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Abstract
DEVS (Discrete Event System Specification) is an approach in the area of modeling and simulation that provides a means
of specifying dynamic systems. A variety of DEVS tools have been implemented without a standard developmental guide-
line across the board, consequently revealing a lack of central frameworks for integrating heterogeneous DEVS simula-
tors. When implementing a DEVS Simulator there are salient concepts that are intuitively defined, such as how events
should be processed, what simulation architecture to use, what existing procedures (set of rules/algorithm) can be used,
what should be the organizational architecture and so on. The aim of this paper is to propose a theoretical guide in
building a DEVS distributed simulation as well as a formalization of underlying concepts to allow symbolic reasoning and
automated code synthesis. From a review of existing implementation approaches, we propose a taxonomy of the identi-
fied concepts, including some formal definitions as they constitute the essential building blocks of performing Parallel
Discrete-Event Simulation by utilizing DEVS. The contribution of this taxonomy and its impact as a unifying framework is
that it provides a more systematic understanding of the process of constructing a DEVS simulator. Also, it offers an
abstract way for integrating different and heterogeneous DEVS implementation strategies and thus can serve as a contri-
bution to the on-going DEVS standardization efforts.

Keywords
DEVS, Parallel Discrete-Event Simulation, conceptual framework, Simulation Tree, Simulation Graph

1. Introduction

DEVS (Discrete Events System Specification) offers a

platform for the modeling and simulation (M&S) of

sophisticated systems in a variety of domains. It provides

a mechanism to mix different formalisms as well as a gen-

eric mechanism for M&S. A DEVS simulator is capable

of reproducing behaviors that are identical to that of the

system under observation. In doing so, the modeler is pro-

vided with some level of abstraction by being able to build

models without having knowledge of how the simulator

was built.

Due to the growing complexity of systems to be mod-

eled, efficient simulation of such systems cannot be per-

formed on a single physical processor. One way out of this

is to make use of distributed strategies by exploiting the

computing power of current technologies (grid, cloud, web

services, etc.). Some benefits of this include reduction

in execution time, improved simulation performance,

real-time execution and integration of simulators.1 Parallel

Discrete-Event Simulation (PDES)1 is a widely researched

area with some potential benefits. Firstly, the use of paral-

lel processors promises an increase in execution speed and

a reduction in execution time. Secondly, the potentially

larger amount of available memory on parallel processors

will enable the execution of larger simulation models.

Thirdly, with the use of multiple processors comes an

increased tolerance to a possible processor failure. In addi-

tion, it provides a solution to the scientific need to federate

existing and naturally dispersed simulation codes. Thus,

simulation architecture can be called parallel if its main

design goal is to reduce execution time, while the term

distributed simulation could be referred to as
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interoperating geographically dispersed simulators.1–3

Building a simulation model on a particular world view

significantly reduces implementation complexity.4

However, the distribution of the DEVS simulation proto-

col (which unifies the three classic simulation strategies

also known as the world views2) is a challenging issue.

PDES is a matured field of study but its adaptability to

some existing M&S formalisms (e.g., DEVS or Petri nets)

is an arduous task. Two main reasons concur with this

point.

• Various concerns are involved in the process of

building a DEVS PDES. A good building strategy

would be based on a clear separation of concerns.

The formal specification of the key concepts and

transformation that are found in these concerns

would remove ambiguity and reduce accidental

complexity (i.e., wrong implementation due to mis-

understanding of concepts).
• There is a lack of systematic and quantifiable

approach that can guide this process.

DEVS simulation principle takes a DEVS model speci-

fication and maps it to DEVS Simulation Tree (ST) using

well-defined DEVS operational semantics.2 From studied

literature it is seen that most works are moving from

sequential to parallel/distributed infrastructures due to the

benefits involved in so doing. Also from this study we see

the existence of various DEVS PDES strategies (as shown

in Figure 1). However, this raises the question of how we

can achieve the mapping of a DEVS ST onto parallel/dis-

tributed infrastructures. The objective of this work is as

follows.

• Propose a conceptual framework that models the

process of mapping a DEVS ST to a graph of simu-

lation components distributed over a network.

Then, each builder of DEVS distributed simulation

can instantiate this generic model to get his own

mapping strategy which, therefore, is a guideline

for any user to apply this strategy.
• Formalize the concepts and operations of such a

process so that:

1. there can be the partial or full automation of

such a process;

2. one can symbolically reason and derive proper-

ties (for evaluation or verification).

The rest of the paper is organized as follows. Section 2

presents the foundations of DEVS simulation, that is, the

ST, from which all the distributed strategies are built.

Section 3 presents the key concepts in use in this paper.

Identified aspects in DEVS PDES as well as classification

of research contributions in this area are presented in

Section 4. In Section 5 we present the generic approach for

building a DEVS PDES implementation and we show how

it instantiates in a case study. In Section 6, we give a dis-

cussion on the framework and then conclude in Section 7.

Figure 1. Process of mapping DEVS to Parallel Discrete-Event Simulation.
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2. DEVS simulation protocol

The DEVS formalism2 provides a comprehensive M&S

framework for modeling and analysis of Discrete Event

Systems. It specifies system behavior as well as system

structure. System behavior in DEVS is described through

its DEVS dynamic functions, while system structure is

built from the composition of atomic and coupled models.

A coupled model is composed of several atomic or coupled

models and the atomic model is a basic component that

cannot be decomposed any further. They are hierarchically

organized as shown in Figure 2(a).

A DEVS model is built according to a specification,

that is, Classic DEVS (CDEVS) or Parallel DEVS

(PDEVS). CDEVS was introduced in 1976 by Zeigler5 to

simulate and execute models sequentially on single

processor machine. PDEVS was later introduced to

increase the potential of parallelism in simulating DEVS

models.6

Due to the separation of concerns in DEVS, the mode-

ler needs to focus only on the models being created, avoid-

ing the details about the abstract simulator (algorithms).

The operational semantics of DEVS models has been

defined by abstract algorithms.2 These algorithms consist

of different nodes (Coordinator, Simulator) organized in a

hierarchy that mimics the hierarchical structure of a model.

In these algorithms, a DEVS atomic model is executed by

assigning a simulator to it and to a DEVS coupled model a

coordinator is assigned. From its original definition, the

DEVS abstract simulator structure is hierarchical in nature

and the hierarchy of models is mapped onto it (Figure

2(b)). The distinctiveness of the DEVS framework is in its

hierarchical compositional structures, which help in com-

plexity reduction. During simulation, the interaction/com-

munication between different model components is

achieved through event messages exchanged between the

Simulators and Coordinators, each representing an event

to be processed.

Two key pieces of information carried by these mes-

sages are their category and time stamp. The category of a

message is associated to a certain form of treatment the

receiver component (Coordinator or Simulator) must per-

form. The time stamp indicates the simulation time this

message has been generated.

In CDEVS,5 categories are *, i, x and y. In the first ver-

sion of PDEVS,6 categories are *, i, q, done, @ and y. The

next versions propose various sets of categories (with

associated sets of treatments). However, all DEVS-based

algorithms adhere to the same simulation principle (i.e.,

generalized or specialized Coordinators and Simulators

exchanging messages and performing specific actions on

receipt of specific categories of message).

3. Key concepts

In this section we briefly introduce key concepts of the

framework. They are as follows.

• Root Coordinator (RC): the simulating element that

manages the time of a ST.
• Nodes: the simulation entities used for executing

DEVS models. These nodes are Coordinators,

Simulators and RCs. The RC has an event loop that

sends event messages and controls the simulation

cycles while the Coordinator and Simulator are

capable of receiving, treating and sending event

messages.
• ST: a tree is made up of nodes. The RC is always at

the top of the tree’s hierarchy and has a Coordinator

as its descendant. Also, the Coordinator has either a

Coordinator or Simulator as its descendant but the

Simulator has none.
• Process: we define this as a stream of execution. It

contains two types of nodes during execution: they

are active and passive nodes. An active node is a

(a)

CM1

AM1

CM2

AM2 AM3

CM-Coupled Model
AM-Atomic Model

Root
Coordinator (R)

Coordinator C2 CM2 Simulator S1AM1

Simulator S2 AM2 Simulator S3AM3

Coordinator C1

CM1

(b)

Figure 2. (a) DEVS model. (b) Hierarchical mapping of DEVS model to abstract simulator.
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node that is currently active in an execution stream

(e.g., Java threads or Ada tasks). While a passive

node is part of an execution stream, it is not actively

involved until it is triggered (e.g., function calling

in Object Oriented Paradigm). We consider that a

process would have at most one active node. If a

process has more than one active node, those nodes

are then regarded as being autonomous sub-pro-

cesses. Also, there can be more than one passive

node in a process.
• Activity: a set of actions that is performed at the

receipt of an event.
• Processor: computing resource that allows the exe-

cution of a program (a process, an entire tree, any

other executable code) on itself.
• Simulation Graph (SG): a representation of the rela-

tionship between the identified aspects in DEVS

simulation. An example of a SG can be seen in

Figure 3. Details about its components are dis-

cussed in the following sections.

We also formalize these concepts. Numerous formal

definitions are given throughout the paper for the follow-

ing reasons.

• They provide a clear understanding (by reducing

ambiguity) of simulation structures and operations

we introduce. We use definitions given in earlier

sections to formalize concepts presented in later

sections.

• They provide mathematical objects that one can use

for consistency checking or validity checking.
• They can ease the automation of processes defined

with them.

Definitions 1 and 2 given below will be used as build-

ing blocks to formalize simulation structures we will intro-

duce later, as well as the generic operations that make up

the framework. Although they are equivalent, one or the

other definition is more convenient to use in specifying

other concepts.

Definition 1: We formally define ST as T = <R, N, f>

with:

R ∈ N

f: N!§(N) where §(N) is the Power Set of N

f− 1(R) = 1
f− 1(J) 6¼1, " J ∈ N − {R}

where:

R: The RC of the tree

N: The set of nodes of the tree

f: A function that maps a child node to its parent (the

one at one step higher in the hierarchy).

For example, the tree given in Figure 2(b) is defined as T

= <R, {R, C1, C2, S1, S2, S3}, f> , where f(R) = {C1},

f(C1) = {C2, S1}, f(C2) = {S2, S3} and f(S1) = f(S2) =

f(S3) = 1.

Simula�on Graph

Processor

Process

Tree

Root Coordinator

Simulator
Coordinator

Ac�ve
Nodes

Passive
Nodes

Legend

Figure 3. Relationship between Trees, Processes and Processors in a graph.
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Definition 2: ST can also be defined as T = <R, N, F>

with:

R ∈ N

F 3 N × (N − {R})

(a, b) ∈ F ¤ b ∈ f(a)

Using Definition 2 for the example of Figure 2(b), R and N

will be defined as same while F will be {(R, C1), (C1, C2),

(C1, S1), (C2, S2), (C2, S3)}.

4. Taxonomy in DEVS parallel and
distributed simulation

There are different practices behind the concept of exploit-

ing DEVS with PDES. Due to this, the concept becomes

burdened with variances in opinions on how to build a

DEVS simulator. We were able to identify four major fac-

tors in use in these practices. Firstly, some approaches

alter the tree structure.3,7–13 We call this ‘‘Tree

Transformation’’. Secondly, most approaches split the

model tree into many trees.14–17 We call this ‘‘Tree-

Splitting’’. Also, some approaches differ on the number of

executions/processes that can be performed per simulation

run.18,19 We call this ‘‘Node-Clustering’’. Lastly, some

approaches vary the number of computing resources to be

used during simulation.2,11 We call this ‘‘Process-

Distribution’’. In the following sections we present and

formalize these concepts. In doing so, we also offer a

review of major strategies proposed in the literature.

4.1 Tree Transformation

It has been observed that altering a ST structure can

improve simulation performance and also enhance distri-

bution. This transformation is usually achieved either by

reducing or increasing the number of nodes of a tree.

4.1.1 Reduction. As presented by Kim et al.,7 the hierarchi-

cal structure of the simulator (which has a one-to-one cor-

respondence with the DEVS model architecture) can

increase the communication overhead between nodes. The

process of reducing the number of these nodes on a tree is

also known as flattening. A flattened simulator8 simplifies

the hierarchical simulator while keeping a hierarchical

model structure (see Figure 4). Various studies9,10 have

shown that a flattened simulator reduces these costs.

CD++ uses a flat simulation approach that eliminates

the need for intermediate coordinators to improve the per-

formance of simulation.3,12 Some other approaches prefer

to alter the compositional structure of a DEVS model.

Kim and Wang11 proposed transforming a hierarchical

DEVS model into a non-hierarchical structure to ease

synchronization in a distributed simulation. Zeigler et al.2

also considered building Conservative DEVS simulator for

non-hierarchical models.

4.1.2 Expansion. Himmelspach et al.13 achieved the expan-

sion by introducing new simulation nodes into the ST

structure, as presented in Figure 5. This is to enable the

distribution of nodes on different processors. The introduc-

tion of extra components on the tree introduces more con-

cerns as to what type of information each of these new

components should contain. Also, communication between

these nodes constitutes an increasing overhead cost as the

structure of the messages being passed is altered to accom-

modate extra information. For example a new sub-

coordinator has no coupled model associated with it and

therefore contains no coupling information. Also, it has to

correctly identify imminent models and influences. One

way to deal with this is through the composition of mes-

sages, that is, by including more information in a mes-

sage’s construct, as seen in Himmelspach et al.13 In

PCD++ 20,21 the inclusion of Node Coordinators (NCs) in

the ST was to enable synchronization and communication

between processes in a distributed environment.

4.1.3 Formal Specification for Tree Transformation.
Definition 3: Formally we define Tree Transformation as

Transf[Na,Nr,Fa,Fr]: τ!τ where τ is the set of all

possible STs

Transf[Na,Nr,Fa,Fr](<R, N, F> ) = <R’, N’, F’>

with

N’ = N ∪ Nr − Na

F’ = F ∪ Fr − Fa

where

Na is the set of nodes to be added to N

Nr is the set of nodes to be removed from N

Fa is the set of relationships to be added to F

Fr is the set of relationships to be removed from F

RC

C1

C2 S4

S3S2

S1

RC

FC

S3S1 S2 S4

RC: Root Coordinator
FC: Flat Coordinator

C : Coordinator
S : Simulator

Figure 4. Tree Transformation by reduction.
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Based on the following conditions:

Na ∩ N = 1 (new nodes should not belong to the old

tree)

Nr 3 N − {R} (only nodes of the old tree can be

removed excluding Root)

Fa 3 (N × Na) ∪ Na2 ∪ Na× (N − {R}) (a new

parenthood must exist either between an old and a new

node or between two new nodes or between a new and

an old node)

Fr 4 F (only parenthood of the old tree can be

removed)

4.2 Tree Splitting

Tree Splitting can be referred to as the decomposition of a

simulator tree to form sub-trees based on the analysis of

the model’s structure. We identified two types, namely the

single tree structure and the multiple tree structure. It is

necessary to state here that this section does not deal with

how the tree structure can be split or executed, or how they

can be mapped to the available number of processors.

4.2.1 Single tree structure. In describing this structure,

executing a model with a single tree structure can be

expressed as having an entire model tree simulated with

the use of a central scheduler called the RC.

Single tree structures are mostly implemented using

CDEVS and PDEVS algorithms. In CDEVS,2 events are

processed in a sequence. This approach is the simplest

form of simulation but it does not properly reflect the

simultaneous occurrence of events in the system being

modeled. Indeed, serialization reduces possible utilization

of parallelism during the occurrence of events. On the

other hand, Chow and Zeigler6 introduced PDEVS as a

possible solution to the problem of serialization.

According to Chow and Zeigler, one desirable property

provided by PDEVS is the degree of parallelism that can

be exploited in parallel and distributed simulation. It beats

the restrictions in CDEVS in both execution time and

memory usage.

4.2.2 Multiple trees. We look at the multiple tree structure

as when a tree can be split into different sub-trees with

each having its own central scheduler/RC and different

simulation clocks. This is the preferable solution in distrib-

uted simulation. Based on this structure, all events with

the same time stamp are scheduled to be processed simul-

taneously. Distributed simulation algorithms are used to

synchronize trees.

The two basic distributed simulation algorithms in use are

the Optimistic17 and Conservative (Pessimistic)14–16 algo-

rithms. Optimistic algorithms, in contrast to Conservative

algorithms, enable increased degrees of parallelism.

However, they also result in more complex algorithms.

Communication between these trees is usually between:

a. RC and RC (see Figure 6(a)), for example, DEVS

Time Warp (TW);2

b. Coordinators and Simulators (Parents and their

Children in the initial tree), for example, the

Distributed Optimistic Hierarchical Simulation

(DOHS) scheme7 (see Figure 6(b)).

4.2.3 Formal specification for Tree Splitting.
Definition 4: Formally we define Tree Splitting as

Split: τ!R
Split(<R, N, f> ) = < {Ri}, N’, f’>

where

R is the set of all simulation skeletons (see the definition

of this structure in section 5)

R ∈ {Ri}

N’ = N ∪ {Ri}

f’/N = f

4.3 Node clustering

Node clustering is the association of one or many nodes to

various processes. Events execution is driven through the

RC

C

S3S1 S2 S4

RC

C

S3 S4

C*2

S1 S2

C*1

C*: New Coordinator

Figure 5. Tree Transformation by expansion.
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use of processes. We take a look at the concept of process

as an execution stream. A process can be seen as a

mechanism that is able to execute events. We categorize

based on the number of processes: as ‘‘one process’’ exe-

cution or ‘‘many processes’’ execution. However, we will

not be dealing with how execution takes place on

processors.

4.3.1 One process. A one-process execution denotes hav-

ing events processed in a serially and orderly manner, that

is, one after another. This restricts concurrent execution

streams. Himmelspach and Uhrmacher18 denote this form

of execution as ‘‘sequentialization’’. In this sense, for

example, the ‘‘main’’ program is a process. A desired

speed up may not be achieved when using a one-process

execution stream. On the other hand, it is easier and faster

to implement. During the one-process execution, interac-

tion between the nodes is called intra-process communica-

tion. Most implementations based on CDEVS make use of

the one-process type of execution stream.

4.3.2 Multiple processes. In the case of many processes,

execution of events can be split into several logical pro-

cesses (autonomous tasks) for concurrent processing.

Examples of such processes are Java threads, POSIX

threads, Ada tasks and so on.

Using many processes could speed up execution, as

each could execute events without interrupting other pro-

cesses. However, this is balanced by the increase of mem-

ory consumption and the burden of communication

between processors. This type of communication is called

inter-process communication. It is possible that during a

simulation run only one process, out of many, is scheduled

for execution. This situation is called pseudo-parallelism;

otherwise it is pure-parallelism. During implementation, it

is essential to manage how processes access resources that

are common to all of them (e.g., shared data type). Locks,

Semaphores, Monitors and other synchronizing mechan-

isms can be used to coordinate these processes. The

CCD++ implementation utilizes many processes for

model execution.19

4.3.3 Formal specification for Node Clustering.
Definition 5: Formally we define Node Clustering as

Cluster: N →Ps

where

Ps is the set of Processes.

(Cluster)− 1(p) is Connex 8p∈Ps

"pi, pj∈ Ps, pi6¼ pj, Cluster− 1(pi)
T

Cluster− 1(pj) = 1

4.4. Process distribution

Process distribution can be referred to as the allocation of

one or many processes to the available number of proces-

sors. We considered that the number of processors play a

major role in speed, performance and efficiency that can

be achieved during simulation. We therefore categorize

this into two distinct classes: ‘‘one-processor’’ or ‘‘many-

processors’’.

4.4.1 One processor. On a uniprocessor system, the entire

simulation runs on one processor so there is no overhead

cost but it is limited to the size of the memory in use.

Thus, it is not completely suitable for executing complex

models. The type of communication that takes place in this

case is called an intra-processor communication.

4.4.2 Multiple processors. In order to coordinate simulation

on many networked processors, some form of inter-

processor communications is required to convey data

between processors and synchronize each processor’s

activities. When utilizing multiple processors for simula-

tion, the memory architecture type could either be shared

memory (processors have direct access to common physi-

cal memory), or distributed memory. Meanwhile, in shared

memory only one processor can access the shared memory,

hereby introducing the need to control access to the mem-

ory through synchronization. Distributed memory refers to

the fact that the memory is physically distributed as well.

Memory access in shared memory is faster but it is limited

to the size of the memory. Therefore, increasing the num-

ber of processors without increasing memory size can

cause severe bottlenecks. Inter-processor communications

(a)  Communication between root

Communica�on

Parenthood in
the ini�al

Simula�on Tree

(b) Communication between coordinators 

Figure 6. Communication schemes between tree structures.
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is usually achieved through interoperability mechanisms

(e.g., CORBA,22 or more recently Web Services23,24).

As a consequence of using more than one processor,

the nodes can be split into a set of partition blocks based

on certain decision criteria and mapped unto the available

number of processors. This is called partitioning. In the

case of no partition, simulation is performed on a single

processor machine. The partitioning problem is one of the

most important issues in parallel and distributed simulation

as it directly affects the performance of the simulation.

Different partitioning algorithms have been proposed. An

example is the Generic Model Partitioning (GMP) algo-

rithm proposed by Park et al.25 It uses cost analysis metho-

dology to construct partition blocks, although it makes an

effort to guarantee an incremental quality of partitioning.

However, it is restricted only to models from which cost

analysis can be extracted and processed.

4.4.3 Formal specification for Process Distribution.
Definition 6: Formally we define Process Distribution as

Distrib: Ps→Pr

where

Pr is the set of Processors

"pi, pj∈ Pr, pi6¼ pj, Distrib− 1(pi)
T

Distrib− 1(pj) = 1

4.5 Simulation graph strategies

Due to the increasing complexity and size of models, vari-

ous studies have been conducted to improve efficiencies

and performances of DEVS simulators,2,9,10,12,13,20,21 thus

giving rise to various graph strategies. In a general over-

view, most implementation decisions have been observed

to be based on the presented aspects in the previous sec-

tions. In this section we use figures to illustrate how these

aspects are interrelated with one another using a three-

categorized view: the Processor-Tree-Process view. Since

the Tree Transformation and Tree Splitting aspects both

focus on the tree, they will be represented as the same cate-

gory, that is, the Tree. In each of these categories, the num-

ber of elements, that is, Trees, Processes or Processors is

put into consideration. This therefore forms the basis for

development of any SG Strategy presented.

4.5.1 Single processor – single tree – single process. This is

the simplest form of mapping strategy that has one RC

(one tree) controlling the simulation on one processor

(see Figure 7(a)). Execution of events is purely sequen-

tial with no need to synchronize communication between

the nodes. In this case, when simultaneous events occur,

one event is selected and others are ignored thereby

introducing rigidity during execution. PythonDEVS26

uses this mapping strategy as an implementation of the

CDEVS formalism and, as a consequence, it performs

sequential simulation.

4.5.2 Single processor – single tree – multiple processes. The

entire simulation depends on one RC while execution is

through the use of many processes, as shown in Figure

7(b). These processes run concurrently and are mostly used

to increase execution speed, but as the number of pro-

cesses increase the rate of memory consumption increases,

thereby slowing down execution and time.

This strategy was proposed for use in Abstract

Threaded Simulator.18 However, depending on the mem-

ory size of the processor and the model size, the cost of

creating threads becomes expensive as the number of

models increases. This is a critical factor to be considered

when using many processes.

4.5.3 Single processor – multiple trees – single
process. Several trees or RCs exist on one processor with

each performing sequential execution one at a time. An

example is shown in Figure 7(c). This scenario is not rea-

listic because execution is asynchronous and can be done

simultaneously using many processes instead.

4.5.4 Single processor – multiple trees – multiple
processes. Several RCs or trees exist on a partition (as

seen in Figure 7(d)). This makes it easy to implement a

synchronization mechanism (optimistic or pessimistic) for

dealing with causality errors. Causality errors usually

occur when messages are not processed in a time-stamp

order.1 Communication between different trees can be

made via the RCs or coordinators and simulators. This

strategy brings about the idea of federating existing

abstract simulators. Since all the trees are on one processor

there is intra-processor communication thereby eliminat-

ing the need for an interoperability technology.

4.5.5 Multiple processors – single tree – single process. A RC

controls the entire simulation on multiple partitions, while

execution is sequential. An example of this is shown in

Figure 7(e). The sequential execution can only take place

locally, that is, when a simulating node receives a message

from its parent on the same processor. This strategy is not

realistic, since nodes on different processors require differ-

ent execution streams. Therefore, a single process is not

enough to cover the entire simulation execution.

4.5.6 Multiple processors – single tree – multiple
processes. One RC controls the entire simulation on multi-

ple partitions but with multiple processes. There are two

types of communication between the nodes, that is, locally

(intra-processor) and remotely (inter-processor). At the

local level, communication is between nodes on the same
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processor. Remote communication is achieved through the

use of interoperability technologies. This is the case of the

abstract simulator proposed by Himmelspach et al.13 Also,

as seen in Triccoli and Wainer,27 when running parallel

and distributed simulations, the entire ST is divided

among a set of processes, each of which will execute on a

different processor. In general terms, each process

will host one or more simulation nodes, as shown in

Figure 7(f).

4.5.7 Multiple processors – multiple trees – single
process. This case, which concerns multiple partitions

(g) Many processors, many trees, one process (h) Many processors, many trees, many processes

(f) Many processors, one tree, many processes(e) Many processors, one tree, one process

(d) One processor, many trees, many processes(c) One processor, many trees, one process

(b) One processor, one tree, many processes(a) One processor, one tree, one

Figure 7. DEVS Parallel Discrete-Event Simulation strategies.
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(each containing at least a tree running independently, as

shown in Figure 7(g)), is also not feasible for the same

reasons mentioned in Section 4.5.3.

4.5.8 Multiple processors – multiple trees – multiple
processes. As shown in Figure 7(h), each partition con-

tains at least one tree and several executions at the same

time. Each tree implements a synchronization mechanism

for causal errors (because each tree has its own clock).

Communications between partitions are either between the

RCs (as in Zeigler et al.2) or between the coordinators and

simulators (between ascendants and descendants as in Kim

and Wang11) via distributed simulation middleware such

as high-level architecture (HLA).28,29

Optimistic and Conservative strategies are synchroniza-

tion techniques used for PDES in general. The conservative

approach is the first synchronization algorithm that was pro-

posed in the late 1970s by Bryant,14 and Chandy and

Misra.15 It is also known as the Chandy–Misra–Bryant

(CMB) algorithm and strictly avoids the possibility of pro-

cessing events out of time-stamp order. In contrast, the opti-

mistic approaches, introduced by Jefferson’s TW protocol,17

allow causality errors to happen temporarily but provide

mechanisms to recover from them during execution. The

first attempt to combine DEVS and TW mechanisms for

optimistic distributed simulation is DEVS-Ada/TW.30 It is

an asynchronous approach that uses the TW mechanism for

global synchronization; it treats all nodes on one processor

as one process. In DEVS-Ada/TW, the hierarchical DEVS

model can be partitioned at the highest level of the hierarchy

for distributed simulation. As a consequence, the flexibility

of partitioning models is restricted.

The DOHS scheme7 is a method of distributed simula-

tion for hierarchical and modular DEVS models that uses

the TW mechanism for global synchronization.

A proposal was made by Zeigler et al.2 to combine TW

with the CDEVS hierarchical simulator as the TW DEVS

Simulator. In this approach, the overall model is distribu-

ted so that each sub-model is a single coupled model.

Then, hierarchical execution is done locally on each pro-

cessor using the classic abstract simulator with extensions

for state saving and restores (rollback). In addition, each

processor has a RC that realizes the mechanism for TW.

On each processor, the RC performs optimistic TW syn-

chronization. For this, it stores the input and output mes-

sages of the processor and takes care of anti-messages.

The ‘‘Risk-Free’’ Optimistic Simulator2 is another ver-

sion of optimistic DEVS simulator. The operational

semantics of the ‘‘risk-free’’ version of optimistic DEVS

is based on optimistic DEVS TW. The TW optimistic

simulator and coordinator are used without change but the

synchronization mechanism in the optimistic RC changes.

Local events on each compute node (tree) are processed

sequentially but optimistically. That is to say if a straggler

event is received by a node, a rollback occurs but is local

to that node. This is less costly when compared to TW.

In parallel versions of CD++ (PCD++ 20,21 and

CCD++ 19,31), the authors proposed a distributed simula-

tion architecture for DEVS and Cell-DEVS models. These

variants use the flattening structure of simulators with four

kinds of simulation nodes on each tree: Simulators, the

Flat Coordinator (FC), NC and RC. The RC is created on

one of the processors to start/end the simulation process

and perform input/output (I/O) operations. The FC and NC

are created on each processor. The FC is in charge of intra-

processor communication between its children Simulators.

The NC is the local central controller on each processor.

The Simulator executes the DEVS functions defined in its

atomic model. In Section 5, we will use this specific strat-

egy to illustrate how our conceptual framework can apply.

4.5.9 Tree – process – processor notation. To briefly explain

some of the strategies in the literature in a more formal

way we suggest the tree – process –processor notation. It

consists of defining the number of elements for each aspect

of PDES. We use N for ‘‘many elements’’. For example, a

1-1-1 scheme is a DEVS SG strategy with 1 Tree, 1

Process and 1 Processor, while N-N-1 is a DEVS tool with

many Trees, many Processes and 1 Processor. For exam-

ple, PythonDEVS26 is a 1-1-1 strategy, using CDEVS. The

Abstract Threaded Simulator of the James II18 package

uses a 1-N-1 strategy with its processes created using Java

threads. The Parallel CD++ Simulator27 and the Parallel

Sequential Simulator,13 which implements the PDEVS

formalism, use the 1-N-N strategy. The Conservative

CD++ 31 is an N-N-N strategy. Some other approaches

that use the N-N-N strategy include DEVS-Ada/TW,30

DOHS scheme7 and Optimistic Parallel CD++ .20 A

DEVS tool that uses the N-N-N strategy fully supports dis-

tributed simulation. A state of the art is given in Table 1.

We identify that a SG strategy for an implementation

differs from another. However, we state here that our defi-

nitions of the components used in SG construction are at

an abstract level. The links and nodes in a SG strategy are

seen as abstract, hence they can be implemented in differ-

ent ways either by using the language in which it was

implemented or by using interoperability technologies (if

simulators are implemented in different languages). The

only constraint we define is that the simulators implement

the DEVS simulation algorithm. Thus the issue of DEVS

implementation differences can be overcome.

5. Unifying the DEVS Parallel
Discrete-Event Simulation framework

A unifying framework is needed to harness the identified

components and their operations (found in the SG) in a
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bid to automate the process of building a DEVS simulator

and performing simulation by using DEVS with PDES.

We interpret the building of a DEVS PDES Simulator as a

move from the original ST to a SG. Having taken a look

at the possible SG strategies, in this section we propose a

methodology for building a SG. A SG is obtained through

the depictions of the relationship and the components of

DEVS PDES, that is, Trees, Processes and Processors.

This methodology thus describes a structural and beha-

vioral view in exploiting DEVS PDES.

5.1 From Simulation Tree to Simulation Graph

We propose using a layered approach to present the simu-

lation structures involved in DEVS PDES to avoid the pit-

falls inherent to the building of a DEVS simulation system

suitable for Parallel and Distributed execution. By using a

state chart, we present the trajectories that describe the set

of all possible paths that can be taken during the construc-

tion of the SG. Such state chart can be seen as a meta-

model of the process of mapping the ST onto a SG.

Any user-defined SG construction process can be

depicted as an instantiation of the state chart given in

Figure 8, driven by the analysis of the initial ST and the

available number of Processes and Processors. The metho-

dology allows iterating on each state until some user-

defined satisfaction criteria are reached (optimal splitting,

optimal clustering and optimal distribution, which we spe-

cify in Figure 8 respectively as [Split is Optimal], [Cluster

is Optimal] and [Distrib is Optimal]).

As previously introduced and formally specified in

Definitions 3–6, Split is a generic function that is used for

creating a partition of nodes from a ST. The Cluster gen-

eric function takes the available number of nodes and

associates them with Processes. While the Distrib generic

function takes the set of available Processes and plots them

onto the set of available Processors. Also, the Transform

generic function alters the ST structure either by expansion

or reduction. This altering is done on the number of avail-

able nodes (not including the RCs) on the tree and their

relationships. The process of Transformation, Splitting,

Clustering and Distribution can iterate until it is sure that a

good performance will be gained during simulation from

the new SG.

The Simulation Skeleton is the structure obtained from

splitting a ST. The Simulation Bundle is a collection of

clusters of nodes. Examples are shown in Figures 9(a)

and (b), respectively.

We formally define each of the Simulation Structures

that are found in this methodology (the definitions for the

ST structure are found in Definitions 1 and 2). To have a

complete definition we make reference to Clustering and

Distribution functions that have been formally defined in

Definitions 5 and 6, respectively, while definitions for the

Transform and Split functions are given in Definitions 3

and 4.

Definition 7: A Simulation Skeleton is formally defined as

S = < {Ri}, N, f>

where

Ri∈N "i

f: N!§(N), where }(N ) is Power Set of N

f− 1(Ri) = 1, "i

f− 1(J) 6¼1, " J ∈ N − { Ri }

Table 1. An overview of major Simulation Graph strategies.

Approaches Algorithm Strategy

PythonDEVS26 CDEVS 1-1-1
Abstract Threaded Simulator18 PDEVS 1-N-1
Parallel Sequential Simulator18 PDEVS 1-N-N
PCD++ 27 PDEVS 1-N-N
Optimistic PCD++ 20 Optimistic DEVS N-N-N
CCD++ 19 Conservative DEVS N-N-N
Risk-Free Optimistic
DEVS Simulator2

Optimistic DEVS N-N-N

Time Warp DEVS
Simulator2

Optimistic DEVS N-N-N

DEVS-Ada/TW30 Optimistic DEVS N-N-N
DOHS7 Optimistic DEVS N-N-N

DEVS: Discrete Event System Specification; DOHS: Distributed

Optimistic Hierarchical Simulation; CDEVS: Classic DEVS; PDEVS:

Parallel DEVS.

Simulation Skeleton

Simulation Bundle

Simulation Graph

Cluster

DistribNot [Distrib  is Optimal]

Not [Cluster is Optimal]

[Map is Optimal]

Transform

Split

Simulation Tree

Not [Split is Optimal]

Figure 8. Simulation graph methodology.
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Definition 8: A Simulation Bundle is formally defined as

B = < {Ri}, N, f, Ps, Cluster>

where

< {Ri}, N, f> is a skeleton

Ps is the set of Processes

Cluster: N! Ps

Definition 9: A SG is formally defined by

SG = < {Ri}, N, f, Ps, Pr, Cluster, Distrib>

where

< {Ri}, N, f, Ps, Cluster> is a Simulation Bundle

Pr is a set of Processors

Distrib: Ps! Pr

5.2 Case study

To illustrate the use of our methodology, we consider an

existing work from literature as an example. PCD++ 20,21

consists of simulation nodes that are concrete implementa-

tions of abstract DEVS simulators. We describe how an

instantiation of our generic approach can provide a formal

guideline for the process of mapping a DEVS simulation

protocol onto the PCD++ strategy.

We consider a fire propagation model (n× n cells) as

the one presented by Liu and Wainer20 and Glinsky and

Wainer21 and the distributed simulation strategy intro-

duced as well. We assume the initial DEVS model (with-

out the couplings) and DEVS tree structure in use are as

shown in Figure 10.

In PCD++ , we see that the first operation is to reduce

(transform) the number of simulation nodes on the tree,

hence the introduction of FCs. Each FC synchronizes its

child simulators, routes messages among them and is in

charge of intra-process communication between its chil-

dren. The approach of reducing the simulation nodes was

used to achieve improved simulation performance. At the

end of this operation the resultant simulation structure is

also a ST. The formal definition of the transformation done

includes the formal algorithms of the nodes involved in

both sides of the transformation (i.e., initial DEVS algo-

rithms for coordinators at one side, and new algorithms for

FCs at the other side). Figure 11 presents the resulting tree.

The next operation to be performed is a Split operation.

It takes the transformed tree and partitions it into several

sub-trees with a node coordinating the timing on each sub-

tree. In PCD++ the NC has been introduced to be the

local central scheduler on each sub-tree. The RC shares its

time scheduling capabilities with a NC. While the Root

starts the simulation and performs I/O operations, the NC

schedules simulation time and manages inter-process com-

munication. The resultant structure is a Simulation

Skeleton, as shown in Figure 12.

In PCD++ , there is at most one of each of NCs and

FCs clustered into a process called the Logical Process.

We see that the authors varied the number of processes/

processors for the purpose of checking the performance of

PCD++ . We, however, assume the use of three processes

in this example. Figure 13 shows the Simulation Bundle

resulting from the Cluster operation performed.

In PCD++ , the constraint used is to permit only one

Logical Process on a Processor, thereby allowing intra-

Logical Process communication via the NC. The FC is in

charge of communication between its child Simulators.

The final SG is obtained by mapping each Logical Process

onto a Processor, as shown by Figure 14 and suggested by

Liu and Wainer20 and Glinsky and Wainer.21

6. Discussion

The most targeted benefit of the framework proposed is to

give a straight and clear guideline for realizing DEVS

PDES by avoiding some common pitfalls. One is in trying

to distribute the model instead of the simulation (this con-

fusion is due to the fact that most simulations do not sepa-

rate clearly the concerns). The taxonomy makes it clear

what should be distributed, that is, the simulation protocol

(a) Simula�on Skeleton (b) Simula�on Bundle

Figure 9. Intermediary simulation structures from Simulation Tree to Simulation Graph.
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and not the simulation model. However, a priori knowl-

edge about a model’s internal behavior can be tremen-

dously helpful for efficiently building the PDES strategy.

Such knowledge should be carried by the strategy builders

into their initial ST such that it can influence the definition

of the Transform, Split, Cluster and Distrib operations

involved in producing their final SG.

When defining the SG, another common pitfall is to

understand the partitioning as a one-to-one mapping

between simulation nodes and processes. The taxonomy

makes clear the difference between the nodes that

represent the simulation components and the way they can

be aggregated at the implementation level as part of a sin-

gle process (e.g., the same thread can implement a coordi-

nator and its children simulators). For example, trying to

build a SG by adopting a 1-1-1 strategy will lead to imple-

menting the whole ST as the process (which implies that

all nodes of the ST are implemented as passive nodes

except the RC, which will be the main program).

From an existing distributed code, it is difficult to build

a new distributed solution that must implement a different

SG strategy. An example is the building of a new N-N-N

(b) A DEVS representa�on of an n x n cells model 
whose cells are shared among various atomic 
models then later grouped in coupled models

(a) An n × n cells model (the le�er in a cell indicates the atomic 
model to which belongs the cell)

B
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K R
L
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T
XW Y
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C

H

G

JI
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U

Q

V

B

ED
C

F

G H I
J

K L
M

N O P Q

R S T
U V

YXW

A

Using Defini�on 2, the ini�al tree is: T = <A, N, F> with
N = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, 
Y}
F = {(A,B), (B,C), (B,D), (B,E), (C,F), (C,G), (C,H), (C,I), (C,J), (D,K), 
(D,L), (D,M), (L,R), (L,S), (L,T), (S,W), (S,X) (S,Y), (E,N), (E,O), (E,P), 
(E,Q), (Q,U), (Q,V)}

(c) DEVS ST for the n × n cells model (d) Formal specifica�ons of the ST

Figure 10. Initial DEVS n× n cells model, its Simulation Tree (ST) structure and formal definition.

Using Defini�on 3, the Transform opera�on is
Transf[{FC1,FC2,FC3}, {B,C,D L,S,E,Q}, Fa, Fr](T) = T’ with
Fa = {(A,FC1), (FC1,FC2), (FC1,FC3), (FC2,K), (FC2,R), (FC2,W), 
(FC2,X), (FC2,X), (FC2,Y), (FC2,T), (FC2,M), (FC1,F), (FC1,G), (FC1,H), 
(FC1,I), (FC1,J), (FC3,N), (FC3,O), (FC3,P), (FC3,U), (FC3,V)}
Fr = {(A,B), (B,C), (B,D), (B,E), (C,F), (C,G), (C,H), (C,I), (C,J), (D,K), 
(D,L), (D,M), (L,R), (L,S), (L,T), (S,W), (S,X) (S,Y), (E,N), (E,O), (E,P), 
(E,Q), (Q,U), (Q,V)}

FC3FC2

F

G
H

I
J

K
M

N O P
R

T U

V

YX
W

A

FC1

Figure 11. Simulation Tree transformation by reduction.
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Cluster: N’→ {Ps1, Ps2, Ps3}
Cluster–1(Ps1) = {A+NC1, FC1, F, G, H, I, J}
Cluster–1(Ps2) = {NC2, FC2, K, R? W, X, Y, T, M}
Cluster–1(Ps3) = {NC3, FC3, N, O, P, U, V}

FC3FC2

F

G H I
J

K

M

N O P

R

T

U
V

YX
W

A

FC1

NC1

NC3NC2

Figure 13. Intermediary simulation bundle.

FC3FC2

F

G H I
J

K

M

N O P

R

T

U
V

YX
W

A

FC1

NC1

NC3NC2

Split(T’) = <{A+NC1, NC2, NC3}, N’, f’> with
N’ = {A+NC1, NC2, NC3, FC1, FC2, FC3, K, R, W, X, 
Y, T, M, F, G, H, I, J, N, O, P, U, V}
f’(A+NC1) = {FC1}
f’(NC2) = {FC2}
f’(NC3) = {FC3}
f’(FC1) = {F, G, H, I, J}
f’(FC2) = {K, R, W, X, Y, T, M}
f’(FC3) = {N, O, P, U, V}
f’(K) = f’(R) = f’(W) = f’(X) = f’(Y) = f’(T) = f’(M) = 
f’(F) = f’(G) = f’(H) = f’(I) = f’(J) = f’(N) = f’(O) = 
f’(P) = f’(P) = f’(U) = f’(V) = ∅

Figure 12. Intermediary simulation skeleton.

FC3FC2
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NC1
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Distrib: {Ps1, Ps2, Ps3} → {Pr1, Pr2, Pr3}
Distrib(Psi) = Psi, ∀ i ∈ {1, 2, 3}

Figure 14. Simulation Graph obtained applying the PCD++ strategy.
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strategy from an existing N-N-N strategy by increasing or

decreasing the number of Trees/Processes/Processors or

by reallocating differently Processes (respectively nodes)

to Processors (respectively Processes). Our framework

provides the way for specifying, comparing and contrast-

ing various implementations and offers a standardized

platform for all DEVS PDES methodologies. To modify

the SG for adaptation to a new computing architecture,

starting from the SG layer, there would be a need to move

to the layer below it or back to the ST before making the

necessary modification in the Simulation Structure (see

Figure 15). Such disciplined approach makes it easy to

avoid mistakes.

The lack of a unified approach for DEVS PDES devel-

opment can hamper the easy integration of DEVS PDES

simulators. For example, combining two existing trees (or

combining two existing SGs or an existing ST with an

existing SG) to get a final SG is not obvious. Also, with

the various practices involved in building DEVS PDES

simulators, it is difficult to evaluate each design and imple-

mentation on the same basis. The proposed approach offers

a common frame of reference for all DEVS PDES simula-

tors. Failure or inability to facilitate consistency while spe-

cifying a Simulation Structure indicates lack of focus on

the essential elements of the taxonomic framework and

lack of understanding of the value that each structure con-

tributes within the framework.

7. Conclusion

This paper has presented a conceptual framework for

DEVS PDES implementation strategies. It aims at

contributing to a better understanding of the process to

drive and the simulation structures involved. It introduces

a taxonomy, formalized concepts and a methodology con-

sisting of a meta-model of the process of mapping a

DEVS ST onto a DEVS SG. As such, it proffered an

abstract way for integrating heterogeneous DEVS imple-

mentation strategies by providing a systematic and quanti-

fiable generic approach that can be instantiated to fill the

gap identified from taking a DEVS simulation model spe-

cification to mapping it onto a parallel/distributed infra-

structure. Each instantiation provides a guideline to

applying a specific strategy.

There has been an on-going research effort in providing

standard representation of DEVS to support common

understanding, sharing and interoperability.29 Decisions

that are to be taken while implementing a DEVS PDES

simulator include how events should be processed, what

simulation architecture to use, what should be the organi-

zational architecture, and so on. As these decisions may

often be quite challenging, we therefore proposed a solu-

tion by going through a review of major existing

approaches, categorized them and came up with an inte-

grative view producing a formally specified unified taxo-

nomic framework. All practitioners dealing with building

DEVS PDES simulators can now choose to use this new

layered approach as a reference framework for specifying

their approaches unambiguously, then fostering knowledge

reuse across the community. As a consequence, we envi-

sion that this framework contributes to the DEVS standar-

dization efforts.32,33

Another benefit we see with the conceptual framework

is that it also opens the way to automated code synthesis

Simulation Graph

Simulation Bundle

Simulation Skeleton

Simulation Tree

Transform’

Split’

Cluster’

Distrib
’

Transform

Split

Cluster

Distrib

New 
Simulation 
Structures

Transform’’

Split’’

Cluster’’

Distrib’’

Simulation Skeleton'

Simulation Bundle'

Simulation Graph'

Simulation Tree'

Figure 15. Flexibility of the layered approach.
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of the simulation structures involved. We are developing a

software tool called SimStudio34 to support it.

Lastly, all guidelines produced by instantiating the pro-

posed meta-model may be amenable to formal checking,

because of the formalization of concepts and operations.
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