’s a fast and efficient method, but the result
is very dependent of the chosen starting vertex. To relieve
this, we propose a partitioning optimisation approach related
to starting vertex. This is described in the algorithm 1.
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Choose Nselect differents starting vertices and keep the best
partition that minimizes the objective function. If we con-
sider the solution space like a partition quality, this approach
consist to look into the solution space in order to find a good
solution (not necessarily the best). For this, we propose to
realise between 5 and 15 ”smart” selections. In order to avoid
the selection of two vertices that will give a similar result.

Algorithm 1: Partitioning Optimisation

Input: Graph G(V,E), Integer Nselect
Output: Partition P
Initialisation :

V vertices set of G sorted randomly
crit←∞ minimization criterion
Pi partition with GGGP for starting vertex i

for i in 1 to Nselect do
Partitioning for starting vertex V(i)→ Pi

Compute of the criterion→ tmp crit
if tmp crit < crit then

P = Pi partition recording
crit = tmp crit

else
Delete Pi

Assuming that vertices located in the same area may provide
a similar partition, we create a selection method using the
distance between vertices. Distance is the number of arcs
defining a path (without cycle) between two vertices. Selec-
tion politics of the starting vertex implemented prohibits the
selection of vertices located at a distance less than Dmax.
To avoid too much loss of quality, we propose to fix d-max
between 2 and 3. This allows to reduce the start selections
number without reduce the partition quality. Algorithm 2 in-
troduce this method.

Algorithm 2: Optimal selection

Input: Graph G(V,E), Integer Dmax, Integer Nselct
Output: V set
Initialisation :

V set vertices set of G sorted
cpt← 0 counter

while cpt < Nselect do
Random selection of a vertex v ∈ V set
Search of vertices from a distance lower to Dmax
Remove these vertices in V set
cpt← cpt+ 1

Uncoarsening Phase
As George Karypis and Vipin Kumar in [6], the uncoarsening
phase of the multilevel projects the partition on the original
graph step by step.

The method is a local optimisation algorithm based on
Kernighan-Lin algorithm [8]. It’s moving successively ver-
tices located on the periphery of a part. A vertex is on the

periphery of a part Vi if have a common edge with a vertex
which is not in Vi. For each periphery vertex of a part, we
save the gain associated at the movement thereof toward each
neighbouring parts. The gain is the difference between the
previous objective function value and the new one. If at least
one gain is positive, the vertex is moved to the maximum gain
part. This process is applied for each partition part and it’s re-
peated as long as there is a gain. This method is described in
algorithm 3.

Algorithm 3: Refining by local displacement

Input: Graph G(V,E), Partition P
Output: Partition P
Initialisation :

D ← ∅ cutting difference

while Ratio Cut decreases do
for each partition parts do

D ← compute of cutting difference for vertices
for each part vertex do

if D(v) > 0 then
Gain← gain for each adjacent part
g ← max(Gain) and α best adjacent part
if g > 0 then

move v from current part to α
else

Next vertex

The eligible vertices for displacement are obtained using the
cut difference introduced by Kernighan-Lin in [8]. To define
it, we introduce the internal and external cut. Given a vertex
v ∈ Vi, the internal cost I(v) is the sum of the adjacent edges
weights to v such as the second vertex is in Vi. The external
cost E(v) the sum of the adjacent edges weights to v such as
the second vertex isn’t in Vi.

I(v) =
∑
v′∈Vi

weight(v, v′) (4)

E(v) =
∑

v′∈V−Vi

weight(v, v′) (5)

The cut difference D(v) is the difference between external
and internal cost of the vertex v :

D(v) = E(v)− I(v) (6)

All vertices v ∈ Vi such as D(v) > 0 are eligible for a mov-
ing. If D(v) 6 0, it’s possible that v is not on the periphery
or its move not given a gain.

RESULTS
This section show the impact of the model structure in a
DEVS simulation. For this, we make two comparisons of the
simulation times. The first compare a flat graph and an opti-
mized graph with parallelization. And the second compare a
classic modeler’s graph and the optimization graph for simu-
lation. For the test phase, we choose two structures inspired
by the water flow models.
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The benchmark characteristics:

• The internal transitions of all atomic models computes the
linkpack benchmark for performing numerical linear alge-
bra and force the processor to compute data. The calcula-
tions are limited to 3m̃s.

• 37 replicas are run to avoid benchmarks problems (i/o ac-
cess, processor affinity etc.).

• We vary the partitioning method (original modeler’s graph
and GGGP) and parts number 2 to 16 every 2.

We use the PDEVS features to parallelize the simulation for
all coordinators. PDEVS approach uses a riskfree and strict
causality adherence. It computes a minimum time synchro-
nization and exploits simultaneous events in parallel but it
does not employ parallelism in feedback-free coupling. In
this example, we use the forties threads available onto the
hardware processor.

In our tests, we parameterized the multilevel as follows :

• coarsening method HEM until size 200

• partitioning method: modeler and gggp

• application of the refining method using difference.

Hardware and Software architecture for tests
The tests were performed on a PDEVS simulation ker-
nel called Echll (A C++ open-source software available at
https://github.com/vle-forge/Echll). Echll is a part of
the modeling and simulation software suite VLE [10] and
provides several DEVS extensions. It will replace the exist-
ing simulation kernel of VLE. The simulations were done on
an SMP cluster node equipped with 20 Intel XEON ES 2670
processors at 2.5 Ghz and 256 GB of memory.

Data presentation
We realised tests from two graph types derived from the flat-
tening of hierarchical models. For each graph, the vertices
weight is equal to 1 because the models execution time is the
same. And the edges weight is equal to 1 because the mes-
sage transfert cost is the same for each model. This graphs
are presented in Figure 3.

Figure 3. Examples of little graphs size. On the left, a ”linked graph”
and on the right a ”tree graph” (abusively named).

The left graph consists of several levels, where each vertex
of level n is connected with one or more vertices of level
n− 1. For the penultimate level, vertices are connected only
to the outlet. The first level contains only sources vertices
(e.i. sarter models of the simulation).

The right graph is composed of several branches, where each
vertex is connected to one or more vertices following a single
direction. The branches are branched until reaching the single
outlet. This graph have several source vertices on each top
branche (n sources by branches).

Results observation
In this subsection, we compare the times obtained for a sim-
ple simulation (i.e. simulation without hierarchy and not par-
allelized) and for a parallelized simulation (i.e. when the
coordinator and this childs are parallelized) using partition-
ing methods. The aim is to compute the time gain generated
thanks to the parallelization. We show also the impact of the
structure obtained by the partitioning method on the simula-
tion time. Two approaches are used for generate the structure
: original modeler graph and partitioning method GGGP. The
modeler graph is an intuitive partition gave by the modeler.
We can see it as a random partitioning.

Figure 4. Simulation time for two graph types. Time comparison
between a simple simulation and parallelized for different partition
numbers. Performances evaluation between the partitioning methods
: GGGP and modeler.

The figure 4 presents simulation times obtained for ”tree”
graph of 20000 vertices (i.e. simulation with 20000 atomic
models) and ”linked” graph of 10000 vertices. There are three
line types : simple time (�), parallelized time with modeler
(4) and with GGGP (©).

For each graph, we can observe that the simple simulation
time is greater than the parallelized. For a ”tree” graph, the
parallelization reduce the time approximately 50%. And for
the ”linked” graph, approximately 80%. These results can be
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explained by the graphs structure. The ”linked” contain more
edges than ”tree”, it seems that the parallelization is suitable
for this graph type.

We focus on times obtained with modeler and GGGP struc-
ture. The parallel structure obtained using GGGP reduce the
execution time approximately 20%. For example, for six
threads the simulation time of ”tree” is reduced by 23% and
by 21% for ”linked”. This gain comes from the objective
function respect. Our partition is created to minimize the
messages transfer and the charge balance (i.e. equal execu-
tion time in each thread).

We can notice that the execution time is reduced for a thread
number less than 8. Beyond 8, we observed no more gains.
This can be explain by the used algorithm (heap structure) for
schedulers when the size of scheduler is small.

We also used the devstone bench [9] to test our method. Re-
sults are similar to those obtained with our graphs.

CONCLUSION
This paper presents a method to improve simulation time. It
consists in partitioning a DEVS graph models in a optimised
graph for the parallel simulation, i.e. by minimizing number
of message exchange and by balancing of models execution
time. The reduction time is obtained by a reconstruction of a
two-level hierarchy of the original model and by paralleliza-
tion of the root child and his coupled models children.

When building subgraphs, it’s essential to minimize the ob-
jective function that improves simulation at best. The tests
shows that our approach offers better resultats that for simple
simulation. But it’s important to choose a good partitioning
method for the creation of the structure. We can observe that
the GGGP provide a better times than the modeler (≈ 20%
of additional gain). This is due to the good quality of the
structure.

In the future works, we’ll develop an automatic graph weight-
ing system based on the parameters provided by the DEVS
models (vertex weight depending on the time advanced func-
tion ta, for example).
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