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Logical process (LP) is a modelling paradigm widely used in parallel discrete-event
simulation (PDES). However, effective methods for formalizing LP-based modelling
of PDES are lacking. This prevents an unambiguous, platform-independent description
of LP-based models. We present a formalism named partitioned event graph (PEG) as
a solution. PEG extends classical event graph formalism towards a formal specification
for LP-based PDES models. We map between PEG and LP-based models, define the
structural operational semantics (SOS) in a timed-labelled transition system, and
discuss the Wallclock time-based execution. We propose a PEG-based model transfor-
mation framework for PDES, which has three model representation phases and distin-
guishes amongst four kinds of personnel roles. Finally, we present a domain-specific
language (DSL) for the PDES of a Lotka–Volterra system and obtain preliminary
parallel simulation results using YinHe Simulation Utilities for Parallel Environment
(YHSUPE). The case study shows that the PEG-based framework not only effectively
transforms a DSL into the LP paradigm, but will also result in efficient parallel
simulation on a specific platform. In summary, by setting out specific characteristics
for event scheduling and state space partition in the LP paradigm, PEG provides a
formal method for model behaviour analysis and cross-platform model transformation.

Keywords: parallel discrete-event simulation; event graph; logical process; structural
operational semantics; model transformation

AMS Subject Classification: 00A72; 00A71; 93C65; 65Y05; 68Q55

1. Introduction

Parallel discrete-event simulation (PDES) has been recognized as a challenging field
which bridges modelling and simulation, and high-performance computing [1]. PDES’s
superior performance compared to sequential discrete event system (DES) derives from its
explicit decomposition of a model into sub-models which spreads the computing load
over distributed processors and speculatively pushes the simulation time forward. Logical
process (LP) is the most commonly used modelling paradigm in PDES. LP was intro-
duced to PDES to model the physical processes a system consists of. Because of the
intuitive depiction of time and space, as well as the commonality in implementation on
parallel machines, LP paradigm has been the dominant PDES modelling method for a
long time.

Recent research into the parallel simulation of LP-based models has usually attempted
to overcome the performance bottleneck [2] of a sequential DES [3]. There has been
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useful work on algorithm optimization, some novel hardware platform customization, and
several effective modelling methodologies, but few effective methods for formalizing LP-
based modelling of PDES.

There are many formalisms for DESs, such as DEVS [4], Timed Automata [5], Petri
Net, Process Algebra GSMP [6], StateChart [7], and Activity Cycle Diagrams [8]. These
formalisms differ in their usability due to their underlying semantic models; as to the
domains they are suitable to describe; as to what property, aspect, or granularity they can
be used to analyse; and, in their expressive power [9]. These formalisms cannot be
directly used on LP-based models in the PDES as they either underspecify or overspecify
the LP paradigm. There are two key characteristics for LP paradigm sharing by most
PDES platforms: event scheduling and state space partition. A novel formalism precisely
specifying these characteristics is required.

A recent paper presented a formalism named ‘extended event graph’ (EEG) [10] for
PDESs. However, it incompletely reviewed the literature, and its extension of event graph
(EG) formalism [11–13] requires a modification to correctly specify the LP paradigm. The
DVE-like [14,15] modelling language in EEG does not fully describe the key character-
istics of the LP paradigm. The ‘parallel event process’ [15] [16, p. 27] specified in its
denotational semantics is a characteristic rarely shared by PDES time management
protocols. Additionally, the formal definitions of EEG and LP in ref. [10] fail to distin-
guish the type and instance of specific elements in the formalism. This lack of distinction
weakens its claim made for the rigorousness of the model transformation.

In this paper, we develop a formalism for PDES based on the EG formalism, called
partitioned event graph (PEG), to provide an unambiguous and platform-independent
description of LP-based models. PEG not only offers a formal representation for the
LP-based model, but also provides a structural operational semantics (SOS) on timed-
labelled transition system (TLTS) [17, p. 105]. Therefore, PEG can be used for cross-
platform model transformation, automatic compilation to programming languages, and
formal analysis of PDES-model behaviour. PEG accomplishes this by formally specifying
event scheduling and the state space partition of the LP paradigm. These two character-
istics correspond to synchronization and partitioning efforts which are keys to the
correctness and performance of PDES.

The next section reviews the literature on formalizing LP-based modelling of PDES.
Section 3 presents the PEG in detail. We construct a map between the PEG and the LP-
based model, and define the SOS in a TLTS. Also, the Wallclock time execution and the
related equivalence relationship are defined. Section 4 presents a PEG-based domain-
specific modelling framework for PDES. Section 5 presents a domain-specific language
(DSL) for the spatial stochastic simulation of chemical reactions based on PEG to
demonstrate PEG-based framework’s capability. Section 6 closes the paper by discussing
the major findings and providing some direction for future work.

2. Related works

LP is a widely used term in PDES. Fujimoto et al. describe LP as a synonym for any
sequential simulation or simulator [2, p. 40], while Curry et al. and Peschlow et al.
introduce it to the sequential simulation branching [18,19]. The time-parallel simulation
decomposes the model temporarily, and every computation unit is deemed an LP [2,
p. 177]. In this paper, LPs are regarded as model entities and core execution units during
the simulation [3,20]. They interact with each other by exchanging events.

154 B. Wang et al.
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The development of the PEG is based on the EG formalism. The EG, also known as
the simulation graph [21] and the event relationship graph [22], explicitly expresses all
the relationships between events, and is the most direct formalism for the event
scheduling world view. EG has the same expressiveness as the Turing machine [11].
Infinitesimal perturbation analysis and mathematical programming are used to analyse
the properties of EG models [23]. OMIGA and SIMKIT [13] are typical toolkits for EG-
based modelling, but only with sequential execution. Viskit [24] provides a subscribe/
publish mechanism based on bridges, which consist of communication ports between
sub-graph models. J. de Lara et al. present the distributed event graph (DEG) [25] which
extends classical event graphs for component-based models in the sequential DES, and
the operational semantics is given by means of graph transformation.

The most common PDES modelling method is to directly use the application program
interfaces (APIs) provided by PDES platforms, such as TWOS [26], GTW [27],
SPEEDES [28], POSE [29], ROSS [30], and μsik [31]. API-based PDES modelling
methods have low usability due to their tight platform coupling.

DSLs hide platform details, making modelling more friendly to domain experts. For
example, the Maisie [32] language is based on GTW and frees users from having to know
API details. However, most domain-specific PDES modelling methods remain tightly
coupled to specific platforms and the proprietary execution semantics hampers cross-
platform reusability and formal analysis.

Component-based modelling effectively reduces model construction difficulties and
increases reusability. Sargent used visualization and a component-based method in the
control flow graph [33] to construct LP-based models. Liu et al. [34] built a component-
based modelling environment based on a variant of DEVS on top of the YinHe Simulation
Utility of Parallel Environment (YHSUPE) [35]. Other EG-based modelling works
include Jane [36] and Pave [37]. These efforts usually require direct transforming from
component-based formalisms into underlying platforms because LP-based models are not
natively component based. Mapping high-level formalisms into LP paradigms is another
method of introducing formal method to PDES. Researchers from the University of
Carleton have mapped cellular automata to LP paradigms [38] and implemented a
Cell-DEVS based PDES platform [39]. Hybinnette mapped a multi-agent system into
the LP-based model in Project SASSY [40]. Chen developed a middleware named HLA-
Grid-RePast to execute agent-based model on the Grid [41]. Oguara et al., in Project
MAS-PDES [42], organized LP-based models into reconfigurable tree structures based on
influence conical and represented the transformation of information sharing among agents
in the LP paradigm. However, each of these mappings is still directly linked to specific
platforms. The lack of platform-independent representation makes it hard to do cross-
platform migration and to verify transformation correctness.

Nutaro represents the simulation of LPs as a stack-based computing process in order
to facilitate formal analysis [43], but its idiomatic semantics makes it hard to incorporate
into commonly used formal methods. Tapus et al. discuss the formal model and the
operational semantics of speculative execution in distributed environments [44], but
without taking into consideration the equivalence to a sequential execution, which is of
key importance in PDES.

In summary, formalisms for general discrete-event modelling do not yet fully depict
certain key characteristics of the LP paradigm, including state space partition, event-
driven semantics, and the partial order among events. Current LP-based modelling
methods for PDES rely either on high-level programming language or artificial structure
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to define the execution semantics. The lack of a formal semantics hampers further study
on the transformation and the verification of LP-based models.

3. Partitioned event graph

The PEG is presented in this section. First, the assumptions in developing the formalism
are listed; then the PEG is defined formally; then the map between the LP-based Model
and the PEG-based model is constructed; then, the SOS on TLTS is presented; and finally,
the Wallclock time-based execution is discussed.

3.1. Assumptions

Regulation of the system under investigation plays a central role in formal method. For
the PEG formalism, the following assumptions are made:

(1) There are no simultaneous events. In simulation, we are interested in the state
trace generated by the system behaviour and not high-level interleaving concur-
rency, and decoupling can be used to eliminate simultaneous events [45].

(2) The condition expression on edge should contain finite enumerable relations
joined by Boolean operators, and thus the length of the edge condition is both
enumerable and finite [21].

(3) The number of LP classes, of LPs (partitions), and of event types are each finite,
and the number of event instances is enumerable, but not necessarily finite.

(4) The state space of the simulation model is enumerable, but not necessarily finite,
the same as in the discrete-event dynamic system [6].

(5) The model structure is static, no increase or decrease, in the number of LP
instances during simulation.

3.2. Logical process-based model

A general discrete-event model in event scheduling world view can be represented as
follows:

Definition 3.1: Discrete-event model

Model Δ EventTSet; StateVarSet; INIT ; Timeh i;

where

● EventT Set holds all of the event types,
● StateVarSet stands for the set of state variables,
● INIT stands for the initial configuration to EventTSet and StateVarSet,
● Time stands for the time base.

For StateVarSet, the set of all evaluation functions to the state variable in it, is defined as
EV AL SV1; :::; SVMf gð ÞΔ Q

0<j�M
domainsvj . The evaluation function η 2 EV AL �ð Þ maps

every SVj 2 StateVarSet to a certain value v 2 domainSV j; where 0 <j � M :

156 B. Wang et al.
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The LP-based model of a DES consists solely of LPs as atomic model entities, the set
of which is marked as SetLP.

Let L be the set of indices. The L-indexed set over SetLP is a triple L; SetLP; μð Þ, where
μ : L ! SetLP be the index function of SetLP. Since "LP 2 SetLP9i 2 L; μ ið Þ ¼ LP, we
mark the LP as LPi.

The LP-based model of a DES should contain extra partition information on EventTSet
and StateVarSet, respectively, and is formally represented in Definition 3.2.

Definition 3.2: LP-based model

ModelLP
Δ SetLP; INIT ; Timeh i; where

● Time represents the time base, normally <þ
0 is used.

● SetLP
Δ LPi i 2 Ljf g; where

fLPi
Δ hEventTSubseti; StateVarSeti; δSi ; δηi i; i 2 Lg where

(1) EventTSubseti is a subset of EventTSet, and satisfies:

"i 2 L:EventTSubseti � EventTSet

¨i2LEventTSubseti ¼ EventTSet

"i�j 2 L:EventTSubseti ˙ EventTSubsetj ¼ f

(2) StateVarSeti is a subset of StateVarSet, and satisfies:

"i 2 L: StateVarSeti � StateVarSet

¨i2LStateVarSeti ¼ StateVarSet

"i�j 2 L:StateVarSeti˙StateVarSetj ¼ f

(3) δSi is the state transition function, and is represented as
δSi : EventTSubseti � Si ! Si; i 2 L.

(4) δηi is the event scheduling function, and is represented as
δηi : EventTSubseti � Si ! } EventTSet � Timeð Þ; i 2 L, where Si is the state
space of LPi:

Si
Δ EV ALðStateVarSetiÞ Δ Q

SV 2 StateVarSetidomainSV and the state space

of ModelLP is defined as S Δ EV ALðStateVarSetÞΔ
Q

i2L Si .

● INIT stands for the initial configuration to EventTSeti and StateVarSeti, where i 2 L.

The schedule relationship for event types of LPi, marked as ScheduleRelationshipi,
is a set of tuples consisting of an event type in LPi and those event types scheduled
by it.

ScheduleRelationshipi Δ eTfrom; eTto
� ����

eTfrom 2 EventTSubseti
� � ^ 9s 2 Si; 9t 2ð Time; s:t: eTto; tð Þ 2 δηi eTfrom; s

� �Þg
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The schedule relationship for ModelLP is

ScheduleRelationship Δ ¨i2LScheduleRelationshipi

3.3. Formal description

The EG formalism describes the elements of an EG model, which is shown in Definition
3.3 [11].

Definition 3.3: Event graph

MΔ<V ;E; S;F;C; T ;A;B>; where

● V, the set of vertices corresponding to the events of M,
● E, the set of directed edges eod ¼ <vo; vd> that describe the scheduling/cancelling

relationships between pairs of events in M,
● S, the state space of M, it is depicted by a vector of state variable in DES,
● F ¼ fv : S ! S;"v 2 Vf g, the set of state change functions, each function associ-

ates with a vertex v,
● C ¼ ce : S ! True;Falsef g;"e 2 Ef g, the set of condition functions, each func-

tion associates with an edge e,
● T ¼ te : S ! Time;"e 2 Ef g, the time delay on each edge e(normally we use <þ

0
as Time Base),

● A ¼ Ae;"e 2 Ef g, the set of attribute lists, if any, and each list associates with an
edge e,

● B ¼ Bv;"v 2 Vf g, the set of parameter lists, if any, and each list associates with a
vertex v.

} Hð Þ marks a set consisting of the set of all subsets of a set H, the so-called powerset:
} Hð Þ ¼ x x � Hjf g.

Definition 3.4: Partition
For any set H, set Par � }ðHÞ is a partition of H, if

"I ; I 0 2 Par: I�I 0 ) I˙I 0 ¼ fð Þ ^ tI2ParI ¼ Hð Þ
The partition of set H is marked as PH.

Definition 3.5: Projection
For event graph M, Projection : V ! StateVarSet is defined as the set of all state

variables accessed by a subset of V.

Definition 3.6: Partitioned event graph
The PEG corresponding with an event graph MΔ<V ;E; S;F;C; T ;A;B> is

PEGM
Δ M ;PVh i, where Projection Ið Þ I 2 PVjf g is a partition of StateVarSet.

The equivalence between the PEG and the LP paradigm is proved by generating a
bidirectional map between them.

158 B. Wang et al.

D
ow

nl
oa

de
d 

by
 [

13
4.

11
7.

11
7.

74
] 

at
 0

8:
39

 1
3 

Fe
br

ua
ry

 2
01

5 



The introduction of attribute A and parameter B in Definition 3.3 is a notational
convenience and does not bring change to the modelling power of the EG [22]. The
method for removing parameters from the EG is presented in [11] and the EG-based
model with cancelling edges can be transformed into an equivalent form with only
scheduling edges [46]. Therefore, we only consider EG without attributes, parameters,
and cancelling edges in the discussion. First, transformation from LP-based model to the
corresponding EG-based model is performed. The corresponding EG model of the SetLP is
defined as:

EGSet
Δ
LP

EventTSet; ScheduleRelationship; StateSpace;¨i2LFi;¨i2LCi;¨i2LTih i:

.
Since each event type belongs, and only belongs, to a single LP, which means that

"eT 2 EventTSet ) 9i 2 L ^ eT 2 EventTSubsetið Þ
^ "i; j 2 L ) eT 2 EventTSubseti ^ eT 2 EventTSubsetj ) i ¼ j

� �� �
;

there exists a function Γ: EventTSet ! L, which maps each eT 2 EventTSet to the index i
of the EventTSubseti it belongs to.

By applying a curry operation to δSi , the state transformation function for LPi is
defined as:

FiΔ feT : Si ! Sij"eT 2 EventT Set; feT ¼ δSi eTð Þ; i ¼ Γ eTð Þ� �
:

.
The corresponding event scheduling function on the edge set of LPi is defined as:

CiΔ cr : Si ! True; Falsef gj"r 2 Schedule Relationshipi;f
"s 2 Si; cr sð Þ ¼ IsTrue r:to 2 πEventT Setδ

η
i r:from; sð Þð Þg;

where πEventT Set is the projection function from EventTSet × Time to EventTSet.
The time delay function on the edge set of LPi is defined as:

TiΔ tr : Si ! Timej"r 2 Schedule Relationshipi

"s 2 Sitr sð Þ ¼ πTimeδ
η
i r:from; sð Þ;

where πTime is the projection function from EventTSet × Time to Time.
Through the transformation procedure described above, an EG-based model EGsetLP is

generated from SetLP .
Define PEΔ EventT Subseti;"i 2 Lf g, according to the definition of EventTSubseti and

Definition 3.4, PE is a partition of EventTSet. On the one hand, since StateVarSeti and
EventTSubseti belong and only belong to a single LPi, there is a bidirectional map from
PStateVarSet to PE, on the other hand,

Project StateVarSet; xð Þjx 2 PEf g ¼ StateVarSeti; i 2 Lf g
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is a partition of the state variable set StateVarSet, the constraint in Definition 3.6 is
satisfied.

The PEG-based model constructed from SetLP is PEGSetLPΔ EGSetLP ;PE

� �
; and

PEGSetLP is a PEG-based representation of SetLP.
We have proved that any LP-based discrete-event model can be transformed into an

EG-based model.
Second, a transformation is constructed from an EG-based model to its corresponding

LP-based model. Since for the PEG-based model Projection Ið ÞjI 2 PVf g is a partition of
StateVarSet, the construction of the map is similar to the procedure above. The LPs are
constructed according to PV and Project StateVarSet; xð Þjx 2 PVf g. Particularly,
M ¼ V ;E; S;F;C; T ;A;Bh i corresponds to a discrete-event model in event scheduling
world view, which is ModelLP with jLj ¼ 1.

We have proved that any discrete-event model in PEG formalism can be described by
the LP Paradigm.

In summary, the bidirectional map between LP-based model and PEG-based model
exists.

3.4. The structural operational semantics

The SOS of the PEG is defined on an abstract machine with TLTS, which is an extended
Labelled-Transition System.

Definition 3.7: Labelled-transition system (LTS)

LTSΔ S; s0; Label;!h i; where

● S is the state space.
● s0 2 S is the initial state.
● Label is the set of all actions, which stands for the event types.
● ! is the set of time-passage transitions, and !� S � Label � S: sa �!action

sb
stands for sa; action; sbð Þ 2! , in which sa; sb 2 S, action 2 Label.

Definition 3.8: Timed-Labelled Transition System

TLTS ¼ S; s0; Label;!; 7!h i;

where

● S, s0, Label and ! are defined in the same way as in Definition 3.7.
● 7! is the set of time-passage transitions, and 7! � S � Rþ � S: sa 7!delay sb stands for

sa; delay; sbð Þ 2 7!, in which sa, sb 2 S, delay 2 Rþ.

A TLTS contains two kinds of transitions: time-passage transitions corresponding to
R+ and discrete transitions.

160 B. Wang et al.
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Based on the definitions above, we derive the definition of the SOSs of EG and PEG.
The execution of an EG model is on an abstract machine whose configuration (global
state) keeps track of the state of the component and the time of the last transition. The
configuration of a PEG-based model is composed from the configuration of all partitions.
The time used in the following definition refers to simulation time [2].

3.4.1. Operational semantics of EG

The SOS of the EG model is represented by

TLTS EGð Þ ¼ <Config; config0; Label;!; 7!>;

in which:

● Config
ΔSTATE � Time� } EventT Set � Timeð Þ � EventT Set � Timeð Þ � PHASE

Config is the state space, and "stateΔ s; τ; Λ;Active; Phaseh i 2 Config:

(1) s 2 STATE, STATE = EVAL(StateVarSet). EVAL(StateVarSet) corresponds to
the model’s StateSpace in the LP paradigm. StateVarSet stands for the set of
state variables in EG-based model. The type of the state variable v is defined as
dom(v). η 2 EVAL(StateVarSet) is an evaluation function for the StateVarSet.
Cond(StateVarSet) is the set of Boolean expressions on StateVarSet.

(2) τ 2 Time stands for the simulation time, delay stands for the simulation time
delay.

(3) Λ 2 } EventT Set � Timeð Þ is the set of pending events. Define Λ.head as the
reference to the event in Λ with the lowest timestamp, if the set is empty.

(4) Active 2 EventTSet × Time is the cursor to the currently executing event if any.
Active.Type 2 V¨ NULLf g, Type stands for the Event Type of the cursor,
Type = NULL means that there is no event executing currently.

(5) Phase 2 PHASEΔ Elapse; Schedulingf g, in which the event retrieval operation
from the pending event set and the execution operation are treated as a single
transaction.

(6) The time base is represented by Time, which is <þ
0 in this paper.

● config0 is the initial state.
● LabelΔV¨E, which is the union of the edge set and the vertex set of the PEG.
● Transition relationships ! and 7! are defined in below:

(1) Event Execution

Phase ¼ Elapseð Þ ^ Λ:head:TYPE ¼ EGvertexð Þ ^ τ ¼ Λ:head:timestampð Þ
s; τ; Λ; Active; Phaseh i �!EGvertex

s0; τ; Λ0; Active0; Phase0h i
;

where ðs0 ¼ fEGvertexðsÞ;Active0 ¼ Λ:head;Λ0 ¼ Λ� fActive0g;Phase0

¼ ExeSch;EGvertex 2 V Þ;
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(2) Event Scheduling

Phase¼ Schedulingð ÞΛ Active:TYPE ¼ EGvertexið Þ ^ η EGedgeij:c
� �¼ True

� �
s; τ; Λ;Active; Phaseh i �!

EGedgeij c;tð Þ
s; τ; Λ0;Active0; Phase0h i

;

where Λ0 ¼ Λ¨ EGvertexj; τ þ 1
� �� �

;Active0:TYPE ¼ NULL;Phase0 ¼�
Elapse; EGvertexi and EGvertexj 2 V ; EGedgeij 2 E

�
;

(3) Time Elapsing

Phase ¼ Elapseð Þ ^ τ þ delay < Λ:head:timestampð Þ
s; τ; Λ;Active; Phaseh i �!delay s; τ þ delay; Λ; Active; Phaseh i

;

where (delay 2 Time).

3.4.2. Operational semantics of PEG

In order to define the SOS of the PEG-based model, we first transform
PEGMΔ M ;PStateVarSet;PEh i into the equivalent style PEGΔ LP0; :::; LPn�1f g, where

LPiΔf<StateVarSeti;EventTSubseti>ji 2 Lg; ð0 � i < nÞ:

The SOS of the PEG-based model is represented as a TLTS:

TLTS PEGð Þ ¼ <Config; config0; Label;!; 7!>;

in which

● Config
ΔSRATE � Time� } EventSet � Timeð Þ � EventSet � Timeð Þ � PHASE

Config is the state space, and "stateΔ s; τGVT ;Λ;Active;Phaseh i 2 Config:

(1) s ¼ s1; . . . ; sjLj
	 
T

; si 2 Si;1 � i � jLj:
(2) Λ ¼ Λ1; . . . ;ΛjLj

	 
T
; 1 � i � jLj, which means that Λ is the composition of

pending event sets of all LPs, and globally unique.
(3) Active 2 EventTSet � Time is the cursor to the currently executing event if any.
(4) The notation, τΔτGVT ¼ Mini2L lvtið Þ, is the global simulation time in which

lvti is the local simulation time of LPi.
(5) Phase 2 PHASE ¼ Elapse; Schedulingf g:

● config0 is the initial state.

● Label ΔV¨E:

● The time base is represented by Time, which is <þ
0 in this paper

● Transition relationships ! and 7! are defined in the following rules:
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(1) Event Execution

EGvertex 2 EventT Subsetið Þ ^ Phase ¼ Elapseð Þ ^ Λ:head:TYPE ¼ EGvertexð Þ ^ τ ¼ Λ:head:timestampð Þ
. . .
si
. . .

2
4

3
5; . . .

lvti
. . .

2
4

3
5; . . .

Λi

. . .

2
4

3
5;Active; Phase

* +
�!EGvertex

. . .
s
0
i

. . .

2
4

3
5; . . .

lvti
. . .

2
4

3
5; . . .

Λ
0
i

. . .

2
4

3
5;Active0; Phase0

* +

where s0 ¼ fEGvertex sð Þ; Active0 ¼ Λ:head;Λ0 ¼ Λ� Active0f g;Phase0ð
¼ Scheduling;EGvertex 2 V Þ:

.
(2) Event Scheduling

Phase ¼ Elapseð Þ ^ τGVT þ delay < Λ:head:timestampð Þ
s1
si...
...
sjLj

2
4

3
5; lvt1

...
lvti
...
lvtjLj

2
4

3
5; Λ1

...
Λi
...
ΛjLj

2
4

3
5;Active; Phase

* +
delay

7!

s1
...
Si
...
SjLj

2
4

3
5; lvt1 þ delay

lvti
... þ delay

...
lvtjLj þ delay

2
4

3
5; Λ1

...
Λi
...
ΛjLj

2
4

3
5;Active; Phase

* +

where (delay 2 Time).

(3) Time Elapsing

If the vertex of the scheduling edge crosses the partition boundary it is identified
as external event scheduling. If not, then it is internal.

External event scheduling:

If (EGvertexi 2 Event T Subsetm ^ EGvertexj 2 EventTSubsetk ^ k�m)

Phase ¼ Schedulingð Þ ^ Active:TYPE ¼ EGvertexið Þ ^ η EGedgeij:c
� � ¼ True

� �
...
sm
...
sk� � �

2
4

3
5;

...
lvtm
...
lvtk
. . .

2
4

3
5;

...
Λm
...
Λk

. . .

2
4

3
5;Active; Phase

* +
�!EGedgeij c;tð Þ

...
sm
...
sk
. . .

2
4

3
5;

...
lvtm
...
lvtk
. . .

2
4

3
5;

...
Λm
...
Λ0

k

. . .

2
4

3
5;Active0; Phase0

* +;

where Λ0
k ¼ Λk¨ EGvertexj; lvtm þ t

� �� �
;Active0:TYPE ¼ NULL; Phase0 ¼ Elapse;

�
EGvertexi 2 V ;EGedgeij 2 EÞ:

Internal event scheduling:

If EGvertexi, EGvertexj 2 EventTSubsetm

Phase ¼ Schedulingð Þ ^ Active:TYPE ¼ EGvertexið Þ ^ η EGedgeij:c
� � ¼ True

� �
� � �
sm
� � �

2
4

3
5; � � �

lvtm
� � �

2
4

3
5; � � �

Λm

� � �

2
4

3
5;Active; Phase

* +
�!EGedgeij c;tð Þ � � �

sm
� � �

2
4

3
5; � � �

lvtm
� � �

2
4

3
5; � � �

Λ0
m

� � �

2
4

3
5;Active0; Phase0

* +;
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where

Λ0
m ¼ Λm¨ EGvertexjlvtm þ t

� �� �
;Active0:TYPE ¼ NULL;Phase0

�
¼ Elapse;EGvertexi;2 V ;EGedgeij 2 EÞ:

.

3.4.3. Wallclock time-based execution

The SOS of PEG in Section 3 is strictly sequential, hence the sequence of event execution
in Wallclock time strictly conforms to the sequence in simulation time, which is non-
decreasing timestamp order.

The Wallclock time execution of TLTS and its equivalence relationship based on local
causality constraint (LCC) [2] are introduced in order to study the concurrent execution of
the LP-based model in PEG formalism. The following definitions are also introduced:

Definition 3.9: I – Trace
ω: I ! S, in which I represents the closed interval start from time 0, and S represents the
state space of the system, in which "t, then t0, if t � t0 then ω tð Þ �!t

0�t
ω t0ð Þ, ωlt represents

the supremum of I, and ω. ft represents the infimum of I. The ω.ls represents the final
state, and ω.fs the initial state ω(0).

For example, config �!d config0 corresponds to the [0, d] – Trace, in whichω:fs = config,
ω.ls = config’.

Definition 3.10: Timed Execution of TLTS
The Timed Execution of TLTS is an alternating sequence γ ¼ω0a1ω1a2 . . .ωn�1an . . . in

which ωi represents I-trace, ai represents event type, and ωi:ls �!aiþ1
ωiþ1:fs. The duration

and initial state of γ is marked as γ.lt and γ.fs, respectively. γ:fs ¼ ω0:fs, γ:ft ¼ ω0:ft. For
limited Timed Execution, formulae γ:lt ¼ ωn:lt, γ:ls ¼ ωn:ls hold. The set of all possible
Timed Execution of TLTS is marked as execs(TLTS).

Definition 3.11: Wallclock time execution of TLTS
The Wallclock time execution of TLTS is formed by attaching the Wallclock timestamp ai.
wct to each discrete-event type ai in γ ¼ ω0a1ω1a2 . . .ωn � 1an . . . The actual execution
sequence of TLTS in Wallclock time is γWC ¼ ωWC 0

aWC 1
ωWC 2

. . .ωWCn�1
aWCn . . . . Define

the set of all possible Wallclock time execution of TLTS as execsWC(TLTS).
If each LP adheres to the LCC, then the parallel execution will yield exactly the same

results as a sequential execution of the same model, provided that simultaneous events are
processed in the same order in both cases [2, p. 53].

This allows LCC to be regarded as a selection of all executions without causal error
from execsWC (TLTS). The set of all Wallclock time executions of TLTS qualifying LCC is
defined as execsLCCWC TLTSð Þ � execsWC TLTSð Þ, and event is defined as eiΔ ai;ωifth i, with
event type ei.type = ai, and execution time ei:st ¼ ωi:ft.

If there is no causality between ei and ej, which is marked as ei||ej, then exchanging ei
with ej in the Wallclock time execution, does not alter the result. This is stated by the
following formula.

For executions

γWC ¼ ωWC0aWC1ωWC1 . . . aWCiωWCi . . . aWCjωWCj . . .

γ
0
WC ¼ ωWC0aWC1ωWC1 . . . aWCjω

0
WCj . . . aWCiω

0
WCi . . .
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The following solutions are held to be true:

ωWCj :fs ¼ ω0
WCi

:fs; γWC; γ0WC 2 execsLCCWC TLTSð Þ; and γWC � γ0WC :

In conclusion, even though parallel executions using different parallel time management
algorithms can generate different Wallclock time executions, these executions result in the
same final system state as the SOS describes in Section 3, as long as the time management
algorithms all adhere to the LCC.

4. PEG-based model transformation framework for PDES

In this section, a model transformation framework for PDES is proposed. In this frame-
work, models transform through three phases, which are DSL, PEG formalism, and
platform-specific API.

Four personnel roles will be described. First, the abstract Grammar of PEG language,
named GrammarPEG, is laid out; second, the Framework is discussed in detail; third, the
transformation from the general EG to a PEG-based Model is accomplished by implement-
ing imparametrization and partition. This approach is key to the application of the PEG.

4.1. Grammar of the PEG language

The PEG language grammar, GrammarPEG, is described in this section. GrammarPEG
specifies how to analyse the model and provides the partition information of the PEG. A
use case of GrammarPEG is presented.

The Extended Backus–Naur Form (EBNF)-styled grammar of PEG is shown in
Figure 1, in which Function employs the ECMAScript grammar [47].

The single airport model [2, p. 34], in PEG language, is demonstrated in Algorithm 1.

4.2. The PEG-based domain-specific modelling framework for PDES

In this framework, the model in DSL is transformed into an executable model through the
PEG formalism, as shown in Figure 2. The transformation has three phases. First, the
transformation from DSL to EG is performed; second, the resulting EG-based model is
partitioned into a PEG-based model; and, third, the PEG-based model is transformed into
an executable model on specific PDES platform.

Simulation experiments are conducted after further configuration to Random Number
Generator, Queue Algorithms, and Time Management Algorithms. Briefly, with PEG, the
tripartite phasing decouples DSL from specific simulation platform API.

Algorithm 1: Single Airport Model in PEG Language
1 model airport;
2 StateVar {
3 integer ln_.The.Air 10;
4 integer On_The_Ground 0;
5 boolean Runway_Free True;
6 double R 10.0;
7 double G 15.0;
8}
9
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10 EventPartition EventSetl {
11 Event ArrivalEvent = “ARRIVAL” ();
12 Event DepartureEvent = “DEPARTURE” ();
13 Event LandedEven t = “LANDED” ();
14 }
15
16 Edges {
17 Edge Arrival_Landed {
18 type schedule
19 events (ArrivalEvent, LandedEvent)
20 condition [isRunwa_Free = True]
21 priority default
22 delay 0
23 }
24 Edge Landed_Landed {
25 type schedule
26 events (LandedEvent, LandedEvent)
27 condition [True]
28 priority default
29 delay 0
30 }
31 Edge Landed_Departure {
32 type schedule
33 events (LandedEvent, DepartureEvent)
34 condition [get In _The_Air >0]
35 priority default
36 delay 0
37 }
38 }

Four roles are involved in the PEG-based PDES of domain-specific models (DSMs):

(1) Expert A: an expert with Domain Knowledge, familiar with domain knowledge,
models the domain problem using the selected DSL.

(2) Expert B: an expert with DES Modelling Knowledge, familiar with the grammar,
semantics, and analysis of EG formalism, models the domain problems using EG.

(3) Expert C: an expert with Language Analyser Construction Knowledge develops
language interpreter, parser and lexical analyser in order to further transform the
DSL into the target language.

(4) Expert D: an expert with Parallel Simulation Platform Knowledge, who is familiar
with the experiment configuration and software/hardware deployment customized
towards a specific simulation platform.

Generally speaking, the model transformation is divided into three phases: model-to-
model transformation, model reconstruction, and model to code transformation [48].

The transformation from a DSM to the general EG-based model is a model-to-model
transformation. In the cooperation of experts of four roles, information is passed through
several abstraction levels and aspects of the system.
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The transformation from PEG-based model to simulation platform-specific API
description is a model to code transformation. First, the general EG-based model is
transformed into a parameter-free EG-based model by the parameter expansion algorithm.
Next, the parameter-free EG-based model is transformed to a PEG-based model. Both are
model reconstructions.

1 //a model has a name and a number of definitions (states, event partitions, edges)
2 MODEL : := ’ model ’ I d e n t i f i e r ’ ; ’ STATEVARIABLES EVENTPARTITION EDGELIST
3
4 //the state variables
5 STATEVARIABLES : := ’ Sta teVar { ’ S t a t eV a r i a b l eD e c l a r a t i o n ( ’ ; ’

S t a t eV a r i a b l eD e c l a r a t i o n ) ’} ’
6 S t a t eV a r i a b l eD e c l a r a t i o n : := Va r i a b l e Ass ignment
7
8 //a variable has a type and a name
9 Va r i a b l e : := Bas icType I d e n t i f i e r

10 Bas icType : := ’ s t r i n g ’ | ’ double ’ | ’ i n t e g e r ’ | ’ boo lean ’
11 I d e n t i f i e r : := ( ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ ’ ) ( ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ ’ | ’ 0 ’ . .

’ 9 ’ ) ∗
12 Ass ignment : := Number | STRING | Funct i on
13 STRING : := ( any c h a r a c t e r )∗
14 Number : := intNumber | rea lNumber
15
16 //an event partition definition is being composed from the events defined for it
17 EVENTPARTITION: := ’ Ev en tPa r t i t i o n ’ I d e n t i f i e r ’{ ’ Event∗ ’} ’
18
19 //each event has a name, and a string representation and a set of parameters
20 EVENT: := ’ Event ’ I d e n t i f i e r ’= ’ STRING ’ ( ’ I d e n t i f i e r ’ ) ’ ’ ( ’ ParameterSet ’ ) ’ ’ ; ’
21 // state transition function F
22 STATETRANSITION: := ” S t a t eT r a n s i t i o n ” I d e n t i f i e r ’= ’ Func t i on ;
23 ParameterSet : := ( Va r i a b l e ’ ; ’ ) ∗
24
25 //edge definitions
26 EDGELIST : := ’ Edges ’ ’{ ’ EDGE∗ ’} ’
27 EDGE: := ’ Edge ’ I d e n t i f i e r ’{ ’ ’ type ’ EdgeType ’ e v en t s ( ’ e v en tPa i r ’ ) ’ ’ c o n d i t i o n

[ ’ Cond i t i on ’ ] ’ ’ p r i o r i t y ’ P r i o r i t y ’ de lay ’ TimeDelay ( ’ f u n c t i o n s ( ’
( Func t i on ’ ; ’ ) ∗ ) ’ )+ ’} ’

28 EdgeType : := ’ Schedu le ’ | ’ Cance l ’
29 Even tPa i r : := I d e n t i f i e r I d e n t i f i e r
30 Cond i t i on : := ’ True ’ | ’ Fa l s e ’ | Funct i on
31 P r i o r i t y : := ’ d e f a u l t ’ | ’ l owes t ’ | ’ l ower ’ | ’ low ’ | ’ h igh ’ | ’ h i ghe r ’ | ’ h i gh e s t ’
32 TimeDelay : := Number | Funct i on // lvt+a.random()

Figure 1. Grammar of PEG.

Figure 2. PEG-based model transformation framework for PDES.

Mathematical and Computer Modelling of Dynamical Systems 167

D
ow

nl
oa

de
d 

by
 [

13
4.

11
7.

11
7.

74
] 

at
 0

8:
39

 1
3 

Fe
br

ua
ry

 2
01

5 



The tripartite transformation provides flexibility at two points. The first phase enables
a platform-independent representation and a formal analysis of the model’s property. The
second phase eases the cross-platform migration by focusing the map from PEG formal-
ism, instead of reforming the models each time from the very beginning.

4.3. Transforming general EG- to PEG-based model

Transforming general EG formalism into PEG formalism is carried out as follows:

● Imparametrization of the parametric EG-based model

This procedure eliminates the attribute and the parameter. The preconditions of this
operation are the domain of parameter on the node, and the domain of the attribute on the
edge are, respectively, either finite, or can be transformed into a partition with finite
cardinality. A partition is a set of nonempty subsets of the domain such that every domain
element is in exactly one of these subsets. The parameter expansion method is shown in
Algorithm 2, in which the first loop is an expansion through Domain([i]). Since Domain
([i]) and Domain([j]) are both finite sets, this loop contains finite operations.

Algorithm 2: Imparametrization Algorithm for General EG-based Model
1 Vtemp = ;, Etemp = ;
2 for each v in V with parameter [i] //Iteration through the vertex Set
3 add v to Vtemp

4 for each i in Domain([i]) //Expand the Parameter Set of single vertex
5 if (vi 2 V = = False)
6 add Vi to V
7 //Generate vertex, state change function, and state variable set according to i
8 generate Vi, fvi, SVi
9 endif

10 for each e 2 < v, * > //expand the attributes on each edge starting from v
11 add e to Etemp

12 //Domain([j]) is the expression set defined on V � E � Domain([i])
13 if e has attribute as j(i) //if attribute [j] of e is defined on [i].
14 domain = Domain([j (i)])
15 else //if attribute [j] of e is not defined on [i].
16 domain = Domain([j])
17 endif
18 for each j in domain
19 generate ej = < vi,v′j >
20 if (ej 2 E = = false)
21 tej = te(j)
22 cej = ce(j)
23 add ej to E
24 endif
25 endfor
26 endfor
27 endfor
28 endfor
29 V = V – Vtemp

30 E = E – Etemp
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● Generating partitions for state variable set and event set

The influencer functions (influencer) and influencee functions (influencee) in all event
vertexes to state variables are generated for the EG-based model in order to reflect the
causality between state variables and events in literature [49,50]. The notation fv .write
represents the set of state variables modified by the state transition function of event type
vertex v. The notation fv .read represents the set of state variables read by the state
transition function of v. The notation te.read represents the set of state variables read by
the time increment function t, on edge e. The notation ce.read represents the set of state
variables read by the condition function c on edge e. Iterating through the EG-based
model obtains these sets. OutComv stands for the set of outcoming edges started from
vertex v.

influencer ¼ V ! } SVð Þj"sv 2 SV ; sv 2 influencer vð Þ , sv 2 fvf g (1)

The notation influencer stands for the set of state variables modified by state transition
function fv of vertex v.

influencee ¼
n
V ! } SVð Þj"sv 2 SV ; sv 2 influencee vð Þ

, sv 2 fv:read¨ ¨
e2OutComv

ðte:read¨ce:read
o
Þ

(2)

Project ¼fV ! }ðSV Þj"sv 2 SV ; Project ðvÞ ¼ influenceeðvÞ¨influencerðvÞg (3)

Construct directed bipartite Gb ¼ ðV ; SV ;EbÞ;Eb ¼ Ewrite¨Eread based on EG.

Ewrite ¼ f<uv; usv> 2 V � SV jusv 2 influencerðuvÞg (4)

Eread ¼ f<usv; uv> 2 SV � V jusv 2 influenceeðuvÞg (5)

● Construct the Adjacency Matrix of bipartite G as AðGÞjV j�jSV j ¼ ðaijÞ; in which
aij 2 f�1; 0; 1g.

aij ¼
�1 , <ui; svj> 2 Eread¨Eread

0 , <ui; svj> 2 fV � SV � Eread � Ewriteg
1 , <ui; svj> 2 Ewrite � Eread

8<
: (6)

● Partition Generation.

The adjacent matrix AðG0Þ ¼ ðjaijjÞ of the base graph G′ of G is also with jV j � jSV j
rank, but does not distinguish between influencer and influencee. The set of all connected
components of G′ is generated by the minimum spanning tree algorithm [51].

Given that G′ has ω connected components as, G1;G2; :::;Gωðω � 2Þ where Gi is not
empty, by proper arranging the row/line of G, we can get:
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MðG0Þ ¼
MðG0

1Þ 0
MðG0

2Þ
. .
.

0 MðG0
ωÞ

0
BBB@

1
CCCA (7)

For example, the adjacent matrix of the corresponding undirected underlying graph G′
of the discrete-event model in Figure 3(a) is:

1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 0 1

0
BBBB@

1
CCCCA

ω = 2 corresponds to the situation in Figure 3(b).

● Further partition of a single connected component

If ω = 1 or, the estimated computational load of a single connected component
exceeds the single criteria, then further partitions are required which will result in
(Read/Write) access to the stat variables across different partitions. Shadow events and
state variables are introduced in order to enforce boundary constraints requiring that each
event in each partition access only its own state variables.

(1) Write access across partitions: a shadow event is created for each write access to
state variable that crosses partitions, shown in Figure 3(c).

(2) Read access across partitions: two shadow events and a shadow state variable are
created for each read access to state variable that crosses partitions, shown in
Figure 3(d).

5. Case study

In this section, we present a DSL for the spatial stochastic simulation of chemical
reactions using Abstract Next Subvolume Method (ANSM) [52,53], to demonstrate
the capability of the PEG-based framework presented in Section 4. A spatial variation
of the Lotka–Volterra System (LVSystem) [54,55] is used as the benchmark model,
and described in Figure 4. First, a DSL for the LVSystem model is presented.
Second, the DSM is transformed into a generic PEG-based model, and then into
the executable code on YHSUPE. Third, we evaluate the performance of parallel
simulations.

5.1. Model description

Pronounced oscillatory behaviour is produced using the setup in Gillespie’s work [56]. An
N × N 2D grid is taken as the space for the Lotka–Volterra Model. N denotes the number
of subvolumes in the model and represents the scale of the model. Numpredator and
Numprey stand for the predator and prey the population in a subvolume. Initially there
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Figure 3. Event graph partition based on bipartite graph.
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are 1000 of each in every subvolume of the 2D grid. The diffusion rate constants of the
predators and preys are noted as dpredator and dprey . The reaction constant is noted as ci.
The grass population is assumed to never change. The parameter setup for the LVSystem
model is in Table 1.

Figure 4(b) is the parameterized EG-based model for LVSystem in ANSM, in which
the target is the number of the subvolume. A single subvolume contains the state
variables and the event types. State variables define the quantity and quality of the
reactants in the subvolume. The event processing and scheduling is shown in Figure 4

Figure 4. EG-based model description of LVSystem in ANSM. (a) Event processing and schedul-
ing in ANSM. (b) EG-based model description.
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(a) [53], in which RandomEvent is an event type which corresponds to self-scheduling,
and acts as described in the appendix of [57]. ReceiveEvent is an event type correspond-
ing to diffusion, is assumed to be scheduled by an adjacent subvolume, and addresses
the reactants diffusing in.

5.2. Domain-specific language for LVSystem

The DSM transformation of the LVSystem is performed in the following procedure:

(1) Specify the data and behaviour provided by the DSM, and construct the EG-based
model, according to ANSM.

(2) Formulate the grammar of the DSL, and implement the interpreter from that
language to the EG formalism using ANTLR [58].

(3) Initialize the EG-based model, and partition the general EG-based model to PEG-
based model using Algorithm 4.3.

(4) Implement the interpreter from the PEG formalism to YHSUPE using ANTLR.
(5) Configure the simulation experiment and deploy software/hardware environment

according to requirements.

The grammar of the DSL is shown in Figure 5. The model description of the
LVSystem is shown in Figure 6.

The domain-specific parallel spatial stochastic simulation subsystem is built on top of
the YHSUPE.

After the parameter and attribute expansion of the EG-based LVSystem model using
Algorithm 2, a parameter-free EG-based model is obtained as shown in Figure 7. By
dividing the EG-based model into a set of connected components, we get the PEG-based
model; the partition is shown in Figure 8.

5.3. Simulation experiments

The simulation experiments are executed on a PowerLeader Baode PR4310D Cluster
(Shenzhen, Guangdong, P.R. China) with 20 computing nodes. Each computing node is
equipped with two Intel 1.6 GHz Quad-Core Xeon Processors (Santa Clara, CA, USA),
8 GB RAM and interconnected with a 10 Gbps Infiniband connection. The operating
system on each node is Red Hat 3.4.6–8, with kernel 2.6.9–67.0.7, ELlustre.1.6.5smp. The
GCC version is 4.1.1. The discs are shared by all computing nodes. All the experiments in
this paper were conducted atop YHSUPE. Every logical processor is mapped to a single
OS process, and occupies the CPU core assigned as much as possible.

Table 1. Model parameters setup.

Population
Diffusion rate

constant Reaction Reaction rate constant

Numpredator ¼ 1000 dpredator ¼ 2:5 G�rassþ Prey �!c1 2Prey c1 ¼ 0:01

Numprey ¼ 1000 dprey ¼ 5 Predator þ Prey �!c2 2Predator c2 ¼ 0:01

Numgrass ¼ 1000 dgrass ¼ 0 Predator �!c3 Null c3 ¼ 10
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The DSM of the LVSystem is transformed into an executable model of YHSUPE
using the model transformation framework we proposed. The performance of parallel
simulation using Breathing Time Warp (BTW) [59] as time management algorithm was

1 DomainSpecificMODEL : := ’name ’ I d e n t i f i e r ’ ; ’ SCALE SPECIES REACTIONS STATE RC RD
2 SCALE : := ’ s c a l e ’ intNumber
3 SPECIES : := ’ s p e c i e s : ’ VarSet
4 REACTIONS : := ’ r e a c t i o n s : ’ Reac t i onSe t
5 STATE : := ’ s t a t e : ’ S t a t e v a r S e t
6 RC : := ’ r c : ’ RcSet
7 RD : := ’ dc : ’ RdSet
8 VarSet : := ’{ ’ ( I d e n t i f i e r ’ ; ’ ) ∗ ’} ’
9 Reac t i onSe t : :=( Equat ion )∗

10 Equat ion : := ’{ ’ I d e n t i f i e r ’= ’ intNumber I d e n t i f i e r ( ’+ ’ intNumber I d e n t i f i e r )+
’−>’ intNumber I d e n t i f i e r ( ’+ ’ intNumber I d e n t i f i e r )+ ’} ’

11 S t a t e v a r S e t : := Va rva l u eSe t
12 RcSet : := Va rva l u eSe t
13 RdSet : := Va rva l u eSe t
14 Varva l u eSe t : := ’{ ’ ( v a r v a l u e ’ , ’ ) ∗ ’} ’
15 v a r v a l u e : := I d e n t i f i e r ’ : ’ intNumber
16 I d e n t i f i e r : := ( ’ a ’ . . ’ z ’ | ’A ’ . . ’ Z ’ | ’ ’ ) ( ’ a ’ . . ’ z ’ | ’A ’ . . ’ Z ’ | ’ ’ | ’ 0 ’ . . ’ 9 ’ ) ∗

Figure 5. Grammar of the script language for the LVSystem model.

1 name : { S a p t i a l L o t k aV o l t e r r a }
2 s c a l e X
3 \\ [ Subvolume ]
4 s p e c i e s : {A;B ;C}
5 r e a c t i o n s :
6 { r1 = 1A + 1B −> 2B+A}
7 { r2 = 1C + 1B −> 2C}
8 { r3 = 1C −> 0C}
9 \\ [ pa ramete r s ]

10 s t a t e : {A:1000 , B:1000 , C:1000}
11 r c : { r1 : 0 . 0 1 , r2 : 0 . 0 1 , r3 :10}
12 dc : {d1 : 0 , d2 : 5 , d3 : 2 . 5}

Figure 6. Model description for the LVSystem.

Figure 7. The parameter-free EG-based model for LVSystem.
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investigated. Rollbackable pseudo random number generators are used. The Qheap [60] is
used as the event queue. A block style static partition is employed, in which nearby LPs
are dispatched to the same logical processor, or if not the same, as nearby as possible.

Figure 9 shows the comparison of speedup on a 100 × 100 grid and a 64 × 64 grid of
LVSystem. It also shows the speedup variation according to the number of processors
used in the experiments.

The relationship between the speedup and the number of processors deployed is
shown. The model size for the blue line is 100 × 100 and for red line is 64 × 64. The
speedup grows quickly at first, and then declines slowly as the number of processors
involved increases from 1 to 18. The inflection points for 100 × 100 model is 8
processors, while for 64 × 64 model is 4 processors. The speedup growth comes from
computing power utilization, while the decline is due to the model size not matching the
scale of physical platform. Performance penalty is more severe for models of smaller size.

6. Conclusion and outlook

In this work, we have extended the classical event graphs to formalize the LP-based
model of PDES. PEG formalism is a well-defined interpretation of the elements in the LP
paradigm and serves as an unambiguous and platform-independent description of the LP-
based model. The SOSs rigorously represent the timed behaviour of the LP-based model.

Figure 8. The partition of the parameter-free EG-based model for LVSystem.
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Though the SOS is sequential, it generates exactly the same result as parallel executions
do with any time management algorithms. In our case, Wallclock time execution and its
equivalence relationship based upon LCC is introduced. In the model transformation
framework for PDES, the models are transformed using PEG formalism, from a DSL
into a platform-specific API, while four personnel role types are distinguished. Based on
this framework, a DSL for the PDES of LVSystem is presented, and preliminary parallel
simulation results using YHSUPE are obtained. This case study shows that the PEG-based
framework cannot only effectively transform a DSL into the LP paradigm, but also result
in efficient parallel simulation on a specific platform. In short, PEG formally specifies the
characteristics of event scheduling and state partition in the LP paradigm and thus
provides modellers with a mean to formally analyse an LP-based model’s behaviour
and a cross-platform model transformation.

There are several directions for further work. First, PEG formalism is not designed
as a high-level specification of DESs and does not allow create/delete vertexes/edges at
run-time. This would make mapping high-level formalisms (such as DEVS [4]) with an
indeterministic and dynamic structure to PEG an important direction for the future.
Second, a more specialized language that only allows coding valid models of PEG
formalism, and incorporates automatic model partitioning for general EG-based model
should be developed. Third, the SOS of the PEG presented in this paper formed a basis
for formal verification. By transforming the PEG-based model into a timed automata-
based model, mainstream model checking tools such as DiVinE (Brno, Moravia, Czech
Republic) [14] can be used to study the properties of LP-based model as a necessary
supplement to the simulation approach. Fourth, the current sequential operation seman-
tics of the PEG yields exactly the same results as any parallel execution adhering to the
LCC does, and serves as a basis for further study of formalizing parallel execution. To
develop an abstract machine with concurrent and speculative operation semantics for
PEG, such as introducing Tapus’s semantics [44], is of great interest.
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