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ABSTRACT   

Wireless backhauling with renewable powered base stations (BSs) provides an attractive and cost-effective solution to 

enabling ultra dense cellular networks to meet the ever-increasing traffic demands of massive Internet of Things 

applications. To address the spectrum shortage in wireless backhaul networks, we propose to offload the delay-tolerant 

data traffic to the shared spectrum bands and jointly consider BSs' energy consumption, spectrum allocation, and data 

routing to maximize the amount of delivered data. Numerical results demonstrate that the adopted sequential fixing 

algorithm implements a near-optimal solution and our scheduling strategy significantly outperforms the conventional 

strategies which only considers spectrum allocation. Moreover, the impacts of resources availability on the performance 

of obtained strategies are analyzed. 
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1. INTRODUCTION  

Wireless backhauling is widely recognized as a promising solution to facilitate cost-effective and flexible deployment of 

ultra dense cellular networks, which attracts research interests from both academia and industries[1]. Unfortunately, given 

the limited spectrum resources over the backhaul links, the usage of base station (BS) with wireless backhaul 

connections faces significant challenges to handle the soaring traffic generated from the rapidly growing Internet of 

Things (IoT) applications[2]. Therefore, an effective approach to address spectrum shortage in the wireless backhaul link 

and support the tremendous traffic demands from IoT devices, is in dire need. 

Licensed spectrum sharing, which allows BSs to opportunistically exploit under-utilized spectrum bands in the 

environments for backhaul transmissions, is a useful way to meet this challenge. However, the application of shared 

spectrum for backhaul transmissions confronts a few challenges. On the one hand, transmissions on the shared spectrum 

is less reliable since the availability of shared spectrum is subject to the activities of the incumbent users. On the other 

hand, the licensed spectrum bands available for data transmission is spatially varying, which could lead to inefficient 

spectrum utilization without appropriate coordination. 

The utilization of shared spectrum bands for backhaul transmissions is even more complex, since that a significant 

number of BSs are expected to be powered by renewable energy. Notice that renewable energy powered BSs have 

already attracted interests from vendors and operators, such as Ericsson and China Mobile, due to low cost and easy 

deployment[3],[4]. These BSs harvest energy from ambient environments, such as solar power, wind energy, and thermal 

energy. Therefore, the achievable data rate of each BS cannot be accurately predicated because of the uncertainty of the 

amount of the harvested energy. To efficiently utilize the shared spectrum bands for data delivery, the scheduling of BSs' 

transmissions should jointly consider the spatial variations in spectrum availability and the uncertain energy supply. 

1.1 Related Work 

As one of the key technologies to meet the targets in fifth-generation (5G) networks4, wireless backhaul networks with 

renewable energy powered BSs have demonstrated strength by routing strategies joint with energy allocation in the past 

few years[5],[6],[7],[8]. In addition, the huge wireless backhaul traffic over congested spectrum is also a harsh problem, 

which is addressed via spectrum sharing by radio spectrum policy group (RSPG) in [9]. To enable efficient spectrum 

sharing in wireless backhaul network, the design of routing strategies is jointly addressed with spectrum resource 

allocation in [10][11][12]. However, these schemes either ignore the impact of spectrum allocation or the effect of 
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energy utilization on system performance. Thus, they may result in inefficient resource utilization during the backhaul 

transmissions when applied to wireless backhaul networks with renewable energy powered BSs. 

1.2 Contribution 

To address the aforementioned challenges, we propose to carry delay-tolerant data traffic over the less reliable shared 

spectrum bands so that operators could save more precious licensed band to support the backhaul transmissions of the 

increasing delay-sensitive services. Then, we design the scheduling strategies for BSs by formulating an optimization 

problem where spectrum allocation, data routing, and BSs' energy consumption are jointly considered. In our 

formulation, the uncertain supply of renewable energy is characterized via a probabilistic constraint, which is 

reformulated with a confidence level to facilitate solution finding. Finally, we demonstrate the effectiveness of the 

obtained scheduling strategies through extensive performance evaluation. 

2. SYSTEM MODEL 

2.1 Spectrum Availability Model 

We consider wireless backhaul network with BSs 𝒩 = {1, … , N}. Among these BSs, a set of BSs are powered by 

renewable energy. As shown in Figure.1, wireless backhaul network is responsible for the connections of end users to the 

core network. To save operator's own bands for time-sensitive data transmissions, BSs opportunistically access the 

shared licensed bands for delay tolerant data transmissions. There are totally ℳ shared licensed bands, denoted as 

ℳ = {1, … , M}, and the available bands at BS i is a subset of ℳ, represented by ℳ𝒾 ⊂ ℳ, which is determined by 

activities of primary users around the BS i. Here, ℳ𝒾 and ℳ𝒿 are possibly the same when BS i and j become close 

enough. 

 

Figure 1. Illustration of wireless backhaul network. 

2.2 Uncertain Energy Supply Model 

In this paper, BSs harvest certain amount of energy to meet the communication demand in wireless backhaul network. 

The available energy Ei on BS i consists of initial storage in battery E0 and harvested energy Ehi, i.e., Ei = E0 +
Ehi, where E0 is a constant and Ehi might be converted from any form of energy in the unstable environment (e.g. 

solar power, wind power, and even hydro power, etc.). In addition, the maximum amount of energy available on BS i is 

Ei, which represents the storage capacity of the battery.  

Notice that the harvested energy Ehi is intermittent and uncertain over time, e.g., with energy fluctuation caused by 

unstable solar, wind or even hydraulic patterns, which is different from conventional time-invariant energy sources. 

Therefore, to describe this key feature of renewable energy, Ehi on BS i (i ∈ 𝒩) is modeled as a random variable 

considering the unpredictable arrivals of energy within a control period of T. 

The coarser Ehi is modeled, the more significant details w.r.t. arrivals of energy are ignored, which could possibly 

confound the scheduling decision and lead to the failure of communication. In this paper, we assume the time between 

two arrivals to be an exponential random variable, which means that the harvested energy packets of e0 (Joule) arrives 

following a Poisson process[13]. 
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2.3 Propagation Model 

Let P be the transmit power of BSs. Considering the receiver sensitivity, the prerequisite for the successful transmission 

from BS i to j is that the received power Pj = gijP at BS j exceeds a fixed threshold PT, where gij is the power 

propagation gain.  

Let n, dij be the path loss exponent and the distance between BSs i and j, respectively. Then gij can be expressed as 

 g_{ij}  =  γd_{ij}^{−n} (1) 

where γ is an antenna related constant. 

To facilitate problem formulation, we define RT as the transmission range of BSs. From (1) and the expression of Pj, 

RT can be obtained as 

 RT = (
γP

PT

)

1
n

. (2) 

Thus, BS j needs to be within the transmission range of i to enable the communication. 

Similarly, another prerequisite for correct reception at BS j is that the interference received power at BS j due to the 

transmission of BS x(x ≠ i, j) is smaller than a threshold PI. Let RI be the interference range of BSs. Based on (1) and 

the expression of Pj, RI is determined by 

 RI = (
γP

PI

)

1
n

. (3) 

The definition of RI  implies that BS j  needs to be out of the interference range RI  of BS x  to enable the 

communication with BS i. 

The transmission rate on link (i, j), i.e., the link between BS i to BS j, over band m is 

 Cij
m = Wm log2 (1 +

Pgij

η
), (4) 

where Wm is the bandwidth of band m and η is the noise power. 

3. THE DESIGN OF SCHEDULING STRATEGIES 

In this section, we will provide detailed discussion on the design of BS scheduling strategy within a control period of T 

by jointly considering spectrum allocation, data routing and BSs' energy consumption. 

3.1 Linking Schedule and Routing Under Uncertain Energy Supply 

3.1.1 Routing constraints 

To ensure the data is finally delivered to the data networks, the amount of data carried over different links should satisfy 

the following routing constraints. First, the amount of data outgoing from the source BS s should equal to the amount of 

data to be transmitted, r, i.e., 

 ∑ fsj

j∈Ts

= r, (5) 

and there is no incoming flow to BS s, i.e., 

 ∑ fis

i∈Ts

= 0, (6) 

where Ts represents ∪m∈ℳ𝓈
Ts

m. Here Ts
m is the set of BSs within the transmission range of BS i over band m. 

Second, the amount of flow coming into the destination BS d should equal to the amount of flow coming out from the 

source BS, i.e.,  
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 ∑ fid

i∈Td

= r, (7) 

and there is no outgoing flow from d, i.e., 

 ∑ fdj

j∈Td

= 0, (8) 

where Td represents the set of BSs within the transmission range of BS d over all bands. 

Third, the flow coming into BS i and the flow coming out from BS i should be the same for any intermediate BS i, 
i.e.,   

 ∑ fij

j≠s

j∈Ti

= ∑ fpi

p≠d

p∈Ti

. (9) 

3.1.2 Uncertain energy constraints 

Generally, the overall energy consumption of BS i should not exceed the available energy Ei = E0 + Ehi. However, 

Ehi is a random variable determined by Ehi = nie0, where ni is the number of harvested energy packs in control 

period T and follows a Poisson process with λi. Therefore, Ei is also a random variable, where i ∈ {1, … , N}. 

Under the unpredictable energy supply, as a tradeoff between the efficiency of energy utilization and the quality of 

scheduling strategies, we require the energy consumption on each BS to not exceed the amount of available energy with 

high probability, i.e., 

 Pr{ ∑ ∑ (Eij
m + Epi

m)

j,p∈Ti
mm∈ℳ𝒾

≤ Ei} ≥ α, (10) 

where α represents the confidence level and Eij
m is the energy allocated used to support transmission from BS i to BS 

j over band m. According to the definition of Ei, (10) can be reformulated as 

 ∑ ∑ (Eij
m + Epi

m)

j,p∈Ti
mm∈ℳ𝒾

≤ 𝒳α(Ei), (11) 

where the value of Ei exceeds that of 𝒳α(Ei) with probability of α. Eij
m determines the amount of data transmitted 

over link (i, j) within the control period T. Specifically, we have  

 cij
m =

Eij
mCij

m

PT
, (12) 

where cij
m is the amount of data which can be transmitted within the control period T. 

Then, cij can be rewritten as 

 cij = ∑
sij

mEij
mCij

m

PT
m∈ℳ𝒾∩ℳ𝒿

 = ∑
W2

mlog
(1 + Pgij/η)

PT
Eij

m

m∈ℳ𝒾∩ℳ𝒿

sij
m (13) 

3.1.3 Link scheduling constraints 

To facilitate the formulation of link scheduling constraints, we define a binary variable sij
m as 

 sij
m = {

1,  band m is allocated to link (i, j),        

0, band m is not allocated to link (i, j).
 (14) 

Then, the link scheduling constraints can be formulated as 
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 ∑ sij
m

j∈Ti
m

≤ 1, (15) 

 
sij

m + ∑ sjp
m

p∈Tj
m

≤ 1, 
(16) 

 
sij

m + ∑ spq
m

q∈Tp
m

≤ 1, p ∈ Pj
m, p ≠ i, (17) 

where (14) indicates that one BS cannot transmit to multiple BSs over the same band, (15) represents self-interference 

which means BSs cannot transmit and receive simultaneously on the same band, and (16) represents inter-interference 

which means the receiving BS cannot be in the interference range of any other transmitting BS over the same band.  

Although (14)-(16) restrict the routing strategies from the view of interference, it is still necessary to guarantee that the 

overall flow rate fij over link (i, j) is below the channel capacity cij, i.e., 

 fij ≤ cij. (18) 

3.2 Scheduling Strategy 

In this paper, we aim to design a scheduling strategy for BSs to maximize the amount of data delivered through the 

wireless backhaul network by jointly considering spectrum allocation, data routing, and BSs' energy consumption. 

Notice that if (7), (8) and (9) are satisfied, it can be easily verified that (5) and (6) can be satisfied without further 

constraints. Based on aforementioned discussions, the design of the BSs' scheduling strategy can be formulated as the 

following mixed integer linear programming (MILP). 

MILP: 

max ∑ fid

i∈Td
m

 

s.t. ∑ sij
m

j∈Ti
m

≤ 1 

sij
m + ∑ sjp

m

p∈Tj
m

≤ 1 

sij
m + ∑ spq

m

q∈Tp
m

≤ 1, p ∈ Pj
m, p ≠ i 

∑ ∑ (Eij
m + Epi

m)

j,p∈Ti
mm∈Mi

≤ 𝒳α(Ei) 

fij ≤ ∑
Wm log2(1 + Pgij/η)

PT
m∈Mi∩Mj

Eij
msij

m 

∑ fij

j≠s

j∈Ti

= ∑ fpi

p≠d

p∈Ti

 

∑ fis

i∈Ts

= 0 

∑ fdj

j∈Td

= 0 
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sij
m = {0,1},  fij ≥ 0, 

where sij
m are binary optimization variables and fij, Eij

m are linear optimization variables.  

By solving this MILP, the optimal BSs' scheduling strategy can be obtained. As reported in [14], even though MILPs are 

generally NP-hard, good sub-optimal solutions can be efficiently obtained via the sequential fixing (SF) algorithm, 

which is an iteration of relaxed problem solving and binary variables fixing. In the following, we will verify the 

effectiveness of the obtained scheduling strategy and and investigate how the performance of the wireless backhaul 

network varies with the availability of spectrum resources and harvested energy. 

4. PERFORMANCE EVALUATION 

In this section, we first demonstrate the scheduling strategy obtained through the SF algorithm by comparing its 

performance with that of the optimal solution. Then, we will investigate how the performance of the obtained scheduling 

strategy varies with the availability of spectrum resources and harvested energy. In our evaluation, the SF algorithm is 

implemented with lp solve 5.5 and the optimal solution is obtained with MOSEK embedded in CVX. All our evaluations 

are performed on a computer with 4.8 GHz CPU and 32 GB RAM.  

4.1 Network 

We consider a network consisting of N = 16 BSs in a  50 × 50 m2 area. Each shared licensed band with a bandwidth 

of 200MHz can be opportunistically accessed by 4 close BSs in a restricted area, leveraging which the network provides 

abundant available links as different licensed bands support different areas. We set the path loss exponent n and the 

antenna related constant γ in (1) to be 4 and 1, respectively. The transmission range, interference range and confidence 

level are set to be 20 m, 30 m and α = 0.9. The number of energy packets arrives at BSs {1,2, … , N} during the control 

period are Poisson random variables with parameters {λ1, λ2, … , λN}. The positions of the BSs are randomly sampled 

from the area of interest by following a uniform distribution. 

4.2 Results and Analysis 

In Figure. 2, the achievable rate of the scheduling strategy obtained from the SF algorithm and that of the optimal 

solution are compared in 50 randomly generated topologies with the same number of available bands M = 7 and 

Poisson parameter λi = 32, i = 1, … , N. It is observed from Figure. 2 that the scheduling strategy obtained via the SF 

performs closely to that of the optimal solution. This indicates SF algorithm can give the near optimal solution with 

much lower complexity. Thus, we will compare the performance of different strategies and study the impacts of different 

resources on network performance using the solution obtained from the SF algorithm. 

 

Figure 2. The comparison between the performance of the SF algorithm~ and that of the optimal solution. 

In Figure. 3, we compare the proposed scheduling strategy, which jointly considers spectrum allocation and BSs' energy 

consumption, with the conventional strategy that only considers spectrum allocation. The conventional strategy is 
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obtained as the optimal routing strategy without energy constraints. We consider 50 randomly generated topologies with 

13 available bands and inhomogeneous Poisson parameters, where λi = 2 on the BS i which is closet to the source and 

λj = 25 on other BSs. Figure. 3 shows that our approach significantly outperforms the conventional strategy, which 

demonstrates the effectiveness of our approach.  

Figure. 4 shows the impact of Poisson parameters λ. and the number of available bands M on the achievable rate in the 

wireless backhaul network, which indicates how the variations in resource availability affect the performance of the 

wireless backhaul network. 

 

Figure 3. The comparison between the performance of the our strategy and the upper bound of conventional strategy. 

From Figure. 4, the achievable rate increases with the Poisson parameters λ. This observation matches well with our 

intuition since higher λ. implies more harvested energy at each BS and thus more data to be transmitted. Another 

observation from Figure. 4 is that the increase of available bands also leads to an increase in achievable rate, since more 

bands provide more communication resources to support data transmissions in the wireless backhaul network. Moreover, 

Figure. 4 indicates that energy and spectrum resources need to be designed together to facilitate efficient resource 

utilization. For example, when λ = 18 fits M = 12, operators cannot benefit by increasing λ. beyond 18 or M beyond 

12. 

 

Figure 4. The achievable rate v.s. network resources. 
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5. CONCLUSION 

To meet the soaring traffic demands of IoTs devices in wireless backhaul networks with BSs powered by renewable 

energy, we proposed to offload delay-tolerant data traffic to the shared spectrum bands so that more reliable spectrum 

resources can be saved for backhaul transmissions of the delay-sensitive services. To efficiently utilize the shared 

spectrum bands for data delivery, we design a scheduling strategy for BSs by formulating an optimization problem where 

spectrum allocation, data routing, and BSs' energy consumption were jointly considered. Then, we adopted an efficient 

SF algorithm for solution finding. Through extensive numerical results, we demonstrated that our strategies achieve 

higher rate than the existed strategies which only considers spectrum allocation. We also evaluated the impacts of the 

available resources on the amount of data which can be delivered in the wireless backhaul networks. 

REFERENCES 

[1] S. Lee, G. Narlikar, M. Pal, G. Wilfong, and L. Zhang. Admission control for multihop wireless backhaul 

networks with QoS support[C]. Proceedings of IEEE Wireless Communications & Networking Conference, 

USA: IEEE, 2006. 92-97. 

[2] X. Liu and N. Ansari. Toward green IoT: Energy solutions and key challenges[J]. IEEE Communications 

Magazine, 2019, 57(3):104-110. 

[3] J. Gozalvez. Green radio technologies[J]. IEEE VEH TECHNOL MAG, 2010, 5(1): 9-14. 

[4] M. Belfqih et al. Joint study on renewable energy application in base transceiver stations[C]. Proceedings of 

International Communications Energy Conference, 2009. 1-4. 

[5] B. U. Kazi and G. A. Wainer. Next generation wireless cellular networks: ultra-dense multi-tier and multi-cell 

cooperation perspective[J]. Wireless Network, 2019, 25:2041-2064. 

[6] S. Rostami, K. Heiska, O. Puchko, G. P. Koudouridis, K. Leppanen and M. Valkama. Wireless backhauling for 

energy harvesting ultra-dense networks[C]. Proceedings of IEEE International Symposium on Personal, Indoor 

and Mobile Radio Communications, Italy: IEEE, 2018. 1807-1812. 

[7] D. Li, G. Zhang, Y. Xu, H. Zhao and F. Tian. Integrating distributed grids with green cellular backhaul: Ffrom 

competition to cooperation[J]. IEEE Access, 2018, 6:75798-75812. 

[8] A. Alqasir, K. Aldubaikh and A. E. Kamal. Integrated access and backhauling with energy harvesting and 

dynamic sleeping in HetNets[C]. Proceedings of IEEE International Conference on Communications, virtual 

platform: IEEE, 2021. 92-97. 

[9] V. Anis and S. Weiss. Multi-radio access network assignment using dynamic programming[C]. Proceedings of 

SoftCOM, USA: 2006. 1-6. 

[10] Radio Spectrum Policy Group (RSPG). RSPG report on spectrum issues on wireless backhaul[R].  

EUROPEAN COMMISSION, Brussels, Belgium, 2015, 15-607. 

[11] R. I. Rony, E. Lopez-Aguilera and E. Garcia-Villegas. Cooperative spectrum sharing in 5G access and backhaul 

networks[C]. Proceedings of International Conference on Wireless and Mobile Computing, Networking and 

Communications, Cyprus: 2018. 239-246. 

[12] M. Jaber and A. S. Alam. A reinforcement learning approach for wireless backhaul spectrum sharing in IoE 

HetNets[C]. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio 

Communications, UK: IEEE, 2020. 1-6. 

[13] C. Zhang, H. Wu, H. Lu and J. Liu. Throughput analysis in cache-enabled millimeter wave HetNets with access 

and backhaul integration[C]. Proceedings of IEEE Wireless Communications & Networking Conference, Korea: 

IEEE, 2020. 1-6. 

[14] L. Pang, H. Zhao, Y. Zhang, et al. Energy-efficient resource optimization for hybrid energy harvesting massive 

MIMO systems[J]. IEEE System Journal, 2021. 

 

Proc. of SPIE Vol. 12175  1217507-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


