
A Modular Representation of
Fluid Stochastic Petri Nets

Fernando Barros
Universidade de Coimbra

Departamento de Engenharia Informática
3030 Coimbra, Portugal

barros@dei.uc.pt

ABSTRACT
In this paper we develop a modular representation of Fluid
Stochastic Petri Nets (FSPNs) using the Hybrid Flow Sys-
tems Specification (HFSS), a formalism that combines the
concepts of sampling and discrete events to describe hybrid
systems. We show that HFSS provides a sound representa-
tion of FSPNs supporting a direct mapping between FSPNs
elements and HFSS components. FSPNs can be modeled by
a composition of HFSS components preserving the structure
of the original FSPNs, removing the need for a model trans-
formation layer to simulate FSPNs, or making it easy to de-
velop such a mapping mechanism. We show that the contin-
uous flow representation used by HFSS enables an efficient
simulation of FSPNs. Simulation results are presented for
a simple manufacturing system with machines subjected to
breakdowns.

Author Keywords
Fluid Stochastic Petri nets; modular representations; HFSS
formalism; hybrid systems.

ACM Classification Keywords
I.6.5 SIMULATION AND MODELING: Model Develop-
ment - Modeling Methodologies

INTRODUCTION
Petri Nets (PNs) have widely been used in modeling and anal-
ysis of systems. Since their creation many extensions have
been developed, including, for example, Timed Petri Nets
(TPNs), and Fluid Stochastic Petri Nets (FSPNs) aimed to
model timed hybrid systems exhibiting both discrete and con-
tinuous elements [11]. In this paper we develop a modu-
lar representation of FSPNs using the Hybrid Flow System
Specification Formalism (HFSS) [2]. HFSS combines both
continuous [1], and discrete (event) flows [13], to represent
hybrid systems. We develop a library of HFSS components
to represent the elements of a FSPN. These elements are de-
scribed using the HFSS-Groovy toolkit and include discrete
places, transitions and continuous places. We introduce a
conflict manager component to explicitly represent transition
tie-breaking rules, enabling the use of application dependent
algorithms to choose among conflicting transitions. We use

TMS/DEVS 2015, April 12-15, 2015, Alexandria, VA, USA
© 2015 Society for Modeling & Simulation International (SCS)

infinite server semantics enabling an arbitrary number of tran-
sitions to fire simultaneously. The library of HFSS compo-
nents permits FSPNs to be represented by a structural equiva-
lent HFSS network, that can be obtained through composition
using simple transformation rules, in a direct mapping. Struc-
ture preserving makes this conversion a very simple process
that can be performed manually, also making it easier to de-
fine conversion tools, avoiding namely the (costly) compilers
that are common in Domain Specific Languages (DSLs) ap-
proaches [7]. We present simulation results for a simple man-
ufacturing system with machines subjected to breakdowns.
Our results show that HFSS representation of continuous sys-
tems by HFSS continuous flows enable an efficient simulation
of FSPNs.

FLUID STOCHASTIC PETRI NETS
FSPNs introduce continuous marking for supporting a repre-
sentation of hybrid systems [11]. The continuous places of
PNs are described by constant rate differential equations en-
abling a fluid approximation of systems with a large number
of tokens. We present next an informal description of FSPN
semantics.

Discrete TPNs
Time was introduced in Petri Nets to model system delays.
The time to complete a task or a delay in the system can usu-
ally be modeled by a stochastic distribution. Timed Petri Nets
(TPNs) define a set of transitions, places and arcs. A transi-
tion checks its preconditions that depend on the marking of
its input places. If preconditions are satisfied, a set of tokens
is removed from the input places. After the transition, tokens
are added to transition output places. In this paper we assume
that time elapses inside transitions [10], departing from the
more common TPNs where time elapses in places or arcs. In
this paper we also assume infinite server semantics, that al-
lows many transitions to start simultaneously as long as their
preconditions are satisfied. The semantics of TPNs can be
described by Figure 1 that depicts the behavior of a TPN with
transition t0 and places p0, ..., p3. The transition precondi-
tion requires two units of p0, one unit of p1 and it imposes
an inhibitor arc of two units of p2. When the precondition is
satisfied a token representing an activity (transition instance)
is created within the transition to model a time advance (de-
lay). After this time interval, the transition finishes, and new
tokens are created in the corresponding output places. Given
the initial marking of Figure 1a, t0 can start two activities,

875

Figure 1b. Transition t0 removes all tokens from p0 and p1
and creates two time events to signal the end of the scheduled
activities.

Although transition marking is commonly omitted in Petri net
analysis, a PN simulator needs to consider it. A standard
marking representation could also be used, since a time-in-
transition PN can be mapped into a time-in-place PN [10].
The non-standard representation introduced here simplifies
simulator description.

When an instance of t0 finishes the execution it creates new
tokens in its output places, Figure 1c, in this Petri net, 1 unit
of p2 and 3 units of p4. The final marking after the firing of
the second instance of t0 is depicted in Figure 1d. We have
assumed that each transitions instances were assigned to a
different time duration. If t0 had a fixed processing time, the
two instance would have finished at the same time, jumping
the intermediate step of Figure 1c.

Continuous Flows
Fluid Stochastic Petri Nets (FSPNs) were introduced to en-
able the description of systems requiring a large number of
tokens, since an explicit representation of each token would
make the PN difficult to analyze and also time consuming
to simulate. A fluid approximation is used, and tokens are
represented by a real number whose value is governed by a
piecewise constant rate.

Before detailing the semantics of FSPNs we define |tk| as the
number of instances of transition tk currently active. Sim-
ilarly the quantity (integer or real) of tokens in place pk if
given by |pk|.
In FSPNs, a transition tk is considered active iff |tk| > 0.
When a transition is active the corresponding flow is enabled
and place content is influenced by that flow. On the contrary,
when not active the corresponding flow is zero. Another con-
straint imposed is that places can only contain positive values,
i.e., |pk| ≥ 0.

Figure 2 represents a FSPN with transitions t0, t1, t2, place
p0, constant flows a and b, and a variable flow controlled by
the number of tokens in transition t2.

Figure 2 . Continuous flow Petri net with variable rate |t2| · c.

When all the transitions are enabled the content of place p0 is
described by:

d|p0|
dt

= a+ b− |t2| · c

When a transition is disable, the corresponding flow is zero.

For example, when |t0| = 0, then
d|p0|
dt

= b− |t2| · c

Hybrid Flows
FSPNs enable the representation of systems with both dis-
crete and continuous semantics. The FSPN of Figure 3 [8],
models a manufacturing system with N machines that pro-
cess at an (exponential) rate µ and breakdown at an (expo-
nential) rate λ. Entities enter the system at rate a and are
processed at rate |t1| · d. The initial number of entities to be
produced is given by L and all machines are initially avail-
able, |t1| = N . Given the semantics defined before, |t1| rep-
resents the number of machines available for production and
|t2| is the number of machines being repaired (not working).

Figure 3 . Petri net with hybrid flows (FSPN) [8].

We have described the main elements of FSPNs. In the next
section we provide their representation in the HFSS formal-
ism.

MODULAR REPRESENTATION OF FSPNS
The mapping of FSPNs into a deterministic modeling and
simulation formalisms has several advantages. It establishes
FSPNs semantics, since modeling formalism like HFSS have
deterministic semantics [3]. Modularity enable also the com-
position of systems from simple elements. Given a FSPN
model library developed in HFSS, we can create complex
FSPNs by simple composition of basic elements without the
need to develop a compiler to generate new HFSS models
from a FSPN specification, a requirement usual in Domain
Specific Languages for representing (non-timed) PNs [7].
Additionally, mapping FSPNs into a modeling formalism can
also exploit the advantages of existing and efficient simula-
tion kernels without the need to create a specific solution for
FSPNs.

In this paper we use the Hybrid Flow System Specification
(HFSS) formalism for modeling and simulating FSPN. HFSS
is a hierarchical and modular formalism and we developed
a representation PN targeting a one-to-one mapping between
PN elements (places, transitions, ...), and HFSS components.
In this manner we can map a PN into a composition of HFSS
models. Our goal is to achieve a trivial mapping between
PNs and HFSS networks, so a simple (and possibly auto-
matic) translation can be achieved. In this manner we avoid
generating HFSS basic models from PNs, limiting the trans-
lation task to the composition of per-defined HFSS models.

876

(a) initial marking (b) fire of transition t0 (c) end of processing of a token in t0 (d) final marking

Figure 1 . Discrete Petri net evolution.

Other approaches, like Domain Specific Languages (DSLs)
approaches, that require a special purpose compiler to map
PN into a modeling formalism, becoming more time consum-
ing. Additionally, our approach keeps the structure of the PN,
enabling further refinements. This flexibility, allows, for ex-
ample, to combine HFSS components used in PNs with other
HFSS models becoming an effective manner to obtain very
expressive approaches. On the contrary a code generation ap-
proach would map a PN into a monolithic atomic model in
some modeling formalism making it, in our opinion, difficult
to understand and to modify/maintain.

The HFSS formalism combines several abstractions, includ-
ing adaptive sampling, continuous flows, and discrete events.
HFSS models are modular communicating through a well de-
fined interface. A HFSS model can read and produce con-
tinuous and discrete flows (events), offering a framework for
defining hybrid models [3]. The HFSS-Groovy toolkit is a
Groovy language implementation of the HFSS formalism and
it is used in the next sections to describe the HFSS compo-
nents required to represent FSPNs.

Discrete Places
We start by describing a HFSS model of FSPNs discrete
places. This model requires the ability to change its con-
tent supporting the basic discrete event operations of adding
and removing tokens, and to communicate changes in this
value. Since a key operation in a FSPN is to test precondi-
tions we provide the access to the place current number of
tokens through the component continuous output flow func-
tion. The HFSS Place is represented in Figure 4.

Figure 4 . HFSS discrete Place model.

HFSS-Groovy definition of the Placemodel is given in List-
ing 1. Class Model (not detailed here), provides the basic
support to HFSS and it defines variable alpha and beta to
set the time to read (sample), and the time to write (produce a
discrete flow). A Place is created with an initial number of

tokens and it becomes passive (alpha = beta = ∞),
waiting for an input.

1public class Place extends Model {
2private int tokens;
3public Place(String name, int tokens) {
4super(name);
5this.tokens = tokens;
6alpha = Double.POSITIVE_INFINITY;

7beta = Double.POSITIVE_INFINITY;

8}

9public void transition(double e, def xc, def xd) {

10beta = Double.POSITIVE_INFINITY;

11i f (xd == null) return;
12int prev = tokens;
13xd.at("add").each {Port p-> tokens += p.value()}

14xd.at("remove").each {Port p-> tokens-= p.value()}

15i f (prev != tokens) beta = 0;
16}

17public def outputC(double e) {return new Port("tokens", tokens)}

18public def outputD(double e) {return new Port("update", tokens)}

19}

Listing 1 . HFSS-Groovy Place model.

A Place receives commands to change its content in ports
add and remove. Since HFSS uses a parallel semantics,
an input is usually a list of pairs in the form (port name,
value). The transition function (line 9), specifies the behav-
ior of Place input arrival. Each add increases the num-
ber of tokens, and each remove decreases this value. When
the number of tokens is modified the updated value is sent
through the discrete port update, as defined by function
outputD (discrete output). The current number of tokens
is always available through the continuous output flow port
tokens, as specified by the function outputC (continuous
output). This continuous value plays a key role in simplifying
the definition of the HFSS model of a FSPN as we show in
the next sections. While the input is discrete, the output has a
(piecewise constant) continuous flow with the current number
of tokens, and a discrete flow trajectory, signaling a change in
this number. Typical Place trajectories are shown in Figure
5.

877

Figure 5 . HFSS Place trajectory.

Continuous/Fluid Places(Reservoirs)
When the number of tokens in a FSPN is very large a fluid ap-
proximation simplifies the analyses and enables a more effi-
cient simulation. In this approximation transitions are contin-
uous and become characterized by the rate they modify reser-
voir (fluid places) contents. The HFSS model of a reservoir
in given in Figure 6.

Figure 6 . HFSS Reservoir model.

The Reservoir samples the input flow and integrates this
value, that is constrained to be positive. Given a negative in-
put rate, reservoir level decreases until it reaches zero, and
keeps this value irrespective to a negative input rate. Since,
FSPNs constrain input rates to be piecewise constant, fluid
integration involves only transition when these rates changes.
Input port update receives a signal when the rate is mod-
ified. The current rate is available at input port flow. The
reservoir defines also the continuous output port level, to
provide access to the current reservoir level, and the discrete
port change to signal a modification in the reservoir flow
rate. The HFSS-Groovy implementation is described in List-
ing 2. Where method rate, line 10, computes the effective
input rate, and method level, line 34, computes reservoir
contents. When the rate is zero, line 28, the model becomes
passive.

1class Reservoir extends Model {
2private double level;
3private double rate = 0.0;
4public boolean isZERO(double x) {return Math.abs(x) <= 1.0e-12}

5public Tank(String name, double level) {
6super(name);
7this.level = level;
8alpha = 0.0;

9}

10private double rate(double r) {
11i f (isZERO(r)) return 0;

12i f (isZERO(level) && r < 0) {
13level = 0;

14return 0;

15}

16return r;

17}

18public void transition(double e, def xc, def xd) {

19this.passivate();
20level = level(e);

21double nextRate = rate(xc.value());

22i f (! isZERO(nextRate - rate)) {
23rate = nextRate;

24beta = 0.0;

25return;
26}

27rate = nextRate;

28i f (isZERO(rate)) return;
29i f (rate < 0) {
30beta = -level / rate;

31return;
32}

33}

34private double level(double e) {return level + rate * e}

35public def outputC(double e) {return new Port("level", level(e)})

36public def outputD(double e) {return new Port("change", level(e))}

37}

Listing 2 . HFSS-Groovy Reservoir model.

Typical reservoir input and output trajectories are depicted in
Figure 7. The input flow changes at instants t1, t2 and t4.
This value is sampled from the continuous input trajectory
and imposed by the arrival of discrete flows. Tank flow level
is continuous, a piecewise linear flow, as a consequence of
the piecewise constant flow rate constraint. A discrete flow
signal is produced each time the flow changes. In the interval
[t3, t4] the reservoir content is zero due to the negative input
rate.

Figure 7 . HFSS reservoir trajectories.

Transitions
HFSS transition model is represented in Figure 8. A tran-
sition samples the precondition from the continuous ports
tokens[n], that are connected to the input places the
transition depends upon. If the precondition is true the
transition tries to seize the tokens from the Conflict
Manager component that manages place access conflicts.
When an acknowledged is received the transition executive
Transitionη creates a Delay to signal transition end. We

878

assume the infinite server semantics and thus multiple copies
of a transitions (instances) can execute in parallel.

Figure 8 . HFSS transition model.

When a Delay finishes it signals the executive that removes
it from the network and releases the corresponding tokens
through the output ports add[n]. A transition also checks
for its precondition when receives an update message sent
by a place that has changed its number of tokens. The current
number of Delay instances can be sampled at the continu-
ous output port number. When this value changes a signal
is sent through the discrete output port number.

Conflict Manager
Given the infinite server assumption, and since HFSS has
a parallel semantics, implying that all transitions scheduled
to the same time must be fired simultaneously, conflicts can
arise. Conflicts need to be solved in a deterministic manner,
and under the control of the modeler. These requirements im-
pose a centralized controller to decide what transitions can be
fired and those that need to hold. The ConflictManager
model is represented in Figure 9. It receives requests in port
seize from transitions whose preconditions are satisfied.
The information about tokens availability is sampled at input
ports tokens[n]. At this point the conflict manager has full
control on what transitions can proceed. Many strategies to
break ties are possible, including a probabilistic rule, fairness
considerations, waiting time, priorities, etc. Since we have an
explicit representation of conflicts it becomes possible to use
any algorithm suitable for a particular goal.

Figure 9 . HFSS conflict manager model.

When the manager decides to enabling a transition it removes
the tokens from the corresponding places using output port
remove[n]. Transition acknowledgment is made through
output port ack[n].

We have described the basic HFSS components that can be
used to represent FSPNs elements. In the next sections we

show how these HFSS components can be combined to create
arbitrary FSPNs.

Continuous Flow HFSS Model
We start the HFSS representation of FSPNs by considering
the continuous FSPNs of Figure 2. The mapping from the
FSPN to the corresponding HFSS network model is straight-
forward and is depicted in Figure 10.

Figure 10 . HFSS continuous flow network model.

Reservoir P0 samples the input rate from transitions T1, T2
and T3, and any change in the number of tokens, forces a sam-
pling operation in P0. Thus P0 input rate is updated whenever
there is a change in any input transition. The main difference
between the FSPN of Figure 2 is that the link p0 → t2 be-
comes mapped into a HFSS link t2 → p0. FSPN link di-
rection indicates the fluid flow, while in HFSS the fluid flow
needs to be numerically defined as either positive or negative
as shown in Listing 3 of the next section.

Discrete Flow HFSS Model
The mapping of the FSPN of Figure 1 into a HFSS model
is represented in Figure 11. FSPN places and transitions are
mapped into the corresponding HFSS components described
before. The conflict manager completes the HFSS model
since it is required to handle the access to (common) places.

We can observe that the structure of the original PN is mainly
preserved. Transition T0 reads from places P0 and P1 and
it produces tokens to places P2 and P3. However, the arity
of the arcs is stored in ports input function and it is not ex-
plicitly represented in the Figure 11. The conflict manager
is introduced to explicitly represent the algorithm for solving
collisions when transitions access to the same resources. This
element is not used in PN diagrams and need to be specified
by some textual annotation. Our approach makes it possible
to define different strategies and making them reusable HFSS
components that can be chosen according to the system re-
quirements.

SIMULATION RESULTS
For the validation of the HFSS representation of FSPNs we
use the petri net of Figure 3, with parameters L = 90,N = 5,
µ = 1/4.0, λ = 1/1.5, a = 50, and d = 14. The input rate of

879

Figure 11 . HFSS discrete flow network model.

p0 is set by HFSS-Groovy method influencers defined
by Listing 3.

1influencers("P0", ["T0", "T1"],

2{List xc->

3def res = xc.filterByPort(["number"]);

4return res[0].value() * 50 - res[1].value() * 14;

5}, {List xd->

6def res = xd.filterByPort(["number"]);

7return res;

8});

Listing 3 . P0 input function.

Simulation results for the contents of reservoir p0 are depicted
in Figure 12, where discrete flows are represented by squares
and the continuous flow is piecewise linear.

Figure 12 . Marking of place p0.

As can be observed from the graphic, the number of transi-
tions is very small (#transitions = 53), since the HFSS rep-
resentation exploits the piecewise constraint of input flows to
achieve an efficient simulation. On the contrary, a general
propose ODE solver like Adams, Runge-Kutta or quantiza-
tion would require a higher number of transitions. Given that
HFSS models can produce continuous output flows, reservoir

continuous trajectory can be calculated without involving any
transition, reducing the computation cost.

RELATED WORK
To the best of our knowledge we have developed the first
modular description of FSPNs. The representation of Petri
Nets in discrete event formalisms, like DEVS, have been de-
scribed [9]. However, these approaches relate only to non-
timed PNs with single server semantics exhibiting very sim-
ple requirements when compared to the FSPNs modeled in
this paper. Although a DEVS representation of a FSPN could
be developed, it would become more complex than the cor-
responding HFSS representation, due to the lack of sampling
semantics in the DEVS formalism. The reuse of DEVS mod-
els would also be compromised since the representation of
sampling in a discrete event formalism requires the adaption
of FSPN models, like places and transitions, to every specific
topology [4]. The discrete event simulation of FSPNs has
been described in [5]. This work, however, provides a de-
scription of an ad hoc implementation not based on a modu-
lar representation. Implementations based on fixed sampling
rates have been developed [6], but results are dependent on
the sampling rate, and loose accuracy when compared with
the exact results achieved by HFSS models. The use of HFSS
sampling provides a simplification in the messages required
to retrieve information. Taken for example the conflict man-
ager component, it requires one sampling operation to re-
trieve token information from all connected places. The al-
ternative discrete event representation would require sending
a message to each place and then wait for every answer to
arrive. HFSS sampling enables all this information to be ex-
changed in a single atomic operation, being easier to repre-
sent, while promoting model reuse. Domain Specif languages
(DSLs) have been developed to create simulations from (non-
timed) PNs. However, these approaches require the develop-
ment of specific compilers in order to be applied [7]. On the
contrary, our approach based on a domain specific (FSPN) li-
brary, represented in Figure 13 makes the mapping between

880

FSPNs and simulations very simple, removing the need for
expensive compilers. If a compiler is required, its creation
becomes simplified since it only needs to map FSPNs into
a network of HFSS components as described in this paper.
Our conjecture is that the approach of Figure 13 can also be
applied to other modeling formalisms where HFSS represen-
tations (libraries) can be developed.

Figure 13 . Library-based model generation.

While modeling formalisms can have a discrete event repre-
sentation at the atomic level [12], this has little relevance in
the description of complex models. The representation, for
example, of FSPNs by a composition of basic components is
of utmost importance if our aim is to simply the automatic
translation of FSPNs into executable simulation models. As
shown before, our modular representation based on HFSS
makes it very simple to map a FSPN into a HFSS network,
requiring no code generation since it is based on the reuse
of the predefined components. On the contrary, a solution
based on the transformation of FSPNs into one (complex)
atomic model will mostly require a compiler to perform the
task. Moreover, this equivalent atomic model will become
very difficult to be understood by a (human) modeler. Ad-
ditionally, our modular approach enables FSPNs to be eas-
ily combined with components from other domain specific li-
braries to achieve complex representations based on multiple
formalisms.

Another advantage of the HFSS modular representation re-
lates to compiler maintenance and optimization. A compiler
producing code form scratch, requires the mapping of FSPNs
into one large HFSS atomic model, making it very difficult
the future optimizing of the generated code, since transfor-
mations would become hard-coded into the compiler. On the
contrary, a light compiler enabled by our approach, keeps the
libraries outside the code generation procedure, greatly sim-
plifying maintenance and optimization operations, that can be
made through library improvement without requiring chang-
ing the compiler itself.

CONCLUSION AND FUTURE WORK
We have developed a modular representation of FSPNs based
on the HFSS formalism that enables a direct map of petri net
elements, like places and transitions, into a HFSS compo-
nents. The HFSS representation preserves the structure of the
original FSPN, becoming very easy to develop and amenable
to a manual translation. Our approach makes it also possible

FSPNs to be defined directly from a library of HFSS com-
ponents without requiring the support for translation/gener-
ation tools. As future work we plan to model Hybrid Petri
Nets [6], an alternative to FSPNs with more powerful seman-
tics, namely the ability to describe inhibitor arcs associated
with continuous places. The methodology described here for
creating HFSS simulation models from FSPNs will also be
applied to other formalisms.

REFERENCES
1. Barros, F. Towards a theory of continuous flow models.

International Journal of General Systems 31, 1 (2002),
29–39.

2. Barros, F. Dynamic structure multiparadigm modeling
and simulation. ACM Transactions on Modeling and
Computer Simulation 13, 3 (2003), 259–275.

3. Barros, F. Semantics of discrete event systems. In
Distributed Event-Based Systems (2008), 252–258.

4. Barros, F., and Zeigler, B. Model interoperability in the
discrete event paradigm: Representation of continuous
models. In Modeling and simulation: Theory and
practice, G. Bekey and B. Kogan, Eds. 2003.

5. Ciardo, G., Nicol, D., and Trivedi, K. Discrete-event
simulation of fluid stochastic Petri nets. IEEE
Transactions on Software Engineering 25, 2 (1999),
207–217.

6. David, R., and Alla, H. Discrete, Continuous, and
Hybrid Petri Nets. Springer, 2005.

7. Esser, R., and Janneck, J. A framework for defining
domain-specific visual languages. In OOPSLA
Workshop on Domain-Specific Visual Languages (2001).

8. Horton, G., Kulkarni, V. G., Nicol, D. M., and Trivedi,
K. S. Fluid stochastic petri nets: Theory, applications,
and solution techniques. European Journal of
Operational Research 105 (1996), 184–201.

9. Jacques, C., and Wainer, G. Using the C++ DEVS
toolkit to develop Petri Nets. In Summer Computer
Simulation Conference (2002), 252–258.

10. Ramchandani, C. Analysys of Asynchronous Concurrent
Systems by Timed Petri Nets. PhD thesis, Massachusetts
Institute of Tecnology, 1974.

11. Trivedi, K., and Kulkarni, V. FSPNs: Fluid stochastic
Petri Net. In Application and Theory of Petri Nets,
Lecture Notes in Computer Science, vol. 691 (1993),
24–31.

12. Vangheluwe, H., de Lara, J., and Mosterman, P. J. An
introduction to multi-paradigm modelling and
simulation. In AI, Simulation and Planning in High
Autonomy Systems (2002), 9–20.

13. Zeigler, B., Praehofer, H., and Kim, T. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Academic
Press, 2000.

881

