
Applying RESTful Web Services Architecture to HLA Based Simulation
Applications

Rukiye CELIK

HAVELSAN A.S. Eskisehir Yolu 7.km 06520, Ankara, Turkey

+905058034036

rsutbas@havelsan.com.tr

Assoc. Prof. Veysi ISLER

Department of Computer Engineering,

Middle East Technical University 06800, Ankara, Turkey

+903122105591

isler@ceng.metu.edu.tr

Keywords:

Distributed Simulation, Service Oriented Architecture, Performance, HLA Evolved, WSDL, SOAP, REST

High Level Architecture (HLA) is a well known, widely accepted distributed simulation standard. HLA focuses on
interoperability and reusability of simulation applications but interoperability between RTI (Runtime Infrastructure)
implementations of different vendors could not be achieved properly. Also providing reusability of simulation
applications is hard because of tight coupling between application and communication layer of simulation code. On the
other hand, Service Oriented Architecture (SOA) and Web Services concept is very popular today in context of
providing loosely coupled Systems of Systems. One of the major improvements in the most recent HLA standard, IEEE
1516.2010-HLA Evolved, is definition of the web services API based on SOAP (Simple Object Access Protocol). Web
services support for HLA-based simulation applications provides more reusability and interoperability. Also by using
HLA Web Services API, simulation applications can interoperate with each other over Wide Area Network (WAN)
without restricted by firewall issues. Although SOAP based Web Services has the advantage of providing a formal
definition language WSDL (Web Service Definition Language), they are known as “Heavy Weight” services. Another
way of SOA integration is using RESTful (compliant to Representational State Transfer) Web Services which is widely
used for providing cloud services. In this paper we provide a prototype for RESTful Web Services API for HLA.

1. Introduction
High Level Architecture (HLA) is a well known, widely
accepted distributed simulation standard [1][2][3].
Developers can describe their simulation systems and
interoperate with other simulation systems within a
general framework provided by HLA [3]. Three main
components of HLA are: HLA Framework and Rules [3],
the HLA Interface Specification [4], and the Object
Model Template [5]. The HLA standard promises to
provide interoperability and reusability of simulation
systems via these three components. The implementation
of HLA Interface Specification is called as “Runtime
Infrastructure (RTI)”.

On the other hand, Service Oriented Architecture (SOA)
and Web Services concepts are very popular today in
context of providing loosely coupled Systems of Systems.
Services available in a network such as the web are used
by software applications built over an architectural style
provided by SOA. SOA promotes loose coupling between
software components so to enable reuse. Web services are
the preferred standards-based way to realize SOA [9].

RTI implementations for previous HLA standards (HLA
1.3, IEEE 1516) did not provide desired level of
interoperability and reusability because of dependence on
programming languages, platforms, etc. The most recent
HLA standard, IEEE 1516.2010-HLA Evolved, includes

mailto:rsutbas@havelsan.com.tr
mailto:isler@ceng.metu.edu.tr

a Web Service API definition for SOA integration. This
necessity emerged from couple of reasons. First of all,
HLA and Web Services integrate heterogeneous
simulations and legacy models, which means that
distributed M&S (Modeling and Simulation) is available
in a network centric environment. Secondly, though
RTIs’ performance is satisfying on LAN, same
performance cannot be achieved when communication is
over WAN/Internet. Meanwhile Web Services has better
programming interoperability on WAN/Internet. To allow
users of web services communication frameworks to
access to the full HLA functionality over Wide Area
Networks Web Services support through the new WSDL
API is necessary [12]. Also the HLA standard does not
support interoperability of different programming
languages by itself.

Although SOAP based Web Services has the advantage
of providing a formal definition language -WSDL, they
are known as “Heavy Weight” services. Designing
RESTful Web Services is another way of SOA
integration which is widely used for providing cloud
services.

In this paper we provide a prototype for RESTful Web
Services API for HLA.

The remainder of the paper is organized as follows.
Section 2 gives brief information about High Level
Architecture (HLA), Web Services and Service Oriented
Architecture (SOA), and integration of HLA with SOA.
Section 3 describes the related work. Section 4 gives
detailed information on motivations and proposed
research. Section 5 presents design and implementation of
study. Section 6 concludes the paper and gives the plan of
future work.

2. Background Information
2.1 High Level Architecture

Developers can describe their simulation systems and
interoperate with other simulation systems within a
general framework provided by High Level Architecture
(HLA). The aim of the HLA is flexibility. HLA comes
forward between other distributed simulation about two
key issues: promoting interoperability between
simulations and reusability of models in different
contexts. Three main components of HLA are: HLA
Framework and Rules, the HLA Interface Specification,
and the Object Model Template. The proper interaction of
federates in a federation and responsibilities of federates
and federations are defined by ten rules of the HLA
Framework and Rules Specification [3]. A documentation
standard describing the data used by a particular model is
formed by the object model template (OMT) [5] which is
a necessary basis for reuse. A generic communications

interface that allows simulation models to be connected
and coordinated is described by the federate interface
specification [4] which addresses interoperability. HLA is
an architecture, not software. But to support operations of
a federation execution use of a software is essential. The
runtime infrastructure (RTI) software is the
implementation of the federate interface specification. It
provides a set of services used by federates to coordinate
operations and data exchange during a runtime execution
[3].

With the evolution of technology and expansion of
requirements revision of the HLA standards development
process is inevitable. The result is the HLA Evolved
standards that provide even more features to better meet
the needs of modeling and simulation communities such
as training, analysis, testing, acquisition and
experimentation [12]. Major technical improvements of
HLA Evolved standard are[12]:

• Web Services Support

• Modular Federation Object Models (FOMs) and
Simulation Object Models (SOMs)

• Fault tolerance support

• Smart update rate reduction

• Dynamic link compatibility

2.2 Web Services and Service Oriented Architecture

A web service supports interoperability between
distributed systems over a network. The basic platform of
software system provided by Web Services is XML and
HTTP. XML provides a language that enables expression
of complex messages and functions. This language can be
used between different platforms and programming
languages. The HTTP protocol is the most used Internet
protocol [21].

2.2.1 SOAP Based Web Services

Web Services platform elements are SOAP (Simple
Object Access Protocol), UDDI (Universal Description,
Discovery and Integration) and WSDL (Web Services
Description Language). SOAP is an XML-based protocol.
Applications can use SOAP to exchange information over
HTTP. UDDI is a directory service. Companies can
register and search for web services from UDDI. WSDL
describes interface of web service in a machine-
processable format [21].

SOAP applies RPC (Remote Procedure Call) on top of
HTTP. The SOAP engine converts RPC into a SOAP
message and wraps it as a HTTP request sent via the
HTTP server. RPCs have heterogeneous interfaces, and
each procedure purpose along with each single parameter

is needed to be learned by programmers. WSDL
expresses RPCs in machine-processable format, but does
not describe how to use them. Therefore composing and
mashing-up services are difficult, and reuse is constrained
[14].

2.2.2 RESTful Web Services

Based on the Roy Fielding’s theory; the
"Representational State Transfer (REST) attempts to
codify the architectural style and design constraints that
make the Web what it is. REST emphasizes things like
separation of concerns and layers, statelessness, and
caching, which are common in many distributed
architectures because of the benefits they provide. These
benefits include interoperability, independent evolution,
interception, improved scalability, efficiency, and overall
performance."

REST is based on resource oriented architecture. Web
service consumer does not send a message to web service
provider. Instead of this consumer tries to
create/update/get/delete a resource using following HTTP
methods:

GET - Requests a specific representation of a resource

PUT - Updates a resource with the supplied
representation

DELETE - Deletes the specified resource

POST - Creates a resource with the supplied
representation

Following example helps to understand difference
between SOAP and RESTful Web Services. To get
information of a student SOAP based approach provides a
message like GetStudentInformation() by using WSDL
and SOAP. WSDL is used to define the interface of
message in XML format. Then SOAP is used to send
message to the server on top of HTTP. The REST
approach defines an object which name is Student. HTTP
GET method is used to get information about Student
object. This object is uniquely identified and accessed by
URI (Uniform Resource Identifier).

2.3 Integrating High Level Architecture with Service
Oriented Architecture

RTI Initialization Data (RID) file specifies address and
port used by federates and RTI to communicate with each
other directly. When an HLA-based simulation
application runs in the environment protected by firewall,
its communication is blocked by firewall, which even
makes the whole simulation fail. Web services may not
be blocked by firewall at all due to the use of HTTP. If
web services can be introduced in HLA-based simulation
application, the limitations mentioned above will be

resolved effectively, which will greatly improve its
reusability and interoperability [15]. In this context the
most recent HLA standard, IEEE 1516.2010-HLA
Evolved, includes a Web Service API definition for SOA
integration [3].

3. Related Works
According to Morse [17], the goal of the Web Enabled
RTI is to enable a simulation to communicate with an
HLA RTI through web-based services. In this way
multiple federates are able to reside as web services on a
Wide Area Network (WAN), and an end-user is able to
compose a federation from a browser in the long term.
For each federate, there are a client platform and a server
platform. Client platform is user of web service. Server
platform is a proxy that receives messages from client
and convert into HLA calls. Communication between
these platforms is supplied by SOAP/BEEP (Blocks
Extensible Exchange Protocol) mechanism.

According to Wu [16], with the increase of simulation
scale and complexity, distribution of simulator
components geographically and distributed simulation on
WAN are very essential. In traditional HLA model, there
is high coupling between the federate code and LRC
(Local RTI Component). Wu [16] proposes two emerging
layers to enable decoupling: Application and Messaging
layers. At the application layer, HLA service API and
Federate Ambassador of Callback Processor replace RTI
Ambassador and Federate Ambassador calls. At the
messaging layer, messages are received by RTI
Ambassador Services module with SOAP and converted
into actual RTI Ambassador call. Federate Ambassador
Services module transfers callbacks to the federate. To
test performance of proposed model, a prototype has been
developed and comparison between traditional RTI
(pRTI) and Web-enabled RTI (pRTI-WS) has been
performed. Results showed that pRTI-WS has worse
performance of real-time than pRTI because RTI
messaging proxy brings extra overhead, WAN has
bandwidth limits and the encoding/decoding process of
RTI calls/callbacks to SOAP messages causes more
computation time.

According to approach explained in [15], RTI and all
necessary web services are deployed at the RTI side.
Each federate in client side has a corresponding proxy in
RTI side that communicates with RTI on behalf of the
federate. An experiment has been performed, and results
of WSHLA-based simulation application and traditional
HLA-based simulation application are compared.
According to results time spent by any version of
WSHLA-based simulation application is much more than
time spent by traditional HLA-based simulation
application because the size of SOAP packet used in

WSHLA is much larger than the packet used in HLA. In
addition, marshaling or unmarshaling of the necessary
parameters decrease the efficiency of WSHLA when a
service is requested or responded.

All investigated related works uses SOAP based web
services and uses one proxy per federate that
communicates with RTI on behalf of a federate. Results
of studies show that Web-enabled HLA has worse
performance than traditional HLA because of overhead
based on SOAP.

4. Motivations and Proposed Research
Recent related works like [13], [14], [15], [16], and [17]
are agreed upon necessity of extending HLA standard
with Web Services. New IEEE HLA standard, HLA
Evolved, contains Web Service API to meet this
requirement already. In this way HLA-based simulation
applications will be more interoperable, reusable and
interactive over WAN. Applications will be more
interoperable because independency between interface
and implementation supplied by web services makes
developers free for choosing any programming language,
any platform or even integrating a legacy system.
Applications will be more reusable because web services
provide loosely coupled systems. Applications can
interoperate over WAN because security restrictions such
as firewalls are not applied for HTTP operations.

To design and develop web services, one approach is
SOAP-based approach. All investigated related works
have preferred SOAP-based Web Services. Another
approach is RESTful Web Services. These two
approaches have some pros and cons and it should be a
design decision to choose which approach is appropriate
for the problem, to be able to meet all requirements.
Followings are some advantages of REST over SOAP:

• Less overhead hence less bandwidth because of
no SOAP envelope to wrap every call in.

• Less duplication because of no need of SOAP
envelope to represent operations already
represented by HTTP operations GET, PUT,
POST, DELETE, etc.

• More standardized because HTTP operations are
well understood and operate consistently.

Results of works show that web services enabled HLA
based applications have worse performance than
traditional HLA based applications. It brings out a
tradeoff between more interoperable&reusable systems
and systems with better performance. If we achieve
improvement at performance of the web service enabled
HLA applications, the performance gap between

traditional and web service enabled HLA applications
will decrease.

In this work we propose using RESTful Web Services for
HLA - SOA integration and hope that results will be
preferable to SOAP in context of performance. Also there
are situations that RESTful Web Services are more
suitable than SOAP-based Web Services such as mobile
applications. Because of the constraints of mobile
devices, “heavy-weight” approaches like SOAP are
generally unacceptable. Our work will become a better
alternative for this kind of applications.

In this work we developed a prototype for RESTful Web
Services API for HLA.

Defining the API and designing web services are nested
processes. Designing a RESTful Web Service essentially
consists of two steps:

• decide on objects that will be exposed, and
decide on representations of objects

• decide on reactions to GET, PUT, POST and
DELETE on each of those objects

Development details are covered in following sections.

5. Design and Implementation
5.1 Architectural Overview

High level system architecture for providing RESTful
Web Services API for HLA is shown in Figure 1. In our
design there is a proxy federate that connects with other
federates in LAN and provides communication between
web clients and local federates. Modules in proxy
federate will be detailed in following subsections. Briefly
HLA Communicator abstracts HLA RTI services. REST
Connector connects to one or more federations on behalf
of REST clients.

5.1.1 HLA Communicator

HLA Communicator is an HLA RTI 1516.2010 Evolved
abstraction framework that abstracts HLA RTI services.
HLA Communicator is developed in Java. The
framework can support more than one vendor-specific
RTI implementations and lets developer switch between
RTI implementations without updating underlying source
code.

Figure 1 High level system architecture

HLA Communicator has a simplified API. It uses Java
Reflection and Annotation APIs to provide a generic
framework. In this way, the caller of the API passes
names as defined in FOM (Federation Object Model)
instead of handles generated by RTI. To achieve this
mapping of FOM elements to Java equivalent artifacts is

necessary. First of all a POJO (Plain Old Java Object) is
created for each FOM Element. Then Java annotations
are used for automatic mapping of FOM elements to Java
classes and attributes. An illustration is shown in Figure
2.

Figure 2 Mapping FOM elements to Java elements

The framework uses new Encoding/Decoding utilities of
HLA 1516.2010 Evolved standard for
serialization/deserialization of data. Each HLA element

equivalent POJO has its own encode/decode methods. An
example is shown in Figure 3.

Figure 3 Encode/Decode methods of an HLA element

As mentioned before, HLA Communicator has a simple
API. There are examples of using HLA Communicator in
Figure 4, Figure 5, Figure 6, Figure 7, and Figure 8.
These figures show capabilities of HLA Communicator
interface like joining into a federation,
publishing/subscribing FOM elements, registering and
updating an object class, sending interactions, and
resigning the federation.

Figure 4 Joining into a federation

Figure 5 Classes can be published/subscribed with Java name

Figure 6 Object Class POJOs can be registered, updated

Figure 7 Interaction Class POJOs can be sent

Figure 8 Resigning from the federation

5.1.2 REST Connector

The first version of REST Connector is designed and
developed over HLA Communicator (HLA/RTI
Abstraction Framework) explained in previous section.
REST Connector has two implicit modules: One is the
HLA part that connects to HLA federation and
communicates with other federates in the LAN on behalf
of Web clients. The other module is responsible for
serving to requests from Web clients (REST Clients).
REST Connector creates one proxy for each REST Client.
On HLA part it runs only one federate for each federation
to improve performance. On Web server part, there are
multiple proxies (one for each REST client) that
exchange data via one federate. This one-to-many
relationship is shown in Figure 9.

Figure 9 REST Connector

This kind of design (only one REST Connector manages
proxies for all federations and REST Clients) has some
advantages and disadvantages. It promises better
performance, because when all/some clients are interested
in same data it will be received once by REST Connector
and distributed to all clients. But it has a drawback of
single point of failure. When the federate code fails, all

clients will suffer from this failure and cannot be served
until REST Connector is started over.

Implementation Details of REST Connector

REST Connector uses Restlet as RESTful web
framework [18]. Restlet is developed on top of Servlet
API and enables easier development of RESTful Web
Services. Defining and mapping REST resources are
simpler with Restlet.

Restlet has an edition for GWT (Google Web Toolkit)
[20]. Developers can leverage the Restlet API from
within any Web browser, without plugins through the use
of GWT [18]. GWT is a widely used platform for rich
internet application. Block diagram of relationship
between Restlet and GWT is as shown in Figure 10 [18].

We use JSON (Java Script Object Notation) [19] as data
exchange format among clients. It is because JSON has
better performance than XML, and it is a more compact
format than XML. So JSON is more bandwidth friendly.
Using JSON to exchange data over WAN is more
appropriate compared with the XML because JSON is
data-centric, XML is document-centric exchange format.

Figure 10 Restlet Edition for GWT

We define resources for Restlet which are related to
HTTP URIs (Table 1). Also this is the first part of
exposing an HLA REST API. For now Federation
Management, Declaration Management and part of
Object Management groups of HLA Interface
Specification are defined. The following table describes
how to access RESTful HLA web service.

Table 1 A Part of RESTful Web Service HLA API

Functionality HTTP URI Method Request Body Reply
Body

Create Federation

Join Federation

/hla POST Federation Name
and Federate Name

Federate
ID

Resign
Federation

Destroy
Federation

/hla/{FederationName}/{FederateName} DELETE - -

Publish
Interaction Class

/hla/{FederationName}/{FederateName}/interactionpublic
ations

POST Interaction Class
Name

-

Unpublish
Interaction Class

/hla/{FederationName}/{FederateName}/interactionpublic
ations/{InteractionClassName}

DELETE - -

Subscribe
Interaction Class

/hla/{FederationName}/{FederateName}/interactionsubscr
iptions

POST Interaction Class
Name

-

GWT Application
Restlet-GWT

J2EE Server Platform

JSON

Restlet

Unsubscribe
Interaction Class

/hla/{FederationName}/{FederateName}/interactionsubscr
iptions/{InteractionClassName}

DELETE - -

Publish Object
Class

/hla/{FederationName}/{FederateName}/objectpublicatio
ns

POST Object Class Name -

Unpublish Object
Class

/hla/{FederationName}/{FederateName}/objectpublicatio
ns/{ObjectClassName}

DELETE

- -

Subscribe Object
Class

/hla/{FederationName}/{FederateName}/objectsubscriptio
ns

POST Object Class Name -

Unsubscribe
Object Class

/hla/{FederationName}/{FederateName}/objectsubscriptio
ns/{ObjectClassName}

DELETE

- -

Send Interaction /hla/{FederationName}/{FederateName}/objectpublicatio
ns/{InteractionClassName}/Write

POST Sample Data -

Receive
Interaction

/hla/{FederationName}/{FederateName}/interactionsubscr
iptions/{InteractionClassName}/Read

GET - List of
read
samples

Register Object
Instance

/hla/{FederationName}/{FederateName}/objectpublicatio
ns/{ObjectClassName}/Register

POST - Object
Instance
ID

Discover Object
Instance

/hla/{FederationName}/{FederateName}/objectpublicatio
ns/{ObjectClassName}/Register

GET Object Instance ID -

Update Object
Instance

TBD TBD TBD TBD

Reflect Object
Instance

TBD TBD TBD TBD

Delete Object
Instance

/hla/{FederationName}/{FederateName}/objectpublicatio
ns/{ObjectClassName}/Register

DELETE - -

Remove Object
Instance

TBD TBD TBD TBD

… … … … …

6. Conclusion
To make HLA-based simulation applications be more
interoperable, more reusable and interactive over WAN,
extending HLA standard with Web Services is essential.
With the help of web services, we can build loosely-
coupled simulation systems. Current HLA standard (1516
Evolved) and other related works use SOAP-based Web
Services. SOAP based Web Services are known as heavy-
weight web services and has some disadvantages like
more overhead (SOAP envelope to wrap every call in),
more bandwidth and necessity of learning a new API.
Main drawbacks of SOAP Web Services are performance
and scalability. Web-enabled HLA applications have
worse performance than traditional HLA applications.
Therefore our expectation is gaining performance by
using RESTful Web Services.

An initial implementation of RESTful HLA Web Service
API is finished for now. As future work, firstly missing
services will be designed and implemented. After
completing the necessary API definition, a RESTful Web
Service test and performance benchmark application (a
data intense, sample HLA application) will be developed.
After that, an equivalent web based client will be
developed using HLA Evolved Web Service API
(SOAP/WSDL) and performance of the RESTful and the
SOAP Web Service applications will be compared.
Comparison metrics will be latency, throughput and
bandwidth usage of the SOAP based web services and
RESTful web services.

7. References
[1] F.Kuhl, R. Weatherly, J.Dahhman: “Creating

Computer Simulation Systems: An Introduction
to the High Level Architecture”, ISBN-10:
0130225118, Prentice Hall, 1999

[2] Mike Lightner, Judith Dahmann: “The High
Level Architecture for Simulations”
SIMULATION 73: 264-265,
doi:10.1177/003754979907300501, November
1999

[3] IEEE, (2010), IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture
(HLA)- Framework and Rules, 1516-2010

[4] IEEE, (2010), IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture
(HLA)- Federate Interface Specification, 1516.1-
2010

[5] IEEE, (2010), IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture
(HLA)- Object Model Template (OMT)
Specification, 1516.2-2010

[6] IEEE, (2003), “Recommended Practice For
HLA Federation Development and Execution
Process (FEDEP), IEEE Std 1516.3-2003”

[7] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec: The
many faces of publish/subscribe. ACM Comput.
Surv. 35, 2, 114-131, June 2003,
DOI=10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078

[8] OMG, UML - Unified Modeling Language,
www.uml.org (Last accessed at 01.07.2012)

[9] Service Oriented Architecture, SOA,
http://java.sun.com/developer/technicalArticles/
WebServices/soa/ (Last accessed at 01.07.2012)

[10] J.R. Noseworthy: “The Test and Training
Enabling Architecture (TENA) Supporting the
Decentralized Development of Distributed
Applications and LVC Simulations”,
Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed
Simulation and Real-Time Applications, 2008

[11] SISO, www.sisotds.org (Last accessed at
01.07.2012)

[12] Björn Möller, Katherine L Morse, Mike
Lightner, Reed Little, Robert Lutz: “HLA
Evolved – A Summary of Major Technical
Improvements”, Fall Simulation Interoperability
Workshop, Simulation Interoperability
Standards Organization, 2008.

[13] Wei Zhang, Lei Feng, Jiwen Hu and Yabing
Zha: “An Approach to Service Provisioning of
HLA RTI as Web Services”, Asia Simulation
Conference, 2008.

[14] Khaldoon Al-Zoubi, Gabriel Wainer: “Using
REST Web-Services Architecture for
Distributed Simulation”, 23rd Workshop on
Principles of Advances and Distributed
Simulation, No. 114-121, 2009.

[15] Hengye Zhu, Guangyao Li, Liping Zheng:
“Introducing Web Services in HLA-Based
Simulation Application”, Proceedings of the 7th
World Congress on Control and Automation,
China, 2008.

[16] Zebin Wu, Huizhong Wu, Weiqing Li, Xu
Zhang: “Extending Distributed Simulation’s
Run-Time Infrastructure with Web Services”,
Proceedings of the IEEE International
Conference on Automation and Logistics”,
2007.

http://www.uml.org/
http://java.sun.com/developer/technicalArticles/WebServices/soa/
http://java.sun.com/developer/technicalArticles/WebServices/soa/
http://www.sisotds.org/

[17] Katherine L. Morse, David L. Drake, Ryan P.Z.
Brunton: “Web Enabling HLA Compliant
Simulations to Support Network Centric
Applications”, Proceedings of the 2004
Symposium on Command and Control Research
and Technology (No. 172), 2004.

[18] http://www.restlet.org/ (Last accessed at
01.07.2012)

[19] http://www.json.org/ (Last accessed at
01.07.2012)

[20] http://code.google.com/webtoolkit/ (Last
accessed at 01.07.2012)

[21] http://www.w3schools.com/webservices/ (Last
accessed at 01.07.2012)

Author Biographies

RUKIYE CELIK received the B.S. degree and the
M.Sc. degree in Department of Computer
Engineering from the Hacettepe University, Ankara,
Turkey, in 2003 and 2005, respectively. Since 2007,
she has been studying Ph.D. in Middle East
Technical University (METU), Ankara, Turkey in
the area of distributed simulations. Since July 2005,
she has been working at HAVELSAN A.S., at
Department of Simulation and Training Systems.

DR. VEYSI ISLER received the B.S. degree in
Computer Engineering from the Middle East
Technical University (METU), Ankara, Turkey, and
the M.Sc. degree in Computer Engineering and
Information Science from the Bilkent University,
Ankara, Turkey, in 1987 and 1989, respectively. He
received Ph.D. degree in the Department of
Computer Engineering and Information Science at
Bilkent University in the area of parallel rendering in
1995. Then, he worked as a research associate at the
Computer Graphics and Multimedia Laboratory,
Department of Computing, The Hong Kong
Polytechnic University. In 1996, he joined the
Department of Computer Engineering of METU as
an assistant professor. Between 2000-2005, he
worked for industry directing a research and
development team in the areas of simulation and
game development.

Since July 2005, he has been with the Department of
Computer Engineering of METU as an associate
professor. He is director of Game Technologies
master’s program at the same university. He is also

director of Modeling and Simulation Research and
Development Center of METU since 2006.

http://www.restlet.org/
http://www.json.org/
http://code.google.com/webtoolkit/
http://www.w3schools.com/webservices/

