

SpringSim 2017, April 23-26, Virginia Beach, VA, USA; ©2017 Society for Modeling and Simulation (SCS) International

A DISTISTRIBUTED SIMULATION PLATFORM FOR CLOUD COMPUTING

Hassan Rajaei

Fatimah Alotaibi

Saba Jamalian

Computer Science Department

Bowling Green State University

Bowling Green, OH, 43403

{rajaei, falotai, sabaj}@bgsu.edu

ABSTRACT

Advances of cloud services gave Cloud-Based Simulation (CBS) considerable attentions to obtain

reliable, available, and scalable simulation models capable of executing on the Cloud. However, major

challenges such as synchronization, virtualization, and multi-tenancy overhead overshadows use of CBS

especially for distributed simulation. These challenges affect performance of parallel executions and thus

limit the offered benefits. To overcome these issues, we propose a new platform Distributed Simulation

for Could Computing (DSC) developed, to facilitate implementation and parallel execution of simulations

models in the cloud. This platform has several layers including a middleware and an HPC platform called

HPCaaS (HPC as a Service). The middleware acts as a simulation engine facilitating users to develop

simulation models whereas HPCaaS makes them executable on a cloud platform. Along with their

associate API, the proposed architecture enables simulation users to seamlessly interact with a cloud

environment and receive benefits of the cloud for their applications.

Keywords: Cloud Computing, Cloud-Based Simulation (CBS), Distributed Simulation, Middleware.

1 INTRODUCTION

Rapid growth of cloud services led exploding migration of services and applications to the Cloud. As

stated by Foster et al. (2008) “Cloud computing is hinting at a future in which we won’t compute on local

computers, but on centralized facilities operated by third-party compute and storage utilities”. This

paradigm shift suggests widespread use of simulation on the cloud and encourages developers to deploy

their simulation models on cloud. Time saving, scalability, availability, flexibility, and cost saving are

among major benefits for applications migrating to the Cloud. Nevertheless, there are challenges that

hinder full adaption of cloud services for simulation. Taylor et al. (2012) identifies one major challenge

as Cloud-Based Simulation (CBS). The key issues of cloud-based simulation have been demonstrated in

several publications which include synchronization overhead, virtualization overhead, multi-tenancy, and

network latency which causes performance degradation particularly for Parallel and Distributed

Simulation (PADS) (Padilla et al. 2014; Taylor et al. 2014; Taylor et al. 2015). As a result, cloud

deployment for PADS application either is none existing, or very limited to tailor-made special cases.

To overcome the above problem, we designed DSaaS: Distributed Simulation as a Service, which is a

new cloud service for simulation especially targeting large simulations that need parallel executions of the

simulation modules. DSaaS facilitate implementation and execution of PADS applications in a cloud

Rajaei, Alotaibi, and Jamalian

environment. This new service has several layers, and is implemented on the PaaS (Platform as a

Service) layer of the Cloud architecture (Mell and Grance 2011).

At the lower level of DSaaS, a specialized layer for HPC applications is designed and developed (Jackson

et al. 2010; Gupta et al. 2013). This layer provides services for HPC applications and is called HPCaaS

(High Performance Computing as a Service) (AbdelBaky et al. 2012). Having this service platform

integrated in our solution, alleviates the CBS users from jitters a cloud environment may introduce into

HPC applications. Section 3 of this paper describes the details of this layer and the jitters impact on

performance.

At the second layer of the DSaaS, we developed a middleware, called CBS_MID which acts as a

simulation engine targeting a smooth simulation run on a cloud computing platform. This middleware

provides services for the PADS applications including conservative algorithm (Fujimoto 2000), optimistic

simulations (Fujimoto 1990), and hybrid method such as LTW (Rajaei, et. al 1993). Furthermore, this

engine supports simulations using High Level Architecture (HLA) (Dahmann et al 1997), as well as

general Cloud-Based Simulation models. The proposed middleware provides numerous simulation

services and management modules through their associate API’s.

On top layer, an interface connects the middleware to the users and their applications. Using the DSaaS

services and its API, generic simulation modules and tools can be built on top layer as plugins for the

SaaS layer.

The DSaaS architecture enables the CBS users and their applications to seamlessly interact with a cloud

environment, obtain the improved performance, and increase the scalability of their simulation models.

The rest of this paper is as follows: Section 2 presents related works. Section 3 describes the details of

HPC as a Service. Section 4 presents Cloud-Based Simulation, whereas Section 5 describes the details of

DS as a Service. Section 6 gives future works and concluding remarks.

2 RELATED WORK

Three main areas of related work is covered in this section. First, previous works regarding deployment of

PADS applications to cloud is reviewed. Second, efforts regarding simulation as s service (SIMaaS) is

described. Finally, related work regarding middleware for CBS framework is addressed.

Vanmechelen et al (2013) investigated the synchronization overhead of PADS instances on computational

cores to examine how different cloud instance may affect the performance of distributed simulation. First,

by using Grid Economic simulator (GES) they implemented different conservative synchronization

protocols such as Standard Chandy-Misra-Bryant protocol (STD), Timeout-based Null-message Sending

(TIM), Deadlock Avoidance Null-Message Sending (BLO), then they assessed and analyzed the

performance for each one in two simulation models. They executed two different conservative simulation

models on two different instance types of EC2. One model was a closed queuing network (CQN), and the

second one an electronic auction for compute resources. In addition, the two models had differences in

event arrival rates, communication patterns and computation to communication ratios. The experiment

were focused on how the main strategies of conservative simulation performed on a cloud infrastructure.

As a result, they found that time-out conservative protocol performed best for CQN, while Deadlock

Avoidance Null-Message Sending (BLO) shows better performance for the auction model.

Malik et al. (2010) discussed that moving the optimistic synchronization approach to cloud could exhibit

major problem specially on the number of rollbacks. Traditionally, Time Warp method is used to detect

out of order timestamped events which are corrected by rollback method. Their experiment showed that

massive rollbacks and thus high overhead could be experienced. Further, the problem could become im-

Rajaei, Alotaibi, and Jamalian

practical when deploying simulation models especially when having high latency in cloud networking. To

overcome the issue, they proposed Time Warp Straggler Message Identification Protocol (TW-SMIP) to

illustrate the interference and the latency issues. They reported that TW-SMIP protocol could decrease the

communication overhead and thus reduce the number of the rollbacks on the cloud.

Research on simulation as a Service (SIMaaS) has recently gained much interest. Numerous works

reported in the literature to deploy simulation in the cloud to gain high availability and accessibility, as

well as on-demand resources. Despite these efforts, significant challenges that Cloud-based simulation

exhibits, brings forth a crucial question: how can we make SIMaaS practical?

The research reported by Liu et al. (2012) tried to answer the above question and proposed a somewhat

complete package. They first moved an existing simulation software to the cloud and studied its behavior.

Then, they composed the needed requirements, and prosed SIMaaS architecture. In a form of web service,

SIMaaS provides different simulation tools for clients. SIMaaS contains Cloud Manger Module (CMM)

that works as a simulation operating system that has different management modules. Additionally,

SIMaaS uses a web-portal and simulation service layer. Using the Service-Oriented Architecture (SOA)

concept, Several services are provided by SIMaaS controlled by CMM: Modeling as a Service (MaaS),

Execution as a Service (EaaS), and Analysis as a Service (AaaS). The virtualized resources of SIMaaS are

offered by the Virtualized Computing Environment (VCE) module through its related API. VCE delivers

computing management and makes the computing resources programmable. To measure performance loss

of a simulation in the virtual environment, they conducted an experiment that shows 33.3% performance

degradation compared to the physical machines.

Several surveys identified the needed features in the cloud for distributed simulation. Strassburger et al.

(2008); Boer et al. (2009) argued that there is a lack of plug-and-play middleware to help interoperability,

reusability, and scalability of applications on the cloud. They pointed out that interoperability should be

achieved with reasonable cost. They identified the needed characteristics of a plug-and-play middleware.

They emphasized first that a middleware should ensure the entire system must work without any effect in

case some component changes. They added that the middleware should maintain components

independency and synchronization.

3 HPC AS A SERVICE

Cloud provides utility computing through several services. HPCaaS is the service which supports HPC

programs running on the cloud without facing significant performance loss. Primary motivations for these

applications to move to the cloud are resource utilization, cost efficiency, flexibility, among many others.

Table 1 summarizes a comparison between characteristics of an average on-premises HPC resource such

as clusters or supercomputers with the one provided by a public cloud supporting HPCaaS. This table

clearly shows the benefits of HPCaaS for average HPC users. For high-end HPC users, perhaps dedicated

datacenters may still remain as a viable option.

3.1 Cloud and HPC

Scientific and HPC applications traditionally demand direct access to dedicated hardware and high-speed

networking with low latency. Such requirements often do not match with existing virtual and multi-tenant

environment of current cloud systems. We conducted numerous experiments to identify key shortcomings

of a typical cloud when executing HPC applications. The results suggest that cloud networking,

virtualization overhead, and multi-tenancy are among primary sources of turbulences of HPC

performance in the Cloud (Gupta et al 2011) which is described in more details below.

Rajaei, Alotaibi, and Jamalian

Table 1: On-Premises HPC resources vs. HPCaaS.

Characteristic

On-premises

HPC resource HPCaaS

Scalability Low High

Flexibility Low High

Reliability Low High

Cost CAPEX OPEX

Setup Time High Low

Maintenance &

Administration

expensive &

complex N/A

Resource Utili-

zation Low High

3.1.1 Multi-Tenancy

Multi-tenancy is one of the characteristics of the cloud. It is also one of the profit making features of the

cloud for service providers. It enables cloud providers to share resources between multiple tenants.

Degree of multi-tenancy refers to the number of tenants sharing the same resource on the cloud. By

increasing the degree of multi-tenancy, service providers are able to overprovision the resources to users.

Overprovisioning allows the service providers to maximize benefits, though with the risk of reducing

QoS. Nevertheless, multi-tenancy is in direct contrast with what HPC needs. HPC programs often demand

direct access to dedicated hardware to maximize performance while shared resources of the cloud

adversely impact performance of these programs.

Figure 1: Speed-up (a) and Efficiency (b) of a Matrix Multiplication benchmark on

Amazon EC2 instance

We conducted experiments using Matrix Multiplication benchmark on a virtual instance of Amazon EC2

public cloud. We repeated the experiments for 15 times to pin point the jitter effect as shown in Figure 1a.

The error bars represent the standard deviation of the results and indicate that by increasing the number of

cores, the diversity of values we get in multiple experiments, increases. Figure 1b is the efficiency

achieved for the experiments and the error bars are again the standard deviations. These experiments

show how performance of HPC programs on the cloud become unpredictable with potentially large

fluctuations due to the shared resource and multi-tenant environment. Further, the experiments indicate

that there is relatively huge gap between the average and the best performance of Matrix Multiplication

benchmark on Amazon EC2. Similar experiments by others (Gupta et al 2013) confirm that multi-

tenancy and network latency are major bottleneck degrading performance of HPC programs in the cloud.

Rajaei, Alotaibi, and Jamalian

3.1.2 Virtualization Overhead

Virtualization plays a key role in helping the cloud to have elasticity, resource pooling, and flexibility.

Nevertheless, virtualization and in particular the hypervisor adds unwanted overhead by adding a software

layer and preventing applications to have direct access to the hardware resources. This overhead is not the

same for all types of hardware. For example, due to special hardware support, virtualization overhead for

processors is significantly less than the overhead of network virtualization.

3.1.3 Network Bandwidth and Latency

Network and I/O resources in the cloud are shared between several tenants. Consequently, bandwidth and

latency of the network may not be predictable. The bandwidth in most cases is much less than what is

expected. We experimented with Point-to-Point MPI benchmarks on a 10Gig Amazon EC2 interconnect.

Our results suggest that the multi-tenant environment of the cloud lowers the bandwidth. Moreover, the

latency of the network of the cloud could vary. As a result, we often see performance loss of HPC

programs on the cloud when not using HPCaaS support.

3.2 ASETS, our Solution

ASETS (A SDN Empowered Task Scheduling System) is an elastic HPCaaS platform developed for HPC

application. Information provided by the SDN Controller enables the task scheduler to consider network

properties in assigning tasks to virtual machines. We also developed a scheduling algorithm called

SETSA (SDN Empowered Task Scheduling Algorithm) to run on top of the ASETS architecture

(Jamalian and Rajaei 2015a, 2015b). The algorithm measures the available bandwidth of the network

links and schedules tasks on the most appropriate links. This scheduling algorithm enables ASETS to

utilize network bandwidths more efficiently and thus it will increase the performance of HPCaaS platform

by reducing turnaround time of the submitted jobs.

Figure 2: Overview of ASETS architecture.

3.3 Case Studies

Our empirical analysis of ASETS with multiple case studies indicated that ASETS is most beneficial in

improving the performance of HPCaaS when the degree of multi-tenancy in the cloud increases (Jamalian

and Rajaei 2015a). To measure the performance improvement value of the proposed system we used

OpenStack integrated with OpenDaylight (Medved et al 2014) to implement ASETS in order to obtain a

proof of the concept. OpenStack as a cloud operating system provides full hypervisor level access to a

Cloud Computing environment whereas the OpenDaylight enables SDN to interact with OpenStack. The

experiments were carried both in a private cloud as well as a public one. For the private cloud, we

Rajaei, Alotaibi, and Jamalian

implemented ASETS configuration on a cluster of 6 compute nodes and for the public one we used

Amazon AWS cloud.

Figure 3. Performance of ASETS compared with FIFO scheduling in a private cloud.

Figure 3 shows performance ASETS in private cloud when (simulated) degree of multi-tenancy increases,

whereas Figure 4 shows Assets performance in Amazon EC2 cloud. As Figure 4 illustrates, the SETSA

scheduling algorithm of ASETS has unwanted overhead when using smaller scales of Virtual Machines

(VM). Nevertheless, with larger number of VMs significant performance improvement is observed for

ASETS over traditional FIFO task scheduling. As the HPCaaS platform scales with additional VM, the

number of network links and available bandwidths increase, allowing SETSA to have larger variety of

choices to redirect tasks data. This experiment was limited to 32 VM. It is speculated that if the number of

virtual machines increase (e.g. x100 times or more) with a larger network-intensive task, the fluctuations

of the network links correspondingly increase and SETSA will perform much better.

Figure 4. Performance of ASETS compared with FIFO scheduling in Amazon public cloud.

4 CLOUD-BASED SIMULATION (CBS)

Computer simulation helps to study the behavior of a system, including interactions, complexity, and

expected outcomes. As the complexity of the target systems increases, predictability of the system

behavior becomes vital both for the system designers and the users. To study in depth the behavior, not

only we need detailed simulation models, but also computing powers to quickly offer the needed data and

tools for analysis and interpretations of the collected data. Cloud services appears as a viable method to

deliver simulation services for analysts as well as non-experts users.

Rajaei, Alotaibi, and Jamalian

4.1 Why Cloud-Based Simulation

It is well-known that simulation is a powerful tool for study and analysis of the behavior of complex

systems. It is also well-known that good simulation tools are expensive and often have steep learning

curves. Availability of the tool when it is needed, is a third obstacle that makes simulation to remain in

the expert domain. Furthermore, scalability of the modules and computational power of the simulation

scenarios add other dimensions to the limitations of this powerful method.

To alleviate some of the above issues, we need to look at the promises of cloud computing which

promotes pay-as-you-go mothed along with high availably, reliability, and scalability of resources as well

as non/or low maintenance cost of the used resources.

Comparing the above services with some of the existing tools, few of which cost tens of thousands of

dollars for a particular module, it is safe to say that Simulation-as-a-Service will become a trend. The

provided services could include not only a tool to develop models and execute them on the cloud, but also

provide easy to understand tutorials, how to build base model, lectures and videos, as well as diverse case

studies, powerful analysis tools and presentations, customized services, just to name a few. While most of

these benefits could currently exist in multiple specialized tools, the new cloud-based trend can bring

much more diversities to simulation users and communities and thus open the doors to wider use of this

powerful technique.

4.2 Prospective Types of CBS

Simulation has wide variety of techniques, and thus cloud-based simulation services can potentially cover

all of these branches. Nevertheless, in this research we focus only on Discrete Event Simulation (DES)

which represents chains of events in the system, where each event can cause other changes at certain

event time, and thus the simulation outcome will be given through ordered chains of the generated events

(Fujimoto 2000). Furthermore, we focus on Parallel Discrete Event Simulation (PDES) and its three

associate branches: Conservative, Optimistic, and Hybrid protocols (Figure 5) in DSaaS and CBS.

Needless to say that sketched here, can be extended and be applied to other CBS domains.

Figure 5: Illustrating types of CBS focusing on branches addressed in this paper

4.3 Distributed Cloud-Based Simulation

Sequential DES (i.e. running on single CPU) albeit can give good estimate of the system understudy, it

has multiple limitations. Prime examples include scalability of the model, detailed and modular plugins,

and computing power. Parallel and Distributed Simulation (PADS) addresses some of these issues and

Rajaei, Alotaibi, and Jamalian

provides mechanism to distribute the model across multiple nodes, with specific algorithms to synchro-

nize the events (Fujimoto 2000). The simulated system can be executed on broad span of interconnected

multiprocessors.

PADS has two main synchronization protocols; conservative and optimistic, but the hybrid of the two is

often supported. The system must maintain, however, the same results as its sequential counterpart, while

distributing the discrete events among multiple processors. In the conservative protocol, the simulation

engine blocks the logical processes when their local simulation clocks could become out of timestamp or-

der, whereas the optimistic method allows those process to proceed but when error is detected, that pro-

cess rollbacks to correct the error.

The blocking and rolling back of PADS processes are major obstacles in porting them to clouds. Appar-

ently a local data center could better benefit PADS program rather than cloud since the cloud platform

would add additional hazards, such as networking delay and others as mentioned earlier, and hence signif-

icantly degenerate performance. Clearly, not every user can have access to a dedicated HPC data Center.

As a result, the need for a distributed cloud-based simulation becomes clear. As an HPC application do-

main, benefits of PADS include faster executions and ability to simulate large distributed systems. The

HPCaaS platform described earlier bridges the gap and let the PADS program enjoy benefits of the cloud.

Cloud services give an illusion of unlimited resources, and thus serve well to distributed simulation. A

distributed cloud-based simulation service can furnish the users all benefits of the cloud while obtaining

as well faster execution of the module when the user desires, and pay for only that service. As mentioned

earlier, and confirmed by others, e.g. D'Angelo(2011), there are serious hazards to address before we can

comfortably move PDES to cloud. A distributed simulation-as-a-service can alleviate the problem.

5 DISTRIBUTED SIMULATION AS A SERVICE (DSAAS)

The three well-known platforms of a cloud according to the NIST definitions (Mell and Grance 2010),

include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

This section describe mapping of the DSaaS layer, its architecture, the Middleware, and the API

interfaces to cloud layers.

5.1 Mapping DSaaS Layer to Cloud Architecture

DSaaS is implemented at the PaaS level and on the top of the utility services of the IaaS layer. The

platform utilizes an HPCaaS layer (described in Section 3) and its main objective is to make the HPC

programs run smoothly on the cloud. This service alleviates the PADS users from the jitters of the clouds

and furnishes the tool they need to focus developing their simulation model to be executed in a potentially

endless computing resources when they desire. Figure 6 illustrates the mapping view of DSaaS to the

cloud architecture.

The middleware works as a simulation engine of DSaaS, and connects the PADS programs to the

HPCaaS layer. The engine provides main simulation services in building modules to launch, execute, and

interconnect the simulation model in cloud environment. As a simulation engine, the middleware interacts

with the simulation programs via its API. It is in charge of retrieving simulation objects, updating the

state of the simulation, tracking events for check-pointing, and so on. What is left is example models at

the application level (i.e. SaaS) to demonstrate how the DSaaS architecture can be used. This part of

system is left to be accomplished as the future work.

Rajaei, Alotaibi, and Jamalian

Figure 6: Overview for DSaaS mapped to the three Cloud platform

5.2 Architecture of DSaaS

The architecture of DSaaS is shown in Figure 7 and explained in this section. The top layer has the

interface, with its the associated API routines for both conservative and optimistic synchronization

methods. The API for the hybrid and other methods is left for future work. The next layer is the

middleware (CBS_MID) which is a major layer of the DSaaS platform due to extensive simulation

services it provides as well as its interconnections and integration role to the application programs.

CBS_MID is the simulation engine and the core of the simulation process that launches and executes the

simulation models using the provided management modules. CBS_MID engages the simulation instances

seamlessly with the HPCaaS layer (ASETS). The latter layer prepares the PADS programs for smooth

execution on the cloud. Using DSaaS and CBS_MID, synchronization of a distributed simulation is

managed transparently from the users and frees them from the underlying complex details associated with

both parallel processing and cloud hazards.

Figure 7: The architecture of DSaaS integrated in a cloud platform

5.3 CBS_MID Services and Management Modules

The middleware services are classified based on the types of protocol the users prefer having them for

their execution models. Table 2 summarize these services. As seen in this table, wide variety of

DES/PDES can be furnished. Implementation of these services may add minor challenges which a typical

Rajaei, Alotaibi, and Jamalian

simulation engine could encounter and it is not addressed here, rather the architecture of CBS basis is the

focus of this paper. The framework presented in this paper, however, can be used for plugins particular

module, for example HLA simulation.

Table 2: Services of CBS_MID.

Service Name Types Services and Management Details

Base-srv Base services Time management: Deals with time synchronization of

the distributed simulation

Memory management: Allocate and release memory

Garbage collection: Releases memory no longer used

by simulation objects

Shared-srv Shared services Logical processes services: Creates & manages LPs.

Event list services: Queue containing future events

Message passing: Manages communications between

simulation entities

Opt-srv Optimistic Sim Roll back, check pointing, and Global Virtual Time.

Supports features of the optimistic synchronization

Conservative -srv Conservative Null massages, and Lower Bound Time Stamps

Supports features of the conservative synchronization

Hybird-srv Hybrid services Local Time Wrap (LTW): a hybrid methods of

optimistic and conservative approach

HLA-srv HLA Supports High Level Architecture simulations

NonPads-srv Non-PADS Supports sequential simulations

The services supported by the middleware are called by the Application Program Interface (API),

developed for conservative and optimistic protocols. These APIs hide the synchronization details and

makes developing of PADS application easier. The APIs are categorized into groups such as DS-LP, DS-

NM, DS-Detect, DS-EventList, DS-LBTS, and so on. While basic service routines and their related API

are developed, the complete set of interface routines and their implementations are left as future work.

6 CONCLUDING REMARKS AND FUTURE WORK

Cloud-Based Simulation, specially its distributed counterpart, appears to become a trending move as

newcomers of cloud services. While sequential CBS can become an easy deployment target, the same

cannot be through for the distributed and parallel simulation. The latter is in the HPC domain where

multiple research indicate performance hazards such as networking delay, shared resource overhead, and

several others, could diminish the gained benefits. To overcome these issues, we proposed DSaaS, which

is a special service dedicated to assist parallel discrete event simulation on the cloud. The proposed

system has multilayered architecture which include an HPC-as-a-Service layer, a Middleware simulation

engine, and an interface layer. The implementation and testing of the HPCaaS layer is accomplished

earlier. The design of the DSaaS is completed and reported here, whereas the implementation and testing

of this architecture along with a few use-cases are left for the future work.

Rajaei, Alotaibi, and Jamalian

REFERENCES

AbdelBaky, Moustafa, Manish Parashar, Kirk Jordan, Hyunjoo Kim, Hani Jamjoom, Zon-Yin Shae,

Gergina Pencheva et al. 2012. "Enabling high-performance computing as a service". IEEE Computer

Society Press. Los Alamitos, CA, pp. 72-80.

Boer, Csaba A., Arie de Bruin, and Alexander Verbraeck. 2008. "A survey on distributed simulation in

industry".Journal of Simulation 3, no. 1 .pp. 3-16.

Dahmann, Judith S., Richard M. Fujimoto, and Richard M. Weatherly.1997."The department of defense

high level architecture". In Proceedings of the 29th conference on Winter simulation, pp. 142-149.

Atlanta, Georgia.

D'Angelo, Gabriele. 2011."Parallel and distributed simulation from many cores to the public cloud."

In High Performance Computing and Simulation (HPCS), 2011 International Conference on, pp. 14-

23. Istanbul , Turkey,

Foster, Ian, Yong Zhao, Ioan Raicu, and Shiyong Lu. 2008. "Cloud computing and grid computing 360-

degree compared". In 2008 Grid Computing Environments Workshop, pp. 1-10.

Fujimoto, Richard M. 1990. "Parallel discrete event simulation". Communications of the ACM 33, no. 10

.pp.30-53. New York, NY.

Fujimoto, Richard M. 2000. Parallel and distributed simulation systems. NY, New York: John Wiley&

sons.

Gupta A. and D. Milojicic, "Evaluation of HPC Applications on Cloud," in Open Cirrus Summit (OCS),

2011 Sixth, pp. 22-26, 2011.

Gupta, Abhishek, Laxmikant V. Kale, Filippo Gioachin, Verdi March, Chun Hui Suen, Bu-Sung Lee,

Paolo Faraboschi, Richard Kaufmann, and Dejan Milojicic. 2013. "The who, what, why and how of

high performance computing applications in the cloud". In Proceedings of the 5th IEEE International

Conference on Cloud Computing Technology and Science.

Jackson, Keith R., Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas Cholia, John Shalf,

Harvey J. Wasserman, and Nicholas J. Wright. "Performance analysis of high performance computing

applications on the amazon web services cloud".2010. IEEE Second International Conference on

Cloud Computing Technology and Science, pp. 159-168.

Jamalian, S. and Rajaei, H. "ASETS: A SDN Empowered Task Scheduling System for HPCaaS in the

Cloud," in Cloud Engineering, 2015, and IC2E IEEE International Conference on, 2015.

Jamalian, S. and Rajaei, H. "Data-Intensive HPC Tasks Scheduling with SDN to Enable HPC-as-a-

Service " in the proceedings of IEEE Cloud 2015. July 2015, NY, and IEEE Computer Journal

Liu, Xiaocheng, Qiang He, Xiaogang Qiu, Bin Chen, and Kedi Huang. 2012. "Cloud-based computer

simulation: Towards planting existing simulation software into the cloud". Simulation Modelling

Practice and Theory 26 .pp.135-150.

Medved J., R. Varga, A. Tkacik and K. Gray, "OpenDaylight: Towards a Model-Driven SDN Controller

architecture," in 2014 IEEE 15th International Symposium on, pp. 1-6, 2014.

Malik, Asad Waqar, Alfred J. Park, and Richard M. Fujimoto. 2010"An optimistic parallel simulation

protocol for cloud computing environments". SCS M&S Magazine 4, pp. 1-9.

Mell, Peter, and Tim Grance. 2011. "The NIST definition of cloud computing”. Gaithersburg, MD,

National Institute of Standards & Technology .

http://www.nist.gov/index.html

Rajaei, Alotaibi, and Jamalian

Padilla, Jose J., Saikou Y. Diallo, Anthony Barraco, Christopher J. Lynch, and Hamdi Kavak. 2014.

"Cloud-based simulators: making simulations accessible to non-experts and experts alike".

In Proceedings of the 2014 Winter Simulation Conference, pp. 3630-3639. Savannah, Georgia IEEE.

Rajaei, Hassan, Rassul Ayani, and Lars-Erik Thorelli. 1993."The local Time Warp approach to parallel

simulation". In ACM SIGSIM Simulation Digest, ol.23,no.1,pp. 119-126.

Strassburger, Steffen, Thomas Schulze, and Richard Fujimoto. 2008. "Future trends in distributed

simulation and distributed virtual environments: results of a peer study". In Proceedings of the 40th

Conference on Winter Simulation, pp. 777-785. Miami, Florida. Winter Simulation Conference,

Taylor, Simon JE, Azam Khan, Katherine L. Morse, Andreas Tolk, Levent Yilmaz, Justyna Zander, and

Pieter J. Mosterman. 2015. "Grand challenges for modeling and simulation: simulation everywhere—

from cyberinfrastructure to clouds to citizens". Transactions of Society for Computer Simulation and

simulation international 2015 vol. 91.

Taylor, Simon J. E., Richard Fujimoto, Ernest H. Page, Paul A. Fishwick, Adelinde M. Uhrmacher, and

Gabriel Wainer.2012."Panel on Grand Challenges for Modeling and Simulation". In Proceedings of

the 2012 Winter Simulation Conference (WSC). pp. 232, Berlin, Germany.

Taylor, Simon JE, Tamas Kiss, Gabor Terstyanszky, Peter Kacsuk, and Nicola Fantini. 2014. "Cloud

computing for simulation in manufacturing and engineering: introducing the CloudSME simulation

platform". In Proceedings of the 2014 Annual Simulation Symposium, pp. 12. Tampa, Florida.

Society for Computer Simulation International.

Vanmechelen, Kurt, Silas De Munck, and Jan Broeckhove. 2013. "Conservative distributed discrete-event

simulation on the Amazon EC2 cloud: An evaluation of time synchronization protocol performance

and cost efficiency".Simulation Modelling Practice and Theory 34.pp.126-143.

AUTHOR BIOGRAPHIES

To be added later

