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ABSTRACT 

Advances of cloud services gave Cloud-Based Simulation (CBS) considerable attentions to obtain 

reliable, available, and scalable simulation models capable of executing on the Cloud. However, major 

challenges such as synchronization, virtualization, and multi-tenancy overhead overshadows use of CBS 

especially for distributed simulation. These challenges affect performance of parallel executions and thus 

limit the offered benefits. To overcome these issues, we propose a new platform Distributed Simulation 

for Could Computing (DSC) developed, to facilitate implementation and parallel execution of simulations 

models in the cloud. This platform has several layers including a middleware and an HPC platform called 

HPCaaS (HPC as a Service). The middleware acts as a simulation engine facilitating users to develop 

simulation models whereas HPCaaS makes them executable on a cloud platform. Along with their 

associate API, the proposed architecture enables simulation users to seamlessly interact with a cloud 

environment and receive benefits of the cloud for their applications. 

Keywords: Cloud Computing, Cloud-Based Simulation (CBS), Distributed Simulation, Middleware.  

1 INTRODUCTION 

Rapid growth of cloud services led exploding migration of services and applications to the Cloud. As 

stated by Foster et al. (2008) “Cloud computing is hinting at a future in which we won’t compute on local 

computers, but on centralized facilities operated by third-party compute and storage utilities”. This 

paradigm shift suggests widespread use of simulation on the cloud and encourages developers to deploy 

their simulation models on cloud. Time saving, scalability, availability, flexibility, and cost saving are 

among major benefits for applications migrating to the Cloud. Nevertheless, there are challenges that 

hinder full adaption of cloud services for simulation.  Taylor et al. (2012) identifies one major challenge 

as Cloud-Based Simulation (CBS).  The key issues of cloud-based simulation have been demonstrated in 

several publications which include  synchronization overhead, virtualization overhead, multi-tenancy, and 

network latency which causes performance degradation particularly for Parallel and Distributed 

Simulation (PADS) (Padilla et al. 2014; Taylor et al. 2014; Taylor et al. 2015). As a result, cloud 

deployment for PADS application either is none existing, or very limited to tailor-made special cases.  

To overcome the above problem, we designed DSaaS: Distributed Simulation as a Service, which is a 

new cloud service for simulation especially targeting large simulations that need parallel executions of the 

simulation modules. DSaaS facilitate implementation and execution of PADS applications in a cloud 
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environment.  This new service has several layers, and is implemented on the PaaS (Platform as a 

Service) layer of the Cloud architecture ( Mell and Grance 2011).  

At the lower level of DSaaS, a specialized layer for HPC applications is designed and developed (Jackson 

et al. 2010;  Gupta et al. 2013). This layer provides services for HPC applications and is called HPCaaS 

(High Performance Computing as a Service) (AbdelBaky et al. 2012). Having this service platform 

integrated in our solution, alleviates the CBS users from jitters a cloud environment may introduce into 

HPC applications. Section 3 of this paper describes the details of this layer and the jitters impact on 

performance.  

At the second layer of the DSaaS, we developed a middleware, called CBS_MID which acts as a 

simulation engine targeting a smooth simulation run on a cloud computing platform. This middleware 

provides services for the PADS applications including conservative algorithm (Fujimoto 2000), optimistic 

simulations (Fujimoto 1990), and hybrid method such as LTW (Rajaei, et. al 1993). Furthermore, this 

engine supports simulations using High Level Architecture (HLA) (Dahmann et al 1997), as well as 

general Cloud-Based Simulation models. The proposed middleware provides numerous simulation 

services and management modules through their associate API’s.  

On top layer, an interface connects the middleware to the users and their applications. Using the DSaaS 

services and its API, generic simulation modules and tools can be built on top layer as plugins for the 

SaaS layer.   

The DSaaS architecture enables the CBS users and their applications to seamlessly interact with a cloud 

environment, obtain the improved performance, and increase the scalability of their simulation models. 

The rest of this paper is as follows: Section 2 presents related works. Section 3 describes the details of 

HPC as a Service. Section 4 presents Cloud-Based Simulation, whereas Section 5 describes the details of 

DS as a Service. Section 6 gives future works and concluding remarks. 

2  RELATED WORK 

Three main areas of related work is covered in this section. First, previous works regarding deployment of 

PADS applications to cloud is reviewed. Second, efforts regarding simulation as s service (SIMaaS) is 

described. Finally, related work regarding middleware for CBS framework is addressed. 

Vanmechelen et al (2013) investigated the synchronization overhead of PADS instances on computational 

cores to examine how different cloud instance may affect the performance of distributed simulation. First, 

by using Grid Economic simulator (GES) they implemented  different conservative synchronization 

protocols such as  Standard Chandy-Misra-Bryant protocol (STD), Timeout-based Null-message Sending 

(TIM), Deadlock Avoidance Null-Message Sending (BLO), then they assessed and analyzed  the 

performance for each one in two simulation models. They executed two different conservative simulation 

models on two different instance types of EC2. One model was a closed queuing network (CQN), and the 

second one an electronic auction for compute resources. In addition, the two models had differences in 

event arrival rates, communication patterns and computation to communication ratios.  The experiment 

were focused on how the main strategies of conservative simulation performed on a cloud infrastructure. 

As a result, they found that time-out conservative protocol performed  best for CQN, while Deadlock 

Avoidance Null-Message Sending (BLO) shows better performance for the auction model.  

Malik et al. (2010) discussed that moving the optimistic synchronization approach to cloud could exhibit 

major problem specially on the number of rollbacks. Traditionally, Time Warp method is used to detect 

out of order timestamped events which are corrected by rollback method. Their experiment showed that 

massive rollbacks and thus high overhead could be experienced. Further, the problem could become im-
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practical when deploying simulation models especially when having high latency in cloud networking. To 

overcome the issue, they proposed Time Warp Straggler Message Identification Protocol (TW-SMIP) to 

illustrate the interference and the latency issues. They reported that TW-SMIP protocol could decrease the 

communication overhead and thus reduce the number of the rollbacks on the cloud. 

 

Research on simulation as a Service (SIMaaS) has recently gained much interest. Numerous works 

reported in the literature to deploy simulation in the cloud to gain high availability and accessibility, as 

well as on-demand resources. Despite these efforts, significant challenges that Cloud-based simulation 

exhibits, brings forth a crucial question: how can we make SIMaaS practical? 

The research reported by Liu et al. (2012) tried to answer the above question and proposed a somewhat 

complete package. They first moved an existing simulation software to the cloud and studied its behavior. 

Then, they composed the needed requirements, and prosed SIMaaS architecture. In a form of web service, 

SIMaaS provides different simulation tools for clients. SIMaaS contains Cloud Manger Module (CMM) 

that works as a simulation operating system that has different management modules. Additionally, 

SIMaaS uses a web-portal and simulation service layer. Using the Service-Oriented Architecture  (SOA) 

concept, Several services are provided by SIMaaS controlled by CMM: Modeling as a Service (MaaS), 

Execution as a Service (EaaS), and Analysis as a Service (AaaS). The virtualized resources of SIMaaS are 

offered by the Virtualized Computing Environment (VCE) module through  its related API. VCE delivers 

computing management and makes the computing resources programmable. To measure performance loss 

of a simulation in the virtual environment, they conducted an experiment that shows 33.3% performance 

degradation compared to the physical machines.  

Several surveys identified the needed features in the cloud for distributed simulation. Strassburger et al. 

(2008); Boer et al. (2009) argued that there is a lack of plug-and-play middleware to help interoperability, 

reusability, and scalability of applications on the cloud. They pointed out that interoperability should be 

achieved with reasonable cost. They identified the needed characteristics of a plug-and-play middleware. 

They emphasized first that a middleware should ensure the entire system must work without any effect in 

case some component changes. They added that the middleware should maintain components 

independency and synchronization. 

3 HPC AS A SERVICE 

Cloud provides utility computing through several services. HPCaaS is the service which supports HPC 

programs running on the cloud without facing significant performance loss. Primary motivations for these 

applications to move to the cloud are resource utilization, cost efficiency, flexibility, among many others. 

Table 1 summarizes a comparison between characteristics of an average on-premises HPC resource such 

as clusters or supercomputers with the one provided by a public cloud supporting HPCaaS. This table 

clearly shows the benefits of HPCaaS for average HPC users. For high-end HPC users, perhaps dedicated 

datacenters may still remain as a viable option.   

3.1 Cloud and HPC 

Scientific and HPC applications traditionally demand direct access to dedicated hardware and high-speed 

networking with low latency. Such requirements often do not match with existing virtual and multi-tenant 

environment of current cloud systems. We conducted numerous experiments to identify key shortcomings 

of a typical cloud when executing HPC applications. The results suggest that cloud networking, 

virtualization overhead, and multi-tenancy are among primary sources of turbulences of HPC 

performance in the Cloud (Gupta et al 2011) which is described in more details below. 
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Table 1: On-Premises HPC resources vs. HPCaaS. 

Characteristic 

On-premises 

HPC resource HPCaaS 

Scalability Low High 

Flexibility Low High 

Reliability Low High 

Cost CAPEX OPEX 

Setup Time High Low 

Maintenance & 

Administration 

expensive & 

complex N/A 

Resource Utili-

zation Low High 

 

3.1.1 Multi-Tenancy  

Multi-tenancy is one of the characteristics of the cloud. It is also one of the profit making features of the 

cloud for service providers. It enables cloud providers to share resources between multiple tenants. 

Degree of multi-tenancy refers to the number of tenants sharing the same resource on the cloud. By 

increasing the degree of multi-tenancy, service providers are able to overprovision the resources to users. 

Overprovisioning allows the service providers to maximize benefits, though with the risk of reducing 

QoS. Nevertheless, multi-tenancy is in direct contrast with what HPC needs. HPC programs often demand 

direct access to dedicated hardware to maximize performance while shared resources of the cloud 

adversely impact performance of these programs.  

   

Figure 1: Speed-up (a) and Efficiency (b) of a Matrix Multiplication benchmark on 

Amazon EC2 instance 

We conducted experiments using Matrix Multiplication benchmark on a virtual instance of Amazon EC2 

public cloud. We repeated the experiments for 15 times to pin point the jitter effect as shown in Figure 1a. 

The error bars represent the standard deviation of the results and indicate that by increasing the number of 

cores, the diversity of values we get in multiple experiments, increases. Figure 1b is the efficiency 

achieved for the experiments and the error bars are again the standard deviations. These experiments 

show how performance of HPC programs on the cloud become unpredictable with potentially large 

fluctuations due to the shared resource and multi-tenant environment. Further, the experiments indicate 

that there is relatively huge gap between the average and the best performance of Matrix Multiplication 

benchmark on Amazon EC2. Similar experiments by others (Gupta et al 2013) confirm that  multi-

tenancy and network latency are major bottleneck degrading performance of HPC programs in the cloud.  
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3.1.2 Virtualization Overhead   

Virtualization plays a key role in helping the cloud to have elasticity, resource pooling, and flexibility. 

Nevertheless, virtualization and in particular the hypervisor adds unwanted overhead by adding a software 

layer and preventing applications to have direct access to the hardware resources. This overhead is not the 

same for all types of hardware. For example, due to special hardware support, virtualization overhead for 

processors is significantly less than the overhead of network virtualization.  

3.1.3 Network Bandwidth and Latency 

Network and I/O resources in the cloud are shared between several tenants. Consequently, bandwidth and 

latency of the network may not be predictable. The bandwidth in most cases is much less than what is 

expected. We experimented with Point-to-Point MPI benchmarks on a 10Gig Amazon EC2 interconnect. 

Our results suggest that the multi-tenant environment of the cloud lowers the bandwidth. Moreover, the 

latency of the network of the cloud could vary. As a result, we often see performance loss of HPC 

programs on the cloud when not using HPCaaS support.  

3.2 ASETS, our Solution 

ASETS (A SDN Empowered Task Scheduling System) is an elastic HPCaaS platform developed for HPC 

application. Information provided by the SDN Controller enables the task scheduler to consider network 

properties in assigning tasks to virtual machines. We also developed a scheduling algorithm called 

SETSA (SDN Empowered Task Scheduling Algorithm) to run on top of the ASETS architecture 

(Jamalian and Rajaei 2015a, 2015b). The algorithm measures the available bandwidth of the network 

links and schedules tasks on the most appropriate links. This scheduling algorithm enables ASETS to 

utilize network bandwidths more efficiently and thus it will increase the performance of HPCaaS platform 

by reducing turnaround time of the submitted jobs. 

 

Figure 2: Overview of ASETS architecture. 

3.3 Case Studies 

Our empirical analysis of ASETS with multiple case studies indicated that ASETS is most beneficial in 

improving the performance of HPCaaS when the degree of multi-tenancy in the cloud increases (Jamalian 

and Rajaei 2015a). To measure the performance improvement value of the proposed system we used 

OpenStack integrated with OpenDaylight (Medved et al 2014) to implement ASETS in order to obtain a 

proof of the concept. OpenStack as a cloud operating system provides full hypervisor level access to a 

Cloud Computing environment whereas the OpenDaylight enables SDN to interact with OpenStack. The 

experiments were carried both in a private cloud as well as a public one. For the private cloud, we 
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implemented ASETS configuration on a cluster of 6 compute nodes and for the public one we used 

Amazon AWS cloud. 

 

Figure 3. Performance of ASETS compared with FIFO scheduling in a private cloud. 

Figure 3 shows performance ASETS in private cloud when (simulated) degree of multi-tenancy increases, 

whereas Figure 4 shows Assets performance in Amazon EC2 cloud. As Figure 4 illustrates, the SETSA 

scheduling algorithm of ASETS has unwanted overhead when using smaller scales of Virtual Machines 

(VM). Nevertheless, with larger number of VMs significant performance improvement is observed for 

ASETS over traditional FIFO task scheduling. As the HPCaaS platform scales with additional VM, the 

number of network links and available bandwidths increase, allowing SETSA to have larger variety of 

choices to redirect tasks data. This experiment was limited to 32 VM. It is speculated that if the number of 

virtual machines increase (e.g. x100 times or more) with a larger network-intensive task, the fluctuations 

of the network links correspondingly increase and SETSA will perform much better. 

 

Figure 4. Performance of ASETS compared with FIFO scheduling in Amazon public cloud. 

4 CLOUD-BASED SIMULATION (CBS) 

Computer simulation helps to study the behavior of a system, including interactions, complexity, and 

expected outcomes. As the complexity of the target systems increases, predictability of the system 

behavior becomes vital both for the system designers and the users. To study in depth the behavior, not 

only we need detailed simulation models, but also computing powers to quickly offer the needed data and 

tools for analysis and interpretations of the collected data. Cloud services appears as a viable method to 

deliver simulation services for analysts as well as non-experts users.  
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4.1 Why Cloud-Based Simulation 

It is well-known that simulation is a powerful tool for study and analysis of the behavior of complex 

systems. It is also well-known that good simulation tools are expensive and often have steep learning 

curves. Availability of the tool when it is needed, is a third obstacle that makes simulation to remain in 

the expert domain. Furthermore, scalability of the modules and computational power of the simulation 

scenarios add other dimensions to the limitations of this powerful method.  

To alleviate some of the above issues, we need to look at the promises of cloud computing which 

promotes pay-as-you-go mothed along with high availably, reliability, and scalability of resources as well 

as non/or low maintenance cost of the used resources. 

Comparing the above services with some of the existing tools, few of which cost tens of thousands of 

dollars for a particular module, it is safe to say that Simulation-as-a-Service will become a trend. The 

provided services could include not only a tool to develop models and execute them on the cloud, but also 

provide easy to understand tutorials, how to build base model, lectures and videos, as well as diverse case 

studies, powerful analysis tools and presentations, customized services, just to name a few. While most of 

these benefits could currently exist in multiple specialized tools, the new cloud-based trend can bring 

much more diversities to simulation users and communities and thus open the doors to wider use of this 

powerful technique.             

4.2 Prospective Types of CBS 

Simulation has wide variety of techniques, and thus cloud-based simulation services can potentially cover 

all of these branches. Nevertheless, in this research we focus only on Discrete Event Simulation (DES) 

which represents chains of events in the system, where each event can cause other changes at certain 

event time, and thus the simulation outcome will be given through ordered chains of the generated events 

(Fujimoto 2000). Furthermore, we focus on Parallel Discrete Event Simulation (PDES) and its three 

associate branches: Conservative, Optimistic, and Hybrid protocols (Figure 5) in DSaaS and CBS. 

Needless to say that sketched here, can be extended and be applied to other CBS domains.    

 

Figure 5:  Illustrating types of CBS focusing on branches addressed in this paper 

 

4.3 Distributed Cloud-Based Simulation  

Sequential DES (i.e. running on single CPU) albeit can give good estimate of the system understudy, it 

has multiple limitations. Prime examples include scalability of the model, detailed and modular plugins, 

and computing power.  Parallel and Distributed Simulation (PADS) addresses some of these issues and 
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provides mechanism to distribute the model across multiple nodes, with specific algorithms to synchro-

nize the events (Fujimoto 2000). The simulated system can be executed on broad span of interconnected 

multiprocessors.  

 

PADS has two main synchronization protocols; conservative and optimistic, but the hybrid of the two is 

often supported. The system must maintain, however, the same results as its sequential counterpart, while 

distributing the discrete events among multiple processors. In the conservative protocol, the simulation 

engine blocks the logical processes when their local simulation clocks could become out of timestamp or-

der, whereas the optimistic method allows those process to proceed but when error is detected, that pro-

cess rollbacks to correct the error.  

 

The blocking and rolling back of PADS processes are major obstacles in porting them to clouds. Appar-

ently a local data center could better benefit PADS program rather than cloud since the cloud platform 

would add additional hazards, such as networking delay and others as mentioned earlier, and hence signif-

icantly degenerate performance. Clearly, not every user can have access to a dedicated HPC data Center. 

As a result, the need for a distributed cloud-based simulation becomes clear. As an HPC application do-

main, benefits of PADS include faster executions and ability to simulate large distributed systems. The 

HPCaaS platform described earlier bridges the gap and let the PADS program enjoy benefits of the cloud. 

 

Cloud services give an illusion of unlimited resources, and thus serve well to distributed simulation. A 

distributed cloud-based simulation service can furnish the users all benefits of the cloud while obtaining 

as well faster execution of the module when the user desires, and pay for only that service. As mentioned 

earlier, and confirmed by others, e.g. D'Angelo( 2011), there are serious hazards to address before we can 

comfortably move PDES to cloud. A distributed simulation-as-a-service can alleviate the problem. 

5 DISTRIBUTED SIMULATION AS A SERVICE (DSAAS) 

The three well-known platforms of a cloud according to the NIST definitions (Mell and Grance 2010), 

include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). 

This section describe mapping of the DSaaS layer, its architecture, the Middleware, and the API 

interfaces to cloud layers.    

5.1 Mapping DSaaS Layer to Cloud Architecture 

DSaaS is implemented at the PaaS level and on the top of the utility services of the IaaS layer. The 

platform utilizes an HPCaaS layer (described in Section 3) and its main objective is to make the HPC 

programs run smoothly on the cloud. This service alleviates the PADS users from the jitters of the clouds 

and furnishes the tool they need to focus developing their simulation model to be executed in a potentially 

endless computing resources when they desire. Figure 6 illustrates the mapping view of DSaaS to the 

cloud architecture.       

The middleware works as a simulation engine of DSaaS, and connects the PADS programs to the 

HPCaaS layer. The engine provides main simulation services in building modules to launch, execute, and 

interconnect the simulation model in cloud environment. As a simulation engine, the middleware interacts 

with the simulation programs via its API. It is in charge of retrieving simulation objects, updating the 

state of the simulation, tracking events for check-pointing, and so on. What is left is example models at 

the application level (i.e. SaaS) to demonstrate how the DSaaS architecture can be used. This part of 

system is left to be accomplished as the future work. 
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Figure 6: Overview for DSaaS mapped to the three Cloud platform 

5.2 Architecture of DSaaS 

The architecture of DSaaS is shown in Figure 7 and explained in this section. The top layer has the 

interface, with its the associated API routines for both conservative and optimistic synchronization 

methods. The API for the hybrid and other methods is left for future work. The next layer is the 

middleware (CBS_MID) which is a major layer of the DSaaS platform due to extensive simulation 

services it provides as well as its interconnections and integration role to the application programs. 

CBS_MID is the simulation engine and the core of the simulation process that launches and executes the 

simulation models using the provided management modules. CBS_MID engages the simulation instances 

seamlessly with the HPCaaS layer (ASETS). The latter layer prepares the PADS programs for smooth 

execution on the cloud. Using DSaaS and CBS_MID, synchronization of a distributed simulation is 

managed transparently from the users and frees them from the underlying complex details associated with 

both parallel processing and cloud hazards. 

 

Figure 7: The architecture of DSaaS integrated in a cloud platform 

5.3 CBS_MID Services and Management Modules 

The middleware services are classified based on the types of protocol the users prefer having them for 

their execution models. Table 2 summarize these services. As seen in this table, wide variety of 

DES/PDES can be furnished. Implementation of these services may add minor challenges which a typical 



Rajaei, Alotaibi, and Jamalian 

 

 

simulation engine could encounter and it is not addressed here, rather the architecture of CBS basis is the 

focus of this paper. The framework presented in this paper, however, can be used for plugins particular 

module, for example HLA simulation.    

Table 2: Services of  CBS_MID. 

Service Name Types Services and Management Details  

Base-srv Base  services  Time management: Deals with time synchronization of 

the distributed simulation  

Memory management:  Allocate and release memory 

Garbage collection: Releases memory no longer used 

by simulation objects 

Shared-srv Shared services  Logical processes services: Creates  & manages LPs. 

Event list services: Queue containing future events 

Message passing: Manages communications between 

simulation entities 

Opt-srv Optimistic Sim  Roll back, check pointing, and Global Virtual Time. 

Supports features of the optimistic synchronization 

Conservative -srv Conservative  Null massages, and Lower Bound Time Stamps 

Supports features of the conservative synchronization 

Hybird-srv Hybrid services Local Time Wrap (LTW): a hybrid methods of 

optimistic and conservative approach 

HLA-srv HLA     Supports High Level Architecture simulations 

NonPads-srv Non-PADS Supports sequential simulations 

 

The services supported by the middleware are called by the Application Program Interface (API), 

developed for conservative and optimistic protocols. These APIs hide the synchronization details and 

makes developing of PADS application easier. The APIs are categorized into groups such as DS-LP, DS-

NM, DS-Detect, DS-EventList, DS-LBTS, and so on. While basic service routines and their related API 

are developed, the complete set of interface routines and their implementations are left as future work.  

6 CONCLUDING REMARKS AND FUTURE WORK 

Cloud-Based Simulation, specially its distributed counterpart, appears to become a trending move as 

newcomers of cloud services. While sequential CBS can become an easy deployment target, the same 

cannot be through for the distributed and parallel simulation. The latter is in the HPC domain where 

multiple research indicate performance hazards such as networking delay, shared resource overhead, and 

several others, could diminish the gained benefits. To overcome these issues, we proposed  DSaaS, which 

is a special service dedicated to assist parallel discrete event simulation on the cloud. The proposed 

system has multilayered architecture which include an HPC-as-a-Service layer, a Middleware simulation 

engine, and an interface layer. The implementation and testing of the HPCaaS layer is accomplished 

earlier. The design of the DSaaS is completed and reported here, whereas the implementation and testing 

of this architecture along with a few use-cases are left for the future work.   
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