
SPECIFICATION OF THE STATE’S LIFETIME IN THE

DEVS FORMALISM BY FUZZY CONTROLLER

Dahmani Youcef
1
 and Hamri Maamar

2

1
Department of Computer Science, University Ibn Khaldoun, Tiaret, Algeria

dahmani_y@yahoo.fr
2
Laboratory LSIS, University Aix-Marseille, France

amine.hamri@lsis.org

ABSTRACT

This paper aims to develop a new approach to assess the duration of state in the DEVS formalism by

fuzzy controller. The idea is to define a set of fuzzy rules obtained from observers or expert knowledge

and to specify a fuzzy model which computes this duration, this latter is fed into the simulator to specify

the new value in the model. In conventional model, each state is defined by a mean lifetime value whereas

our method, calculates for each state the new lifetime according to inputs values. A wildfire case study is

presented at the end of the paper. It is a challenging task due to its complex behavior, dynamical weather

condition, and various variables involved. A global specification of the fuzzy controller and the forest fire

model are presented in the DEVS formalism and comparison between conventional and fuzzy method is

illustrated.

KEYWORDS

 Simulation, Modeling, Fuzzy Controller, DEVS Formalism, State Lifetime, Forest Fire

1. INTRODUCTION

The modeling and simulation formalisms are used in order to understand, to represent, and

specify the dynamic of complex systems [1]. Different methods and techniques have been

created in order to improve their formulation. We distinguish two main categories: Analytic

methods, and modeling and simulation methods [2]. Formally, a large variety of dynamic

behaviors can be formulated mathematically. However the corresponding equations are unable

to provide accurate results due to a lack of information for such systems and the complexity of

their combination. To overcome this issue, modeling and simulation methods have been created.

The modeling and simulation is based on an experimental frame [3,4], offering the possibility of

predicting the behavior of complex systems. Various approaches were defined to treat the two

phases of modeling and simulation, depending on either time-driven or event-driven systems.

Model and simulate discrete events deal with systems whose temporal and spatial behaviors are

complex to be treated analytically. The DEVS formalism (Discrete EVent system Specification)

is one of the common formalism used in the simulation of dynamical systems [5]. It is known

for its modularity, expressivity [6], however, it based on constant piecewise input-output

trajectories to simulate continuous dynamic systems [7,8]. In order to overcome this issue, many

variants on DEVS were adopted by introducing appropriate theories such as the cellular

automata [9], fuzzy logic etc.

The incomplete knowledge of certain systems involves vagueness and incompleteness. This

point was studied by fuzzy logic [10,11,12]. The main difference with the conventional analytic

methods is, firstly, it doesn’t require a rigorous mathematical model to control a system. In the

most cases, it uses knowledge of human operators to develop the controller, synthesizing the

human operator actions. Secondly, its characteristic is the simplicity integration of subjective

data in the controller. Its utilization is recommended when the drive system is imprecise.

This work aims to assess the states lifetime of a DEVS model by a fuzzy controller. A case

study of forest fire propagation is done. Our example is based on this remark: “the duration of a

wildfire spread at dry and windy time is necessarily shorter than that of a rainy and calm

weather”. Starting from this remark, we have tried to translate this observation by a fuzzy

controller and simulated it via DEVS formalism.

The remainder of this paper is organized as follows. First, the section 2 briefly reviews a

background on fuzzy logic and the DEVS formalism. Section 3 is devoted to the specification of

the fuzzy controller in DEVS formalism. The fourth section illustrates our example of forest fire

spread; we present its different variables and its formal description in DEVS. The fifth part

presents results and at the end, in the sixth section, a conclusion, with future works, is given.

2. THE FUNDAMENTAL CONCEPTS

2.1. The Fuzzy Logic

2.1.1. Linguistic Variable

The linguistic variable is a variable whose values are words or sentences in a natural or artificial

language. It is characterized by quintuple (L,T(L),U,G,M). where L is the name of the variable,

T(L) is the set of fuzzy sets (linguistic values), U is the universe of discourse, G is the syntactic

rule and M its semantic [5,13]. The Figure 1 illustrates an example of the linguistic variable

“velocity” with three terms: slow, middle and fast.

Figure 1. The membership functions of linguistic variable “Velocity”

2.1.2. Linguistic Variable

The fuzzy rules [14] are expressions of this general form:

Ri : If x1 is X1

i and and xn is Xn
i Then y is Y (1)

Where Xj
i is a label of fuzzy set of the input j (j∈{1..n}) and linguistic variable i (i∈{1..N}).

Each linguistic term is characterized by its own membership function. Many forms can be used,

trapezoidal, triangular, Gaussian (Figure 2).

Figure 2. Common shapes of the membership functions

µ(µ(µ(µ(x)

 Velocity Linguistic Variable

 Slow Middle Fast Linguistic Term

 1

 Membership Function

 0 10 30 50 80 x (Km/h)

µ(µ(µ(µ(x)

 1 b c e1 e2

 x

 0 a d

 w1 w2

The consequent part is expressed by a fuzzy term, in this case, the rule is a Mamdani rule type,

if the consequent is described as a function of its input variables, the rule is called Takagi-

Sugeno rule type [11].

2.1.3. Fuzzy Inference System

A fuzzy inference system (FIS) also known as fuzzy controller aims to build a control law from

linguistic and qualitative description of system’s behavior via fuzzy rule base [15].

A Fuzzy controller is described by five main elements (Figure 3):

• Rule Base: Expresses the knowledge processes introduced by intuition and

experimentation with Human operators.

• Data Base: Represents the properties of fuzzy sets.

• Fuzzification: Numerical values are transformed into linguistic variables with appropriate

membership functions.

• Defuzzification: Transforms the command actions into crisp values useable directly by

the controlled process.

• Inference Engine: Makes decisions through the activated fuzzy rules. It is the core of the

controller.

Figure 3. Fuzzy Inference System

2.1.4. Inference System

The inference is often reduced to the deduction in which the truth of the premises guarantees the

completely truth of the conclusion. It is the decision-making mechanism; it gives the final

conclusion for all activated rules according to the input data [14].

For an input vector x=(x1,….,xn)
t
, the fuzzy reasoning consists of 5 steps (Figure 4):

1. Obtain the membership degrees which match the appropriate membership function of each

input.

)(xµ ji
j

A
 (2)

2. Calculate the truth value of each rule.

() 







)(xµmin=xα ji

j
Aji

 (3)

3. Generate the contribution of each rule.

() () ()()yµ , xαmin = yµ iBi
 (4)

4. Aggregate the qualified rules.

() ()()yµmax =yµ iBi
 (5)

5. Produce the numerical value of the fuzzy output.

()

()∫
∫

duuµ

duuuµ
=y (6)

Where min stands for minimum function, max for maximum, n is the number of inputs whereas

N is the number of fuzzy subsets.

This implementation is called “min, max, centre of gravity”. It is the Mamdani inference

method [10].

Figure 4. Fuzzy Inference

We recall that in the literature, many kinds of fuzzy reasoning exist. They depend on either the

type of fuzzy rules or the nature of calculation the crisp output [14,16].

2.2. DEVS Formalism

2.2.1. Introduction

The DEVS formalism “Discrete EVent system Specification”, was developed by Professor B.P.

Zeigler [5]. It is based on mathematical theory of dynamic systems [7]. It is known for coupling

heterogeneous models and separates the modeling process from the simulation one [8]. In fact

this formalism is well adapted to represent a continuous system and describes the paradigm

"event" in its overall features [13]. This formalism was applied in a great number of

applications. It offers a general framework, and known as multi-formalism model [6].

Each system is characterized by two features: functional (behavioral) and structural aspects [9].

Similarly, the DEVS formalism authorizes two levels of description. At the lowest level, a basic

part called atomic DEVS describes the behavior of a discrete event system. At the highest level,

a coupled DEVS describes a system as modular and hierarchical structure [5,8].

2.2.2. The DEVS Atomic Model

The atomic models are the fundamental elements of the formalism; they describe the functional

aspect of the system (Figure 5). They operate as “state-machines” [17]. Formally, a DEVS

atomic model is described by seven-tuple (Equation 7):

AM=<X,S,Y, δint, δext,λ,ta> (7)

Where

X: the set of input events;

S: the set of partial states;

Y: the set of output events;

δint : S→S : internal transition function, models the states changes caused when the elapsed time

reaches to the lifetime of the state;

δext : Q×S→S : external transition function, defines how an input event changes a state of the

system;

Q={(s,e) | s∈S.0≤e≤ta(s)} : total states and e describes the elapsed time since the last transition

of the current state s;

λ: S→Y: when elapsed time reaches the state’s lifetime, this function generates an output event;

ta: S∈ R0
+ ∪ ∞: time advance function, which is used to determine the lifespan of a state

describing how long the system will stay in unchanged state if external events doesn’t occur.

Figure 5. DEVS Atomic Model

2.2.3. The DEVS Couplded Model

The DEVS coupled model defines which sub-components belong to it and how they are

connected to each other. It allows the creation of complex models starting from atomic and/or

coupled models. Thus, it is modular and presents a hierarchical framework.

A DEVS coupled model is defined as an eight-tuple (Equation 8). A sample of coupled model is

depicted on the Figure 6:

CM=<Xself,Yself,D,{Md},EIC,EOC,IC,Select> (8)

Where

Xself : set of possible inputs of the coupled model;

Yself : set of possible outputs of the coupled model;

D : is the name set of sub-components;

Md | d∈D: set of sub-components which are either DEVS atomic or coupled model;

EIC: set of External Input Coupling;

EOC: set of External Output Coupling;

IC: defines the Internal Coupling;

Select: 2
D
→D: tie-break selector which select the event from the set of simultaneous events.

Figure 6. A simple DEVS Coupled Model

3. FUZZY-DEVS CONTROLLER

3.1. The Fuzzification Atomic Model

We assume that we have two variables x1 and x2 and a single output y. The linguistic terms of

the variable x1 are A1 and A2, while x2, are B1 and B2 and those of y are C1 and C2.

Therefore, the fuzzy rules are defined as follows:

Rule i : If x1 is Aj and x2 is Bj Then y is Cj with j∈{1,2} and i∈{1..4}
As a rule base, we assume the table below (Table 1).

Table 1. Sample of Fuzzy Rule Base

 x1

X2

A1

A2

B1 C1 C2

B2 C2 C1

In the present work, every fuzzy set is depicted as trapezoidal shape (Figure 7).

Figure 7. Trapezoidal membership function

Each membership function of the fuzzy inference system is considered as an atomic model. Its

DEVS specification is defined by (Equation 9) and depicted in Figure 8:

FuzzificationAM=<X,S,Y,δint, δext,λ,ta> (9)

Where

InPorts = {‘InNum’}, XInPorts=ℜ

OutPorts = {‘OutNum’}, YOutPorts = [0, 1],

X = {(in, x)/ in ∈ InPorts, x ∈ XInPorts},

S = {‘passive’, ‘active’}× ℜ,

Y = {(out, y)/ out ∈ OutPorts, y ∈ YOutPorts},

δint (‘active’,0) = (‘passive’, ∞),

δext ((‘passive’, ∞), e, (‘InNum’?x)) = (‘active’, µ(x)),

λ(‘active’,m)=OutNum!m

ta(phase,m) = 0 if phase=active

 ∞ if phase = passive

µ(x) is the membership function (Equation 2) associated to the below model (Figure 8). The

initial state of this model is (passive,∞).

For each input value, FuzzificationAM performs a calculation. The result represents the degree

of membership to the associated fuzzy set. FuzzificationAM is independent from fuzzy

inference, but it depends from the typical shapes of the membership functions (Figure 2).

µµµµ

1111

 0 αααα a b ββββ x

Figure 8. Fuzzification DEVS Atomic Model

3.2. Fuzzy Rule DEVS Atomic Model

According to the assumptions of section 3.1, each fuzzy rule has two inputs variables. Thus, the

fuzzy rule is described as an atomic model (RuleAM) and its specification is illustrated as below

(Equation 10):

RuleAM=<X,S,Y,δint, δext,λ,ta> (10)

Where

InPorts = {‘InNum1’, ‘InNum2’ }, XInPorts=[0, 1]

OutPorts = {‘OutFuz’}, YOutPorts = [0, 1]×ℜ4
,

X = {(in, x)/ in ∈ InPorts, x ∈ XInPorts},

S = {‘passive’, ‘active’}× [0, 1]×ℜ4,

Y = {(out, y)/ out ∈ OutPorts, y ∈ YOutPorts},

δint (‘active’, (α,a,b,β),0) = (‘passive’, (α,a,b,β), ∞) ,

δext((‘passive’, (α,a,b,β), ∞), e , ((‘InNum1’ ? x1) & (‘InNum2’ ? x2))) = (‘active’, x,

(α’,a’,b’,β’)))

λ(‘active’,m, (α,a,b,β)) = OutFuz! (m, (α,a,b,β))

ta(phase, m, (α,a,b,β)) = 0 if phase = active

 = ∞ if phase = passive

x=min(x1,x2) which is given by Equation 2., while (α',a’,b’,β’), is calculated by Equation 4.

The initial state of this model is (passive, ∞,(α,a,b,β)).

When RuleAM receives x1 and x2 from FuzzificationAM, it transitions to active state otherwise

it remains in passive state. The transition to the active state is conditioned by the occurrence of

both inputs. The RuleAM depends on the rule base. It produces the contribution of each rule

(step 3 of fuzzy inference) based on the outputs value of the FuzzificationAM.

3.3. Defuzzification DEVS Atomic Model

A defuzzification atomic model (DefuzzificationAM) outputs y. This value corresponds to crisp

value which will be used to control the system. It is formally defined as:

DefuzzificationAM =<X,S,Y,δint,δext,λ,ta> (11)

InPorts = {‘InFuz’ }, XInPorts=[0, 1]×ℜ4
, OutPorts = {‘OutNum’}, YOutPorts = ℜ,

X = {(in, x)/ in ∈ InPorts, x ∈ XInPorts}, Y = {(out, y)/ out ∈ OutPorts, y ∈ YOutPorts},

S = {‘passive’, ‘active’}×ℜ ,

δint (‘active’,0) = (‘passive’, ∞) ,

δext ((‘passive’, ∞), e, ‘InFuz’ ? (x1&x2&x3&x4)) = (‘active’, u)

λ(‘active’,m)=OutNum!m

ta(phase,m) = 0 if phase = active

 = ∞ if phase = passive

InNum

 OutNum

 InNum ?x

 OutNum !µ(x)

FuzzificationAM

(A, m)

0

(P, m)

∞

u is obtained by Equation 6, corresponding to defuzzification method. The DeffuzificationAM

generates a final conclusion of the fuzzy controller based on the activated rules of the rule base.

It begins with the passive state (passive, ∞) until receives all RuleAM outputs (four contribution

rules, see section 3.1) otherwise none output will be done and the model remains in passive

state. The DefuzzificationAM depends on the type of fuzzy inference adopted [18]. In our case,

the inference employed is the centre of gravity.

3.4. FIS DEVS Coupled Model

As mentioned in section 3.1, we have used Mamdani rules type. Thus the fuzzy inference

system coupled model (FIS_MamdaniCM) consists of 4 FuzzificationAM, 4 RuleAM, 1

DefuzzificationAM, 2 inputs and a single output. It is formally depicted in Figure 9.

Figure 9. FIS DEVS Coupled Model

4. FUZZY-DEVS CONTROLLER

4.1. Problem Identification

Due to the dynamic and complex nature of wildfire, it is impossible to identify, capture and

model all influential parameters with absolute accuracy [19,20,21]. Thus, its formulation is very

complex in terms of taking all its parameters. DEVS seems a useful tool and appropriate

solution for this dynamic process. However in this formalism, each lifetime is a piecewise

constant over the time, therefore any evolution in the environment will not appear on our

modeled system. In this work, we try to give a solution for this issue by introducing a fuzzy

controller to assess modification when the input events occur on the system.

The literature distinguishes three classes of parameters which set the fire spread ratio:

vegetation type (caloric content, density...); fuel properties (vegetation size) and environmental

parameters (wind speed, humidity and slope...) [22]. The forest fire evolves mainly according to

the direction of the wind, its velocity and the relative humidity.

In the present work, we use two parameters: wind velocity (V) and humidity (H). We have

identified five possible states that a cell can take (Figure 10). Each cell represents a limited area

of the forest [23]:

• Nonflammable area (N): It can be a road, a surface of water or just an empty surface.

• Unburned area (U): Passive state; it represents any fuel which is not consumed yet by fire.

• Burning area (B): represents a consuming fire.

• Ember area (E): A small, glowing piece of coal or wood, as in a dying fire.

• Ash area (A): It is afterburning state; it is the final combustion process state. At this stage,

the non-volatile products and residue were formed when matter is burnt.

Figure 10. Forest cell DEVS atomic model

Each state’s lifespan depends on the ignition and duration inputs values. The Ignition port

indicates the fire start time (at what time the fire was triggered?), while the port Duration, it

brings the consumption time of each forest cell.

4.2. Fuzzy Reasoning

According to our forest cell atomic model (Figure 10), we note H the relative humidity

parameter, whereas V the wind velocity. The fuzzy logic controller describes the structure of the

fuzzy rules as follows:

Rulei: If H is A and V is B Then τf is C (12)

A, B and C are linguistic variables and τf stands for fuzzy lifetime (fuzzy consumption time).

The variables are fuzzified as below (Figure 11).

The variable humidity H is divided into two fuzzy sets (linguistic term): Dry (D), and Wet (W).

The wind velocity V is also fuzzified into two fuzzy sets: Calm (C), and power (P). The output

variable τf is also fuzzified into two sets: Slow (S), and Fast (F).

The universe of discourse of each variable is given by:

• H: its values belong to [0%, 100%];

• V: is the interval [0,100km/h];

• τf: The firefighters estimate the fire consumption of each cell at approximately 3 to 8%

of the wind speed [24].

Figure 11. Fuzzification of variables H, V and τf

 Ignition

 Duration

 Duration

 Ignition ?s, Duration ?d

 Duration !d

 Duration !d

ForestCellAM

U

∞

B

τ

E

τ

N

∞

A

∞

µ  Calm Power

 1

 0 30 50 100 Km/h

Wind Velocity Fuzzification

 Dry Wet

 1

 0 30 50 100 %

Humidity Fuzzification

 Fast Slow

 1

 0 0.3 0.5 0.8 min

Fire consumption Fuzzification

The fuzzy rules base is given by Table 2. This table is filled by firefighters. It is obtained by

their experiences.

Table 2. Experimental Fuzzy Rules Base

 x1

x2
D W

C S S

P F S

The fuzzy inference system uses the method min-max centre of gravity. It calculates the

consumption lifetime of each state and the result is provided to forest fire coupled model

(Figure 12).

4.3. Fuzzy Reasoning

The proposed architecture is a classical DEVS framework. Our challenge is to keep the DEVS

formalism unchanged and to improve it without modifying its components.

Our contribution is the addition of the FIS module whose function is to assess the lifetime of

each state according to the input parameters: wind velocity (V) and humidity (H).

Initially, we fill the fuzzy rules base gotten from firemen reasoning. Each fuzzy rule is

composed of two parts. The premise part, initially obtained from a data generator, and the

consequent part which represents a state variable of the rule’s DEVS atomic model.

The generator is a DEVS atomic model; it provides two kinds of values: spatial-temporal and

environmental data. The spatial-temporal data are fed into forest coupled model, they supply the

fire trigger event, while the environmental data, are fed into the FIS coupled model to compute

the duration of fire consumption (Figure 12).

The forest coupled model is a grid composed of n lines and m columns. Each cell represents a

forest cell atomic model (Figure 10) which is connected to its neighbors and provides the

duration time obtained from the FIS coupled model. Each cell represents a DEVS atomic model

which is associated to one simulator.

The dynamic system of the flaming front propagation speed is given by the simulator. It is based

on the current cell position, consumption period and the wind direction. The wildland fire is

considered as a propagation process where all burning cells ignite their unburned neighboring

cells.

Figure 12. Forest fire DEVS coupled model

5. IMPLEMENTATION AND RESULTS

The simulator used in this work is implemented in Java. It is developed in LSIS laboratory.

Much functionalities are inspired from its predecessor LSIS-DME [25]. This version lacks of

visual modeling tool, however its utilization is very simple. The different paradigms of DEVS

are defined as classes like root, simulator, atomic model, coupled model and so on. Each model

inherits these classes and each implementation is easy to model despite the manner of

construction.

5.1. Variables Setting

In order to test our approach, two kinds of simulations are done. In the first one, we assume the

lifetime of each state as a piecewise constant value. In the second simulation, the lifetime is

obtained by the fuzzy controller.

In these simulations, the different values are:

• Wind velocity: Its value is 35 km/h.

• Humidity coefficient: (45%).

• Wildland: Closely spaced.

• The fuzzy controller outputs the propagation velocity. For each cell, τ is obtained as an

output of the atomic model described by Equation 11.

• Virtual forest is constructed as a grid of 90×90 cells where each cell represents an area of

1.2×0.8 m².

• Each cell is connected to 8 neighbors to form a coupled model. Nearest neighbors are

defined as grid.

• The initial ignited cell is the cell (1,1) (Figure 12).

• We assume uniform parameters characterize the cell space, i.e. the direction and wind

speed, and the humidity are constant along the forest fire area.

5.2. Results and Discussion

To compare the simulation performance between the conventional DEVS lifetime state and the

fuzzy one, two experiments on forest fire propagation are executed using the parameters

described in section 5.1. The difference concerns the manner to obtain the duration of each

state.

The simulations were carried out on a Dell System GX280 with Intel ® Pentium (R) IV, CPU

2.80GHz processor,2G DDR2 SDRAM memory and Linux 2.6.32-5-686 operating system .

The Table 3 summarizes some important results. The model ForestFireSimZ uses a

conventional lifetime while ForestFireSim uses our approach. In the latter model, an atomic

model was added in order to compute the duration of the cells fire consumption. This addition

ensures the obtaining of the duration depending on weather changes.

Table 3. Comparative Results.

Results
Conventional

DEVS lifetime

Fuzzy DEVS

lifetime

Cell consumption time

(Duration (τ))
0.5 minutes 0.556 minutes

Forest consumption time 64.5 minutes 69.6 minutes

Duration of the simulation 616.29 seconds 639.75 seconds

To get better results, we have used additional free software which is Jconsole. It is a JMX-

compliant monitoring tool. The table 4 resumes some important performances analysis between

both models.

Table 4. Performance Results.

Performance ForestFireSimZ Model ForestFireSim Model

Uptime 10 minutes 10 minutes

Process CPU time 3 minutes 4 minutes

Total compile time 18.819 seconds 3.688 seconds

Total threads started 183,553 199,785

Current classes loaded 1,912 1,909

Total classes loaded 1,937 1,946

Total classes unloaded 25 37

Current heap size 14,345 kbytes 9,083

Committed memory 17,380 kbytes 18,428

Total physical memory 2,065,076 kbytes 2,065,076

Free physical memory 616,392 kbytes 607,060

According to these results, we remark that our approach brings some computation overhead

compared to the traditional one. However, this method can add an interactive aspect by

modifying the trajectory of the process without a great effort. It is sufficient to adapt the rules

base and the lifespan of each state is modified immediately. However, a statistical study may be

of interest to determine the compatibility of this comparison results and the viability of this

approach.

6. CONCLUSION AND FUTURE WORK

For dynamic processes whose modeling accuracy requirements surpasses the classic discrete

event specification that uses mean state lifetime, this work has presented an approach without

modifying the core of the DEVS formalism and introduces the concept of interactive lifetime by

showing the relationship between the input values and the duration of the states. This method

allows adjusting the trajectory of the process even if the input values change. Also, it can ensure

a dynamic structure of the model.

The structural and behavioural framework was developed and implemented. Some relevant

results were presented at the end of this work.

We have applied this method on forest fire propagation. An overview was presented on the

relevant parameters whose influence is considered important. We have adapted the DEVS

formalism by allowing for uncertainties without modifying the structure of the classic DEVS

specification.

Thereby, the resulting application simulates forest fire propagation, including imperfect data. A

comparison between the traditional simulation and our approach was given. However, this work

needs to be tested in real environment to judge its efficiency.

Many parameters remain to be introduced in this model as topology, inflammability etc. This

addition will help in affirming the validity of our approach.

Our point of view is that the model presented here, to calculate the state lifetime by a fuzzy

controller, can complement rather than compete with the more popular deterministic or

stochastic DEVS models. In absence of a formal model, this process can be possible. Also the

fuzzy lifetime function proposed in this paper is tentative, providing a satisfactory model for the

forest fire is beyond the scope of this work.

REFERENCES

[1] Papadopoulos, G.D. and Pavlidou, F.N. (2011), “A comparative review on wildfire simulators”.

IEEE Sys. Journal, Vol 5, N 2, pp. 233-243.

[2] Giambiasi, N. Escude, B. and Ghosh, S. (2000), “GDEVS: A Generalized Discrete Event

Specification for Accurate Modeling of Dynamic Systems”. Transactions of the Society for

Computer Simulation International, 17 (3), pp. 120-134.

[3] Bertalanffy, L.V. (1973), General system theory. Dunod edition.

[4] Fishwick, P.A. (1995), Simulation model design and execution: building digital worlds. Prentice

Hall.

[5] Zeigler, B.P. (1976), Theory of modelling and simulation. Wiley & Sons, New York.

[6] Zacharewicz, G. (2006), “An environment G-DEVS/HLA : Application to modeling and simulate

distributed workflow”. Doctoral thesis, University Aix-Marseille III, France.

[7] Zeigler, B.P. (1984), Multifaceted modeling & discrete event simulation, Academic Press.

[8] Zeigler, B.P. Praehofer H. and Kim T.G. (2000), Theory of Modeling and Simulation 2nd

Edition. Integrating Discrete Event Continuous Complex Dynamic Systems, Academic Press.

[9] Wainer, G.A. and Mosterman, P.J. (2011), Discrete-Event Modeling and Simulation: Theory and

Applications. CRC Press, Taylor & Francis Group, LLC.

[10] Mamdani, E.H. (1975), “Application of fuzzy algorithm for control of simple dynamic plant”.

IEE, vol. 121, pp. 1585–1588.

[11] Takagi, T. and Sugeno, M. (1985), “Fuzzy identification of systems and its applications to

modeling and control”. IEEE Transactions on Systems Man and Cybernetics, 15(1) pp. 116–132.

[12] Zadeh, L.A. (1975), The concept of a Linguistic variable and its Application to Approximate

Reasoning. Information Sciences 8, pp. 199-249.

[13] Milivojević, N. Grujović, N. Stojanović, B. Divac ,D. and Milivojević,V. (2009), “Discrete

Events Simulation Model Applied to Large-Scale Hydro-Systems”. Journal of the Serbian

Society for Computational Mechanics, Vol. 3, No.1, pp. 250-272.

[14] Roger, J. and Shing, J. (1993), “ANFIS : Adaptative-Network-Based Fuzzy Inference System”.

IEEE Transactions on Systems, Man, and Cybernetics, Vol 23, issue 3, pp. 665-685.

[15] Zadeh, L.A. (1992), The Calculus of Fuzzy If/Then Rules. Artificial Intelligence Expert, Vol 7,

N° 3, pp. 23-27.

[16] Lee, C.C. (1990) “Fuzzy logic in control systems: fuzzy-logic controller-part 1 and 2”. IEEE

Transaction on Systems, Man, and Cybernetics, 20(2), pp. 404-435.

[17] Hopcroft, J.E. Motwani, R. and Ullman, J.D. (2000), Introduction to Automata Theory,

Languages, and Computation. 2nd Edition. Pearson Education. ISBN 0-201-44124-1.

[18] Jamshidi, M. Sheikh-Bahaei, S. Kitzinger, J. Sridhar, P. Beatty, S. Xia, S. Wang, Y. Song, T.

Dole, U. and Lie J. (2003), V-LAB–A distributed intelligent discrete-event environment for

autonomous agents simulation. Intell Autom Soft Comput, 9, pp. 181–214.

[19] Grishin, A.M. (1997), Mathematical modelling of forest fires and new methods of fighting them.

House of the Tomsk State University.

[20] Iliadis, L.S. (2005), A decision support system applying an integrated fuzzy model for long term

forest fire risk estimation. Elsevier, Environmental Modelling and Software, 20, pp. 613–621.

[21] Rothermel, R.C. (1972), A mathematical model for predicting fire spread in wildland fuels.

Research Paper Int, 115, Ogden, UT : U.S. Department of Agriculture, Forest Service.

[22] Scot, J.H. and Burgan, R.E. (2005), Standard fire behavior fuel models: a comprehensive set for

use with Rothermel’s surface fire spread model. USDA Forest Service General Technical Report

RMRS-GTR-153.

[23] Dahmani, Y. and Hamri, M. (2011), “Event Triggering Estimation for Cell-DEVS Wildfire

Spread Simulation Case”. European Symposium on Computer Modeling and Simulation EMS

2011, pp. 144-149, Madrid, Spain.

[24] Bisgambiglia, P.A. Capocchi, L. Bisgambiglia, P. and Garredu, S. (2010), “Fuzzy Inference

Models for Discrete Event System”. IEEE world congress on computational intelligence,

Barcelona, Spain, July 18-23, 2010.

[25] Hamri, M. and Zacharewicz, G. (2007), LSIS-DME: An Environment for Modeling and

Simulation of DEVS Specifications. AIS-CMS International modeling and simulation

multiconference, Buenos Aires Argentina.

Authors

Youcef DAHMANI is associate professor in department of computer science at University Ibn

Khaldoun Tiaret. He obtained his diploma of computer engineering in 1992 from U.S.T.Oran,

Algeria, and the MSc degree in 1997 from university of Es Senia Oran and received the PhD in

2006 from U.S.T.Oran. His research interests include Simulation Methodology, optimization of

of fuzzy rules, Artificial Intelligence, reactive robotic systems and network security.

Maamar HAMRI is associate professor at Aix Marseille University and a member of LSIS laboratory.

His main research is the discrete event simulation. Currently he is interested to the use of

simulation in IA and software engineering. He is also member of the M&S network and

supervises the M&S dictionary project.

