
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Asynchronous and composable
distributed co-simulation engine
design for cloud-based industrial
CAE software

Bohu Zhou, Jianwen Cao, Xuesong Wu, Yupeng Wang

Bohu Zhou, Jianwen Cao, Xuesong Wu, Yupeng Wang, "Asynchronous and
composable distributed co-simulation engine design for cloud-based industrial
CAE software," Proc. SPIE 12814, Third International Conference on Green
Communication, Network, and Internet of Things (CNIoT 2023), 128142D (20
October 2023); doi: 10.1117/12.3010714

Event: Third International Conference on Green Communication, Network,
and Internet of Things (CNIoT 2023), 2023, Chongqing, China

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Asynchronous and Composable Distributed Co-simulation Engine

Design for Cloud-based Industrial CAE Software

Bohu Zhou ab, Jianwen Cao*a, Xuesong Wu*a, Yupeng Wanga
a Institute of Software, Chinese Academy of Sciences, Beijing, China;

b Email: zhoubohu20@mails.ucas.ac.cn
* Corresponding author: jianwen@iscas.ac.cn, xuesong@iscas.ac.cn

ABSTRACT

The industrial Internet can be seen as a combination of industrial software, sensors, networks and cloud platforms. Among

them, industrial software is the key to data utilization while the cloud platform provides support for Industrial Internet.

Through "visualization", "structuring", "modeling and simulation" and other means, industrial software can help solve the

design and manufacturing problems of industrial products. But the difference between industrial Internet and traditional

Internet lies in the different application scenarios and data characteristics, which also leads to the different emphasis of

system architecture design. Considering the needs of high concurrency and huge data processing, the distributed system

must provide high performance of communication and computing services. In addition, with the continuous expansion of

the simulation model and the simulation scale, it becomes particularly significant to reduce the model development

complexity and improve maintainability and flexibility. To make the distributed co-simulation engine more high-

performance, we propose an asynchronous communication module as the underlying architecture of the distributed engine.

Then combining the discrete event system specification and Actor model, a layered architecture has been proposed, which

implements the modular programming of behavioral model by functional programming. Based on the architecture

mentioned above, a distributed CAE cloud platform is proposed, which is hierarchical, modular, composable and reusable.

Keywords: Distributed co-simulation engine; Asynchronous communication; Composable; Actor-Oriented; DEVS; CAE;

Cloud-based platform

1. INTRODUCTION

Industrial Internet and Industry 4.0 are prevailing topics in industry and academia. It makes an unprecedented impact on

global industry development [1]. It is not only limited to the manufacturing industry, but also has a profound impact on

other fields, such as medical health, agriculture, food industry, energy management, education, military and so on. Industry

4.0 not only brings the generation of new technologies, but also includes the recombination of many mature technologies.

Modeling and Simulation is one of the key technology in industrial software, which can be used in the fields of enterprise

planning and evaluation, industrial engineering, production chain management, industrial product experiment and

verification [2].

Compared with traditional centralized and integrated industrial software, cloud-based industrial co-simulation software

faces many problems [3] in the distributed scenario. The first is communication efficiency issues. In distributed network,

the message transmission does not come "for free" and has certain costs. Hence communication should be treated as a

computational resource and efforts must be made to use it wisely. Secondly, there is incomplete knowledge problem in

distributed network, which means a processor has only a partial picture of the system and the ongoing activities. It is

therefore difficult to coordinate a common activity. In addition, coping with failures and recoveries, timing and so on need

to be solved. Therefore, it is significant to build a distributed industrial co-simulation architecture to handle these issues.

With the need for increasingly complex software systems and industrial model design, Model-Based Systems Engineering

[4] (MBSE) was incorporated. Under the concept of modern software engineering and MBSE, the typical features of the

complex system are typically Multi-Agent System, co-simulation, discrete event driven design. Hence it is vital to utilize

the simulation method to the verification. Discrete Event Simulation Specification [5][6][7] (DEVS) proposed a complete

modeling and simulation framework, which depicts the relationship between the entities in multi-scale. To make the same

effect in digital world before construct in real world, we can automate the generation, composition and deployment based

on the modular hierarchical concept in DEVS.

Third International Conference on Green Communication, Network, and Internet of Things (CNIoT 2023),
edited by Hongzhi Wang, Shiling Zhang, Proc. of SPIE Vol. 12814,
128142D · © 2023 SPIE · 0277-786X · doi: 10.1117/12.3010714

Proc. of SPIE Vol. 12814 128142D-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Based on the needs for industrial internet interaction, interconnection and complex system modeling, it is crucial to

promote the industrial software to the lightweight cloud-based industrial platform. To maximize the utilization of the

modeling and simulation tools, there comes up a paradigm called Modeling and Simulation as a Service (MSaaS) [8],

which is expected to (1) provide scalable and composable facilities. (2) make underlying infrastructure and platform

transparent to users. In this paper, we pay attention to asynchronization, resource usage, modularity, composability and so

on. Then we implement a distributed co-simulation engine based on asynchronous communication, distributed composable

technology, which applied to the cloud-based CAE platform to solve the issues of traditional single software mode [9].

2. DESIGN OF ASYNCHRONOUS MODULE

Futures and promises are a popular abstraction for asynchronous programming. In a broad sense, a future or promise can

be thought of as a value that will eventually become available. In the rest of the section, we will give the specific design

of the asynchronous module derived from promise/future concept, which comprise Event Loop, Reactor pattern, Dynamic

Thread Pool.

2.1 Event Loop

In this paper, we divided the event loop into several stages, as shown in Figure 1 below, each of which has its own linked

list of event queues to be processed. The first is the timer stage, which deals with various timing tasks; The second is the

network I/O polling stage: this stage processes various network requests, inserts new requests into the event queue to be

processed, checks the completed event queue, and executes the callback function of the completed network request; Finally,

there is the asynchronous event processing stage: This stage maintains a linked list of asynchronous events such as thread

pool tasks. In the polling process of the event macro loop, each stage has its own micro loop. In each micro loop, the queue

is checked for pending events, and if so, the event is fetched and the appropriate action is performed; If not, proceed to the

next stage; Finally, after the execution of all stages of the micro loop is completed, the next event is entered.

Figure 1. Design of the event loop.

2.2 Reactor Pattern

There are two important roles: Reactor and processor. Reactor listens to and acquires the request, creates a socket and

registers the event through the I/O multiplexing [10] function. The underlying operation system function reads the data

requested or writes the data. After the event completes, the corresponding callback event is invoked through the reactor

loop, and the following business logic continues to be handled. If some service logic is time-consuming, the Reactor is

assigned to a processor in order not to block the main thread. The processor transfers the task to the thread pool for the

following operations. Because of the separation of Reactor from the processor, the processor does not need to care about

the underlying I/O implementation details, allowing for higher concurrency and scalability. The reactor pattern is shown

in Figure 2.

Proc. of SPIE Vol. 12814 128142D-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 2. Design of reactor pattern.

Multi-Process Reactor

The multi-process Reactor server uses a Master/Slave design, in which each slave process maintains its own event loop.

The Master process is responsible for accepting network requests and dispatching tasks in a round-robin manner. After the

initialization the Master processor, it creates specific number of Worker processes. Then the worker process creates a new

Reactor server, and monitor the incoming network request. After the connection is successful, the acquired socket will be

transferred to the Worker process through inter-process communication by master process.

The Worker process handles specific request tasks. Each Worker will create a listening service to listen for information

from the Master process. When receiving a socket from the Master process, the Reactor server created by the Worker

process will handle the corresponding request by parsing the socket.

Connection Pool

Normally, a client needs a TCP connection to send a request, and then closes the connection after receiving a response.

However, in order to achieve reliable data transmission, TCP adopts three-way handshakes before connection and four

way handshake after termination, which is relatively time-consuming. The ability to reuse TCP connections and send

multiple requests on the same connection provides a performance boost. Therefore, this section implements a module for

pooling management of TCP connections. The pooling function mainly relies on the TCP Keep-Alive mechanism.

There are three main dictionary objects maintained in Connection Pool. sockets queue represents the socket currently in

use, free_sockets represents the socket that is free, and waiting_req is the request that is waiting for the socket to be free.

When the client sends a request, it checks whether there are free sockets in the connection pool. If there are free sockets,

the socket is reused directly and inserted into the sockets queue. If there are no free sockets and the number of sockets does

not reach the threshold, a new socket is created and used to process the request. If the above two conditions are not satisfied,

the request is added to the waiting_req. When there is a free socket, the request is removed from the waiting queue for

processing.

2.3 Dynamic Thread Pool

Multithreading technology can make full use of CPU resources, but the creation and destruction will bring great resource

consumption, so in order to balance to improve the concurrency ability and improve resource utilization and reduce the

response speed, usually use thread pool method to network programming. Thread pools are generally good for the

following scenarios: (1) potentially blocking business logic (such as file reading and writing): The main thread of the event

Proc. of SPIE Vol. 12814 128142D-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

loop can only handle relatively simple logic, if the thread gets stuck in time-consuming operations blocking subsequent

requests, thus reducing the concurrency and throughput of the service. (2) CPU-intensive tasks: The execution of such

tasks on the main thread will inevitably cause long-term thread blocking, resulting in the accumulation of new tasks and

affecting the processing of new requests.

Thread pool model is widely used in distributed server applications. In order to maximize the performance, many problems

concerning quality of service (QoS) need to be properly dealt with. For example, if the thread pool receives a large number

of computation requests at the same time at any given moment, the quality of service may suffer significantly, such as an

increase in response time. A common solution is to dynamically control the number of threads in the thread pool, adding

threads to the pool during busy computing hours and reclaiming them during idle hours. But the number of thread pools is

not the more the better: First, frequent thread creation and destruction can also reduce performance. Second, too many

threads waste memory space and CPU, because the cost of switching threads back and forth during CPU scheduling is also

an important factor. Third, too few threads do not make full use of CPU resources. Therefore, how to design the automatic

expansion and shrinkage mechanism of thread pool management can significantly improve the system performance [11].

In this paper, a prediction model based on frequency is adopted to control the dynamic expansion strategy of thread pool,

as shown in Figure 3 below.

In this paper, the newly opened thread regularly counted the frequency of receiving requests, predicted the future increase

of requests to the thread pool by frequency changes and using EMA formula to predict the future frequency, and expected

that there were enough threads in the thread pool for task processing. As requests decrease, the number in the thread pool

slowly decreases depending on the expiration time.

 𝐸𝑀𝐴𝑡 = 𝛼 × 𝑃𝑡 + (1 − 𝛼) × 𝐸𝑀𝐴𝑡−1 (1)

Figure 3. Dynamic thread pool architecture.

3. DESIGN OF COMPOSABLE DISTRIBUTED CO-SIMULATION MODULE

To meet the automated distributed composition, deployment and ever-changing modeling needs of users, the co-simulation

module combined DEVS and Actor model [12] and took functional programming into the design pattern.

3.1 ActorDEVS Architecture

The entire ActorDEVS simulation service module is divided into two layers, as shown in Figure 4. The upper layer is the

user control layer, which is used to provide various management services, and the bottom layer is monitored and controlled.

The bottom layer is the simulation layer, which controls the interactions between actors through the DEVS specification.

The lower layer is transparent to the modeling engineer, and only the upper layer provides user-relevant functionality.

Proc. of SPIE Vol. 12814 128142D-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 4. The separated frontend-backend ActorDEVS architecture.

In the bottom layer, there are three types of actors that matters: CoordinatorActor, SimulatorActor and RouterActor. The

CoordinatorActor delegates the Coupled Model to control the life cycle of the coupled model and is responsible for

monitoring the child nodes to ensure the availability of the service by using the coupling information in the coupled model.

In SimulatorActor, Atomic models are delegated to perform specific behaviors. These Actors may be dispatched on the

same machine, or they can be distributed on different physical machine manually or through load balancing strategies.

When these actors try to send messages to each other, they send message through RouterActor. Each RouterActor maintains

two dict objects called local and remote, which stores the key-value pairs of the components and their communication

address. To improve the communication efficiency, we use UNIX Domain Socket rather than TCP when the components

are dispatched on the same machine through local router.

The DEVS co-simulation is done through a central coordinator. The coordinator creates n simulation services over the

internet. Each simulations service then generated m simulators that contains the DEVS model. Figure 5 shows the process.

Once the simulation starts, the coordinator gets the time of the next event, and then executes the output function for each

simulation service. Then the output function propagates. Propagation means that the coordinator takes the output of all the

simulation services and sends it to other simulation services based on the coupling information. Finally, the state transition

of each model is triggered; And it repeats.

Figure 5. The co-simulation procedure.

Proc. of SPIE Vol. 12814 128142D-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.2 Modular programming of behavior model

In this paper, we solved the problems of inheritance and polymorphism in OOP through the modularity and higher-order

functions property in functional programming [13] (FP). We separated the DEVS entity structure and the DEVS behavior

model, and then programming the composable behavior in a separate module, which combines the both characteristic of

OOP and FP.

Among the traditional design patterns, there is a well-known State Pattern that seems to aid in the development of state

management for finite state machines, making the code more maintainable. This pattern, however, focuses only on state.

For external event transfer functions in DEVS, there is still an inconvenience when new events are introduced into the

current entity and the behavior needs to be extended. Therefore, in combination with functional programming, we proposed

a "event-state-pattern" which is shown in Figure 6. This pattern provides a combinable, pluggable and reusable state

management module for the modular programming of DEVS behavior model.

Figure 6. The event-state-pattern.

In the "event-state-pattern", we not only extracted the states out, but also extracted the events into a separate module. In

detail, we instantiated a module object for each event or state in the finite state machine. Each object holds the key-value

of the event-state mapping. Developer only needs to design the event and corresponding state and their callback functions

when they are invoked in specific circumstance. Composing the functions through the principles of functional

programming, developer only need to write a few functions or reuse existing functions to achieve modular, composable,

extensible, pluggable, testable programming.

Under the rules of FP, there are two rules to follow:

(1) State is read-only: the only way to change state is to trigger the compute function of the state module, which executes

the callback function passed in when developer design the state.

(2) State transfers are made by pure functions: To describe how the behavior model modifies state, the developer needs

to write the transition function. So eventModule has a mapping transitions to index the state module (the mapping key-

value pair is the stateModule instantiated state object and transition function). Then calculate the modified state variable

with getNextState, and then design the target state after the current event is triggered in the current state by writing the

transition function that takes the global state variable as an argument. The invoking procedure is shown in Figure 7.

Proc. of SPIE Vol. 12814 128142D-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 7. The invoking procedure of modular behavior model.

4. DESIGN OF OVERALL ARCHITECTURE

The overall architecture of the distributed cloud-based co-simulation CAE platform is high-performance and extensible

and composable based on the fundamental module above. In the overall architecture of the CAE platform shows in Figure

8, we provide the support for data management and visualization, developer information security, CAE simulation

construction and processing and so on.

Figure 8.The overall architecture.

The CAE application layer is designed for users, it uses the Web browser as the client, and realizes the full-link CAE

modeling and simulation through the graphical interface, including pre-processing, numerical solution, post-processing

and other stages. And provide related engineering management, resource management, system management and other

basic support functions. The cloud service layer calls various functions provided by the software integration layer by means

of containerization, micro-service, efficient script driver, software component library, etc., to provide support for the

requirements of the application layer. In the components layer, we implement the basic composable ActorDEVS

architecture which incorporate Actor-oriented programming and M&S to support every stage in CAE simulation. Each

Proc. of SPIE Vol. 12814 128142D-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

stage of CAE simulation will be designed into a coupled model or atomic model of DEVS, their relationships are described

in the DEVS graphs. The data flows when the model states change. The behavior model layer is aimed to solve the issue

of time-consuming tasks such as mesh, ODE/DAE solution, FEM/FVM solution and so on, they are the behavior model

of the DEVS atomic model, users can choose specific solver when they start a new CAE task. Users can upload their

implementations of any solver to the behavior model management functions which shows the extensibility and flexibility

of our platform. In the communication layer, any network communication of the microservice and containers will using

the fundamental asynchronous communication module.

5. CONCLUSION

The distributed cloud-based industrial software is key part of Industrial Internet and Industry 4.0, which solve the

production and manufacturing issues through structuring, visualization, M&S and other means. In this paper, we propose

two modules for distributed co-simulation engine. Firstly, we design an asynchronous communication module which

implements high-performance data communicating and computing. Secondly, we design a composable distributed co-

simulation module which adopts DEVS theory and Actor model. It enables automated coupling and composition of

components and deployments in distributed scenario. On basis of module mentioned above, we implement a full-link

cloud-based CAE platform which is very extensible and flexible.

ACKNOWLEDGEMENT

This work is funded by National Key R&D Program of China (No.2020YFB1709502). We would like to thank the

corresponding authors: Jianwen Cao and Xuesong Wu for their invaluable contributions to this research project. Without

their guidance and support, this work would not have been possible.

REFERENCES

[1] Mamad, Mohamed. (2018). Challenges and Benefits of Industry 4.0: an overview. International Journal of Supply

and Operations Management. 5. 256-265. 10.22034/2018.3.7. Scheidegger A P G, Pereira T F, de Oliveira M L

M, et al. An introductory guide for hybrid simulation modelers on the primary simulation methods in industrial

engineering identified through a systematic review of the literature[J]. Computers and Industrial Engineering,

2018, 124: 474-492.

[2] Galvao Scheidegger, Anna Paula & Fernandes Pereira, Tábata & Oliveira, Mona Liza & Banerjee, Amarnath &

Montevechi, José Arnaldo B.. (2018). An introductory guide for hybrid simulation modelers on the primary

simulation methods in industrial engineering identified through a systematic review of the literature. Computers

& Industrial Engineering. 124. 474-492. 10.1016/j.cie.2018.07.046.

[3] Peleg, David. (2000). Distributed Computing: A Locality-Sensitive Approach. 10.1137/1.9780898719772.

[4] Li, Shuya & Li, Qing & Zhang, Jianchao. (2023). MBSE-Based Turbofan Engine System Simulation Platform

Design. 10.1007/978-981-19-6613-2_452.

[5] Zeigler, Bernard & Muzy, Alexandre & Kofman, Ernesto. (2018). Zeigler, B. P., Muzy, A., & Kofman, E. (2018).

Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations. Academic

Press.. 10.1016/C2016-0-03987-6..

[6] Wainer, Gabriel & Mosterman, Pieter. (2016). Discrete-Event Modeling and Simulation: Theory and Applications.

10.1201/9781315218731.

[7] Y. V. Tendeloo and H. Vangheluwe, "DISCRETE EVENT SYSTEM SPECIFICATION MODELING AND

SIMULATION," 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 2018, pp. 162-176, doi:

10.1109/WSC.2018.8632372.

[8] Shahin, Mojtaba & Ali Babar, Muhammad & Chauhan, Aufeef. (2020). Architectural Design Space for Modelling

and Simulation as a Service: A Review. Journal of Systems and Software. 170. 10.1016/j.jss.2020.110752..

[9] Shuai, Li & Jing, Yang & Bin, Li & Bo, Li. (2011). Research based on CAD/CAE/CFD for collaborative design

of automotive engines. 2. 1044 - 1047. 10.1109/ICMTMA.2011.542..

[10] Zhenhong, Han & Ju, Junxiu & Zhang, Yiyan. (2022). A web server optimization based on thread pool and epoll.

32. 10.1117/12.2639480.

Proc. of SPIE Vol. 12814 128142D-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[11] Lee, Kang-Lyul & Pham, Hong Nhat & Kim, Hee-seong & Youn, Hee & Song, Ohyoung. (2011). A Novel

Predictive and Self -- Adaptive Dynamic Thread Pool Management. 93-98. 10.1109/ISPA.2011.61.

[12] Gatev, Radoslav. (2021). The Actor Model. 10.1007/978-1-4842-6998-5_10.

[13] Mailund, Thomas. (2022). Functional Programming. 10.1007/978-1-4842-8155-0_11.

Proc. of SPIE Vol. 12814 128142D-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

