
Performance analysis of a PDEVS simulator
supporting multiple synchronization protocols

Ben Cardoen† Stijn Manhaeve† Tim Tuijn†
{firstname.lastname}@student.uantwerpen.be

Yentl Van Tendeloo† Kurt Vanmechelen†
Hans Vangheluwe†‡ Jan Broeckhove†
{firstname.lastname}@uantwerpen.be

† University of Antwerp, Belgium
‡McGill University, Canada

ABSTRACT
With the ever increasing complexity of simulation models,
parallel simulation becomes necessary to perform the sim-
ulation within reasonable time bounds. The built-in paral-
lelism of Parallel DEVS is often insufficient to tackle this
problem on its own. Several synchronization protocols have
been proposed, each with their distinct advantages and disad-
vantages. Due to the significantly different implementation
of these protocols, most Parallel DEVS simulation tools are
limited to only one such protocol. In this paper, we present
a Parallel DEVS simulator, grafted on C++11, but based on
PythonPDEVS, which supports both conservative and opti-
mistic synchronization. We evaluate the performance gain
obtained by choosing the most appropriate synchronization
protocol. Performance results are compared to adevs, in terms
of CPU time and memory usage.

Author Keywords
Simulation; C++11; Optimistic Synchronization;
Conservative Synchronization; Performance; Parallel DEVS

ACM Classification Keywords
I.6.7 SIMULATION AND MODELING: Simulation support
systems; I.6.8 SIMULATION AND MODELING: Types of
simulation

1. INTRODUCTION
DEVS [24] is a popular formalism for modelling complex
dynamic systems using a discrete-event abstraction. In fact,
it can serve as a simulation “assembly language” to which
models in other formalisms can be mapped [22]. A number
of tools have been constructed by academia and industry that
allow the modelling and simulation of DEVS models.

But with the ever increasing complexity of simulation mod-
els, parallel simulation becomes necessary to perform the
simulation within reasonable time bounds. And while Par-
allel DEVS [5] was introduced to increase parallelism, this is
often insufficient. Several synchronization protocols from the

SpringSim-TMS/DEVS 2016 April 3-6, Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

discrete event simulation community [8] have been applied to
DEVS simulation. While several parallel DEVS simulation
kernels exist, they are often limited to a single synchroniza-
tion protocol. The reason for different synchronization pro-
tocols, however, is that their distinct nature makes them ap-
plicable in different situations, each outperforming the other
in specific models. The applicability of parallel simulation
capabilities of current tools is therefore limited.

Users who simulate a wide variety of models, with different
ideal synchronization protocols, are therefore out of luck: ei-
ther they accept lower performance for some models, or they
use different simulation kernels. Neither is acceptable for
complex models: performance can decrease to unacceptable
levels, and simulation kernel APIs can diverge significantly.

This paper introduces DEVS-Ex-Machina (“dxex”), our sim-
ulation tool which offers multiple synchronization proto-
cols: no synchronization (sequential execution), conserva-
tive synchronization, or optimistic synchronization. The se-
lected synchronization protocol is transparant to the simu-
lated model. Users should merely determine, at the start of
simulation, which protocol they wish to use. Our tool is based
on PythonPDEVS, but implemented in C++11, to increase
both performance and portability across different platforms.

We implemented a model that, depending on a single param-
eter, changes its ideal synchronization protocol. Dxex, then,
is used to compare simulation using exactly the same tool,
but with a varying synchronization protocol. With dxex users
can always opt to use the fastest protocol available. To verify
that our flexibility does not counter performance, we compare
to adevs, currently one of the fastest DEVS simulation tools
available [20, 6].

Dxex can be found online at https://bitbucket.org/
bcardoen/devs-ex-machina.

The remainder of this paper is organized as follows: Section 2
introduces the necessary background on synchronization pro-
tocols. Section 3 elaborates on some of our features, and our
design that enables our flexibility. In Section 4, we evaluate
performance of our tool by comparing its different synchro-
nization protocols, as well as a comparison to adevs. Related
work is discussed in Section 5. Section 6 concludes the paper
and gives future work.

https://bitbucket.org/bcardoen/devs-ex-machina
https://bitbucket.org/bcardoen/devs-ex-machina


2. BACKGROUND
This section briefly introduces the two synchronization proto-
cols used by dxex: conservative and optimistic synchroniza-
tion.

2.1 Conservative Synchronization
The first synchronization protocol we introduce is conserva-
tive synchronization [8]. In conservative synchronization, a
node progresses independent of all other nodes, up to the
point in time where it can guarantee that no causality errors
happen. When simulation reaches this point, the node blocks
until it can guarantee a new time until which no causality er-
rors occur. In practice, this means that all nodes are aware of
the current simulation time of all other nodes, and the time
it takes an event to propagate (called lookahead). Deadlocks
can occur due to a dependency cycle of models. Multiple al-
gorithms are defined in the literature to handle both the core
protocol, as well as resolution schemes to handle or avoid the
deadlocks [8].

The main advantage of conservative synchronization is its
low overhead if the lookahead is high. Each node then sim-
ulates in parallel, and sporadically notifies other nodes about
its local simulation time. The disadvantage, however, is that
the amount of parallelism is explicitly limited by the looka-
head. If a node can influence another (almost) instanta-
neously, no matter how rarely it occurs, the amount of par-
allelism is severely reduced. The user is required to define
the lookahead, using knowledge about the model’s behaviour.
Defining lookahead is not always a trivial task if there is no
detailed knowledge of the model. Even slight changes in the
model can change to the lookahead, and can therefore have a
significant influence on simulation performance.

2.2 Optimistic Synchronization
A completely different synchronization protocol is optimistic
synchronization [12]. Whereas conservative synchronization
prevents causality errors at all costs, optimistic synchroniza-
tion allows them to happen, but corrects them. Each node
simulates as fast as possible, without taking note of any other
node. It assumes that no events occur from other nodes, un-
less it has explicitly received one at that time. When this as-
sumption is violated, the node rolls back its simulation time
and state to right before the moment when the event has to be
processed. As simulation is rolled back to a time prior to the
event must be processed, the event can then be processed as
if no causality error ever occured.

Rolling back simulation time requires the node to store past
model states, such that they can be restored later. All incom-
ing and outgoing events need to be stored as well. Incoming
events are injected again after a rollback, when their time has
been reached again. Outgoing events are cancelled after a
rollback, through the use of anti-messages, as potentially dif-
ferent output events have to be generated. Cancelling events,
however, can cause further rollbacks, as the receiving node
might also have to roll back its state. In practice, a single
causality error can have significant repercussions.

Further changes are required for unrecoverable operations,
such as I/O and memory management. These are only ex-
ecuted after the lower bound of all simulation times, called
Global Virtual Time (GVT), has progressed beyond their ex-
ecution time.

The main advantage is that performance is not limited by a
small lookahead, caused by a very infrequent event. If an
(almost) instantaneous event rarely occurs, performance is
only impacted when it occurs, and not at every simulation
step. The disadvantage is unpredictable performance due to
the arbitrary cost of rollbacks and their propagation. If roll-
backs occur frequently, state saving and rollback overhead
can cause simulation to grind to a halt. Apart from overhead
in CPU time, a significant memory overhead is present: all
intermediate states are stored up to a point where it can be
considered irreversible.

Note that, while optimistic synchronization does not explic-
itly depends on lookahead, performance still implicitly de-
pends on lookahead.

3. MULTIPLE SYNCHRONIZATION PROTOCOLS
Historically, dxex is based on PythonPDEVS [20]. Python is
a good language for prototypes, but performance has proven
insufficient to compete with other simulation kernels [18].
Dxex is a C++11-based implementation of PythonPDEVS,
but implements only a subset of PythonPDEVS, while mak-
ing some of its own additions. So while the feature set is
not too comparable, the architectural design, core simulation
algorithm, and optimizations, are highly similar.

We will not make a detailed comparison with PythonPDEVS
here, but only mention some supported features. Dxex sup-
ports, similarly to PythonPDEVS, the following features: di-
rect connection [4], Dynamic Structure DEVS [1], termina-
tion conditions, and a modular tracing and scheduling frame-
work [20]. But whereas PythonPDEVS only supports opti-
mistic synchronization, dxex support multiple synchroniza-
tion protocols (though only in parallel). This is in line with
the design principle of PythonPDEVS: allow users to pass
performance hints to the simulation kernel. In our case, a
user can pass the simulation kernel the “hint” as to which syn-
chronization protocol must be used for this model. Our im-
plementation in C++11 also allows for optimizations which
were plainly impossible in an interpreted language.

Since there is no universal DEVS model standard, dxex mod-
els are incompatible with PythonPDEVS and vice versa. This
is due to dxex models being grafted on C++11, whereas
PythonPDEVS models are grafted on Python.

In the remainder of this section, we will elaborate on our
prominent new feature: support for multiple synchronization
protocols within the same simulation tool, which are offered
transparently to the model.

3.1 Synchronization protocols
We previously explained the existence of different synchro-
nization protocols exist, each optimized for a specific kind
of model. As no single synchronization protocol is ideal for
all models, a general purpose simulation tool should support



Figure 1. Dxex kernel design.

multiple protocols. Currently, most parallel simulation tools
choose only a single synchronization protocol due to the in-
herent differences between protocols. An uninformed choice
on which one to implement is insufficient, as performance
will likely be bad. We argue that a real general purpose sim-
ulation tool should support sequential, conservative, and op-
timistic synchronization, as is the case for dxex.

These different protocols relate to three different model char-
acteristics. Conservative synchronization for when high
lookahead exists between different nodes, and barely any
blocking is necessary. Optimistic synchronization for when
lookahead is unpredictable, or there are rare (almost) instan-
taneous events. Finally, sequential simulation is still required
for models where parallelism is bad, where all protocols ac-
tually slow down simulation.

Sequential
Our sequential simulation algorithm is very similar to the
one found in PythonPDEVS, including many optimizations.
Minor modifications were made, though, such that it can be
overloaded by different synchronization protocol implemen-
tations. This way, the DEVS simulation algorithm is imple-
mented once, but parts can be overridden as needed. In the-
ory, more synchronization protocols (e.g., other algorithms
for conservative synchronization) can be added without alter-
ing our design.

An overview of dxex’s design is given in Figure 1. It
shows that there is a simulation Core, which simu-
lates the AtomicModels connected to it. The super-
class Core is merely the sequential simulation core, but
can be used as-is. Subclasses define specific variants,
such as ConservativeCore (conservative synchroniza-
tion), OptimisticCore (optimistic synchronization), and
DynamicCore (Dynamic Structure DEVS).

Conservative
For conservative synchronization, each node must determine
the nodes it is influenced by. Each model needs to provide a
lookahead function, which determines the lookahead depend-
ing on the current simulation state. Within the returned time
interval, the model promises not to raise an event. A node ag-
gregates this information to computes its earliest output time

(EOT). This value is written out in shared memory, where it
can be read out by all other nodes.

Reading and writing to shared memory is done through the
use of the new C++11 synchronization primitives. Whereas
this was also possible in previous versions of the C++ stan-
dard, by falling back to non-portable C functions, it was not
a part of the C++ language standard. C++11 further allows
us to make the implementation portable, as well as more ef-
ficient: the compiler might know of optimizations specific to
atomic variables.

Optimistic
For optimistic synchronization, each node must be able to roll
back to a previous point in time. This is often implemented
through the use of state saving. This needs to be done care-
fully in order to avoid unnecessary copies, and minimize the
overhead. We use the default: explicitly save each and every
intermediate state. Mattern’s algorithm [13] is used to deter-
mine the GVT, as it runs asynchronously and uses only 2n
synchronization messages. Once the GVT is found, all nodes
are informed of the new value, after which fossil collection is
performed, and irreversible actions are committed.

The main problem we encountered in our implementation is
the aggressive use of memory. Frequent memory allocation
and deallocation caused significant overheads, certainly when
multiple threads do so concurrently. This made us switch
to the use of thread-local (using tcmalloc) memory pools.
Again, we made use of specific new features of C++11, that
were not available in Python, or even previous versions of the
C++ language standard.

3.2 Transparency
We define simulation kernel transparency as having a sin-
gle model, which always can be executed on each supported
synchronization kernel, without any modifications. User
should thus only provide one model, implemented in C++11,
which can be either using sequential execution, using conser-
vative synchronization, or using optimistic synchronization.
Switching between simulation kernels is as simple as altering
the simulation termination time. The exception is conserva-
tive synchronization, where a lookahead function is required,
which is not used in other synchronization kernels. Two op-
tions are possible: either a lookahead function must always be
provided, even when it is not required and possibly not used,
or we use a default lookahead function if none is defined.

Always defining a lookahead function might seem redundant,
especially if users will never use conservative synchroniza-
tion. Especially since defining the lookahead is often non-
trivial and dependent on intricate model details. The more
attractive option is for the simulation tool to provide a default
lookahead function, such that simulation can run anyway, but
maybe not at peak performance. Depending on the model,
simulation performance might still be faster than sequential
simulation.

Defining a lookahead function is therefore recommended in
combination with conservative synchronization, but is not a
necessity, as a default can be used otherwise.



4. PERFORMANCE
In this section, we evaluate performance of dxex using dif-
ferent synchronization protocols. We show that the inclusion
of multiple synchronization protocols does not noticeably de-
crease performance. To this end, we compare to adevs, cur-
rently one of the most efficient simulation kernels [6]. CPU
time and memory usage is compared for both sequential and
parallel simulation.

We start off with a comparison of sequential simulation, to
show how adevs and dxex relate in this simple case. For the
parallel simulation benchmarks, results are presented for both
conservative and optimistic synchronization.

For all benchmarks, results are well within a 5% deviation of
the average, such that only the average is used in the remain-
der of this section. The same compilation flags were used
for both adevs and dxex benchmarks (“-O3 -flto”). To
guarantee comparable results, no I/O was performed during
benchmarks. Before benchmarking, simulation traces were
used to verify that adevs and dxex return exactly the same
simulation results. Benchmarks were performed using Linux,
but our simulation tool works equally well on Windows and
Mac.

4.1 Benchmarks
We use three different benchmarks, which cover different as-
pects of the simulation kernel:

1. The Queue model, based on the HI model of DEVS-
tone [10], creates a chain of hierarchically nested atomic
DEVS models. A single generator pushes events into the
queue, which are processed by the processors after a ran-
dom delay. It takes two parameters: width and depth,
which determine the width and depth of the hierarchy. This
benchmark shows how the complexity of the simulation
kernel behaves for an increasing amount of atomic models,
and an increasingly deep hierarchy. An example for width
and depth 2 is shown in Figure 2.

2. The PHOLD model, presented by [7], creates n atomic
models, where each model has exactly n − 1 output ports.
Each atomic model is directly connected to every other
atomic model. After a random delay, an atomic model
sends out an event to a randomly selected output port. Out-
put port selection happens in two phases: first it is decided
whether the event should be sent to an atomic model at the
same node. Afterwards, a uniform selection is made be-
tween the remaining ports. The model takes one parame-
ter: the percentage of remote events, which determines the
fraction of messages routed to other nodes. This bench-
mark shows how the simulation kernel behaves in the pres-
ence of many local or remote events. An example for four
models, split over two nodes, is shown in Figure 4.

3. The HighInterconnect model, a merge of PHOLD [7] and
the HI model of DEVStone [10], creates n atomic models,
where each model has exactly one output port. Similar to
PHOLD, all models are connected to one another, but all
through the same port: every model receives each gener-
ated event. The model takes one parameter: the number

Processor Processor Processor ProcessorGenerator

Figure 2. Queue model for depth and width 2.

Model

Model

Model

Figure 3. HighInterconnect model for three models.

Model

Model

Model

Figure 4. PHOLD model for three models.

of models. This benchmark investigates the complexity of
event routing, and how the simulation kernel handles many
simultaneous events. An example for four models is shown
in Figure 3.

4.2 Sequential Simulation Execution Time
Despite our core contribution being on parallel simulation,
we still value a comparison of sequential simulation results.
First, and foremost, parallel simulation results are tightly
linked to sequential simulation results. Parallel simulation is
achieved through synchronization of multiple sequential sim-
ulation kernels. Second, parallel simulation results are vali-
dated through the use of adevs. To provide a well-founded
comparison to adevs in the parallel simulation benchmarks,
sequential simulation results also need to be compared.

Only the Queue and HighInterconnect models are relevant for
sequential simulation, so we will not touch upon the PHold
model yet.

Queue
In the Queue model, we increase both width and depth si-
multaneously. For example, the 400 models configuration
is obtained with a width and depth of 20. As can be seen
in Figure 5, dxex considerably outperforms adevs. Through
profiling, we determined that adevs spends much time on
the handling of simulation messages, while this is avoided
in dxex’s simulation algorithm. Both simulation tools have
similar complexities, though dxex is much faster thanks to its
more efficient simulation control algorithms.

HighInterconnect
In the HighInterconnect model, we increase the number of
atomic models, thus quadratically increasing the number of
couplings and the number of external transitions. As can be
seen in Figure 6, adevs outperforms dxex by a fair margin.
Analysis showed that this is caused by the high amount of
exchanged events: event creation is much slower in dxex than
it is in adevs, despite dxex’s use of memory pools.



0
1

2
3

4
5

Models

E
la

p
se

d
 T

im
e 

(s
ec

.)

100 200 300 400 500 600 700 800 900

Legend

dxex single core

adevs single core

Figure 5. Queue benchmark results for sequential simulation.

0
.0

0
.5

1
.0

1
.5

2
.0

Models

E
la

p
se

d
 T

im
e 

(s
ec

.)

10 20 30 40 50 60 70

Legend

dxex single core

adevs single core

Figure 6. Interconnect benchmark results for sequential simulation.

4.3 Parallel Simulation Execution Time
Next we analyse parallel simulation of our previously defined
benchmarks. For dxex, we mention results of both conser-
vative and optimistic synchronization. Since adevs supports
only conservative synchronization, we don’t mention opti-
mistic synchronization results there. All experiments were
performed using up to six simulation nodes, executed on a
hexa-core machine.

We highlight two main results: (1) dxex conservative syn-
chronization is competitive with adevs; (2) dxex optimistic
synchronization is sometimes more efficient than conserva-
tive synchronization. This shows that our contribution, offer-
ing both conservative and optimistic synchronization, is in-
deed beneficial for a general-purpose simulation tools.

1
2

3
4

5

Cores

S
p

ee
d

u
p

2 3 4 5 6

Legend

dxex optimistic

dxex conservative

adevs conservative

Figure 7. Queue benchmark results for parallel simulation of a model of
fixed size.

Queue
In the Queue model, we allocate the chain of models such that
each node is responsible for a series of connected models.
This minimizes the number of inter-node messages. As the
model is a queue, however, models further in the chain only
activate later in the simulation. Since these are allocated to
separate nodes, some nodes remain idle until simulation has
progressed sufficiently far.

Similar to the sequential benchmarks, Figure 7 shows that
dxex outperforms adevs, but now in terms of speedup. Re-
sults indicate that our implementation of conservative syn-
chronization achieves much higher speedups than adevs. This
simulation is the ideal case for our conservative implementa-
tion, approaching near linear speedup. Conservative synchro-
nization also seems to be better than optimistic synchroniza-
tion in this case, at the cost of providing the lookahead.

PHold
In the Phold model, we first investigate the influence of
the fraction of remote events on the speedup. When re-
mote events are rare, optimistic synchronization rarely has to
roll back, thus increasing performance. With more common
remote events, however, optimistic synchronization quickly
slows down due to frequent rollbacks. Conservative synchro-
nization, on the other hand, is mostly unconcerned with the
number of remote events: the mere fact that a remote event
can happen, causes it to block. Even though a single syn-
chronization protocol is always ideal in this case, it already
shows that different synchronization protocols respond dif-
ferently to a changing model. Adevs is again significantly
slower during conservative synchronization. Analysis of pro-
filing results shows that exception handling in adevs is the
main cause.

We further verify that our contribution fulfills our projected
use case: a single model that can be tweaked to favor either



0
.0

0
.5

1
.0

1
.5

% Remotes

S
p

ee
d

u
p

10 20 30 40 50 60 70 80 90

Legend

dxex optimistic

dxex conservative

adevs conservative

Figure 8. Phold benchmark results for parallel simulation using six cores,
with varying fraction of remote events.

conservative or optimistic synchronization. We slightly mod-
ified the Phold benchmark, to include high-priority events.
Contrary to normal events, high-priority events happen al-
most instantaneously, restricting lookahead to a very small
value. Even when normal events occur most often, conserva-
tive synchronization always blocks until it can make guar-
antees. Optimistic synchronization, however, simply goes
forward in simulation time and rolls back when these high-
priority events happen. This situation closely mimics the case
made in the comparison between both synchronization algo-
rithms by [8].

Figure 9 shows how simulation performance is influenced by
the fraction of these high-priority events. If barely any high-
priority events occur, conservative synchronization is penal-
ized due to its excessive blocking, which often turned out to
be unnecessary. When many high-priority events occur, op-
timistic synchronization is penalized due to its mindless pro-
gression of simulation, which frequently needs to be rolled
back. Results show that there is no single perfect synchro-
nization algorithm for this model: depending on configura-
tion, either synchronization protocol might be better. We
have shown that our contribution is invaluable for high per-
formance simulation: depending on the expected behaviour,
modellers can choose the most appropriate synchronization
protocol.

Interconnect
In the Interconnect model, we determine how broadcast com-
munication is supported across multiple nodes. Results are
shown in Figure 10. When the number of nodes increases,
performance decreases due to increasing contention in con-
servative simulation and an increasing number of of rollbacks
in optimistic simulation. All models depend on each other
and have no computational load whatsoever, negating any
possible performance gain by executing the simulation in par-
allel.

0
.2

0
.4

0
.6

0
.8

% Priority

S
p

ee
d

u
p

10 20 30 40 50 60 70 80 90

Legend

dxex optimistic

dxex conservative

adevs conservative

Figure 9. Phold benchmark results for parallel simulation using six cores,
with varying amount of high-priority events.

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Cores

S
p

ee
d

u
p

2 3 4 5 6

Legend

dxex optimistic

dxex conservative

adevs conservative

Figure 10. Interconnect benchmark results for parallel simulation.

4.4 Memory Usage
Apart from simulation execution time, memory usage dur-
ing simulation is also of great importance. While execution
time only becomes a problem if it takes way too long, coming
short only a bit of memory can make simulation unfeasible.
We therefore also investigate memory usage of different syn-
chronization protocols, and again compare to adevs.

We do not tackle the problem of states that become too large
for a single machine to hold. This problem can be mitigated
by distribution over multiple machines, which neither dxex or
adevs support.
Remarks
Both dxex and adevs use tcmalloc as memory allocator,
allowing for thread-local allocation. Additionally, dxex uses



Figure 11. Memory usage results.

memory pools to further reduce the frequency of expensive
system calls (e.g., malloc and free). tcmalloc only gradu-
ally releases memory back to the OS, whereas our pools will
not do so at all. Due to our motivation for memory usage
analysis, we will only measure peak allocation. Profiling is
done using Valgrind’s massif tool [14].

Results
Figure 11 shows the memory used by the different bench-
marks. Results are in megabytes, and show the total mem-
ory footprint of the running application (i.e., text, stack, and
heap).

Unsurprisingly, optimistic synchronization results show very
high memory usage due to the saved states. Note the logarith-
mic scale that was used for this reason. Optimistic synchro-
nization results vary heavily depending on thread scheduling
by the operating system, as this influences the drift between
nodes. Comparing similar approaches, we notice that dxex
and adevs have very similar memory use.

Conservative simulation always uses more memory than se-
quential simulation, as is to be expected. Additional memory
is required for the multiple threads, but also to store all events
that are processed simultaneously.

For the Phold benchmark, adevs using conservative synchro-
nization took too long using our profiling tool, and was there-
fore aborted. Therefore, no results are shown for adevs.

5. RELATED WORK
Several similar DEVS simulation tools have already been im-
plemented, though they differ in key aspects. We discuss sev-
eral dimensions of related work, as we try to compromise be-
tween different tools.

In terms of code design and philosophy, dxex is most related
to PythonPDEVS [20]. Performance of PythonPDEVS was
still decent, through the use of simulation and activity hints
from the modeler. This allowed the kernel to optimize its in-
ternal data structures and algorithms for the specific model
being executed. All changes were completely transparent to
the model, and were completely optional. In this spirit, we of-
fer users the possibility to choose between different synchro-
nization protocols. This allows users to choose the most ap-
propriate synchronization protocol, depending on the model.

Contrary to PythonPDEVS, however, dxex doesn’t support
distribution, model migrations [21], or activity hints [19].

While PythonPDEVS offers very fast turnaround cycles, due
to the use of an interpreted language, simulation performance
was easily outdone by compiled simulation kernels. In terms
of performance, adevs [15] offered much faster simulation, at
the cost of a significant compilation time. The turnaround cy-
cle in adevs is much slower though, specifically because the
complete simulation kernel is implemented using templates
in header files. As a result, the complete simulation kernel
has to be compiled again everytime. Dxex compromises, as
vle [16] or PowerDEVS [3], by seperating the simulation ker-
nel into a shared library. After the initial compilation of the
simulation tool, only the model has to be compiled and linked
to the library. This significantly shortens the turnaround cy-
cle, while still offering good performance. In terms of perfor-
mance, dxex is shown to be competitive with adevs. While
a more extensive set of benchmarks is required to make ac-
curate comparisons, initial results are promising. Despite its
high performance, adevs does not support optimistic synchro-
nization, which we have shown to be highly relevant.

Previous DEVS simulation tools have already implemented
multiple synchronization protocols, though mostly in an ad-
hoc way. For example CD++ [23] has both a conserva-
tive (CCD++ [11]) and optimistic (PCD++) [17]) variant.
Despite the implementation of both protocols, they are dif-
ferent projects entirely, and are incompatible with modern
compilers. Dxex, on the other hand, is a single project,
where switching between different synchronization protocols
is as simple as switching any other configuration parameter.
CD++, however, implements both conservative and optimistic
synchronization for distributed simulation, whereas we limit
ourselves to parallel simulation. By limiting our approach to
parallel simulation, we are able to achieve higher speedups
through the use of shared memory communication.

In summary, dxex tries to find the middle ground between the
concepts of PythonPDEVS, the performance of adevs, and
the multiple synchronization protocols of CD++.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced DEVS-Ex-Machina (“dxex”), a
new C++11-based Parallel DEVS simulation tool. Our main
contribution is the implementation of multiple synchroniza-
tion protocols for parallel simulation. We have shown that
there are indeed models which can be simulated significantly
faster using either synchronization protocol. Dxex allows
the user to choose between either conservative or optimistic
synchronization as simple as any other configuration option.
Notwithstanding this modularity, dxex achieves performance
competitive to adevs, another very efficient DEVS simula-
tion tool. Performance is measured both in elapsed time, and
memory usage.

Future work is possible in several directions. Firstly, our im-
plementation of optimistic synchronization should be more
tolerant to low-memory situations. In its current state, simu-
lation will simply halt with an out-of-memory error. Having
simulation control, which can throttle the speed of nodes that



use up too much memory, has been shown to work in these
situations [8]. Faster GVT implementations, such as those
presented by [9] and [2], might further help to minimize this
problem. Secondly, the idea of activity can be implemented
for our simulation kernels, making it possible to dynamically
switch between conservative and optimistic synchronization
when behavioural changes are detected. Thirdly, activity al-
gorithms, as already implemented by PythonPDEVS, can also
be implemented in dxex, to determine how they influence
simulation performance.

ACKNOWLEDGMENTS
This work was partly funded with a PhD fellowship grant
from the Research Foundation - Flanders (FWO).

REFERENCES
1. Barros, F. J. Modeling formalisms for dynamic structure

systems. ACM Transactions on Modeling and Computer
Simulation 7 (1997), 501–515.

2. Bauer, D., Yaun, G., Carothers, C. D., Yuksel, M., and
Kalyanaraman, S. Seven-o’clock: A new distributed gvt
algorithm using network atomic operations. In
Proceedings of the 19th Workshop on Principles of
Advanced and Distributed Simulation, PADS ’05, IEEE
Computer Society (Washington, DC, USA, 2005),
39–48.

3. Bergero, F., and Kofman, E. PowerDEVS: a tool for
hybrid system modeling and real-time simulation.
Simulation 87 (2011), 113–132.

4. Chen, B., and Vangheluwe, H. Symbolic flattening of
DEVS models. In Summer Simulation Multiconference
(2010), 209–218.

5. Chow, A. C. H., and Zeigler, B. P. Parallel DEVS: a
parallel, hierarchical, modular, modeling formalism. In
Proceedings of the 26th Winter Simulation Conference,
SCS (1994), 716–722.

6. Franceschini, R., Bisgambiglia, P.-A., Touraille, L.,
Bisgambiglia, P., and Hill, D. A survey of modelling and
simulation software frameworks using Discrete Event
System Specification. In 2014 Imperial College
Computing Student Workshop, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2014),
40–49.

7. Fujimoto, R. M. Performance of Time Warp under
synthetic workkloads. In Proceedings of the SCS
Multiconference on Distributed Simulation (1990).

8. Fujimoto, R. M. Parallel and Distributed Simulation
Systems, 1st ed. John Wiley & Sons, Inc., New York,
NY, USA, 1999.

9. Fujimoto, R. M., and Hybinette, M. Computing global
virtual time in shared-memory multiprocessors. ACM
Trans. Model. Comput. Simul. 7, 4 (Oct. 1997),
425–446.

10. Glinsky, E., and Wainer, G. DEVStone: a benchmarking
technique for studying performance of DEVS modeling

and simulation environments. In Proceedings of the
2005 9th IEEE/ACM International Symposium on
Distributed Simulation and Real-Time Applications
(2005), 265–272.

11. Jafer, S., and Wainer, G. Flattened conservative parallel
simulator for DEVS and CELL-DEVS. In Proceedings
of International Conferences on Computational Science
and Engineering (2009), 443–448.

12. Jefferson, D. R. Virtual time. ACM Trans. Program.
Lang. Syst. 7, 3 (July 1985), 404–425.

13. Mattern, F. Efficient algorithms for distributed snapshots
and global virtual time approximation. Journal of
Parallel and Distributed Computing 18, 4 (1993),
423–434.

14. Nethercote, N., and Seward, J. Valgrind: A framework
for heavyweight dynamic binary instrumentation.
SIGPLAN Not. 42, 6 (jun 2007), 89–100.

15. Nutaro, J. J. ADEVS.
http://www.ornl.gov/˜1qn/adevs/, 2015.

16. Quesnel, G., Duboz, R., Ramat, E., and Traoré, M. K.
VLE: a multimodeling and simulation environment. In
Proceedings of the 2007 Summer Simulation
Multiconference (2007), 367–374.

17. Troccoli, A., and Wainer, G. Implementing Parallel
Cell-DEVS. In Proceedings of the 2003 Spring
Simulation Symposium (2003), 273–280.

18. Van Tendeloo, Y. Activity-aware DEVS simulation.
Master’s thesis, University of Antwerp, Antwerp,
Belgium, 2014.

19. Van Tendeloo, Y., and Vangheluwe, H. Activity in
pythonpdevs. In Activity-Based Modeling and
Simulation (2014).

20. Van Tendeloo, Y., and Vangheluwe, H. The Modular
Architecture of the Python(P)DEVS Simulation Kernel.
In Spring Simulation Multi-Conference, SCS (2014),
387 – 392.

21. Van Tendeloo, Y., and Vangheluwe, H. PythonPDEVS: a
distributed Parallel DEVS simulator. In Proceedings of
the 2015 Spring Simulation Multiconference, SpringSim
’15, Society for Computer Simulation International
(2015), 844–851.

22. Vangheluwe, H. DEVS as a common denominator for
multi-formalism hybrid systems modelling. CACSD.
Conference Proceedings. IEEE International
Symposium on Computer-Aided Control System Design
(2000), 129–134.

23. Wainer, G. CD++: a toolkit to develop DEVS models.
Software: Practice and Experience 32, 13 (2002),
1261–1306.

24. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation, second ed. Academic Press,
2000.

http://www.ornl.gov/~1qn/adevs/

	Introduction
	Background
	Conservative Synchronization
	Optimistic Synchronization

	Multiple Synchronization Protocols
	Synchronization protocols
	Sequential
	Conservative
	Optimistic

	Transparency

	Performance
	Benchmarks
	Sequential Simulation Execution Time
	Queue
	HighInterconnect

	Parallel Simulation Execution Time
	Queue
	PHold
	Interconnect

	Memory Usage
	Remarks
	Results


	Related Work
	Conclusions and future work

