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Abstract  
In this paper, we study principles and techniques of Parallel Discrete Event Simulation that are used 
for the simulation of environmental complex phenomena on parallel computers. The rise of new 
concepts in this domain allows to develop tools for the study of such systems. Among them, the 
paradigm of cellular automata facilitates the building of spatial models and the integration of parallel 
techniques. Some parallel programming interfaces are developed to accelerate the simulation 
treatments and exploit the computing ressources provided by the parallel computers. The Combination 
of the cellular automata and the parallel interfaces makes it possible to solve the modelling and 
simulation problems arisen by the complex systems considered. We present the modelling tools 
available for the expression of the space dynamics of the complex phenomenon considered and how 
to extend the possibilities of the traditional models for spatial modelling and simulation.     

 
Introduction 

Studying global ecosystem is nowadays essential to understand the human impact on such a 
fragile equilibrium. The modelling of environmental complex phenomena which occur in 
constitutes a necessary starting point. In fact, precise models only permit to design tools for a 
better understanding and to facilitate decision making. With the computing development, the 
simulation is becoming the best methodological choice possible to supply numerous 
solutions. However, the simulation of complex environmental phenomena often implies 
spatial effects which generate major problems in terms of memory and time computing. In 
addition the tools developed must predict the behavior of the phenomena in advance in order 
to operate the best way. Thus, as far as the simulation of forest fire propagation is concerned 
the development of a simulation environment requires the use of techniques able to 
apprehend the difficulties arisen by these issues. Parallel simulation has recently become an 
essential tool. Combined with the techniques of discrete events simulation and with the 
cellular automata paradigm, it makes it possible to solve the difficult problems related to the 
programming of such models. The parallelisation of these models depends on parallel 
programming interfaces.  
 This document deals with the use of parallel interfaces and cellular automata in 
discrete event simulation. Thanks to this combination, it is possible to solve the problems 
aroused by the simulation of complex propagation phenomena such as vegetation fires. A 
first part presents the paradigms of the Parallel Discrete Event Simulation. A second part 
deals with the principal interfaces for parallel programming. A third part presents some 
environments which exploit parallelism based on cellular models. Eventually, a discussion 
starts the reflexion which lays the bases of the research tasks we plan to develop in order to 
model the propagation of vegetation fires. 
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1 Paradigms of discrete event simulation 

Discrete event simulation implements models whose state variables evolve in time in a 
discrete way. Contrary to continuous simulations, it is advisable to distinguish at what time 
the changes of states occur on the time axis. The events of the simulation correspond at 
these changes. The management of these events is executed in the timestamp order of their 
occurrences. Two principal methods are used to manage the simulation time: one driven by 
the clock, the other driven by the events. These two methods are at the origin of two 
techniques of discrete events simulation. 

 

1.1 Discrete time and discrete event model 
The simulation of dynamic systems is often intuitively developed using discrete time models 
[Zeigler and Al, 2000]. The formalisation of such models supposes a step by step execution 
of the simulation. This kind of simulation technique is used to develop models where the time 
of the simulation evolves using fixed time steps. The time axis is delimited in identical 
intervals. A unique clock gives rhythm to the different components of the model. At each time 
step, the simulator executes the events occurring between the current time and the next 
clock signal. Discrete time simulation is illustrated figure 1. 
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Figure 1. Discrete time simulation principle. 

 
Discrete time simulations describe step by step the evolution in time of real systems based 
on discrete models. The most intuitive discrete time models to simulate spatial dynamic 
systems are founded on cellular automata paradigm. 
The event oriented simulation implies the development of models where the simulation time 
progresses by leaps of time occurrences [Erard and Déguénon, 1999]. In this case, only the 
significant instants where the model evolves are taken into account. It is necessary to 
develop a scheduler in order to manage chronologically the events of the simulation. Each 
time step implies a treatment. The time of the simulation progresses according to the events 
programmed in the scheduler. The treatment of an event at the head of the scheduler can 
generate new additions or suppressions of other events. The simulation directed by the 
events is illustrated figure 2. 
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Figure 2. Oriented events simulation principle. 
 

This kind of approach is used with the DEVS specification for discrete models [Zeigler, 1976]. 
Parallel discrete event simulation (PDES), refers to the execution of a single discrete event 
simulation program on a parallel computer [Fujimoto, 1990]. PDES requires the 
understanding of algorithmic bases which it is necessary to introduce. 
 
1.2 Parallel Discrete Event Simulation 
Parallel Discrete Events Simulation (PDES) deals with the simulation of the discrete models 
presented previously on a parallel architecture. In the case of parallel simulations, the 
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various processes generated by the model share a common memory or shared memory 
which enables them to exchange information. It is necessary in this case to establish 
mechanisms of management in order to avoid any access conflict to the memory. This type 
of algorithms is usually implemented on shared memory multiprocessors. In the case of 
distributed simulations, the model is broken down into logical processes (LPs) which require 
mechanisms for exchanging information across a network of workstations. The memory is 
individual and the communications are based on messages passing techniques, whose MPI 
is the standard [MPI, 1995, Gropp and Al, 1999]. It is implemented in the manufacturers 
libraries and in the free software libraries such as MPICH [Gropp and Lusk., 2003] and 
LAMMPI [Burns and Al, 1994]. Of course, parallel simulation and distributed simulation can 
cohabit within the same simulation environment; the two types of PDES are not exclusive. 
The literature declines the algorithms of the PDES in two categories: synchronous parallel 
algorithms and asynchronous parallel algorithms. The difficulties which result from the 
synchronization of the logical processes tasks constitute the heart of the PDES problems. 
 
1.2.1 Synchronous parallel simulations 

The logical processes of synchronous parallel simulations are executed at the same virtual 
time, their local clocks progress on the basis of a common virtual time. This central 
management of time is executed using a global clock whose implementation can be 
centralized [Nutaro, 2000], or distributed [Ferscha and Tripathi, 1994]. If the time is 
centralized the clock is implemented using an algorithmic structure which is common to the 
different local processes. If the time is not centralized, it is distributed in each process of the 
simulation. Then, an algorithmic structure maintains a local representation of the global 
clock. All along the simulation, the virtual time is unique and identical for all the processes of 
the network. Such algorithms require the installation of synchronization barriers, i.e. 
algorithmic mechanisms for processes synchronization executed at each occurrence of 
events. [Fujimoto, 1990] recalls that the development of such simulators on shared memory 
multiprocessor limits the costs of interprocess communications. As we said previously, the 
synchronous algorithms can be driven by time or by events. The synchronous PDES 
concepts are summed up in figure 3. 
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Figure 3. Synchronous Parallel Discrete Event Simulation. 
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1.2.2 Asynchronous parallel simulations 
In asynchronous simulations LPs are not synchronized starting from a global clock. The 
simulation time is managed independently in each process with synchronizations only 
occurring few times during the simulation process. These synchronizations require the 
installation of a simulator in each process [Ingels and Raynal, 1989]. The latter doesn’t know 
the global state of the system, and advance the simulation time using the local information 
and the contents of the messages that it receives from the other processes. The major 
problem encountered is the requirement for each logical process, to execute the treatments 
associated to the messages in a strict temporal order, to certify the exactitude of the 
simulation results. This condition is called by R.M. Fujimoto “causality constraint” which can 
be summed up as follows: "the future cannot influence the past" [Fujimoto, 1990]. This 
implies processes exchanging time stamped messages, i.e. messages including temporal 
information associated to the treatments. The messages received by the processes are then 
consumed in a time stamped order, which implies the respect of the causality constraint at 
the local level. In order to guarantee this one, different simulators were proposed, and the 
literature classifies them into two categories: conservative asynchronous simulators and 
optimistic asynchronous simulators.  
 In the case of a conservative asynchronous simulator, a logical process runs the 
treatment of a message with stamp ‘t1’, only if it is certain that no other message with stamp 
‘t2’, such as ‘t2 < t1’ can reach it. However, when a process is waiting for message, this can 
generate a dead lock situation [Misra, 1986]. Two techniques are then used. The first 
technique consists in detecting dead lock; the simulator executes a treatment able to restore 
a safe situation; a second technique consists in preventing strictly dead lock situations, using 
null-messages. The latter are used to indicate to the other processes that no effective 
message will be sent. This method prevents dead lock situations, but can lead to an 
undesirable proliferation of null-messages. The conservative algorithms were developed 
initially by [Chandy and Misra, 1979], since numerous evolutions and optimizations like 
[Lemeire and Al, 2004] and [Bui and Al, 2003] were proposed. 
 Optimistic asynchronous simulator doesn’t take care of causality constraint. If a 
message arrives in a process with a time stamp ‘t2’ lower than that of the last event 
considered ‘t1’ such as ‘t2 < t1’, then the simulator will cancel all the events executed before 
‘t1’; this is the “rollback procedure”. Moreover, the process must send antimessages to its 
attached processes in order to tell them to cancel operations posterior to ‘t2’. An optimistic 
approach requires recording preceding states before the validation of the current state by the 
principal process: this is the “fossil collection”. The fossil collection is calculated from the 
“Global Virtual Time”, which represents the temporal limit until which it is possible to execute 
a rollback procedure. Records of states and memory needs are the major disadvantages of 
optimistic simulations.  
 
2 Parallel programming interfaces 

Many interfaces make it possible to abstract parallelism more or less and each of them offers 
a compromise between comfort of programming, portability and efficiency. The literature 
essentially separates them into two categories: programming libraries and environments. The 
libraries, contrary to environments, are often presented as extension of usual programming 
languages like C, C++, Java, FORTRAN, etc..., with which they associate new functions for 
parallel programming. Another solution consists in writing sequential code, the parallelisation 
of the tasks remaining in charge of the compiler, but this document doesn’t deal with it. In this 
section the most representative parallel programming interfaces are presented. For each of 
them, essential features are presented and the advantages and drawbacks related to their 
use.  
 
2.1 Parallel Virtual Machine 

PVM (Parallel Virtual Machine) is a software package from which it is possible to conceive 
virtually a parallel calculator from a heterogeneous and geographically distributed computer 
network [Geist and Al, 1994]. Heterogeneity can relate to the architecture of the processors 
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and to the operating systems. PVM appears as a library of communications making it 
possible to exchange messages between the processes of an application. The user defines a 
set of machines which is interpreted like a distributed memory multiprocessor machine. The 
term of "parallel machine" refers to this virtual multiprocessor machine, whereas the term of 
"host" refers to one of the machines that is member of the network. The communications 
between the hosts are done with PVM which is responsible for converting the data between 
two machines that don’t have the same internal representations of data. PVM is also 
conceived to be able to work with different kinds of networks. PVM fulfils all its functions 
thanks to daemons which it installs when it starts on each host. The daemons manage the 
communications between the hosts. Before executing a PVM program, it is necessary to 
define the set of hosts and to start PVM. When this operation is executed, it is then possible 
to launch a PVM program. The environment is managed using options through a PVM 
console on the host machine. The advantages and the disadvantages of PVM are 
summarized in table 1. 
 

PVM 

Advantages Drawbacks 

The addition of a set of new machines is 
carried out in a transparent way for the 
virtual machine; 

The parallel programming is explicit, the 
management of the communications and 
synchronizations is entirely in charge of the 
developer; 

There is a public domain version of PVM Development cost 
PVM work on homogeneous as well as on 
heterogeneous computer networks; 

The programs are more difficult to read 
(division and distribution of the application); 

The PVM program is portable on various 
configuration; 

The implementation is often difficult; 

PVM is easy to install. PVM is founded on low level concepts. 
Table 1. PVM advantages and drawbacks. 

 
PVM initiated the definition of the MPI standard (Message Passing Interface). A comparison 
between PVM and MPI is done in [Gropp and Al, 2002]. It should be noticed that PVM is 
effective for heterogeneous networks of machines, and it is not the case of MPI-1 (cf. 
following section). 
 
2.2 Message Passing Interface  

MPI (Passing Message Interfaces) is a specification for libraries of messages passing which 
was developed in the early 1990s and which aims at giving an answer to the need of 
clarification in the field of parallel computing [MPI, 1995, Gropp and Al, 1999]. Initially, 
parallel machines were came with their own communication library which generated 
important problems of evolutionary and portability. The update of the programs was 
extremely difficult and required a lot of work. Academics and industrials from all scientific 
domains thus ended up getting along with the MPI standard. An MPI library provides the 
functions of communication for the different nodes of the distributed memory architecture. 
The users of such a library can use programs developed in C, C++, and FORTRAN, which 
are compiled using the traditional compilers, but linked to the corresponding MPI libraries. An 
MPI library can be used on parallel machines and on workstations clusters (heterogeneous 
from MPI-2). The advantages and the disadvantages of PVM are summarized in table 2. 
 
 
 
 
 
 
 



 - 6 - 

MPI 

Advantages Drawbacks 

There are many libraries and codes; MPI requires to cut the simulation model, 
which is often difficult to realize; 

MPI is portable onto many architectures; It is essential to reduce the communications 
in order to obtain better performances; 

The user decides parallelization (load 
balancing, distribution of calculations and 
data); 

The implementation is complex; 

Very good flexibility. The modifications of the sequential code are 
impossible without important modifications; 

 MPI is based on low level concepts 
Table 2. MPI advantages and drawbacks. 

 
A new MPI-2 standard was developed few years ago, however very few libraries implement 
it. This new standard gives the functionalities of MPI libraries which are closer to and more 
stable than the PVM one. Consequently, it is rather preferable to develop with MPI than with 
PVM [Fadlallah and Al, 2000]. 
 
2.3 Portable Operating System Interface 

POSIX (Portable Operating System Interfaces) is a standard providing the mechanisms to 
create processes, the programmer must take care of the synchronization between these 
processes by using low level primitives, such as lock or condition variables [POSIX, 1996]. 
POSIX threads are usually called "pthreads". The pthread library is an implementation of the 
POSIX 1003.1c standard. It provides primitives to create activities (or light processes) and to 
synchronize them. These primitives are similar to those provided by the other libraries 
(Solaris LWP, Windows) or languages (Modulated-3, Java). In the domain of the light 
processes, the POSIX standard is essential, more precisely on Unix OS. The advantages 
and the drawbacks of the threads based on the POSIX standard are summarized in table 3. 
 

POSIX 

Advantages Drawbacks 

The load balancing is transparent for the user MOSIX depends on the Linux kernel 

Advantages of a free software Applications using shared memory or light 

weight processes can not migrate in the 

cluster. 

User interventions are limited  

MOSIX can run on heterogeneous systems  

MOSIX does not imply the modifications of 

the applications 

 

MOSIX is able to manage dynamically the 

ressources  on the different nodes 

 

Table 3. POSIX advantages and drawbacks. 
 

2.4 OpenMP 

 OpenMP is a portable standard which makes it possible to parallelize the code of the 
simulation models on homogeneous architectures with shared memory (SMP) [OpenMP, 
2002]. Thanks to a set of directives it is possible to describe the parallelism simply. This set 
of directives is based on the concept of parallel loops and shared or private variables. The 
goal of the OpenMP standard is to increase the portability of the parallel programs intended 
for shared memory architectures. The specifications of OpenMP are decided by "OpenMP 
Architecture Review Board". The execution of the parallel loops of OpenMP is based on the 
fork-join programming model. In a parallel section the thread running is divided into groups of 
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threads which, will be synchronized at the end of the section and will join into only one thread 
which is, the first original thread. OpenMP makes it possible to easily specify the sharing and 
synchronization of tasks, by providing directives which have the same syntax. It should be 
noticed that for the moment, OpenMP does not propose directives which make it possible to 
distribute the data (clustering). However, with the considerable increase of the number of 
SMP architectures in high performance clusters (HPC), the current tendency consists in 
developing hybrid solutions openMP/MPI. The nodes of the cluster are SMP machines 
whose loops of iteration use openMP, and the communications between the nodes are done 
using MPI [He and Ding, 2002, Henty, 2000]. The advantages and the disadvantages of the 
openMP standard are summarized in table 4. 
 

OpenMP 

Advantages Drawbacks 

Simplicity of use, fast installation No coarse grain parallelism; 

No explicit communication between 

processes, high level concepts 

Fine grain parallelism not efficient when the 

processes are numerous 

Portability on shared memory architecture 

(SMP) 

Very few libraries available 

Easy transition between sequential and 

parallel code  

Sensitive to the load of the machine if 

communications are numerous 

Efficient on SMP architecture Limited control of the distribution of the data 

and calculation 

High level parallelization  

Table 4. OpenMP advantages and drawbacks. 

 
3. Cellular parallel models 

In the literature there are many environments which make it possible to specify cellular 
models. [Jorba and Al, 2002] define this kind of models on two levels of specification: local 
and global levels of components. Thus, the spreading model is described on two different 
scales of abstraction. At a high level, the propagation phenomenon is considered as a whole 
unit which evolves in time and space. At the local levels, elements of smaller size (cells) are 
modelled. Those local models take into account particular conditions of each element and 
their neighbours, in order to compute their evolution in the time. If we rest on this modelling 
approach, the propagation models conceived are often complex and need a lot of computing 
resources. But, they must be simulated in a sufficiently short time, so that decision making 
are possible. Parallel Discrete Event Simulation (PDES) can give the computing power 
needed for simulating this kind of models. The latter is implemented through environments of 
simulation in order to evaluate the performances of the models in different conditions. In this 
section we present four simulation environments for propagation phenomena taken from the 
literature. Although this list is not exhaustive, it allows us to analyse the principal features 
which support the design of such tools.      
 
3.1 CD++ environment 

[Ameghino and Al, 2003], apprehend the complexity of the real systems according to a 
microscopic approach, i.e. oriented to the description of the small entities. Then, the 
simulation models use a cellular automaton and transition rules in order to implement the 
simulation. This type of approach is used in CD++, a modelling and simulation environment 
which implements the Cell-DEVS formalism. The latter is an extension of the DEVS 
formalism which allows to specify cellular models. Complex systems are easily described 
with this tool. Cellular elements which constitute the propagation domain are defined with 
DEVS formalism and are described as atomic models.  The original features are recently 
extended in order to integrate parallelisation techniques [Troccoli and Wainer, 2001]. Parallel 
Cell-DEVS has been defined to integrate Parallel-DEVS formalism. CD++ environment was 
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modified consequently and allowed distributed simulation of Parallel Cell-DEVS models. 
Figure 4 is an example of model specification of heat diffusion with CD++. 
 
01 [top] 

02 components : surface Heat@Generator Cold@generator 

03 link : out@Heat inputHeat@surface 

04 link : out@Cold inputCold@surface 

05 

06 [surface] 

07 type : cell 

08 width : 100 

09 height : 100 

10 delay : transport 

11 defaultDelayTime : 1000 

12 border : wrapped 

13 neighbors : surface(-1,-1) surface(-1,0) surface(-1,1) 

14 neighbors : surface(-1,-1) surface(-1,0) surface(-1,1) 

15 neighbors : surface(-1,-1) surface(-1,0) surface(-1,1) 

16 initialvalue : 24 

17 in : inputHeat inputCold 

18 link : inputHeat in@surface(25,25) 

… 

22 localtransition : heat-rule 

23 portIntransition : in@surface(25,25) setHeat 

… 

28 [heat-rule] 

29 rule :{((0,0)+(-1,-1)+(-1,0)+(-1,1)+(0,-1)+(0,1)+(1,-1)+(1,0)+(1,1))/9}10000{t} 

Figure 4. Specification of a heat diffusion model using CD++. 
 
The fact that the environment rests on a formal specification for modelling the phenomenon 
facilitates the writing of propagation models. Moreover, a high level language is proposed 
with the environment, thus considerably reducing implementation times. The major 
inconvenient of the Cell-DEVS formalism is inherent to the nature of the cellular elements. In 
fact, the latter being implemented as atomic DEVS models, they need to exchange an 
important number of messages through the simulation phase. This constraint seems to be 
extremely penalizing in the case of the simulation of propagation phenomena such as fire 
spreading [Muzy et al., 2002a]. It seems that the recent quantum theory aims at reducing 
messages exchanges and then to enhance simulation times [Muzy and al., 2002b].      
 
3.2 DEVS C++ 
[Zeigler and al., 1996] rest on the principles of the object programming in order to build 
modular representations of complex phenomena. DEVS C++ is a simulation environment 
resting on the DEVS formalism and developed at Arizona University. It allows to analyse, 
conceive and simulate discrete event systems. DEVS-C++ environment is developed from an 
architecture which uses the C++ language for programming models and simulators. 
Simulation architecture rests on the Object Oriented Programming, which enables to easily 
adapt the execution on sequential or parallel platforms. For that, the DEVS formalism is 
explained within classes which interact and hide the details of the implementation (sequential 
or parallel). The final user uses the objects interfaces in order to specify the model he wants. 
The DEVS models are built with the help of classes named container. This approach 
facilitates the definition of models and their manipulations. This approach is illustrated in 
figure 5. 

DEVS

Object Oriented Techniques

Sequential Parallel

Architecture

 
 

Figure 5. Object oriented implementation of the DEVS model in DEVS-C++. 
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In spite of a modular and extensible approach, this simulation environment doesn’t allow to 
exploit efficiently cellular models, more precisely in the case of the simulation of complex 
propagation phenomena. In fact, as for CD++, the cells of the domain are represented as 
atomic DEVS classical models, which considerably limit the performances of the simulation 
[Muzy and al., 2002a].  
 
3.3 CAMEL 
[Cannataro and al., 1995] propose the CAMEL environment, which allows a fine setting of 
the simulation model in order to simulate many kinds of complex propagation phenomena, as 
lava floods, car traffic, landslides…. Recently, CAMEL has been used in the project 
CABOTO (Cellular Automata for the Bioremoval of Toxic Contaminants) [Spezzano and al., 
1998]. The main objectives of this project deals with the use of cellular automata in order to 
model and simulate the reprocessing of contaminated soils. More particularly, such models 
describe the processes of the reprocessing which could be realised in simulating the growth 
of the bacteria. These models allow to predict the operation of reprocessing on large scale, 
from the knowledge of geological data, chemical, and microbiological, and from the results of 
experimentations. The cellular model used for the simulation is three dimensional, it is 
conceived for the large scale simulations, and it can describe heterogeneous domains. The 
neighbour of each cell is composed of six other cells, four of them being at the same height 
(north, south, east, west), whereas the two remaining cells are in the high and low positions. 
The neighbour of each cell is described figure 6. 

 
 

Figure 6. Tridimensional neighbour of a cell (c) in the CAMEL environment. 
 
The model has a structure in layer where the first layer describes the flow of the fluid through 
the ground, the second layer describes the behavior of the chemicals (dissolved or adsorbed 
on the surface), and the third layer describes the interactions between the chemicals and the 
biomass. The results of the execution show that the simulation of the whole of the events of 
decontamination (which require 64 days complete for a grid 128X15X11, 21120 cells), are 
obtained in 19 days of simulation using a monoprocessor machine, whereas, only 
approximately 16 hours are necessary using a 32 multiprocessors machine. These results 
underline the interest to use parallel computing for simulating the simulation of the 
propagation of complex phenomena and the effectiveness which results from the cellular 
implementations which exploit parallelism. CARPET is the programming tool from which it is 
possible to define the cellular models in CAMEL. Its programming language is similar to the 
C programming language and is used to describe the cells of the automaton.    
  
3.4 StarLogo 
[Resnick, 1997] combines cellular automata and agents. The in fine objective of this 
modelling is the micro simulation through a multi agent approach of the dynamic systems on 
a large scale where the analysis requires the comprehension and the modelisation of 
individual and collective behaviours. StraLogo rests on an extension of the programming 
language Logo conceived at the MIT. It’s a multi-agent language giving simple constructions 
which allow to define the evolution rules of the cells composing a cellular automaton. It is 
conceived in Java (Object Oriented Language), and it is portable onto any platform. 
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Moreover, it allows a non computer scientist to develop programs without knowledge of the 
classical programming languages. It is relatively simple to handle and it has integrated tools 
which facilitate the treatment of the results. An example of application is the forest fire 
spreading. In this case the StarLogo environment makes it possible to change the density of 
the trees and reiterates simulation under various conditions, in order to carry out the different 
possible evolutions of the fire propagation. The users then observe the global behavior of all 
the cells on a graphic screen, as represented in figure 7. 
 

 
Figure 7. Four snapshots of the simulation of fire spreading with StarLogo. 

 
The thousands of graphical elements are executed in parallel and are programmed to react 
to their environment. The general principle of this type of model is to make a population of 
reactive agents evolve and to observe the result emerging after a number of program 
iterations on a screen. The simulations are described in a virtual world using three basic 
elements: the turtles (active agents), the patches (passive objects of the environment), and 
the observer which can send patches to the turtles and the patches. Thus, the world consists 
of agents which obey instructions. Each agent interacts with the world, and this parallel to the 
other agents placed in the environment. The turtles move in the world which is two-
dimensional and divided into a grid of patches. Each patch is a square on which a turtle can 
evolve. The observer is not located. At the beginning of the simulation there are no turtles 
and the observer has the possibility of creating turtles and patches. NetLogo is a distributed 
version of Starlogo [NetLogo, 1999]. 
 
4. Conclusion and perspectives 

Theory of modelling and simulation and its parallel extension provides the methods and 
techniques to use for modelling complex propagation phenomena. Modelling such systems is 
facilitated by the use of the cellular models. In fact, they make it possible to express the 
space dynamics of the phenomena in the time and to apprehend progressively the 
complexity. They extend the possibilities of the traditional models of cellular automata and 
make it possible to simulate a greater number of complex phenomena. It is possible to 
associate to them the techniques of parallel discrete events simulation, which make it easier 
concurrent execution of the treatments of the simulation. Formal methods of modeling help in 
developing and are used through simulation environments where rules and architectures 
appreciably improve the process of development in terms of time, software legibility, 
evolution, and portability. Moreover, the parallel architectures offer to these environments the 
suitable, evolutionary and powerful physical support. The study of some environments of 
simulations made it possible to underline important concepts which initiate the reflexion from 
which we try to give an answer to the problems arisen by the simulation of complex 
propagation phenomena. 
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