
A comparative study of pending event set implementations
for PDEVS simulation

Romain Franceschini
University of Corsica

UMR SPE 6134 CNRS
UMS Stella Mare 3460

r.franceschini@univ-corse.fr

Paul-Antoine Bisgambiglia
University of Corsica

UMR SPE 6134 CNRS
UMS Stella Mare 3460

pa.bisgambiglia@univ-corse.fr

Paul Bisgambiglia
University of Corsica

UMR SPE 6134 CNRS
UMS Stella Mare 3460
bisgambi@univ-corse.fr

ABSTRACT
The choice of a particular event-list implementation can dra-
matically improve or reduce performance of a discrete event
simulation (DES). For more than 40 years, several data struc-
tures had been proposed to address this problem. We present
new empirical results using the parallel discrete event system
specification (PDEVS) formalism and a DEVStone bench-
mark. Similar analyzes were previously conducted, the last
one being published in 2007. This paper includes most re-
cent proposals, particularly the LadderQueue [19], evaluated
using the DEVS-Ruby simulator.

Author Keywords
Discrete event simulation, DEVS, PDEVS, DEVS-Ruby,
Pending event set, PES, Future event set, DEVStone,
benchmark, comparison, performance analysis

ACM Classification Keywords
I.6.7 SIMULATION AND MODELING: Simulation Support
Systems — Environments; I.6.8 SIMULATION AND MOD-
ELING: Types of Simulation — Discrete event

INTRODUCTION
Discrete event systems (DES) represent many technological
and engineering systems such as communication networks,
computer networks, manufacturing systems, transportation
systems, natural systems, and more. DES are driven by
events. These events have to be scheduled and sorted by ex-
ecution time. Large-scale models can be long to simulate
because there are many events to manage. Among the ac-
celeration methods (parallelization, etc.), we suggest to study
data structures to hold scheduled events. Our interest focuses
on DEVS (Discrete EVent system Specification) [22], which
is a formalism for modeling systems based on the DES the-
ory [5]. A Discrete Event System (DES) is a discrete-state,
event driven dynamical system in which the state space is de-
scribed by a discrete set, and states evolve in terms of asyn-
chronous occurrence of discrete events over time. In DES
theory, states, events and transition functions are defined by
the following tuple: M = 〈S, s0, λ, δ,Σ〉 where: S is the
set of states; Σ is the set of events containing detectable (i.e.
an event is detectable if it produces a measurable change in
the system output) and undetectable events, which are gener-
ally fired asynchronously; δ : S × Σ → S the state transi-
tion function; λ : S × Σ → Σd the output function, where

TMS/DEVS 2015 April 12-15, 2015, Alexandria, VA
Copyright © 2015 Society for Modeling & Simulation International (SCS)

Σd and Σud the set of detectable and undetectable events, re-
spectively Σ = Σd ∪ Σud; and s0 is the initial state vector.
Many modeling approaches of DES have been proposed and
developed, including the DEVS formalism.

The DEVS formalism allows composition of reusable mod-
els. It is an open, flexible formalism with a great capacity
for extension. Recent studies have shown that DEVS may be
considered as a multi-formalism because it allows encapsula-
tion of other modeling formalisms. This capacity for open-
ing and extension is very interesting, as the representation of
the various entities which constitute a complex system can
be accomplished by using the most appropriate methods. In
DEVS, the number of models and the complexity induced by
their couplings are an issue in terms of performance, partic-
ularly because of the events exchanged. Generally, the way
events are handled in DES can dramatically improve or re-
duce simulation performance. This problem is commonly
known as the pending event set problem (PES).

The pending event set (PES) problem is one of the oldest and
most important problems in the field of discrete event simu-
lation [10]. A great research effort was made during the last
40 years to find the most appropriate data structures to hold
pending events, through comparative studies and new orig-
inal data structures claiming amortized constant time com-
plexity. Several interesting studies comparing priority queue
data structures available were already conducted, the first be-
ing published in [20]. Other comparisons appeared as new
algorithms were proposed [12, 11, 13, 15] and the most re-
cent study [10] was for the first time realized with the PDEVS
formalism in mind.

In this paper, we present new experimental performance re-
sults using two methods. An experiment model measuring
performance of queue operations inspired by a PDEVS sim-
ulation and real PDEVS-based simulation using the DEVS-
tone [21] benchmark and the DEVS-Ruby simulator [8]. We
include most recent proposals, particularly the LadderQueue
[19].

The remainder of this paper is structured as follows. Section
2 describes the pending event set problem and several priority
queue data structures suitable for implementing the pending
event set. Section 3 presents performance measurement
techniques and tools used to generate experimental results.
Conclusions are found in section 4.

836

THE PENDING EVENT SET
In this section, we describe the pending event set problem in
discrete event simulation and we give an overview of priority
queues for implementing the pending event set.

Problematic
In discrete event simulations, a system is represented by one
or several entities influencing at each other through messages,
or scheduled events. The current simulation time of the sys-
tem depends on those events. As the simulation advances, the
clock is skipped to the timestamp of the next scheduled event
to occur. The pending event set (PES) represents the set of
all future events to be evaluated, some of these pending as a
result of previously simulated events. Regardless of the point
in time at which events are scheduled, they are executed in
a strict order of precedence. The way the pending event set
performs these insertion and deletion operations has a crucial
impact on the overall simulation execution time, especially as
systems become more complex.

Typically, the future event set is represented as a priority
queue data structure with two basic operations: enqueue and
dequeue. The first inserts an event to the set and the latter re-
move and returns the event with the highest priority (the lower
the timestamp is, the higher is the priority). Note that if sev-
eral events scheduled at the same time, all are removed. But
several discrete event simulation systems such as the DEVS
formalism requires another important operation: delete. In-
deed, if the execution of one event can involve the scheduling
of any number of events, it also can lead to the cancellation
of a queued pending event, hence the delete operation.

For better understanding, consider how PDEVS models are
simulated. In PDEVS, models report the next timestamp
at which their δint internal transition should be activated
through the ta (time advance) function. But before execut-
ing the internal transition, the simulator will give a chance
to the model to throw some output to its influencees by ex-
ecuting the λ function. When the influenced model receives
input through the δext external transition, it leads to a new
state and maybe a new timestamp of activation and thus, a
new call of the ta function. If a model was scheduled for
the current simulation time t its the δcon confluent transition
that is activated (which default behavior is to activate δint and
δext sequentially) to give a chance to the model to handle the
conflict. Executing a δ transition (δint or δext or δcon) func-
tion at time t will result in a change of state from St to St+ta.
Because a δext and a δcon transition can update the timestamp
of next activation of a model while it was already scheduled
(at t or further in the future), the model need to be adjusted
(or deleted and re-inserted) in the event set.

Among a wide range of general-purpose priority queue algo-
rithms available, many recent publications proposed pending
event set algorithms alternatives for discrete event simulation.
The next subsection gives an overview of commonly used pri-
ority queues along with these new suggested algorithms.

Priority queue data structures
A priority queue differs from a regular queue in that each el-
ement is ordered by its associated priority. They are used in

a wide range of applications such as bandwidth management,
operating systems, data compression and discrete event sim-
ulation. There are a variety of ways to implement a priority
queue, more or less naively. Here we present the non exhaus-
tive list of priority queue data structures that we implemented
in DEVS-Ruby [8]. Table shows operations complexity in
big O notation for each structure. We specify expected and
worst amortized performance if available or worst case per-
formance in each column. Excepted for the most inefficient
ones based on simple lists, they fall in two different groups:
tree based or multi-list based algorithms. The first includes
priority queues based on Binary Heap, Fibonacci Heap, Pair-
ing Heap, Splay Trees [18] and the latter includes Calendar
Queue [4], Lazy Queue [16], Ladder Queue [19]. Note that
this study is focused on sequential pending event set algo-
rithms and thus, do not consider parallel variants such as [7]
or [9] which improves performance of their counterparts.

Structure enqueue dequeue delete
MinimalList O(1) O(n) O(n)
SortedList O(n

log(n)),
O(n2)

O(1) O(log(n))

BinaryHeap O(1),
O(log(n))

O(log(n)) O(log(n)),
O(n)

SplayTree O(log(n)) O(1),
O(log(n))

O(log(n)),
O(n)

CalendarQueue O(1), O(n) O(1), O(n) O(1), O(n)
LazyQueue O(1), O(n) O(1), O(n) O(1), O(n)
LadderQueue O(1), O(n) O(1), O(n) O(1), O(n)

Table 1. Worst case or expected and worst amortized performance of
listed priority queues in Big O notation.

Simple priority queues
Sorted List
Elements in the sorted list are kept sorted. When enqueue, the
element is appended is a sorted fashion. Depending on the
sorting algorithm, this operation can be done in O(n log(n)).
The dequeue operation is constant and the delete operation
can be done in O(log(n)) using a binary search algorithm,
since the list is always sorted.

Minimal List
The minimal list is a simple list where elements are kept un-
sorted. The element with the highest priority is cached. The
dequeue operation has extremely bad performances (O(n)
complexity) because the entire list has to be iterated in search
of the new highest priority.

Tree oriented priority queues
Binary Heap
A binary heap is binary tree structure which satisfies the heap
ordering property. The element with the highest priority is
always stored at the root. It is a common implementation
of a priority queue that use only a single list as an internal
representation. Its performance offers a O(log(n)) complexity
for all operations.

Splay Tree

837

The Splay Tree is a self-adjusting balanced binary search tree
invented by D. Sleator and R. Tarjan [18] back in 1985. It
is essentially a binary tree with particular access and update
rules that allows recently accessed elements being quick to
find. Common operations are combined with the splay op-
eration, which consist in placing a targeted element to the
root of the tree by re-arranging the tree while maintaining el-
ements ordered. The shape of splay trees is not constrained,
and varies based on what lookups are performed unlike other
trees such as the AVL tree, which structure is constrained at
all times so that the height of the tree never exceeds O(log n).

Multi-list oriented priority queues
Calendar Queue
Suggested in 1988 by Brown [4], the Calendar Queue was
not the first multi-list structure to appear. The idea of divid-
ing the queue elements appeared with the Two List [3], which
holds elements with highest priority into a short sorted list
and keeps elements with lower priority into an unsorted list.
The Calendar Queue was inspired by the way humans solves
the problem of ordering a future event set with desk calen-
dars. It is essentially composed of an array of buckets, each
bucket containing an ordered list of events that fall within
a particular time gap. The time interval associated to each
bucket represent a day whereas the array of total buckets rep-
resent the time interval of a year. Figure 1 shows its structure.
During enqueue, an index indicating which bucket the event
belongs to is computed. To dequeue an event, the bucket from
which the last event was dequeued is checked to find the next
event with the highest priority for the current year. If the
bucket is empty or full of events scheduled for future years,
next buckets are checked until the highest priority is found. If
no more event belongs to the current year, the next year starts
and the next event is re-searched. The calendar queue try to
keep a reasonable size for its buckets. When needed, that is
if the queue size exceeds an upper threshold or falls below
a lower threshold, a resize operation is triggered. The resize
operation double or halve the number of days and re-order all
elements. This operation has high performance costs (O(n)
complexity), but is amortized over time. The main disadvan-
tage of this queue is its sensitivity to skewness and peaks in
priority distribution.

...

Figure 1. Representation of the calendar queue structure.

Ladder Queue
The Ladder Queue [19] is the most recent, especially de-
signed priority queue structure for managing the pending
event set that achieves O(1) amortized performance. Its name
was inspired from its multi-list structure recalling a ladder
and its rungs. The structure divide elements into three parts:

1. Bottom, a list which is kept sorted and holds all events
scheduled to a near future.

2. Ladder, the middle layer which consists in several rungs
of buckets where each bucket contains an unsorted list.
Events in this tier of the queue are considered scheduled
to a far future. They are not sorted but grouped with each
other based on the time-gap.

3. Top, a simple unsorted list which serves as a buffer for
events scheduled into a very far future.

It strength comes from two ideas: (1) the event sorting pro-
cess is deferred until absolutely necessary and (2), it adapts
its structure to event distribution. Events are sorted only when
they are close to being dequeued, when transferred to Bot-
tom. This means that most events are simply either appended
to the Top structure or appended into buckets of the Ladder
structure without sorting. The number of rungs in the Ladder
tier varies depending on event distribution, each rung hav-
ing a different granularity of inter-event time-gap. This way,
the queue is much less sensitive to skewness or peaks in the
priority distribution. Figure 2 shows a representation of its
structure.

...

...

...

... ...

Top

Ladder

Bottom

Rung 1

Rung 2

Figure 2. Representation of the ladder queue structure.

Another similar structure can be found in the literature,
named the Lazy Queue [16]. It is also organized as three
tiers, holding events in a similar fashion but the middle tier
is simpler and algorithms are different. [15] showed that it
performs similarly or worse (depending on the distribution)
than the Calendar Queue, so we will not include it in our per-
formance analysis.

COMPARISON
In this section we present results of the performance measure-
ments of each PES implementation. A first subsection details
our methodology and test environment while a second sub-
section present the actual results.

Methodology
To study a priority queue in the context of the PDEVS formal-
ism, it is important to find a method which covers as closely
as possible all practical aspects of a discrete event simulation.
If we refer to the most used methods in the literature for sim-
ilar comparative studies we count several approaches:

1. the hold model introduced in 1975 [20] and completed by
[11] take a basic approach. Each event processed leads to

838

only one event being scheduled. With an initially randomly
populated event queue, an event is dequeued followed by
an enqueue of a new event until reach a given number of
steps.

2. the up/down model suggested by [16] takes a different ap-
proach. Events are enqueued until reach a given queue size
and then dequeued until the queue is empty.

3. a variant of the hold model imitating a PDEVS simulation,
proposed by [10] consist in dequeuing all events scheduled
for the same time at once instead of dequeuing a unique
event. Then, an equal number of new events will be en-
queued. Finally, a random number (between 0 and 50) of
events in the queue are adjusted (their priority is updated
to a new one). These operations are repeated until a given
number of steps.

With the hold model, the size of the queue remains the same
during the complete test. Conversely, the up/down model
grows and shrinks at each step of the test. Theoretically, the
static nature of the hold model is not an issue for PDEVS sim-
ulation as there is always one event per model. But one model
can be scheduled to occur at infinity, and as some structures
such as the calendar queue or the ladder queue are disturbed
by an infinite priority, we don’t add them to the PES. Fur-
thermore, if the model structure is static in PDEVS, some
extensions (such as [2]) allows a dynamic structure. Conse-
quently, the queue size can change in a PDEVS simulation
depending on the implementation. This does not mean the
up/down model is ideal either because as we said in section
, PDEVS requires a PES that support adjusting an event and
both the hold model and the up/down model are not consid-
ering it. The latter approach, however, does and is the closest
to a real PDEVS based simulation as Himmelspach [10] con-
cludes. From the three methods presented, we use this one,
along with an original new one, based on DEVStone.

DEVStone
DEVStone [21] is a generic benchmark used to study the per-
formance of DEVS and PDEVS based simulators. It is able to
generate automatically a suite of models with varied structure
and behavior. It is designed to evaluate efficiency of several
(P)DEVS simulation engines and different software versions
of the same simulator. We propose to present the results ob-
tained with DEVStone to compare the performances of all
pending event set. We measure elapsed wall clock time in
seconds for a simulation involving a DEVStone suite of mod-
els. Events traverse all models of the generated structure with
a fixed depth (number of nested coupled models in the hier-
archy) of 2, HI coupling type (a type of models interconnec-
tions defined in [21]) and δ transitions times set to 0 seconds.
The varying parameter is the width (number of components
in each coupled model).

Distribution
Among the variables that can affect the performance of a pri-
ority queue, the initial and increment priority distribution is a
crucial one. We had to adapt DEVStone so it could support
different distributions. Given as a parameter, the distribution
is used to compute the return value of the time advance (ta)

function of all generated atomic models. Table 2 lists the dif-
ferent distributions we used in our performance analysis and
that are commonly used in the literature to compare prior-
ity queues with the expression used to compute the random
value. The differences perceptible between two distributions
shape are important because a particular skewness or peak
can expose a weakness in a priority queue implementation.

Distribution Expression
Constant 1
Uniform (0, 1) rand
Uniform (0.9, 1.1) 0.9 + 0.2 ∗ rand
Exponential −ln(rand)
Triangular (0, 1.5) 1.5 ∗ sqrt(rand)
Neg Triangular (0, 1000) 1000 ∗ (1− sqrt(1− rand)
Bimodal 0.95238 ∗ rand+ rand < 0.1

? 9.5238 : 0
Camel (2, 0.8, 0.2) cf. [16]

Table 2. Priority increment distributions.

Experimental framework
The environment used to run our benchmarks is based on
an Intel(R) Core(TM) i5-3360M CPU @ 2.80GHz (3MB L2
cache), 16 GB (2 x DDR3 - 1600 MHz) of RAM, a Toshiba
MK5061GS hard drive, running on Ubuntu 14.04 (64bit). Re-
garding software, the DEVS-Ruby simulator in its 0.6 version
running on the official Ruby 2.2.0 VM. DEVS-Ruby [8] is a
library developed at University of Corsica that allows formal
specifications of classical DEVS and parallel DEVS models.

For our performance analysis, we ran two different bench-
marks. In the first, we run a DEVStone simulation for each
priority queue listed in section and for each of the eight distri-
bution. We measure wall clock time in seconds with a varying
width and a fixed depth of 2, HI coupling type and δ transi-
tion times set to 0 seconds. The second benchmark is based
on the method suggested by [10].

Performance analysis
DEVStone experiment
Unsurprisingly, the results of the two most naive implementa-
tions (Figures 3 and 4) are far behind other tree and multi-list
based queues. The sorted list forms the performance lower
bound. We should emphasize that it could perform better if
we used a more stable sorting algorithm. Our implementation
use a quick sort algorithm, which is known to have a worst
case performance of O(n2) especially when the elements are
almost sorted, but it could never exceed O(n log(n)) a perfor-
mance. The minimal list have slight better results than the
sorted list but remains extremely inefficient. It worth noted
that concerning the constant distribution, which represent a
discrete time simulation (which is a special case of DES), the
minimal list does not offer the worst results.

At first sight, other queues (Figures 5, 6, 8 and 7) seems
to be on an equal footing although the advantage goes to
the multi-list queues family. The binary heap (Figure 6) is
slightly better than the splay tree (Figure 5). Between the lad-
der queue (Figure 7) and the calendar queue (Figure 5), the
ladder queue is fastest. If our DEVStone benchmark offers a

839

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 3. Wall clock time of a DEVStone simulation using the Minimal
List based PES.

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 4. Wall clock time of a DEVStone simulation using the Sorted
List based PES.

good overview of pending event set performances since it is
based on a plain and compliant PDEVS simulator, the results
are not offering major indications concerning the behavior of
each scheduler.

PDEVS model experiment
The second benchmark, however, reveals much more differ-
ences, first between multi-list (Figures 11 and 12) and tree
based (Figures 9 and 10) priority queues. The splay tree has
more performance costs with small queue sizes compared to
the binary heap. Globally performances remains on the same
scale but the splay tree is more sensitive to variations in the
distribution.

Which is more surprising on the multi-list queues side is that
on this benchmark, the calendar queue has lower access times
than the ladder queue unlike the results of our first bench-
mark. We explain this because the initialization time is not
measured in the original PDEVS benchmark method. By ini-
tialization time, we mean the time took to allocate, initialize

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 5. Wall clock time of a DEVStone simulation using the Splay Tree
based PES.

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 6. Wall clock time of a DEVStone simulation using the Binary
Heap based PES.

the PES and to enqueue all events. Yet, this measure is im-
portant because the calendar queue adapt its internal structure
also during enqueue operations while the ladder queue does
it mostly over dequeue operations. Two new figures (13 and
14) are showing ladder queue and calendar queue results for
the PDEVS benchmark but with init time taken into account.
This clearly expose superiority of the ladder queue. It is faster
and more stable than the calendar queue, which performances
are depending on priority distribution.

CONCLUSIONS
This work present a qualitative study based on the perfor-
mance of several data structures suitable for the implemen-
tation of a pending event set. This issue is essential in the
context of event-driven simulation. We realized two different
experiments found in the literature to compare our priority
queue implementations within our (P)DEVS compliant sim-
ulator DEVS-Ruby. Our results shows that the Ladder Queue
is the fastest and most reliable implementation.

840

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 7. Wall clock time of a DEVStone simulation using the Ladder
Queue based PES.

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 8. Wall clock time of a DEVStone simulation using the Calendar
Queue based PES.

As a future work, it would be interesting to complete this
study with additional data structures such as the Lazy Queue
[16], or the P-Tree [1] along with variants of the considered
data structures such as calendar queue [14, 17] and ladder
queue variants [9, 7] which improves performance of their
original counterparts. Although this study is strictly focused
on the pending event set problem in sequential simulations,
there is a set of works focusing on parallel discrete event
simulation and on parallel priority queue algorithms [6, 15]
which should be addressed in future works.

If the data structure algorithm is of main importance for the
pending event set, implementation details can also make a dif-
ference, especially for a simulator implemented in a managed
environment such as Ruby. We are currently working on C-
based extensions for the DEVS-Ruby simulator where we are
re-implementing the data structures in C to expose them to the
Ruby VM. This allows us to get back control on the memory
and to avoid the garbage collector. Moreover it will allow to
study the effect of the Ruby programming language on the

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 9. Runtime results of the Splay Tree based on the PDEVS bench-
mark method.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 10. Runtime results of the Binary Heap based on the PDEVS
benchmark method.

results and in the meantime, to report lower level dynamics
data to the study, such as the locality in memory accesses or
CPU cache-misses by the different data structures.

Acknowledgements
The present work was supported in part by the French Min-
istry of Research, the Corsican Region and the CNRS.

REFERENCES
1. Asdre, K., and Nikolopoulos, S. D. P-tree structures and

event horizon: Efficient event-set implementations. In
Proceedings of the 37th Conference on Winter
Simulation, WSC ’05, Winter Simulation Conference
(Orlando, Florida, 2005), 2700–2709.

2. Barros, F. J. Dynamic structure discrete event system
specification: A new formalism for dynamic structure
modeling and simulation. In Proceedings of the 27th
Conference on Winter Simulation, WSC ’95, IEEE
Computer Society (Washington, DC, USA, 1995),
781–785.

841

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 11. Runtime results of the Ladder Queue based on the PDEVS
benchmark method.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 12. Runtime results of the Calendar Queue based on the PDEVS
benchmark method.

3. Blackstone, Jr., J. H., Hogg, G. L., and Phillips, D. T. A
two-list synchronization procedure for discrete event
simulation. Commun. ACM 24, 12 (Dec. 1981),
825–829.

4. Brown, R. Calendar queues: A fast 0(1) priority queue
implementation for the simulation event set problem.
Commun. ACM 31, 10 (Oct. 1988), 1220–1227.

5. Cassandrass, C. G., and Lafortune, S. Introduction to
Discrete Event Systems, springer ed. 2nd ed. 2008.
Kluwer Academic Publishers, 1999.

6. Dahl, J., Chetlur, M., and Wilsey, P. A. Event List
Management in Distributed Simulation. In Euro-Par
2001 Parallel Processing, R. Sakellariou, J. Gurd,
L. Freeman, and J. Keane, Eds., Lecture Notes in
Computer Science, Springer Berlin Heidelberg (2001),
466–475.

7. Dickman, T., Gupta, S., and Wilsey, P. A. Event Pool
Structures for PDES on Many-core Beowulf Clusters. In

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 13. Runtime results of the Ladder Queue based on the PDEVS
benchmark method with PES init time.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 14. Runtime results of the Calendar Queue based on the PDEVS
benchmark method with PES init time.

Proceedings of the 2013 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation,
SIGSIM-PADS ’13, ACM (New York, NY, USA, 2013),
103–114.

8. Franceschini, R., Bisgambiglia, P.-A., Bisgambiglia, P.,
and Hill, D. R. C. DEVS-Ruby: a Domain Specific
Language for DEVS Modeling and Simulation (WIP).
In DEVS 14: Proceedings of the Symposium on Theory
of M&S, SCS International (Apr. 2014), 393–398.

9. Gupta, S., and Wilsey, P. A. Lock-free Pending Event
Set Management in Time Warp. In Proceedings of the
2Nd ACM SIGSIM/PADS Conference on Principles of
Advanced Discrete Simulation, SIGSIM-PADS ’14,
ACM (New York, NY, USA, 2014), 15–26.

10. Himmelspach, J., and Uhrmacher, A. M. The event
queue problem and PDevs. In Proceedings of the 2007
Spring Simulation Multiconference - Volume 2,
SpringSim ’07, Society for Computer Simulation
International (San Diego, CA, USA, 2007), 257–264.

842

11. Jones, D. W. An empirical comparison of priority-queue
and event-set implementations. Commun. ACM 29, 4
(Apr. 1986), 300–311.

12. McCormack, W. M., and Sargent, R. G. Analysis of
future event set algorithms for discrete event simulation.
Commun. ACM 24, 12 (Dec. 1981), 801–812.

13. Nikolopoulos, S. D., and MacLeod, R. An experimental
analysis of event set algorithms for discrete event
simulation. Microprocessing and Microprogramming 36,
2 (Mar. 1993), 71–81.

14. Oh, S., and Ahn, J. Dynamic calendar queue. In
Simulation Symposium, 1999. Proceedings. 32nd Annual
(1999), 20–25.

15. Ronngren, R., and Ayani, R. A comparative study of
parallel and sequential priority queue algorithms. ACM
Trans. Model. Comput. Simul. 7, 2 (Apr. 1997),
157–209.

16. Ronngren, R., Riboe, J., and Ayani, R. Lazy queue: An
efficient implementation of the pending-event set. In
Proceedings of the 24th Annual Symposium on
Simulation, ANSS ’91, IEEE Computer Society Press
(Los Alamitos, CA, USA, 1991), 194–204.

17. Santoro, T., and Quaglia, F. A low-overhead
constant-time LTF scheduler for optimistic simulation
systems. In 2010 IEEE Symposium on Computers and
Communications (ISCC) (June 2010), 948–953.

18. Sleator, D. D., and Tarjan, R. E. Self-adjusting binary
search trees. J. ACM 32, 3 (July 1985), 652–686.

19. Tang, W. T., Goh, R. S. M., and Thng, I. L.-J. Ladder
Queue: An O(1) Priority Queue Structure for
Large-scale Discrete Event Simulation. ACM Trans.
Model. Comput. Simul. 15, 3 (July 2005), 175–204.

20. Vaucher, J. G., and Duval, P. A comparison of
simulation event list algorithms. Commun. ACM 18, 4
(Apr. 1975), 223–230.

21. Wainer, G., Glinsky, E., and Gutierrez-Alcaraz, M.
Studying performance of DEVS modeling and
simulation environments using the DEVStone
benchmark. SIMULATION 87, 7 (July 2011), 555–580.

22. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation, Second Edition. 2000.

843

