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ABSTRACT 

This paper aims to develop a new approach to assess the duration of state in the DEVS formalism by 

fuzzy controller. The idea is to define a set of fuzzy rules obtained from observers or expert knowledge 

and to specify a fuzzy model which computes this duration, this latter is fed into the simulator to specify 

the new value in the model. In conventional model, each state is defined by a mean lifetime value whereas 

our method, calculates for each state the new lifetime according to inputs values. A wildfire case study is 

presented at the end of the paper. It is a challenging task due to its complex behavior, dynamical weather 

condition, and various variables involved. A global specification of the fuzzy controller and the forest fire 

model are presented in the DEVS formalism and comparison between conventional and fuzzy method is 

illustrated. 
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1. INTRODUCTION 

The modeling and simulation formalisms are used in order to understand, to represent, and 

specify the dynamic of complex systems [1]. Different methods and techniques have been 

created in order to improve their formulation. We distinguish two main categories: Analytic 

methods, and modeling and simulation methods [2]. Formally, a large variety of dynamic 

behaviors can be formulated mathematically. However the corresponding equations are unable 

to provide accurate results due to a lack of information for such systems and the complexity of 

their combination. To overcome this issue, modeling and simulation methods have been created. 

The modeling and simulation is based on an experimental frame [3,4], offering the possibility of 

predicting the behavior of complex systems. Various approaches were defined to treat the two 

phases of modeling and simulation, depending on either time-driven or event-driven systems. 

Model and simulate discrete events deal with systems whose temporal and spatial behaviors are 

complex to be treated analytically. The DEVS formalism (Discrete EVent system Specification) 

is one of the common formalism used in the simulation of dynamical systems [5].  It is known 

for its modularity, expressivity [6], however, it based on constant piecewise input-output 

trajectories to simulate continuous dynamic systems [7,8]. In order to overcome this issue, many 

variants on DEVS were adopted by introducing appropriate theories such as the cellular 

automata [9], fuzzy logic etc.    

The incomplete knowledge of certain systems involves vagueness and incompleteness. This 

point was studied by fuzzy logic [10,11,12]. The main difference with the conventional analytic 

methods is, firstly, it doesn’t require a rigorous mathematical model to control a system. In the 

most cases, it uses knowledge of human operators to develop the controller, synthesizing the 

human operator actions. Secondly, its characteristic is the simplicity integration of subjective 

data in the controller. Its utilization is recommended when the drive system is imprecise. 



This work aims to assess the states lifetime of a DEVS model by a fuzzy controller. A case 

study of forest fire propagation is done. Our example is based on this remark:  “the duration of a 

wildfire spread at dry and windy time is necessarily shorter than that of a rainy and calm 

weather”. Starting from this remark, we have tried to translate this observation by a fuzzy 

controller and simulated it via DEVS formalism.  

The remainder of this paper is organized as follows. First, the section 2 briefly reviews a 

background on fuzzy logic and the DEVS formalism. Section 3 is devoted to the specification of 

the fuzzy controller in DEVS formalism. The fourth section illustrates our example of forest fire 

spread; we present its different variables and its formal description in DEVS. The fifth part 

presents results and at the end, in the sixth section, a conclusion, with future works, is given. 

2. THE FUNDAMENTAL CONCEPTS 

2.1. The Fuzzy Logic 

2.1.1. Linguistic Variable 

The linguistic variable is a variable whose values are words or sentences in a natural or artificial 

language. It is characterized by quintuple (L,T(L),U,G,M). where L is the name of the variable, 

T(L) is the set of fuzzy sets (linguistic values), U is the universe of discourse, G is the syntactic 

rule and M its semantic [5,13]. The Figure 1 illustrates an example of the linguistic variable 

“velocity” with three terms: slow, middle and fast. 

 

 

 

 

 

Figure 1.  The membership functions of linguistic variable “Velocity” 

2.1.2. Linguistic Variable 

The fuzzy rules [14] are expressions of this general form: 

 
Ri : If x1 is X1

i and ......... and xn is Xn
i   Then y is Y      (1) 

 

Where Xj
i is a label of fuzzy set of the input j (j∈{1..n}) and linguistic variable i (i∈{1..N}). 

Each linguistic term is characterized by its own membership function. Many forms can be used, 

trapezoidal, triangular, Gaussian (Figure 2). 

 

 

 

 

 

 

 

 
Figure 2.  Common shapes of the membership functions 
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The consequent part is expressed by a fuzzy term, in this case, the rule is a Mamdani rule type, 

if the consequent is described as a function of its input variables, the rule is called Takagi-

Sugeno rule type [11]. 

2.1.3. Fuzzy Inference System 

A fuzzy inference system (FIS) also known as fuzzy controller aims to build a control law from 

linguistic and qualitative description of system’s behavior via fuzzy rule base [15]. 

A Fuzzy controller is described by five main elements (Figure 3):  

• Rule Base: Expresses the knowledge processes introduced by intuition and 

experimentation with Human operators.  

• Data Base: Represents the properties of fuzzy sets.   

• Fuzzification: Numerical values are transformed into linguistic variables with appropriate 

membership functions.  

• Defuzzification: Transforms the command actions into crisp values useable directly by 

the controlled process. 

• Inference Engine: Makes decisions through the activated fuzzy rules. It is the core of the 

controller. 

 

 
Figure 3.  Fuzzy Inference System 

 

2.1.4. Inference System 

The inference is often reduced to the deduction in which the truth of the premises guarantees the 

completely truth of the conclusion. It is the decision-making mechanism; it gives the final 

conclusion for all activated rules according to the input data [14].  

For an input vector x=(x1,….,xn)
t
, the fuzzy reasoning consists of 5 steps (Figure 4): 

1. Obtain the membership degrees which match the appropriate membership function of each 

input. 
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2. Calculate the truth value of each rule. 
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3. Generate the contribution of each rule. 

 

( ) ( ) ( )( )yµ  ,  xαmin    =  yµ iBi
                 (4) 

4. Aggregate the qualified rules. 

 

( ) ( )( )yµmax =yµ iBi
                 (5) 



5. Produce the numerical value of the fuzzy output. 

 

( )

( )∫
∫

duuµ

duuuµ
=y                  (6) 

 

Where min stands for minimum function, max for maximum, n is the number of inputs whereas 

N is the number of fuzzy subsets.  

This implementation is called “min, max, centre of gravity”. It is the Mamdani inference 

method [10]. 

 

 
 

Figure 4.  Fuzzy Inference  

We recall that in the literature, many kinds of fuzzy reasoning exist. They depend on either the 

type of fuzzy rules or the nature of calculation the crisp output [14,16]. 

2.2. DEVS Formalism 

2.2.1. Introduction 

The DEVS formalism “Discrete EVent system Specification”, was developed by Professor B.P. 

Zeigler [5]. It is based on mathematical theory of dynamic systems [7]. It is known for coupling 

heterogeneous models and separates the modeling process from the simulation one [8]. In fact 

this formalism is well adapted to represent a continuous system and describes the paradigm 

"event" in its overall features [13]. This formalism was applied in a great number of 

applications. It offers a general framework, and known as multi-formalism model [6]. 

Each system is characterized by two features: functional (behavioral) and structural aspects [9]. 

Similarly, the DEVS formalism authorizes two levels of description. At the lowest level, a basic 

part called atomic DEVS describes the behavior of a discrete event system. At the highest level, 

a coupled DEVS describes a system as modular and hierarchical structure [5,8]. 

2.2.2. The DEVS Atomic Model 

The atomic models are the fundamental elements of the formalism; they describe the functional 

aspect of the system (Figure 5). They operate as “state-machines” [17]. Formally, a DEVS 

atomic model is described by seven-tuple (Equation 7): 

 

AM=<X,S,Y, δint, δext,λ,ta>                              (7) 

 

Where 

X: the set of input events;  



S: the set of partial states; 

Y: the set of output events; 

δint : S→S : internal transition function, models the states changes caused when the elapsed time 

reaches to the lifetime of the state; 

δext : Q×S→S : external transition function, defines how an input event  changes a state of the 

system; 

Q={(s,e) | s∈S.0≤e≤ta(s)} : total states and e describes the elapsed time since the last transition 

of the current state s; 

λ: S→Y: when elapsed time reaches the state’s lifetime, this function generates an output event; 

ta:  S∈ R0
+ ∪ ∞: time advance function, which is used to determine the lifespan of a state 

describing how long the system will stay in unchanged state if external events doesn’t occur. 

 

 
Figure 5.  DEVS Atomic Model  

 

2.2.3. The DEVS Couplded Model 

The DEVS coupled model defines which sub-components belong to it and how they are 

connected to each other. It allows the creation of complex models starting from atomic and/or 

coupled models. Thus, it is modular and presents a hierarchical framework. 

A DEVS coupled model is defined as an eight-tuple (Equation 8). A sample of coupled model is 

depicted on the Figure 6: 
 

CM=<Xself,Yself,D,{Md},EIC,EOC,IC,Select>       (8) 

 

Where 

Xself : set of possible inputs of the coupled model; 

Yself : set of possible outputs of the coupled model; 

D : is the name set of sub-components; 

Md | d∈D: set of sub-components which are either DEVS atomic or coupled model; 

EIC: set of External Input Coupling; 

EOC: set of External Output Coupling; 

IC: defines the Internal Coupling; 

Select: 2
D
→D: tie-break selector which select the event from the set of simultaneous events. 

 

 

Figure 6.  A simple DEVS Coupled Model  



3. FUZZY-DEVS CONTROLLER 

3.1. The Fuzzification Atomic Model 

We assume that we have two variables x1 and x2 and a single output y. The linguistic terms of 

the variable x1 are A1 and A2, while x2, are B1 and B2 and those of y are C1 and C2. 

Therefore, the fuzzy rules are defined as follows: 

Rule i : If x1 is Aj and x2 is Bj Then y is Cj with j∈{1,2} and i∈{1..4} 
As a rule base, we assume the table below (Table 1). 

 

Table 1.  Sample of Fuzzy Rule Base 

    x1 

X2 

A1 

 

A2 

 

B1 C1 C2 

B2 C2 C1 

 

In the present work, every fuzzy set is depicted as trapezoidal shape (Figure 7). 

 

 

 

 

 

 

 

 

 

Figure 7.  Trapezoidal membership function 

Each membership function of the fuzzy inference system is considered as an atomic model. Its 

DEVS specification is defined by (Equation 9) and depicted in Figure 8: 

 

FuzzificationAM=<X,S,Y,δint, δext,λ,ta>               (9) 

 

Where 

InPorts = {‘InNum’}, XInPorts=ℜ 

OutPorts = {‘OutNum’}, YOutPorts = [0, 1], 

X = {(in, x)/ in ∈ InPorts, x ∈ XInPorts}, 

S = {‘passive’, ‘active’}× ℜ, 

Y = {(out, y)/ out ∈ OutPorts, y ∈ YOutPorts}, 

δint (‘active’,0) = (‘passive’, ∞), 

δext ( (‘passive’, ∞), e, (‘InNum’?x)) = (‘active’, µ(x) ), 

λ(‘active’,m)=OutNum!m 

ta(phase,m) = 0       if phase=active 

                       ∞      if phase = passive 

 

µ(x) is the membership function (Equation 2) associated to the below model (Figure 8).  The 

initial state of this model is (passive,∞). 

For each input value, FuzzificationAM performs a calculation. The result represents the degree 

of membership to the associated fuzzy set. FuzzificationAM is independent from fuzzy 

inference, but it depends from the typical shapes of the membership functions (Figure 2). 
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Figure 8.  Fuzzification DEVS Atomic Model 

3.2. Fuzzy Rule DEVS Atomic Model 

According to the assumptions of section 3.1, each fuzzy rule has two inputs variables. Thus, the 

fuzzy rule is described as an atomic model (RuleAM) and its specification is illustrated as below 

(Equation 10): 

RuleAM=<X,S,Y,δint, δext,λ,ta>                (10) 

Where 

InPorts = {‘InNum1’, ‘InNum2’ }, XInPorts=[0, 1] 

OutPorts = {‘OutFuz’}, YOutPorts = [0, 1]×ℜ4
,  

X = {(in, x)/ in ∈ InPorts, x ∈ XInPorts}, 

S = {‘passive’, ‘active’}× [0, 1]×ℜ4, 

Y = {(out, y)/ out ∈ OutPorts, y ∈ YOutPorts}, 

δint ( ‘active’, (α,a,b,β),0 ) = (‘passive’, (α,a,b,β), ∞) , 

δext( (‘passive’, (α,a,b,β), ∞),  e , ( (‘InNum1’ ? x1) & (‘InNum2’ ? x2) ) ) = (‘active’, x, 

(α’,a’,b’,β’) ) ) 

λ(‘active’,m,  (α,a,b,β) ) = OutFuz! (m, (α,a,b,β) ) 

ta(phase, m, (α,a,b,β) )  = 0     if  phase = active 

                                       = ∞    if phase = passive 

x=min(x1,x2) which is given by Equation 2., while (α',a’,b’,β’), is calculated by Equation 4.   

The initial state of this model is (passive, ∞,(α,a,b,β)). 

When RuleAM receives x1 and x2 from FuzzificationAM, it transitions to active state otherwise 

it remains in passive state. The transition to the active state is conditioned by the occurrence of 

both inputs. The RuleAM depends on the rule base. It produces the contribution of each rule 

(step 3 of fuzzy inference) based on the outputs value of the FuzzificationAM. 

3.3. Defuzzification DEVS Atomic Model 

A defuzzification atomic model (DefuzzificationAM) outputs y. This value corresponds to crisp 

value which will be used to control the system. It is formally defined as: 

 

DefuzzificationAM =<X,S,Y,δint,δext,λ,ta>          (11) 

 

InPorts = {‘InFuz’ }, XInPorts=[0, 1]×ℜ4
, OutPorts = {‘OutNum’}, YOutPorts = ℜ,  

X = {(in, x)/ in ∈ InPorts, x ∈ XInPorts}, Y = {(out, y)/ out ∈ OutPorts, y ∈ YOutPorts}, 

S = {‘passive’, ‘active’}×ℜ , 

δint (‘active’,0) = (‘passive’, ∞) , 

δext ( (‘passive’, ∞), e, ‘InFuz’ ? (x1&x2&x3&x4) ) = (‘active’, u)  

λ(‘active’,m)=OutNum!m 

ta(phase,m)    = 0     if phase = active 

                       = ∞    if phase = passive  
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u is obtained by Equation 6, corresponding to defuzzification method. The DeffuzificationAM 

generates a final conclusion of the fuzzy controller based on the activated rules of the rule base. 

It begins with the passive state (passive, ∞) until receives all RuleAM outputs (four contribution 

rules, see section 3.1) otherwise none output will be done and the model remains in passive 

state. The DefuzzificationAM depends on the type of fuzzy inference adopted [18]. In our case, 

the inference employed is the centre of gravity. 

3.4. FIS DEVS Coupled Model 

As mentioned in section 3.1, we have used Mamdani rules type. Thus the fuzzy inference 

system coupled model (FIS_MamdaniCM) consists of 4 FuzzificationAM, 4 RuleAM, 1 

DefuzzificationAM, 2 inputs and a single output. It is formally depicted in Figure 9.  

 

 
 

Figure 9.  FIS DEVS Coupled Model 

4. FUZZY-DEVS CONTROLLER 

4.1. Problem Identification 

Due to the dynamic and complex nature of wildfire, it is impossible to identify, capture and 

model all influential parameters with absolute accuracy [19,20,21]. Thus, its formulation is very 

complex in terms of taking all its parameters. DEVS seems a useful tool and appropriate 

solution for this dynamic process. However in this formalism, each lifetime is a piecewise 

constant over the time, therefore any evolution in the environment will not appear on our 

modeled system. In this work, we try to give a solution for this issue by introducing a fuzzy 

controller to assess modification when the input events occur on the system. 

The literature distinguishes three classes of parameters which set the fire spread ratio: 

vegetation type (caloric content, density...); fuel properties (vegetation size) and environmental 

parameters (wind speed, humidity and slope...) [22]. The forest fire evolves mainly according to 

the direction of the wind, its velocity and the relative humidity. 

In the present work, we use two parameters: wind velocity (V) and humidity (H). We have 

identified five possible states that a cell can take (Figure 10). Each cell represents a limited area 

of the forest [23]:  

• Nonflammable area (N): It can be a road, a surface of water or just an empty surface. 

• Unburned area (U): Passive state; it represents any fuel which is not consumed yet by fire. 

• Burning area (B): represents a consuming fire. 

• Ember area (E): A small, glowing piece of coal or wood, as in a dying fire. 

• Ash area (A): It is afterburning state; it is the final combustion process state. At this stage, 

the non-volatile products and residue were formed when matter is burnt.  

 



 

 

 

 

 

 

 

 

 

 

Figure 10.  Forest cell DEVS atomic model 

Each state’s lifespan depends on the ignition and duration inputs values. The Ignition port 

indicates the fire start time (at what time the fire was triggered?), while the port Duration, it 

brings the consumption time of each forest cell. 

4.2. Fuzzy Reasoning 

According to our forest cell atomic model (Figure 10), we note H the relative humidity 

parameter, whereas V the wind velocity. The fuzzy logic controller describes the structure of the 

fuzzy rules as follows: 

 

Rulei:  If  H is A and V is B Then  τf  is C             (12) 

 

A, B and C are linguistic variables and τf stands for fuzzy lifetime (fuzzy consumption time).  

The variables are fuzzified as below (Figure 11). 

The variable humidity H is divided into two fuzzy sets (linguistic term): Dry (D), and Wet (W). 

The wind velocity V is also fuzzified into two fuzzy sets: Calm (C), and power (P). The output 

variable τf is also fuzzified into two sets: Slow (S), and Fast (F).  

The universe of discourse of each variable is given by: 

• H: its values belong to [0%, 100%]; 

• V: is the interval [0,100km/h]; 

• τf: The firefighters estimate the fire consumption of each cell at approximately 3 to 8% 

of the wind speed [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Fuzzification of variables H, V and τf 

 

 

 

 
    Ignition                                                                                           

 

                                                                                                               Duration 

                                                                                                                                                                                                                            

  Duration 

 

    
                        Ignition ?s, Duration ?d 

 

 

 

 

                                                           Duration !d 

  

                              Duration !d  

 

ForestCellAM 

U 

∞ 

B 

τ 

E 

τ 

N 

∞ 

A 

∞ 

µ            Calm                                          Power 

  1 

 
 
 

 

    0                          30               50                          100    Km/h 

Wind Velocity Fuzzification 

             Dry                          Wet 

  1 
 

 

 
 

    0                          30               50                          100     % 

Humidity Fuzzification 

            Fast                                           Slow 

  1 

 
  

 

 
    0                          0.3             0.5                         0.8     min 

Fire consumption Fuzzification 



The fuzzy rules base is given by Table 2. This table is filled by firefighters. It is obtained by 

their experiences.  

Table 2.  Experimental Fuzzy Rules Base  

    x1 

x2 
D W 

C S S 

P F S 

 

The fuzzy inference system uses the method min-max centre of gravity. It calculates the 

consumption lifetime of each state and the result is provided to forest fire coupled model 

(Figure 12). 

4.3. Fuzzy Reasoning 

The proposed architecture is a classical DEVS framework. Our challenge is to keep the DEVS 

formalism unchanged and to improve it without modifying its components.  

Our contribution is the addition of the FIS module whose function is to assess the lifetime of 

each state according to the input parameters: wind velocity (V) and humidity (H). 

Initially, we fill the fuzzy rules base gotten from firemen reasoning. Each fuzzy rule is 

composed of two parts. The premise part, initially obtained from a data generator, and the 

consequent part which represents a state variable of the rule’s DEVS atomic model. 

The generator is a DEVS atomic model; it provides two kinds of values: spatial-temporal and 

environmental data. The spatial-temporal data are fed into forest coupled model, they supply the 

fire trigger event, while the environmental data, are fed into the FIS coupled model to compute 

the duration of fire consumption (Figure 12). 

The forest coupled model is a grid composed of n lines and m columns. Each cell represents a 

forest cell atomic model (Figure 10) which is connected to its neighbors and provides the 

duration time obtained from the FIS coupled model. Each cell represents a DEVS atomic model 

which is associated to one simulator.  

The dynamic system of the flaming front propagation speed is given by the simulator. It is based 

on the current cell position, consumption period and the wind direction. The wildland fire is 

considered as a propagation process where all burning cells ignite their unburned neighboring 

cells. 

 
 

Figure 12.  Forest fire DEVS coupled model 



5. IMPLEMENTATION AND RESULTS 

The simulator used in this work is implemented in Java. It is developed in LSIS laboratory. 

Much functionalities are inspired from its predecessor LSIS-DME [25]. This version lacks of 

visual modeling tool, however its utilization is very simple. The different paradigms of DEVS 

are defined as classes like root, simulator, atomic model, coupled model and so on. Each model 

inherits these classes and each implementation is easy to model despite the manner of 

construction.  

5.1. Variables Setting 

In order to test our approach, two kinds of simulations are done. In the first one, we assume the 

lifetime of each state as a piecewise constant value. In the second simulation, the lifetime is 

obtained by the fuzzy controller.   

In these simulations, the different values are:  

• Wind velocity: Its value is 35 km/h. 

• Humidity coefficient:  (45%). 

• Wildland: Closely spaced. 

• The fuzzy controller outputs the propagation velocity. For each cell, τ is obtained as an 

output of the atomic model described by Equation 11. 

• Virtual forest is constructed as a grid of 90×90 cells where each cell represents an area of 

1.2×0.8 m². 

• Each cell is connected to 8 neighbors to form a coupled model. Nearest neighbors are 

defined as grid. 

• The initial ignited cell is the cell (1,1) (Figure 12). 

• We assume uniform parameters characterize the cell space, i.e. the direction and wind 

speed, and the humidity are constant along the forest fire area.  

5.2. Results and Discussion 

To compare the simulation performance between the conventional DEVS lifetime state and the 

fuzzy one, two experiments on forest fire propagation are executed using the parameters 

described in section 5.1.  The difference concerns the manner to obtain the duration of each 

state. 

The simulations were carried out on a Dell System GX280 with Intel ® Pentium (R) IV, CPU 

2.80GHz processor,2G DDR2 SDRAM memory and Linux 2.6.32-5-686 operating system . 

The Table 3 summarizes some important results. The model ForestFireSimZ uses a 

conventional lifetime while ForestFireSim uses our approach. In the latter model, an atomic 

model was added in order to compute the duration of the cells fire consumption. This addition 

ensures the obtaining of the duration depending on weather changes. 

 

Table 3.  Comparative Results. 

Results 
Conventional 

DEVS lifetime 

Fuzzy DEVS 

lifetime 

Cell consumption time 

(Duration (τ)) 
0.5 minutes 0.556 minutes 

Forest consumption time  64.5 minutes 69.6 minutes 

Duration of the simulation 616.29 seconds 639.75 seconds 

 

To get better results, we have used additional free software which is Jconsole. It is a JMX-

compliant monitoring tool. The table 4 resumes some important performances analysis between 

both models.  



Table 4.  Performance Results. 

Performance ForestFireSimZ Model ForestFireSim Model 

Uptime 10 minutes 10 minutes 

Process CPU time 3 minutes 4 minutes 

Total compile time 18.819 seconds 3.688 seconds 

Total threads started 183,553 199,785 

Current classes loaded 1,912 1,909 

Total classes loaded 1,937 1,946 

Total classes unloaded 25 37 

Current heap size 14,345 kbytes 9,083 

Committed memory  17,380 kbytes 18,428 

Total physical memory 2,065,076 kbytes 2,065,076 

Free physical memory 616,392 kbytes 607,060 

 

According to these results, we remark that our approach brings some computation overhead 

compared to the traditional one. However, this method can add an interactive aspect by 

modifying the trajectory of the process without a great effort. It is sufficient to adapt the rules 

base and the lifespan of each state is modified immediately. However, a statistical study may be 

of interest to determine the compatibility of this comparison results and the viability of this 

approach.  

6. CONCLUSION AND FUTURE WORK 

For dynamic processes whose modeling accuracy requirements surpasses the classic discrete 

event specification that uses mean state lifetime, this work has presented an approach without 

modifying the core of the DEVS formalism and introduces the concept of interactive lifetime by 

showing the relationship between the input values and the duration of the states. This method 

allows adjusting the trajectory of the process even if the input values change. Also, it can ensure 

a dynamic structure of the model. 

The structural and behavioural framework was developed and implemented. Some relevant 

results were presented at the end of this work.  

We have applied this method on forest fire propagation. An overview was presented on the 

relevant parameters whose influence is considered important. We have adapted the DEVS 

formalism by allowing for uncertainties without modifying the structure of the classic DEVS 

specification. 

Thereby, the resulting application simulates forest fire propagation, including imperfect data. A 

comparison between the traditional simulation and our approach was given. However, this work 

needs to be tested in real environment to judge its efficiency.    

Many parameters remain to be introduced in this model as topology, inflammability etc. This 

addition will help in affirming the validity of our approach. 

Our point of view is that the model presented here, to calculate the state lifetime by a fuzzy 

controller, can complement rather than compete with the more popular deterministic or 

stochastic DEVS models. In absence of a formal model, this process can be possible. Also the 

fuzzy lifetime function proposed in this paper is tentative, providing a satisfactory model for the 

forest fire is beyond the scope of this work. 
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