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Abstract

This paper describes a systematic approach to integrate
the Discrete Event Specified System (DEVS) methodol-
ogy into SystemC. It thus combines Model of Compu-
tation (MoC) specific properties and the features of an
advanced SystemC environment. The execution of abstract
system level DEVS models is comparable to pure SystemC
models and is significantly faster compared to other DEVS
environments. Thus, system level models based on abstract
MoCs may easily be executed in a SystemC environment.
The proposed integration is realized as a non-introspective
extension to the SystemC 2.2 kernel. The DEVS models
are implemented on an additional software layer above
the SystemC simulation kernel. Our approach may be
used simultaneously with other layered extensions, e.g.,
SystemC-AMS or TLM.

I. Introduction

In the recent past an increasing effort has been per-
formed to extend the levels of abstraction and to meet
the requirements of highly complex system level design.
To establish such higher abstraction levels, Models of
Computation (MoC) were introduced.

SystemC as a high-level modeling language aimed for
the combined development of HW and SW and Transaction
Level Modeling (TLM) as an extension, intended to model
high-level system communication are widely known and
have become a de facto standard for system level design.
A lot of scientific work has been done and different
commercial tools have been developed to improve an
integrated design flow from a high-level SystemC design
down to both, synthesizable HW and to embedable SW
programs.

Nevertheless, the utilization of further MoCs is still
important. SystemC itself has no fully formal semantics,
which makes formal analysis as well as verification diffi-
cult. For this purpose, formally defined, abstract MoCs are

more suitable. In certain scenarios domain specific MoCs
are advisable. Scientific expertise can be reused by the
employment of existing dedicated models.

In this work we describe a systematic approach to
integrate a MoC into SystemC. This is performed by means
of an additional software layer above the SystemC kernel
which implements the target MoC. Using this approach the
designer can benefit at the same time from both the model
specific features and expertise and from the advanced
SystemC design flow.

We selected the Discrete Event Specified System
(DEVS) [13] as our target MoC. By being an event-based
specification it is highly applicable for HW design. It is
a well-known, formally defined MoC and a high effort of
scientific research has been put into it.

We will show that it is possible to adapt the simulation
kernel for the integrated MoC. This allows the reuse of the
highly optimized SystemC simulation core and features an
efficient execution of DEVS models.

This paper will review related work in Section II and
then gives a short introduction into the formal specification
of DEVS in Section III. In Section IV the implementation
and integration of DEVS into SystemC is described. Sec-
tion V gives some results which demonstrate the feasibility
of the presented approach. We conclude this paper in
Section VI.

II. Related Work

There is a lot of work available, which is aimed to
overcome the lack of a formal SystemC specification and
to reduce the need for other MoCs in this area. [12]
summarizes formal methods which can applied to SystemC
itself and [6] develops a formal MoC for a subset of the
SystemC language.

[9] describes the integration of synchronous data flow
models (SDF) in SystemC, [8] addresses the integration
of a rule-based MoC (Bluespec). Compared to this work,
these approaches exploit kernel level extensions. In con-
trast, it was our goal to keep the original SystemC kernel

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



untouched and to utilize language level extensions only.
[5] specifies an additional SystemC layer to ease the
integration of different MoCs. The authors of [5] are
applying both static and dynamic checks for MoC rules,
while this approach enforces MoC rules by using SystemC
and C++ language features.

An integration of Petri Nets is described in [10]. Each
Petri Net is directly implemented as a SystemC module
without any supporting framework, which makes this ap-
proach unusable for complex system specifications.

The integration of an analog MoC to support mixed-
signal simulation is described in [1]. As it is focused on
the analog simulation environment, it lacks a methodical
description of the integration into SystemC execution en-
vironments.

III. Discrete Event Specified Systems – DEVS

The DEVS [13] formalism from Zeigler et al. is a great
mathematical foundation for specifying hierarchically, con-
currently executed, formal models. Being aware of the
fact that the formalism covers both time-discrete and time-
continuous models, we focus at the time-discrete ones only.

A DEVS system specification is a structure

S = 〈Elems,Conns,Portsin,Portsout, tb〉 . (1)

tb is the timebase, continuously or discrete, of the model.
Elems is a set of hierarchically instantiated DEVS system
specifications and/or atomic DEVS components. Portsin
and Portsout are tuples (p1, . . . , pn) of unique port names
for the input and output ports which receive or emit events.

Ports coupling is described by Conns, which is a set of
tuples (i, o). i is an input port of Portsin or the output port
from an instantiated submodule. Similarly, o is an output
port of Portsout or an input port of Elems.

Each output port can be connected to multiple input
ports, but no input may be linked to more than one output
port. Every port has an associated set of event values
including the � symbol representing the absence of an
event.

An atomic DEVS component is described by the tuple

C = (Portsin,Portsout, S, s0, δint, δext, δcon, λ, τ). (2)

S is a non-empty set of states, with s0 ∈ S ∩ {∅} being
the initial state of the DEVS component. Every state has
an associated timeout τ : S → tb.

Three different types of state transitions are defined:
Internal δint : S → S: After the timeout τ(s) occurred,

the component will do an internal state transition.
External δext : S × Portsin × tb → S: Iff the component

receives an external event over one of it’s input ports
and no timeout occurs, it will do an external state

timeout e = τ(si)

output λ(si)

si = δint(si−1)

si−1 si si+1

Fig. 1. State Transition and Output

transition δext(s, x, e), where e < τ(s) is the elapsed
time since the last input event occurred.

Confluent δcon : S × Portsin × tb → S: Iff it receives an
external event while an timeout occurs (e = τ(s)),
the next state will be computed by δcon(s, x, e).

Whenever a timeout τ(s) is hit, the component will emit
output λ(s), which can also be the absent event �.

As depicted in Figure 1 an output occurs upon leaving
a state, although its value is determined upon entering a
state.

IV. SystemC Implementation

We now detail how a MoC, e.g., DEVS, can be in-
tegrated into SystemC. The implementation, hereinafter
referred to as SC-DEVS, is realized as a non-introspective
extension to the SystemC 2.2 kernel: the existing SystemC
kernel must not be modified. Figure 2 depicts the rela-
tionship of the classes from the formal model and their
SystemC counterparts.

The remainder of this section gives an in-depth view
how the SystemC kernel is exploited to efficiently imple-
ment DEVS-specific classes and behavior. These classes
form together a DEVS system as denoted in Equation 1.

A. Time

DEVS includes the explicit notation for an infinite
amount of time, but SystemC does not: The time notation
within SystemC is strictly discrete and finite. To include
an infinite time notation and its behavior we extended the
SystemC kernel by a devs_time class.

We can not derive the devs_time class directly from
the normal sc_time class because of the normal C++
class downcasts. A devs_time object set to the infinite
time may be automatically downcasted to a sc_time
object not describing an infinite amount of time. Rather,
we create the devs_time class to include a sc_time
variable and a flag describing the additional symbol for
the infinite amount of time. The standard arithmetic oper-
ators (+,-,*,/) were extended to handle mixed sc_time
and devs_time arithmetic.
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Fig. 2. UML Class Diagram for the SystemC DEVS Implementation

template<class State> class DEVS_Component : public sc_module { ... protected:
virtual State initialize(void) const =0;
virtual void output(const State& state) const =0;
virtual devs_time time_advance(const State& state) const =0;
virtual State external_transition(const State& state, const devs_time& elapsed) const =0;
virtual State internal_transition(const State& state) const =0;
virtual State confluence_transition(const State& state, const devs_time& elapsed) const =0; ... };

Fig. 3. Partial Class Definition of DEVS Component

B. Model Specification

Atomic DEVS components are represented by the
devs_component<State> class. Like in SystemC the
ports of each component are described by the use of
devs_in and devs_out. Connections between these ports
are described by devs_signal.

Both the components and the signals are normally
instantiated by the sc_main() function, but instantiation
is not restricted to it. They may be also instantiated
inside another component, thus giving the ability to model
hierarchical designs.

1) Components: The atomic DEVS components are
represented by classes derived from the abstract class
devs_component<State>, which itself is derived from
sc_module. To allow an easy reuse of existing models
within SystemC, we map all elements of a formal DEVS
specification directly into class member functions. The
state space S of the component is implemented as a
template parameter of the class. All functions for next
state, output, and timeout are realized as pure-virtual,
abstract class functions as listed in Figure 3. To implement
an atomic DEVS component, only a state description must
be supplied to the derived class as template parameter and
realizations for the six pure-virtual, abstract functions have
to be filled in.

2) Communication: In the DEVS MoC events on a signal
reoccur, if the same “value” is written repeatedly to the
output port. However, this is not supported by the original
SystemC sc_signal. So, the class devs_signal capable
of this feature was created. It is derived from sc_signal

with the modified write methodology: If the same “value”
reoccurs, it emits multiple events, i.e., one for each write
operation.

Consequently, we had to develop dedicated port
types to be used with this devs_signal class. These
ports devs_in and devs_out, derived from sc_in and
sc_out, can be coupled with devs_signal. By deriving
DEVS ports and signals from the SystemC classes it is
possible to exploit the elaboration comfort of SystemC,
e.g., warnings for unbound ports.

All transition functions can query the devs_in ports to
compute the next state. However, the transition functions
must not write to the devs_out ports. This is performed
exclusively by the output function, which is invoked
every time after an timeout event occurred.

3) Transition Functions: The three functions for inter-
nal δint, external δext, and confluence δcon transitions of
DEVS models are directly mapped to corresponding C++
functions. The function definitions are depicted in Figure 3.

These functions may be executed in parallel as de-
scribed later on in Section IV-C, but they are vulnerable to
side-effects or even deadlocks. To remove the possibility
that one encodes them to be vulnerable to side-effects,
e.g., by using a shared object variable in multiple transi-
tion functions, they are declared const. Existing shared
variables may be moved into the system state, which is
synchronized by the simulation kernel.

However, we cannot guarantee that no side-effects are
contained. One may use mutable object variables, which
may be even written inside of the transition functions.
Unfortunately, this is an intrinsic property of the C++
language.



C. Elaboration and Simulation

Similar to SystemC each module has a two phase
lifetime: elaboration and simulation.

The DEVS components have to react upon input port
events. During the elaboration phase a special function is
called which registers all input ports to the SystemC kernel.
This information is used later by the components to react
to received events.

In the simulation phase the model is executed. A normal
simulation cycle is divided into four parts:

1) Determine whether the component was activated by
timeout or by an external event.

2) Execute the required transition functions, calculating
the follow-up state of the component.

3) Emit values over the output ports with the help of the
output function, but only if necessary, e.g., when
an internal transition event occurred.

4) Identify the timeout of the current state with the
time_advance function and suspend until this point
is reached in the simulation time or an event occurs.

The SystemC simulation methodology requires that all
port outputs are stable within one delta-cycle. We mapped
the four steps of the simulation cycle into a single SystemC
delta-cycle. Therefore, we have a globally stable system
at any point in time: All components compute simulta-
neously1 their response in respect to the given inputs and
their current states. The outputs are propagated to the sinks
in the next simulation cycle, e.g., the next SystemC delta-
cycle.

For further testing of the behavior of the models the
developer may choose from three different simulation
models, thus modifying the order and the calculation of
transition functions in step 2 of the simulation cycle:

Needed Serial: Only the needed transition function is exe-
cuted. The needed function can be determined in step
1 of the simulation cycle. This variant is supposed to
give the best performance.

All Serial: All three transition functions, δint, δext, and
δcon, are executed in a serial, but randomized order.
The follow-up states of the two inactive transitions
are discarded.

Parallel: All three transition functions are executed in
parallel with the help of pthreads. Again, only the
follow-up state of the active transition is kept.

Assuming a correct DEVS model, all three variants will
show the same behavior. However, in case of an incorrect
model, the behavior might differ. This difference can be
used to locate and eliminate the modeling error.

1Simultaneously computation is serialized by the SystemC kernel.
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V. Results

To demonstrate the feasibility and performance of our
approach to map DEVS models on top of SystemC, we
evaluated two different scenarios. First, we implemented a
small DEVS model and compared our simulator with other
existing DEVS simulators. In a second scenario we have
developed a more complex model of a driving assistant
application which was implemented both in DEVS and in
pure SystemC. All simulations were run on an Intel Core2
Quad (2.4 GHz) processor with Debian 4.0 (Etch) Linux.

A. gpt Example

There is a great amount of DEVS simulators avail-
able [4] based upon different implementation technolo-
gies, e.g., PyDEVS [2] (Python), DEVSJAVA [11] (Java),
or ADEVS [7] (C++). We compared our implementation
to ADEVS and PyDEVS running the gpt example from
DEVSJAVA. By this, we show that the DEVS layer above
the SystemC core has no substantial overhead compared to
designated DEVS-only simulators. A really fair compari-
son with DEVSJAVA is not possible, as it is GUI-based and
does not include any timing measurement methods.

The gpt example consists of three components: a job
generator, a processor, and a transducer. The generator
creates jobs, e.g., events, which are to be consumed by
the processor. The transducer analyzes the processing rate
and controls the job generation.

Figure 4 shows the resulting simulation effort. Obvi-
ously, the proposed SystemC DEVS simulator performs
best with a simulation time of 1.52 sec. The main reason
for this property is the optimized SystemC simulation ker-
nel, which is more advanced than in most other simulators.
The figures prove that the overall performance gain ob-
tained by using the optimized SystemC simulation kernel
clearly outweighs any overhead caused by an additional
MoC software layer. This will be true for many other MoCs
as well, where no highly optimized simulator exists.
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B. AutoVision Example

For a detailed comparison between our SC-DEVS and
pure SystemC models we used a more complex applica-
tion, which is based on the AutoVision example presented
in [3]. It consists of several distinct components for vision
enhancement and for automated object recognition aimed
to a driving assistance scenario. Figure 5 gives an overview
over the following components and their interaction:
Sensor: Provides pictures to all requesting components.
Shape: Performs picture requests and scans the result for

important shapes (e.g. other cars). If the shape of a
tunnel entrance is found, then the Contrast component
is invoked.

Contrast: Enhances the Sensor picture and recognizes,
when the car enters or leaves a tunnel, in which case
it activates or suspends other components.

Taillight: Provides object information to the driver based
on taillight traces. It operates when the car is inside
the tunnel where it is too dark for the Shape compo-
nent to operate properly.

All four components run concurrently allowing for the
evaluation of the different parallel execution models our
simulator provides. By using different request intervals for
Shape and Contrast the situation of multiple competing
requests arriving at the same time can be modeled. This
allows the in-depth analysis of concurrent communication.

The performance evaluation focuses on two different
characteristics: Overall simulation runtime (throughput)

and processing time for a single event (latency).
To get a fair comparison between SC-DEVS and Sys-

temC models we need to differ between state transitions
with low and high processing time. Measurements with low
processing times give us a more realistic view how effi-
cient, in terms of throughput, SC-DEVS is, when compared
to the raw SystemC implementation. High processing times
measure the latency of each execution semantic (i.e.,
Needed Serial, All Serial, and Parallel) and give us the
ability to compare them to each other.

The SystemC model is a reimplementation of the DEVS
model with an equivalent behavior. The three transition
functions δint, δext and δcon are implemented within a
SC THREAD. The selection of the appropriate transition
function and the time advancement, which is handled
transparently to the developer by the DEVS kernel, had to
be reimplemented manually within each of the SystemC
models.

Figure 6 depicts the results of the AutoVision example.
The graph on the left hand side visualizes the kernel per-
formance for an increasing number of events. All variants
scale linearly with the number of events. While Needed
Serial and All Serial show a similar performance com-
pared to the SystemC simulator, the Parallel simulation
is approximately 3 times slower (33.3 seconds compared
to 11.2 seconds). This stems from the additional kernel
overhead for thread handling and synchronization.

The right hand side of Figure 6 depicts the situation
for transitions with high processing times. Compared to
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Fig. 6. Simulation Results for the AutoVision Example

the All Serial execution, the Parallel execution is 3 times
faster as it can calculate the three transition functions in
parallel.

The Needed Serial simulator option again shows a
similar performance to the pure SystemC simulator. This
has been expected as this simulator variant realizes a
similar behavior to the original SystemC kernel. While the
Needed Serial is slightly faster than the Parallel execution
model, it can not detect design flaws which may originate
from synchronization or concurrency issues. The Parallel
model is able to detect them and did it multiple times
throughout our tests.

VI. Conclusion

We have presented a systematic approach to integrate
the Discrete Event Specified System model into SystemC
and demonstrated its feasibility. We have extended the
elaboration and simulation kernel of SystemC by an addi-
tional layer to support DEVS models. The implementation
provides different execution modes to process the state
transition functions of a model. As expected, the Needed
Serial gives the best overall results for the different DEVS
simulator variants.

We demonstrated a certain tradeoff between simulation
overhead and the runtime of the state transitions. If the
transition functions require a noteworthy processing time,
then the usage of the Parallel execution model becomes
interesting. It does not slow down the simulation too much
and it can give additional insights into the model behavior.

A complex DEVS model has been compared with an
equivalent SystemC model. The results show that the over-
head of an additional software layer is negligible and the
performance is similar to the pure SystemC model. Thus,
MoCs featuring considerably higher abstraction levels may
be introduced to a SystemC-based design flow at almost
no overhead at all.
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