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ABSTRACT

Computational models for relatively complex systems are subject to many diffi-

culties, among which is the ability for the models to be discretely understandable and

applicable to specific problem types and their solutions. This demands the specifi-

cation of a dynamic system as a collection of models, including metamodels. In this

context, new modeling approaches and tools can help provide a richer understanding

and, therefore, the development of sophisticated behavior in system dynamics. From

this vantage point, an activity specification is proposed as a modeling approach based

on a time-based discrete event system abstraction. Such models are founded upon

set-theoretic principles and methods for modeling and simulation with the intent of

making them subject to specific and profound questions for user-defined experiments.

Because developing models is becoming more time-consuming and expensive, some

research has focused on the acquisition of concrete means targeted at the early

stages of component-based system analysis and design. The model-driven architec-

ture (MDA) framework provides some means for the behavioral modeling of discrete

systems. The development of models can benefit from simplifications and elaborations

enabled by the MDA meta-layers, which is essential for managing model complexity.

Although metamodels pose difficulties, especially for developing complex behavior,

as opposed to structure, they are advantageous and complementary to formal models

and concrete implementations in programming languages.

The developed approach is focused on action and control concepts across the MDA

meta-layers and is proposed for the parallel Discrete Event System Specification (P-

DEVS) formalism. The Unified Modeling Language (UML) activity meta-models are

used with syntax and semantics that conform to the DEVS formalism and its exe-

cution protocol. The notions of the DEVS component and state are used together

according to their underlying system-theoretic foundation. A prototype tool support-
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ing activity modeling was developed to demonstrate the degree to which action-based

behavior can be modeled using the MDA and DEVS. The parallel DEVS, as a formal

approach, supports identifying the semantics of the UML activities. Another proto-

type was developed to create activity models and support their execution with the

DEVS-Suite simulator, and a set of prototypical multiprocessor architecture model

specifications were designed, simulated, and analyzed.

ii



To My Mother, Haya bint Nasser

iii



ACKNOWLEDGMENTS

I wish to thank the members of my graduate supervisory committee for their

service. I am especially thankful for my faculty advisor and committee chair, Hessam

Sarjoughian, for his guidance and support. I also appreciate the fruitful discussion

and valuable insights that have been put through by the committee members Georgios

Fainekos, Joohyung Lee, and Ming Zhao. Their valuable inputs have certainly helped

in shaping the outcome and formulating the contribution with further clarifications

regarding related formalisms and the logic foundation of this work.

I would also like to thank my colleagues at the Arizona Center for Integrative

Modeling and Simulation. The members and visiting scholars of this lab have been

outstanding in countless discussions over different topics, research interests, and prob-

lems. I also appreciate the School of Computing, Informatics, and Decision Systems

Engineering and, notably, the Computer Science Program for being an excellent aca-

demic environment for learning and conducting research. I would certainly go beyond

the space limit if I were to name all faculties and talented staff whom I greatly ben-

efited from throughout my years at the School and the Program.

A special appreciation goes sincerely beyond all academic credits to my brother

Turki, my sisters Nora, Asma, and Arwa, and all of my family for their awe-inspiring

spirits. I have been a longtime recipient of their tremendous encouragement and

unlimited support, without which I might have given up such a challenging pursuit

at many time points.

Undertaking this Ph.D. was supported by a scholarship provided by King Saud

University.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statements and Attempted Works . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Model Ambiguity and Implicit Assumption . . . . . . . . . . . . . . . . 2

1.1.2 Code Generation and Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Complexity and Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Classification and Meta-Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Model Evaluation and Architecture Selection . . . . . . . . . . . . . . . 6

1.1.6 Temporal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Related Work and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Published Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Preliminary Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Metamodeling and the DEVS Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 MDA and Model Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 DEVS Atomic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 EMF-DEVS Atomic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Foundational UML Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 UML Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Foundational Model Library and Base Semantics . . . . . . . . . . . 23

v



CHAPTER Page

2.3 Formalisms and Languages for Discrete Event Modeling . . . . . . . . . . . 23

2.3.1 Parallel DEVS Atomic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Activities and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Eclipse Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 BEHAVIORAL DEVS METAMODELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Atomic DEVS Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Meta-Behavior Modeling in EMF . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Constrained Meta-behavior Modeling . . . . . . . . . . . . . . . . . . . . . . 42

3.3 A Processor Example Behavioral Metamodel Snippet . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 AN APPROACH FOR ACTIVITY-BASED DEVS MODEL SPECIFI-

CATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Three Views for Specifying Atomic Model Behavior . . . . . . . . 55

4.2.2 Activity Specifications for Atomic DEVS Model . . . . . . . . . . . . 57

4.2.3 Action Specifications for Atomic DEVS Model . . . . . . . . . . . . . 58

4.3 Statecharts and Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 DEVS SPECIFICATION FOR MODELING AND SIMULATION OF

THE UML ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



CHAPTER Page

5.2 Activities Simulation Through DEVS: Finding Rigor . . . . . . . . . . . . . . 69

5.2.1 A DEVS Grounding for UML Activities . . . . . . . . . . . . . . . . . . . 70

5.2.2 The Semantics of Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Network Switch: an Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 The Generality of the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 ACTIVITY-BASED DEVS MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Activity-based DEVS Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Categorizing the Activity Specification . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Note on Coupled Models and Behavioral Specification . . . . . . 90

6.2.3 Controlled Coupling Using Activities Control Nodes . . . . . . . . 91

6.3 EMF-based Modeling Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Activity-based DEVS Ecore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Activities Graphical Definition and Tooling . . . . . . . . . . . . . . . . 98

6.3.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.4 Preliminaries on the Validation of the Activity-based DEVS

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Activity-based Modeling for Multiple Input Processor with Queue . . 103

6.4.1 Interpreting the Processor Model in the DEVS-Suite Simulator105

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 PARALLELISM SEMANTICS IN MODELING ACTIVITIES . . . . . . . . . . 110

vii



CHAPTER Page

7.1 The Role of Action in Activities and Other Behavioral Models . . . . . 112

7.1.1 Atomic Model and Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.2 State and Time for Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Multiprocessor Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Parallelism Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.1 Multiple Branching via Split Nodes . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.2 Joining Multiple Paths and Interruptions . . . . . . . . . . . . . . . . . . 124

7.3.3 Using Control Nodes for Job Coordination . . . . . . . . . . . . . . . . . 125

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 MODEL-DRIVEN TIME-ACCURATE DEVS-BASED APPROACHES

FOR CPS DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1.1 Parallel DEVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1.2 Real-Time DEVS (RT-DEVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1.3 Action-Level Real-Time DEVS (ALRT-DEVS) . . . . . . . . . . . . . 135

8.1.4 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 Action-Level DEVS Specification Using Activity Modeling . . . . . . . . . 139

8.3.1 CPS Activities Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.2 The Modeling and Simulation of a Traffic Intersection . . . . . . 140

8.4 Interacting with Reactive Computational-Physical Systems . . . . . . . . 144

8.5 Verification of the CPS Activities Models . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.5.1 Reasoning About Temporal Behavior . . . . . . . . . . . . . . . . . . . . . . 147

viii



CHAPTER Page

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9 METAMODELING ACTIVITIES FOR HIERARCHICAL COMPONENT-

BASED MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1 Component-based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2 Coordinating Between Server Components . . . . . . . . . . . . . . . . . . . . . . . . 156

9.3 The Specification of Action and Control in Activities . . . . . . . . . . . . . . 160

9.3.1 Coordinator Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.3.2 Constructing Hierarchy within Activities . . . . . . . . . . . . . . . . . . . 164

9.4 Demonstrating with Activity Modeling Tool . . . . . . . . . . . . . . . . . . . . . . 166

9.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10 ACTIVITY SPECIFICATION FOR TIME-BASED DISCRETE EVENT

SIMULATION MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.1 On Simulation Modeling Architectures and Frameworks . . . . . . . . . . . 178

10.1.1 Modeling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.2 DEVS Specifications for Activity Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.2.1 Mapping UML Activity Control, Object, and Flow to DEVS

Model, Port, and Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.3 Exploiting Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.3.1 Parallelism Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.3.2 Simple Experiment for an Archetype Divide and Conquer

Architecture in DEVS-Suite Simulator . . . . . . . . . . . . . . . . . . . . . 194

10.4 Flow Selection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

ix



CHAPTER Page

10.4.1 A Pipeline Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.4.2 A Multi-Server Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.5 Framework for Activity Modeling and Simulation . . . . . . . . . . . . . . . . . 201

10.5.1 Time for Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.5.2 Observations of Temporal Analysis with Activities . . . . . . . . . . 204

10.5.3 Simulating Activities in DEVS-Suite . . . . . . . . . . . . . . . . . . . . . . 209

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

APPENDIX

A OTHER CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.1 Infusing Simulatability into Software Models . . . . . . . . . . . . . . . . . . . . . . 225

A.1.1 Transforming Activity Models to DEVS Models: Autonomous

Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A.2 Toward Precise Semantics of Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.2.2 The Atomic Model and the Action . . . . . . . . . . . . . . . . . . . . . . . . 227

A.2.3 A Processor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

x



LIST OF TABLES

Table Page

5.1 A Subset of the Mapping for Activity Elements . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Activity Specifications for Atomic DEVS Model . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Decision and Merge Node Figure Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 A Subset of Activities Elements and Briefly Their Semantics with Re-

spect to Parallelism in Correspondence with DEVS . . . . . . . . . . . . . . . . . . . 120

A.1 A Set of Atomic and Coupled Models for Activities DEVS Modeling

and Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

xi



LIST OF FIGURES

Figure Page

1.1 Related Works and Background Map Highlighting Our Activity Mod-

eling Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Notation Examples of Essential Activity Modeling Elements Along

with Their Treatment as Components with Accounts to Multiple Ports

and Couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Activity Modeling for a Wymore (1993) Server System. . . . . . . . . . . . . . . . 15

3.1 From Mathematical to UML to EMF Modeling. . . . . . . . . . . . . . . . . . . . . . . 39

3.2 A Metamodel for Atomic DEVS Model with State Transitions. . . . . . . . . 43

3.3 Ecore for a Processor with Primary State Transitions for the External

Transition Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 A Subset of Behavior Elements and their Relationships In UML 2.5

Metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Different Views of Activities DEVS Modeling. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Activity Models for the Processor (Simplified). . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 The Overall View of the Approach and Relationships between Different

Models of Consumer Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 A Simplified View of Employing Concepts in M&S for Activities Mod-

eling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The Action, Which Is a Special Type of Activity Node, Is Treated as

an Atomic Model with Some Input and Output Ports. . . . . . . . . . . . . . . . . 71

5.3 The Network Switch Parallel DEVS Coupled Model. . . . . . . . . . . . . . . . . . . 76

5.4 An Activity for the Network Switch Coupled Model. . . . . . . . . . . . . . . . . . . 76

5.5 A Simulation View for the High-Level Activity Constructs Used to

Model Network Switch (Implemented in DEVS-Suite). . . . . . . . . . . . . . . . . 78

xii



Figure Page

6.1 An Activity for Synchronizing Outputs from the Generators Prior to

Processing. The Simulation View (Right) Is for the Corresponding

Implementation in DEVS-Suite. The Join Node as an Atomic Model

Is in Waiting Phase to Synchronize the Input through the Other Port

from the Second Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Activity-based DEVS Metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Visual Canvas for Activity-based DEVS Modeling. . . . . . . . . . . . . . . . . . . . 99

6.4 Activity-based DEVS Modeling for Multiple Input Processor with Queue.106

7.1 A Classification for Formal and Semi-Formal Component-Based Mod-

eling Approaches with Respect to Structure and Behavior. . . . . . . . . . . . . 111

7.2 A View of an Action and State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 We Examine Different Abstractions for Different Architectures. The

Component Views with Couplings Are Shown in the Top, and Their

Corresponding Activities Are Shown in the Bottom. The Areas in

Grey Highlight the Control Nodes That Are Used to Represent the

Coordinating Procedure in Each Architecture. The Letter P Stands for

Processor and A for Action. In (A), the Coordinator Is Represented by

the Decision Node D to Direct the Job According to Some Condition

Associated with the Outgoing Flow. Conditions Are Visually Omitted.

In (B), the Job Is Either Brought Back to the Decision Node d1 to Be

Directed Again, or Sent out If Completed. In (C), the Job Is Divided

in the Split Node S and Combined Back in the Join Node J after

Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 A View of the Architectures and Some of Their Corresponding Behaviors.128

xiii



Figure Page

7.4 A View of the Architectures and Some of their Corresponding Behaviors.129

8.1 Actions in the CPS Are Characterized into Four Types. the Types

in Grey Are Crucial from a CPS Standpoint since They Are Akin

to the Tight Coupling between Cyber and Physical Parts. Actuating

Actions, for Example, Can Impact the Physical Environment Directly

and Therefore Their Consequences Are Critical. . . . . . . . . . . . . . . . . . . . . . . 134

8.2 The Activities Metamodel Is Circumscribed and Extended with CPS

Action. ALRT-DEVS Metamodel Is Also Linked with the Activities

Metamodel at a High Level to Establish the Grounding for the DEVS

Modeling and Simulation of the CPS Activity. The X, Y, and S Sets

Are the Same as Those Defined for P-DEVS. Some Cardinalities Are

Visually Omitted. The Elements with Italic Are Abstract Super-Type

Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 The Activity for Modeling Traffic Intersection and Simulating It In

DEVS-Suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 Phase Trajectories for Different Scenarios for Toggle as a CPS Action. . 146

9.1 Modeling the Dual Server System in CoSMoS. . . . . . . . . . . . . . . . . . . . . . . . 154

9.2 An Activity for the External Transition Function of the Coordinator. . . 158

9.3 Activity of a Multi-Sever Archetype Architecture Is Devised Using Var-

ious Activity Constructs. S1 and S2 Actions Represent the Jobs Ser-

vice. C1 and C2 Represent Conditions for Choosing Flow Directions.

The Nodes inside the Dashed Line Area Highlight the Role of the Ac-

tivity Control Elements in the Manipulation of the I/O Flow. . . . . . . . . . 163

9.4 Modeling the Coordinator Statecharts in CoSMoS. . . . . . . . . . . . . . . . . . . . 164

xiv



Figure Page

9.5 Hierarchical Construction with Activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.6 A Metamodel for Hierarchical Activities Developed Using Ecore. . . . . . . 167

9.7 Viewpoint Specification in Sirius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.7 Viewpoint Specification in Sirius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.8 Modeling Multi-Server Activity in the Developed Activity Modeling

Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.8 Modeling Multi-Server Activity in the Developed Activity Modeling

Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.9 The Simulation View of the Developed Activity for the Multi-Server

System after the Code Generation for DEVS-Suite Simulator. . . . . . . . . . 172

10.1 Illustration of the Mapping of Different Activity Nodes with Accounts

to Multiple Ports and Couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.2 Activity-Based Modeling of the Divide and Conquer Architecture. . . . . . 193

10.3 The Trajectories for the State Variable phase and the Input in and

Output out Ports With Events for the a2 Component. . . . . . . . . . . . . . . . . 197

10.4 Different Abstractions of the Pipeline Architecture with Possibly Dif-

ferent Temporal Attributions in Their Simulations. . . . . . . . . . . . . . . . . . . . 199

10.5 Activity-Based Modeling of the Multi-Server Architecture. . . . . . . . . . . . . 201

10.6 A High-Level Sketch Illustrating (A) the Incorporation of Action and

Control Node on the One Hand and State on the Other, and (B) a

Conceptual Relationship between I/O and Activity Pin. . . . . . . . . . . . . . . 202

xv



Figure Page

10.8 Throughput Is Observed by Simulating the Activity of Divide and Con-

quer in DEVS-Suite, Given Different Numbers of Actions and Tasks

Arriving at the Same Time. Tpt Is Equal to 10 Time Units in All Cases,

and Tc Is Assigned Linearly Relative to the Number of Actions, Where

a Greater Number of Actions Requires a Greater Tc Value. . . . . . . . . . . . . 212

A.1 The Integration of the New Packages Within the Current Architecture. 226

A.2 The Multiple Views for Modeling and Simulation of an Intersection. . . . 226

A.3 The Action Abstraction Is Situated at the Heart of Many Behavioral

Specifications and Thus Used As a Bridge Between the Formal Speci-

fication and Other Semi-Formal or Informal Modeling Approaches. . . . . 227

xvi



Chapter 1

INTRODUCTION

Computational models for complex systems are subject to many difficulties, among

which is the ability to be directly applicable to various essential needs and natural

phenomena. In recent years, significant advances in developing dynamic models for

systems have used a variety of model abstractions under the model-driven archi-

tecture and model-based design umbrella of semi-formal methods. Fundamental to

these efforts is the metamodeling concept spanning component-based structural and

behavioral model specifications. From this vantage point, we have proposed an ac-

tivity specification to be developed based on the discrete event modeling approach

with the accounts to time notion. Models of this nature evolve with the intent of pos-

ing and answering specific and profound questions according to general set-theoretic

model specifications with supporting simulation execution protocols.

Since the modeling process tends to be time-consuming and highly expensive, we

focused on facilitating some concrete means that aid formulating both the structures

and behaviors of models simultaneously. The aim is to develop models that lend

themselves to a higher degree of rigor during the early stages of the modeling and

simulation life cycle. Intermediary abstractions, afforded through metamodeling, be-

come indispensable for exploring uncharted territories of model spaces in ways by

which their computational aspects expand and potentially lead to discovering new

models.

Introducing a new concept at a meta-layer necessitates substantial efforts at con-

crete layers to realize the concept in attempts to pursue its benefits. Such realization

comes into play while recognizing, at the fundamental level, the fact that achieving

1



a consistent formal system with full provability is out of reach. Furthermore, an in-

crease in system complexity demands richer abstractions and boundaries to be more

realizable in a useful way. Such models lead to simulations that can be more useful for

the understanding and predictability of intertwined time-based behavioral dynamics.

The subject of this dissertation is highly intrinsic to the systems to be modeled and

dependent on the modeler's ability. Basic research in this topic is needed to help

mitigate some of the fundamental barriers that arise when developing higher qual-

ity system architecture and design specifications. Such designs, once executed, can

provide useful insights much earlier than is currently possible.

1.1 Problem Statements and Attempted Works

Particular problems have been the subjects of the research conducted for this dis-

sertation. In the following, we introduce them with some remarks about the research

that was carried out by formulating the problems and relevant concepts. We discuss

more details throughout the remaining chapters, but first, we highlight general views

about some of the issues of interest and the efforts made to address them.

1.1.1 Model Ambiguity and Implicit Assumption

Models are generally treated as simplifications and, therefore, contain fewer details

about interests in their targeted domains. The process of simplification used in some

modeling approaches have led to ambiguities. For example, some aspects of the

Unified Modeling Language (UML) are known to be challenging to use. The problem

also becomes visible concerning particular properties that are implicit or otherwise

arbitrary. Modelers using such modeling languages often face the burden of navigating

through incomplete or possibly contradictory abstractions. These limitations result

in having models that do not lend themselves to a sound framework. For the context
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of a sound framework, models should not only have well-defined syntax and semantics

but also be able to correctly simulate or execute model behaviors.

We employ concepts like actions and control in behavioral metamodels to provide

a means for understanding behavioral aspects of a system under study. We argue

that establishing a rigorous mathematical grounding for a strictly selected subset of

the UML is necessary to achieve essential benefits concerning execution. We also

suggest that discrete event modeling frameworks can serve as suitable candidates.

Thus, we propose formalizing the activity modeling via a set of system theory atomic

and coupled models as defined in the Discrete Event System Specification (DEVS).

Therefore, foundational elements of activities and actions are modeled and mapped

into a set of atomic and coupled models where they can collectively serve as a basis for

grounding different diagrams via coupling with the entry-level capability of modeling

and simulation for activities.

1.1.2 Code Generation and Execution

Code generation is a well-recognized problem that has been the target of tremen-

dous efforts and a variety of proposed frameworks and techniques to work around

it. While it is difficult to have a fundamental solution to this problem, code gen-

eration frameworks continue to grow to accelerate designs ranging from embedded

systems to highly networked systems. Tackling such a problem can take many dif-

ferent forms. The resulting programs may also encounter other issues in terms of

interpretations. When it comes to a model, the distinction between its automated

code generation and interpretation plays an essential role since each has a different set

of artifacts. The code generation produces artifacts that, in turn, can be subject to

further modification and optimization. Interpretation provides some understanding

of the separation of concerns such as model continuity with loose dependency on code
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generation targeted for specific programming languages. The problem becomes more

challenging with increasing dependencies that can arise quite easily in systems that

have intrinsic complexity and scale traits. Even with the widely used abstraction

concepts and frameworks (e.g., Eclipse Papyrus) and the basic types of relationships

(e.g., dependency), code generation is restrictive.

Some frameworks, such as the Model Driven Architecture, have been proposed to

support the creation of simulation models. The overarching role of the frameworks

has been to aid model specifications in a disciplined fashion, but simulation is not

the primary focus. They can, however, provide intermediary layers from the higher

mathematical models to their corresponding software specifications from a mostly

structural standpoint. Unlike structural modeling, behavioral modeling is known to

be more difficult, particularly when functional operations require non-trivial control

schemes. This observation has resulted in proposing activity-based behavior modeling

for simulation. We consider actions as the fundamental units of behavioral modeling

and its use alongside state-based models. The state-based and flow-based abstrac-

tions can serve the complementary roles needed for developing rich component-based

modeling and simulation frameworks.

In addition, we have developed a prototype modeling engine that demonstrates

key aspects of the proposed activity modeling approach. The engine is produced

using the Eclipse Modeling Framework along with tools supporting graphical model

development and code generation for simulation. We also detail the relevant aspects

of the created metamodel in terms of modeling and simulation. A large number of

the activity artifacts from the vantage point of DEVS behavioral modeling, including

actions and control, are covered in detail. We also discuss the semantics of the

artifacts for time-accurate requirements for simulation.
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1.1.3 Complexity and Scale

Models are developed to sustain, and therefore, having mechanisms for a longer

lifetime is of the utmost importance. Different kinds of measures can help in evalu-

ating model specifications. Component-based models, for example, are measured in

terms of the number of components and relationships they have. Quantitative mea-

sures are usually more straightforward; however, interpretations of such measures

differ across domains. In contrast, qualitative measures, such as model reuse, are

harder to define. The significance of some relationships or components as opposed

to others among application domains varies. Models may have intrinsically different

characteristics that complicate the scale and complexity measures, especially those

that are tied to model behavior. A family of models can help to deal with the com-

plexity and scale issues, which can become overwhelming when there is only one

model.

In discrete system modeling (Zeigler et al., 2018b), the exact and approximate

scales for the structures of modular, hierarchical models are measured in a straight-

forward fashion. Many real systems, such as enterprise processes, are known to have

large scales and complexities. Such systems have a large number of components with

and even more significant number of relationships. The scale and complexity measure-

ments for a system that has a variety of components and connection types are hard to

obtain. Structural and behavioral homogeneity in models such as cellular automata

and synchronous reactive models lend themselves to simpler scalability and complex-

ity measures. Behavioral model specifications that are grounded in component-level

action and state abstractions are more likely to have scale and complexity measure-

ments.
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1.1.4 Classification and Meta-Layers

The problem of classification continues to be the subject of extensive study, in-

cluding efforts such as set theory conceptualizations. Aside from being subjective

depending on, for example, data types and execution semantics, classifications can be

brittle, without careful use of abstractions. The problem becomes relatively straight-

forward if it is to be worked out in an ad hoc manner or when a system has rigid

behavior. Conversely, it is possibly a conundrum when a particular and specific rigor

is necessary to deal with system complexity.

We proposed a set theory specification in the context of DEVS. A mapping takes

the elements of the DEVS to their counterparts that conform to MDA. The idea is to

examine the capability of developing platform-independent models that can transform

into platform-specific models. We shed light on and introduce behavioral metamodel-

ing for discrete event simulation models. We also discuss the behavioral specification

from the standpoint of the MDA framework with a three-layer model abstraction con-

sisting of the metamodel, concrete model, and instance model. Prototypes were de-

veloped to describe the three-layer modeling approach from the perspective of DEVS

and realized in the Eclipse Modeling Framework. A behavioral metamodel expands

to the core model of the framework, and afterward, we examine it while consider-

ing other metamodels for supporting structural features. Furthermore, we discuss

some observations regarding behavioral metamodeling, model validation, and code

generation.

1.1.5 Model Evaluation and Architecture Selection

It is not common practice to develop models for subject systems in conjunction

with the environment within which they are expected to execute. Therefore, models
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of experiments can play a significant role in evaluating the effectiveness of the sub-

ject model, particularly from the standpoint of the behavioral dynamics. Software

modeling methods that explicitly account for state and actions can lend themselves

to this purpose. Evaluating models of time-critical and safety-critical systems is nec-

essary. Even though some results can be rendered through standalone simulations of

a subject system, evaluations supported by experimental models are needed to gain

greater insight into the system dynamics. Without such an approach, some aspects

of the system may not be possible to evaluate. Therefore, activity modeling can help

in developing richer models for both the subject and experiment models.

1.1.6 Temporal Structure

There is a growing need for systems to account for the notion of time, which is

necessary for accommodating time-sensitive behaviors. Although essential in many

domains, the mere inclusion of time expands the state space of such dynamical sys-

tems with far more complications. Different theories and models suggest different

representations and calculations of time, and they vary significantly in definition from

those as simple as the linear temporal logic to as complex as a full account of time

as an abstract quantity with real values. Such notions are essential, especially when

dealing with well-known challenging problems in computing, such as parallelization

and synchronization.

To further the proposed activity approach for modeling and simulation, we exam-

ine it further concerning parallelization and synchronization of the data and control

flows. A time base, regardless of its granularity, is explicitly necessary to account for

parallelism in a simulation environment. We examine that by dissecting the basic

temporal properties that are related to control constructs within activity modeling in

the viewpoint of the parallel DEVS formalism and its time base.
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Performance analysis and verification of cyber-physical systems (CPS) are good

examples when it comes to time sensitivity in decision-making processes. The inter-

action between computational and physical parts is of particular interest in modeling

such systems. We employ some research on simulation and model-checking for design-

ing computational-physical interactions in the context of a basic CPS and propose

an action-level model-driven activity modeling approach based on DEVS. We em-

ploy time intervals (TIs) to govern the communication between computational and

physical components at the level of actions. We extend the activities metamodel

to instantiate activities suitable for time-critical CPS. We also demonstrate with an

example of a vehicular traffic intersection model with verification.

1.2 Related Work and Contribution

Many existing formalisms have been useful for a variety of needs, among them

modeling and verification. Common examples of these formalisms are Petri nets

(Murata, 1989), timed automata (Alur, 1999), answer set programming (Lifschitz,

1999), and DEVS (Zeigler et al., 2000). Each one can be used to dissect certain as-

pects of the system state. However, there has not been a formal way that a complete

representation of a system can take place except with a large degree of constriction

or abstraction. Thus, it becomes necessary to use a variety of formalisms for various

needs in a complementary manner. Fundamental difficulties may arise, especially

regarding heterogeneity; however, certain guarantees can be afforded if some anal-

ysis effort takes place. This fact is behind the high cost of developing models that

lend themselves to profound formalisms. Less formal approaches such as UML, Sys-

tem Modeling Language (SysML), and MDA may become appealing with beneficial

practices and accompanying frameworks. Environments such as Eclipse Modeling

Framework (Steinberg et al., 2008) are useful, but they are prone to complexity is-

8



sues (Fondement et al., 2013) demanding parallel efforts to withstand a certain degree

of rigor and scale.

Despite advances in the degree of coverage of the state space, restricted formalisms

such as Petri nets continue to require extensions like time Petri nets (Berthomieu and

Diaz, 1991) and high-level Petri nets (Jensen and Rozenberg, 2012). Introducing a

continuous-time base in the specification leads to an inherent difficulty in interpreting

any classical computational model from a system-theoretic standpoint. This difficulty

is evident due to the necessary treatment in such a setting for challenging aspects of

heterogeneity, composability, discretization, multiple resolutions, and the likes.

Figure 1.1 depicts a map of the overall literature in this dissertation, along with

possible paths and research areas. It includes some efforts along these paths and

areas; however, others remain unexamined. The expected capability dictates making

certain decision along the way.. Arriving at a certain execution is one capability

that some research is going after, while others are verification and simulation. The

means of how such capabilities are delivered also varies. Transformation, extension,

and formalization are some techniques to account for when conducting efforts that

involve constructs with an inadequate syntactical and semantic definitions. We will

discuss in more detail some of the research on these three capabilities. Nevertheless,

it is a voyage in spaces with multiple paths to arrive, ideally and ultimately, at such

capabilities.

Some formalisms account for specifications and are therefore used for modeling

particular aspects of systems. The modeling efforts then translate to means in which

verification of specific properties can take place under certain conditions. Some prop-

erties are reachability (Hwang and Zeigler, 2009), progress (Misra, 2001) or liveness

(Lamport, 1989), maximality (Misra, 2001), and safety (Lamport, 1989; Misra, 2001;

Alur, 2015). The path toward achieving verification of such properties involves cre-
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Figure 1.1: Related Works and Background Map Highlighting Our Activity Modeling

Approach.

ating counterpart representatives in formalisms like timed automata, Petri nets, or

some extensions thereof, such as hybrid I/O automata (Lynch et al., 2003) or high-

level Petri nets. Researchers have proposed different mappings to various formalisms

or extensions thereof. The degree of coverage in these efforts also varies. Some of

them account for basic elements (Rafe and Rahmani, 2008), while others account for a

wider set of constructs and definitions (Störrle and Hausmann, 2004), such as the ones

defined in the activity metamodel (OMG, 2005). For example, the latter includes de-

tailed treatment for semantics of various activity constructs such as executable node,

control nodes, and various patterns of activity edges. The work concludes, however,

with some critical remarks about the feasibility of aligning activities to Petri nets

and vice versa. We profoundly account for such remarks in this dissertation by es-

tablishing the distinction between verification and simulation as two different sought

capabilities. The former can be supported by taking the path of Petri nets and some

counterpart for it in the DEVS arena such as finit Deterministic DEVS (FD-DEVS)

(Hwang and Zeigler, 2009) and constrained-DEVS (Gholami and Sarjoughian, 2017).

While the former depends on use of TA, the latter is grounded on extending the DEVS

formalism to support verification with the benefit of a full-fledged modeling and sim-
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ulation environments (e.g., DEVS-Suite simulator [ACIMS, 2019] with supports for

time series and behavior monitoring and debugging).

On the other side, shown in the lower part of Figure 1.1, some existing transfor-

mations, and extensions suggest the notion of model execution and define semantics

along the way during the model development and through proposed execution engines.

Some of these approaches employ the MDA (Miller and Mukerji, 2003) with adapted

mechanisms such as model to text (M2T) and Query/View/Transformation (QVT).

These mechanisms enable code generation for producing code snippets and programs

in target programming languages. An earlier work is executable UML (Mellor et al.,

2002). More recently, the foundational subset of UML (fUML) (OMG, 2013) extends

the UML with sets of actions with more elaborate semantic definitions and an exe-

cution model. It also proposes some mappings to the programming language Java.

Such standardization efforts led to the development of execution engines for the UML

activity diagram including Moka (Eclipse Foundation, 2016b) and others, in different

modeling tools. The mapping is then drawn from the introduced specialization of

activity elements (e.g., Read Self Action) to their counterpart in the target program-

ming language (e.g., this in Java ). From a high-level point of view, the relationship

between modeling constructs and their code counterpart is apparently one-to-one.

Some works followed through to overcome the problem of clutter that comes up

due to such relationships with large graphical notation to represent a relatively sim-

ple procedure. Among these is the action language for foundational UML (Alf), a

textual language to represent fUML, and a proposal by Bedini et al. (2017). Other

approaches employ MDA with metamodeling, profiling, and other extension mech-

anisms to compensate in models of UML and SysML with more concrete details of

implementations. One goal is to equip them with better inclination to simulation

(Foures et al., 2012) or execution (Mayerhofer et al., 2013). We thoroughly examined
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these studies on various occasions, especially the ones that used DEVS, such as Niko-

laidou et al. (2008), Risco-Mart́ın et al. (2009), Cetinkaya et al. (2011), and Kapos

et al. (2014).

Transformation takes place in particular between the DEVS, on the one hand, and

the UML, SysML, or MDA, on the other (e.g., Yonglin et al. (2009); Sarjoughian and

Markid (2012); Mittal and Mart́ın (2013b)). These studies attempted to holistically

look into the problem of a potential mismatch between the formal and semi-formal

specifications. The MDA frameworks deliver some benefits for transformation from a

primarily structural vantage point, and certain mappings are selective, leaving many

details to be abstract given that metamodels are inherently incomplete. Many imple-

mentations and manifests take place at concrete layers to compensate and complement

as much as possible for their counterpart representation at the higher layers. Lower

level implementations are necessary to arrive at some artifacts that facilitate simula-

tion or execution but the correspondence between formal and semi-formal specifica-

tion is mostly unfulfilled, especially regarding semantic definitions, and it will likely

remain as such.

In this dissertation, we attempt to use profound simulations to realize, to some

degree, the behavioral specification of certain types of models. We examine an inclu-

sive subset of activity constructs with attention to their syntax and semantics. From

a modeling perspective, we employ the notion of the model as defined in modeling

formalisms such as discrete event or discrete time system specifications. Models of

such a nature encounter a more rigorous and explicit specification of their time base,

I/O sets, state sets, and I/O and state segments. The result are models that benefit

from basic definitions in general modeling languages and semi-formal methods. Yet,

such models lend themselves to the mathematical discrete event system specification

(i.e., the DEVS) and its abstract simulator.
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1.3 Published Works

Several publications have preceded the submission of this dissertation. The earlier

work by Sarjoughian et al. (2015) presented in Chapter 3 has been carried out to set

the stage and highlight issues regarding specifying behavior at the meta-layers from

more of an observational standpoint. The work was followed up by the activity-based

DEVS model specification Alshareef et al. (2016) that we present in Chapter 4. The

approach was studied further and extended by Alshareef and Sarjoughian (2017) and

Alshareef et al. (2018), as shown in Chapter 5 and 6, respectively, to cover aspects of

coupling and the coupled model as opposed to focusing only on the atomic one. We

propose a basic mapping between activities and DEVS (Alshareef and Sarjoughian,

2017). Also, we presented a specification for action at the Ph.D. Colloquium at the

Winter Simulation Conference (Alshareef, 2017), which we have included in Appendix

A.2. Another demonstration with a traffic example is included in Appendix A.1, which

we presented at the Spring Simulation Conference Demo Session 2017.

The semantics of activity modeling is discussed with respect to parallelism by Al-

shareef and Sarjoughian (2018b) in Chapter 7. Chapter 8 includes an example model

for CPS design as discussed by Alshareef and Sarjoughian (2018a). We developed

this example after extending the metamodel to account for temporal elements, par-

ticularly those in action-level real-time DEVS, such as time window. More recent

work has also been published to account for the hierarchical construction in the ac-

tivity (Alshareef and Sarjoughian, 2019), and it is presented in Chapter 9. Work on

a journal article with a more comprehensive view is ongoing and included in Chapter

10. I have also contributed to work on a profile for cognitive modeling and domain-

specific modeling by visiting scholars to Arizona Center for Integrative Modeling and

Simulation (ACIMS), namely Zhu et al. (2017, 2018).
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(a) An Example for a Fork Node, Where

Outgoing Flows Are Synchronized.

(b) An Example for a Join Node, Where

Incoming Flows Are Synchronized.

SYNC

in1
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out1

outm

(c) A Corresponding Sync Model for Both

Fork and Join.

(d) An Example for a Decision Node, Where

One Outgoing Flow Is Activated.

(e) An Example for a Merge Node, Where

One Incoming Flow Is Activated.

SELECT

in1

inn

out1

outm

(f) A Corresponding Select Model for Both

Decision and Merge.

Figure 1.2: Notation Examples of Essential Activity Modeling Elements Along with

Their Treatment as Components with Accounts to Multiple Ports and Couplings.

1.4 Preliminary Notations

In Figure 1.2, we briefly present some of the essential modeling elements that

we use throughout this dissertation. The fork node is the one that synchronizes

dispatching outputs through its outgoing flows. The join works similarly but for

incoming flows for which it expects an input. Since they are symmetric, we refer to

them both as SY NC. Similarly, the merge and decision nodes are used to select one

flow for proceeding as with incoming in the former and outgoing in the latter. They

are both referred to as SELECT .

Figure 1.3 exemplifies the notations by modeling the server system in Wymore
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(1993), which is a component of the manufacturing system model. A set of states

along with NOONE describes this system, which indicates the absence of inputs

at some time instant. The system description includes a random input to allow

errors to happen during service and therefore determine the result of the service. A

next signal transmits in conjunction with the output upon service completion. The

description also includes a transition function with a time lapse between the issuance

of subsequent signals. The system is described with the queuing system as a way

to facilitate deduction about service with more details. The length of the queue,

for example, is variable and can be of interest to determine the adequacy of simple

models.

An activity for such a system includes two actions a and b. We developed such

an activity using our activity tool. The flow coming through input and service time

parameters gets directed toward both actions. An error is injected to only one action

where its flow is neglected by the merge node after one action sends its outgoing flow.

This example highlights some essential aspects of our approach. The subsequent

chapters elaborate on this treatment.

Figure 1.3: Activity Modeling for a Wymore (1993) Server System.
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Chapter 2

BACKGROUND

The background about the Discrete Event System Specification (DEVS) (Zeigler

et al., 2000) formalism is essential to lay the ground for a computational basis and use

to establish a link with other models of computation and discrete event systems. The

atomic model is of particular interest in this dissertation due to the inherent difficulty

of the behavioral specification, given the level of abstraction of the simulator. This

difficulty is realized at the heart of this work and discussed from the vantage point of

formalism itself and other existing frameworks and architectures such as the Model

Driven Architecture (MDA). In such frameworks, the primary role is to facilitate

handling structures.

Due to the behavioral limitations in existing works, we give a brief background

about the so-called Semantics of a Foundational Subset for Executable UML Models

(fUML) (OMG, 2018). A similar initiative has taken place and precedes fUML under

the notion of Executable Unified Modeling Language (xUML) Mellor et al. (2002).

Throughout this dissertation, we look further and examine extensions that are taking

place, whether in the proposed subset itself or via the underlying execution engines

that are being developed in conjunction with it. We have made arguments about the

necessity of simulation in such efforts to shed light and clarify subtleties that might

arise due to modeling restrictions and execution.

Another essential background for this dissertation is about modeling discrete event

systems. We primarily focus on the DEVS formalism; however, we also benefit from

other well-known modeling formalisms such as State-charts. We also discuss the

activities and actions in this context as we think of them to complement different ap-
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proaches, especially when having some more detailed behavioral models. The Eclipse

Modeling Framework (EMF) is used in this dissertation as a realization for the MDA

and a concrete means to examine multiple aspects of it, especially its support for the

behavioral specification.

2.1 Metamodeling and the DEVS Formalism

In this work, our goal is to develop concepts that can enable building a framework

capable of specifying meta-behavior for atomic DEVS models. Then, we use these

means to create concrete atomic DEVS models. Toward this goal, we employ Model-

Driven Engineering (MDE) and in particular, the MDA framework with its EMF

realization. Although there are a variety of DEVS-based modeling and simulation

tools, in this work, we use the DEVS-suite simulator for developing the proposed

behavioral DEVS metamodel.

2.1.1 MDA and Model Layers

The MDA framework has been proposed for developing software systems (OMG

2003). Its central concept is a four-layer model abstraction hierarchy. A key abstrac-

tion concept in MDA is for a classifier and its instances to form a two-layer hierarchy.

A classifier has an abstract specification that can have one or more instances. Clas-

sifiers are universal and instances are specific. Every classifier is at a higher level of

abstraction relative to its instance. Instances are related to one or more classifiers via

conformance relationship. The implication is having complementary models, each of

which has a specific role to play and collectively provide a disciplined roadmap for

developing software systems. Each higher-level layer offers capabilities that are more

abstract as compared to those offered by lower-level layers. Conversely, each layer is

built using the elements contained in the layer above.
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A realization of the MDA approach consists of Meta-Object Facility (MOF), Uni-

fied Modeling Language (UML), User Model, and User Object modeling layers (OMG

2003). At the meta-meta model (M3) layer, the MOF has an Ecore specification for

defining metamodels in the OMG's family of MDA languages. Described using the

UML metamodel, the M3 layer supports computation-independent metadata man-

agement, metadata services, model management, tag capability, and reflective opera-

tions, among others. The metamodel (M2) layer can have models that conform to the

M3 layer. The M2 layer is for platform-independent modeling. These models can be

domain-specific. The Ecore at the M2 layer can be used to define concrete models at

the M1 layer. The M0 layer is used to describe instances of models specified at the M1

layer. The M3, M2, M1, and M0 layers support the incremental development of mod-

els for component-based systems. It is useful to note that the separation of concerns

in MDA is essential for developing software system tools, including simulators.

2.1.2 DEVS Atomic Model

The set-theoretic specification of parallel atomic model X,S, Y, ext, int, conf, , ta is

domain-neutral. Its input and output are defined in terms of port names and variables.

The variables can be arbitrarily complex. And atomic models are responsible for han-

dling differences in the input and output variables. From software design, appropriate

I/O type consistency is necessary. For any user-defined (and domain-specific) model,

the internal, external, and confluent, time advance, and output functions can have

arbitrary logic as long as they satisfy the abstract definitions provided in the mathe-

matical atomic model specification. A restricted specification of parallel DEVS called

Finite Deterministic DEVS (FD-DEVS) introduced by Hwang and Zeigler (2009) has

been developed. Events and states are defined to be finite sets, and external and

internal events are allowed to occur at time intervals restricted to rational numbers.

18



No time interval between one event and the next can be infinitely small. Abstracting

time to be rational instead of real numbers is one way to achieve that. When states

are simple, possible state transitions can be enumerated and unreachable states iden-

tified. These restrictions can simplify model validation for the EMF-DEVS modeling

described next.

2.1.3 EMF-DEVS Atomic Model

Sarjoughian and Markid (2012) propose EMF-DEVS as a metamodeling approach

for the parallel DEVS formalism. The basic aim is to define and validate DEVS

metamodels using the Eclipse EMF framework. The EMF validation infrastructure

is used to define the elements of DEVS models with a set of constraints. These

constraints align with the DEVS formalism and the target DEVS-Suite simulator,

which uses the Java programming language. The structures of atomic and coupled

meta-DEVS models can be modeled and validated. The generic capabilities provided

in the EMF M3 and M2 layers are extended to support concrete models for the

DEVS-Suite simulator. The EMF-DEVS metamodel can support input, output, and

state sets as well as external, internal, output, and time advance functions. These

abstract functions (δext, δint, δcon, λ, ta) do not include the logic that is necessary to

define behaviors. For example, the external transition function δext does not define

a generic transition from a source state to a target state with constraints. Also, the

output function does not define conditions for generating outputs.

In the context of metamodeling as in EMF-DEVS, the term validation refers to

the Eclipse EMF validation framework and its execution engine. The Eclipse EMF

has built-in validation mechanisms such as reflection for the metamodels at the M2

layer. Metamodels at the M2 layer can be validated for conformance to the meta-meta

model at the M3 layer. Concrete models at the M1 layer can also be validated to
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conform to the DEVS metamodel. Here validation does not refer to the execution of

a metamodel over some time and determine whether or not it produces behavior per

user requirements and expectation. Given a concrete simulation model (M1 layer),

the model can be verified to be specified correctly both in terms of M1 and M2

layers. When executed over some time while recognizing the behavior as acceptable

for some defined experimental condition, the model is said to be valid. Regarding the

verification and validation definitions for concrete models, the EMF-DEVS validation

may be referred to as verification when a metamodel has domain knowledge. For

example, the external transition function has the necessary control structure and

other details to specify the next state of a model given its current state and received

input.

2.2 Foundational UML Subset

We examine the state of the art of UML standards and the recent advancement

of the fUML and concepts like executable modeling. Therefore, it would be useful

to provide an essential but yet sufficient background of the fUML and some of its

primary subjects.

2.2.1 UML Activities

The fUML subset is devised based on the approach of activity modeling. From

a high level, an activity can be seen as a directed graph of vertices and connected

by edges. Each vertex is an activity node, and each edge is an activity edge which

can be either an object or a control flow. Every control, object, or executable node

is an activity node. Action is an executable node that can be further specialized to

encompass a variety of different basic behaviors. Previously, we discussed with details

the use of activities in specifying the behavior of atomic DEVS models (Alshareef
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et al., 2016). Lifting behavior to higher levels across the meta-layers such as M2

can result in greater benefits, especially for checking the syntax and semantics of the

specified models at a higher level of abstractions. As a result, modeling at the lower

levels becomes simpler and less detailed since the other details about the system under

development have been addressed at the higher levels. Also, we extend our research

toward a direction on simulating UML activities by exploiting the capability provided

in the Parallel DEVS simulator.

Parallel DEVS was proposed by Chow (1996) to provide the capability of handling

collisions that may arise during the interaction between different components. The

formalism allows all imminent messages to be sent out simultaneously, which can be

used as a useful abstraction for handling activities flows. It is especially important in

the case where the activity node has multiple incoming flows, such as the case in the

fork and merge nodes.

2.2.2 Abstract Syntax

The abstract syntax of fUML mainly consists of classes, common behaviors, activ-

ities, and actions. It selects some certain elements from the complete UML to provide

a more precise definition of their semantics. Although it uses the above four packages,

it excludes some features thereof. Some packages from the UML 2 Superstructure are

excluded. The reasons for excluding some packages or features vary. Some packages

are excluded due to their insignificance in terms of execution. Others are excluded

due to the encountered complexity if they are to be realized in a computational plat-

form. On some occasions, features are excluded because of their generality. Therefore

some ambiguity or restrictions concerning their semantics may arise.

The packages for activities and actions are covered, although with exclusions to

some of their features. Overall, fUML does not entirely realize the complete model
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of activities as defined in the UML but instead recognizes an essential subset of it.

The included pieces of these packages are organized and sub-organized in a well-

established architecture. The relationships are then established as necessary, using

dependency, specialization, and import. Actions are the fundamental units of the

behavioral specification. However, they have to be contained in some behavior that is

currently the activity. According to UML 2.5, the action is a subtype of the executable

node, which is itself a subtype of activity node. Therefore, actions can be contained

in activities as executable nodes or interactions as actions. Currently, we only focus

on their containment within activities. Action may have input pins, output pins,

or constraints. Action is also specialized further to represent many different forms

of behavior based on different semantics and usage. For example, structural feature

actions are used to handle reading, writing, adding or removing structural features

such as a queue within some model. The manipulation of the feature has to go

through this set of actions. There are multiple sets within the metamodel of actions.

Each set also has more subsets or specific actions. The relationship between actions is

determined mainly via generalizations from the more general or abstract action to the

more specific or concrete ones. In our work, we handle the concept of action in general.

However, we also detail some defined actions that are necessary for the discussion and

demonstration. Other sets of actions can benefit from a similar approach.

2.2.3 Execution Model

The execution model is a major contribution of fUML given that its abstract syn-

tax is already defined in UML superstructure and yet revisited in the subset. The

execution model is a fUML model that defines the specification for the execution.

The execution model expects a well-formed model to provide a meaningful execution

semantics. The operational specification is currently described in the form of equiva-
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lent code in Java. The reason is that activity diagrams become inconveniently large

when addressing relatively significant behavior. One of our concerns in this work

is to overcome this issue by utilizing DEVS capabilities for addressing behavioral

specifications.

2.2.4 Foundational Model Library and Base Semantics

It can also be useful to provide a brief description and reasoning about these

two components of the fUML specifications. The foundational model library includes

primitive types and behaviors accompanied by their basic operations such as functions

for handling Boolean signatures. It also defines some capabilities for managing input

and output. These definitions, along with other concepts, are rigorously defined in

the DEVS formalism as well as the modeling and simulation packages provided in the

DEVS-Suite simulator (ACIMS, 2017b). Therefore, we focus our use on the formalism

and what is in the selected simulator. Regarding the base operational semantics of

fUML and Parallel DEVS, the simulator provides an explicit protocol for the behavior

of the execution model, which can be used for verification purposes. In our case, the

semantics are substantially extended due to the definition of time. However, the base

semantics are still maintained.

2.3 Formalisms and Languages for Discrete Event Modeling

There exist formalisms, modeling languages, and frameworks to develop behav-

ioral models. Our work focuses on the rigorous specification of DEVS as an abstract

mathematical formalism accompanied by a framework supported by modeling lan-

guages and run-time execution. In the following sub-sections, we describe necessary

background details for understanding and developing behavioral models.
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2.3.1 Parallel DEVS Atomic Model

The set-theoretic specification of the atomic model is an abstract representation

of a standalone component of a system (Zeigler et al., 2000). The formal specification

can be defined independent of any language and, more generally, simulation platforms.

From a software standpoint, we need to have the specifications to be formulated in

terms of modeling and software programming languages. Many DEVS simulators

can accept the specification of a model following a target simulator’s programming

language syntax, semantics, and specialized constructs such as model initialization.

Examples of these tools are DEVS-Suite (Kim et al., 2009) and CoSMoS (Component-

based System Modeling and Simulation) (ACIMS, 2017a) where the programming

language is Java. Other simulators use different languages as an input such as CD++

(Chidisiuc and Wainer, 2007) and PowerDEVS (Bergero and Kofman, 2011) where

the programming language is C++. The work by Hollmann et al. (2015) provides

a specific language based on the formal specification definition language with a set

of rules to translate it into simulatable models targeting simulators like DEVS-Suite

and PowerDEVS. As defined by Zeigler et al. (2000), the basic formalism of parallel

DEVS model is an algebraic structure – atomic model = 〈X, Y, S, δext, δint, δcon, λ, ta〉.

X is the set of input events. S is state representing the tuple of sequential states.

The state must have at least two independent variables. One is called sigma (σ),

the time duration allocated to the current state of the model. The other variable,

called phase, represents a set of state values that change and can be tracked. Y is the

set of output events. δint and δext are the internal and external transition functions,

respectively. The model receives a bag of inputs meaning that the elements of the

bag may have multiple occurrences and have no order. The receiving model accounts

for this possibility to perform proper handling of the inputs. δcon is the confluent
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transition function, which can be specified to handle the collision between external

and internal events. λ is the output function which transforms S into Y at arbitrary

time instances. ta is the time advance function which maps the internal state into a

positive real number using elapsed time since the last state transition (i.e., it computes

σ which can range from zero to infinity, inclusive). Any domain-specific definition of

the functions mentioned above must satisfy their corresponding abstract definitions as

provided in the modeling formalism. Together, the elements of the DEVS specification

allow the modeler to define operations and controls for system structure and behavior

flexibly.

Simple processor

This example is selected to demonstrate some concepts throughout the discussion.

We start with a simple processor and later extend to have a queue to demonstrate

behavioral expressiveness. The simple processor only stores jobs upon their arrival,

process them for some amount of time (duration), and then sends them through the

output port. It does not account for input buffering and preemption of a job under

processing. We devise the behavioral specification of this process, as described in

the DEVS formalism, in a set of activity models as an intermediary phase between

them and their concrete manifestations. The simple processor example as presented

by Zeigler and Sarjoughian (2003) is defined as

Processorprocessing time = 〈X, Y, S, δext, δint, δcon, λ, ta〉,

where

IPorts = {“in”}, where Xin = J (a set of job identifiers);

XM = {(p, v)|p ∈ IPorts, v ∈ Xin} is the set of input ports and values;

S = {“passive”, “busy”} × R+∞
0 × J ;
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OPorts = {“out”}, where Yout = J ;

YM = {(p, v)|p ∈ OPorts, v ∈ Yout} is the set of output ports and values;

δint(phase, σ, x) = (“passive”,∞, x);

δext((phase, σ, x), e, ((“in”, j1), (“in”, j2), ..., (“in”, jn))), ji ∈ Jin,

= ((“busy”, processing time), j1, j2, ..., jn) if phase = “passive”

= ((phase, σ − e), x) otherwise;

δcon((s, ta(s)), x) = δext(δint(s), 0, x);

λ(“busy”, σ, j) = j;

ta(phase, σ, j) = σ.

2.3.2 Statecharts

There are many modeling languages available for specifying the behaviors of

atomic DEVS models. Statecharts is popular due to its expressiveness power for

representing complex behaviors of systems (Harel and Politi, 1998). Statecharts de-

fine mainly hierarchical states and state transitions. They can be used to specify the

discrete behavior of a system and its components. Other languages and metamodels

also exist for modeling the behavior such as behavior diagrams in UML (OMG, 2012).

They provide different notations where behavior can be captured in various diagrams.

Each diagram generally has some advantages relative to some other diagrams. The

diagrams vary in their syntax as well as semantics to satisfy different needs. One

major diagram is UML state machines, which is considered to be a variant of Harel’s

statecharts. The transitions, as well as states, can be associated with some behavior.

Modelers can use state machines, interactions, sequences, or activities for describing

behaviors within and across model components.
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2.3.3 Activities and Actions

The UML Activities diagram is a major method for developing detailed behav-

ioral models (OMG, 2012). Their standardized specifications, including visual syntax

and semantics, have undergone significant changes under the stewardship of the In-

ternational OMG Standardization consortium. Activities allow for behaviors to be

specified using a set of elements along with their sequencing defined as control and

object flows. The elements are the activity nodes. A node can be control, object,

or executable node. Control nodes define the flow of tokens between activity nodes.

A control node can be either initial to define the starting point of an activity ex-

ecution, final to define when activity stops, fork for splitting a flow into multiple

flows, join for synchronizing multiple flows, merge to act similar to join but without

synchronizing flows, or decision to select between its outgoing flows. Each control

node can be used to define certain behavioral properties of components such as the

DEVS atomic model. Object nodes are used to handle data. We will use the activity

parameter node to define inputs. Finally, executable nodes are the core elements of

activities. Actions are a special type of executable nodes, and therefore, they can

be within an activity. On the other hand, actions in UML 2.5 (OMG, 2012) can be

only defined in the context of an activity. Thus, together, they provide a means for

modeling behavior to establish processing routines that include control structures.

It is important to note that activity modeling emphasizes and supports specifying

actions and combining them using arbitrary control structures.

Actions are the only kind of the executable nodes in UML 2.5. They are necessary

to take advantage of more capabilities provided by the activities. Besides, they are

the fundamental units of behavior specification. Some actions change the state of

the system. This kind of action in our approach satisfies how states are changed in
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DEVS atomic model internal and external transition functions. Examples of these

actions are add structural feature value and value specification actions. Other kinds

of action support handling objects. Read self action is used to obtain the current

object context and place it in its output pin. Value specification action is also used

to provide certain value and place it in its output pin. The structural feature actions

are used for either assigning or retrieving a structural feature of an object. They can

be both used for the phase as a structural feature. They can also be used for other

features or more complex objects.

Event actions can also be used. For example, an accept event action can be

used to model the waiting for an event to occur in some other entity to proceed in

the activity flow. In the context of UML actions, this event can be caused by the

simulation protocol to trigger some atomic model components, or by other models

that decompose the behavior into multiple models. There can also be an accept time

event action which is used to model waiting time. Send signal action can be used to

model invocation for some other components. It is also used to enforce some order

when used with the accept event explicitly. For example, to impose the order of

executing the DEVS output and internal transition functions, a sending event signal

must be completed to enable the accept event action. However, this sort of scenario

is part of the simulation protocol.

Additionally, invocation actions provide a means for communication and signals

among multiple activities, e.g., call behavior action, to call either behavior or oper-

ation. The action can be synchronous if it has to wait for the called behavior or

operation to complete. Otherwise, it can be asynchronous and then immediately

proceed after calling the associated behavior or operation. Such an order is crucial

for the execution of the behavior of the atomic model. That is, internal and exter-

nal transition functions cannot execute simultaneously although possible, using the
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confluent transition function. We will elaborate further in the subsequent sections.

2.4 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) (Steinberg et al., 2008) is the core of the

Eclipse modeling project, which serves as a basis for modeling and metamodeling.

The framework and its various capabilities provide an Eclipse realized manifestation of

the Model-Driven Architecture (MDA). It is surrounded and equipped with a variety

of tools to facilitate the process of creating and maintaining metamodels as well as

producing sets of classes and runtime support in highly model-driven development.

The Ecore as the basis for EMF is used to define metamodels to provide a common

grounding for UML, XMI, and Java. It unifies these and other models in a well-

defined setting with automated mapping from one to another (e.g., UML to Java).

Such incorporation places a strong focus on the model as the fundamental unit for

building software-based systems.

EMF has been extended to provide a means for creating metamodels for parallel

DEVS formalism as in EMF-DEVS Sarjoughian and Markid (2012). The framework

currently supports defining and validating the structure of atomic and coupled meta-

DEVS models. As discussed earlier, we want to take a step forward into behavioral

modeling, which turned out to be not straight forward. The EMF itself is mainly

concerned with structural aspects. However, in a previous work (Sarjoughian et al.,

2015), we discuss behavioral metamodeling for DEVS by extending the Ecore. In this

work, we realize the activity metamodel as a significant step in creating a behavioral

modeling engine and preparing for further support, such as defining the graphical

definition and mapping.

Graphical Modeling Framework (GMF) (Gronback, 2009) has been built upon

EMF. It exploits EMF capabilities such as code generation and model serialization
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to specify models visually. These models are ensured to conform to their metamodels

defined in Ecore. GMF, as an extension of EMF, allows for building tooling infras-

tructure to be used for modeling and diagram generation. This approach is used

in developing an engine enabling specification of statecharts for DEVS atomic mod-

els (Fard and Sarjoughian, 2015). Although this approach uses both EMF and the

Graphical Editing Framework (GEF), it segregates the metamodel from the graphical

information in a clear manner. This is especially useful in our case since we need to

support graphical notations for activities as well as maintaining consistency between

the structural and behavioral metamodels for DEVS modeling. The metamodel is

referred to as a domain model in the context of GMF. Once defined, there are two

models to be initially generated and then manipulated to account for the specific

graphical requirements. Those two models are the graphical and the tooling defini-

tion model. The graphical definition model defines graphical components and figures

used in the models. The tooling definition model defines the other aspects of the ed-

itor, such as the palette. The generation model is generated similarly to EMF. After

that, the mapping model combines all definitions in the three previous models to put

things together and map every element to its graphical counterparts. Once created,

the process of generating the diagram editor becomes ready to be performed.

30



Chapter 3

BEHAVIORAL DEVS METAMODELING

A variety of methods may be used to represent time-based dynamics of systems.

The behavior of a system, for example, can be modeled using set-theory, UML di-

agrams, and pseudo code. Each kind of model serves specific purposes and must

ultimately map to programming code suitable for execution in one or possibly multi-

ple target simulators. A mathematical model is useful for defining a systems structure

and behavior independent of software design and simulation technologies. UML Class

and Statecharts diagrams, among others, help design complex modeling and simulate

engines that may or may not necessarily have mathematical grounding. Computer

code can be developed and partially generated based on mathematical or certain kinds

of software specifications. Each of these methods has its strengths and weaknesses,

and none is currently considered to contain all the necessary capabilities required for

generating executable simulation code.

The atomic and coupled models in the DEVS formalism (Zeigler et al., 1997)

are metamodels. From the standpoint of MDA, DEVS has an abstract syntax and

an execution semantics that together define a modeling language for discrete event

systems. The set-theoretic DEVS models are abstract mathematical artifacts. An

atomic DEVS has its elements defined, for example, as sets, functions, and relations.

These model elements individually and collectively satisfy certain general abstract

properties and constraints. For example, a model can receive a finite number of input

events within a finite period of time at arbitrary time instances, process these inputs

with state changes within a period, and generate a finite number of output events. It

is the responsibility of the modeler to show that the developed atomic models for a
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given target simulator satisfies the properties and conform to the constraints defined

for the DEVS atomic formal specification.

In the MDA framework, a concrete atomic DEVS model for a system component,

relative to its metamodel, has specific structural (e.g., inputs and states with possi-

ble particular values) and behavioral elements (e.g., state transitions for a particular

source and target states with assigned times to next events). The metamodel is a

language within which concrete models can be developed. Furthermore, a concrete

model may also satisfy constraints such as state variable types and state transitions

sanctioned for specific application domains. Full-fledge behavioral DEVS metamodel-

ing can support the automatic conformance of concrete models to their metamodels.

This capability can significantly reduce the amount of manual effort required to show

concrete models that satisfy their metamodel properties and constraints.

From a tool's perspective, a simulator, such as DEVS-Suite (ACIMS, 2017b), is

designed as a collection of UML classifiers and relations that capture some aspects

of the set-theoretic atomic and coupled parallel DEVS models. These models can

also be collectively referred to as a DEVS UML metamodel. The inputs, states, and

outputs, and internal, external, output, and time advance functions of the model are

defined abstractly; they, by themselves, are not executable. For example, the data

structure for input is defined as a pair (port-name and input-variable) where the port

has a string type, and the input variable has an entity type. Similarly, the external

transition function is defined as a method with specific arguments, but without any

actual implementations for the state transitions and conditions under which they are

to execute. As in its mathematical counterpart, a concrete atomic model must have

instances of the port-name and input-variable attributes belonging to the UML classes

and interfaces. The realization of the formal DEVS models as UML specifications is

advantageous. UML includes abstractions such as data typing, return types, and
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control structures that enrich the abstract atomic DEVS model specification. These

models can map through transformation into partial code for programming languages

using professional tools dating back to the 1990s.

Simulators such as DEVS-Suite do not explicitly account for domain-specific mod-

eling. A modeler can develop domain-specific models using object-oriented modeling

principles and design patterns. Low-level techniques can enforce in an ad-hoc manner

the domain-neutral contracts embodied in the DEVS UML models. Examples of such

techniques are checking for data type compatibility and expected values for concrete

models. Eventually, these models are to implement in some specific programming

languages. These contracts cannot account for domain-specific knowledge; they must

encounter extensions. This approach becomes complicated and unwieldy as the scale

and complexity of the system, that is to be simulated, increase. Such resulting simu-

lators lack rich capabilities to support and develop domain-specific metamodels and

also are unable to validate basic model properties and constraints such as data typing

and legitimate state transitions, for example. MDA-based modeling, however, can

lend itself to develop and automatically validate the behavior of any domain-specific

DEVS concrete model against its metamodel and by extension the general-purpose

atomic DEVS model.

Given the above discussions, we can make a few observations. When concrete

atomic DEVS models are developed using programming languages, it is challenging

to ensure they conform to their abstract model. A substantial amount of effort is

required to concretize behavioral abstractions. Therefore, it is essential for the meta

and concrete atomic models to be systematically related to each other as proposed in

the MDA framework. This relation is especially important, given that the challenging

part of developing models of complex systems is specifying their behaviors. Therefore,

we need an atomic DEVS metamodel that can support behavioral modeling (e.g., re-

33



ceiving sanctioned input events and legitimate state transitions with timing). Toward

this goal, we propose behavioral metamodeling for the general-purpose and domain-

specific atomic models using the Eclipse Modeling Framework (Steinberg et al., 2008).

Consistency between these models can be specified and enforced (referred to as val-

idated) with automation. Concrete models can generate from their domain-specific

metamodels. Behaviors contained in these metamodels can significantly reduce the

amount of effort to create concrete models and improve their quality using automated

code generation.

3.1 Related Work

In this section, we primarily focus on behavioral DEVS atomic metamodeling and

briefly consider the extent to which detailed specifications can be supported. Model-

driven design approaches have been playing a more significant role in developing

complex simulation models. Focusing our attention on the OMG MDA framework

and DEVS, we find some approaches that follow the MOF Technology Space (Bézivin

et al., 2005). Yonglin et al. (2009) proposed a DEVS metamodel for developing SMP2

(Simulation Model Portability standard). This metamodel maps to SMP2 metamodel

using QVT (Miller and Mukerji, 2003). Simple states and state transitions for the

atomic DEVS model are supported. In work by Cetinkaya et al. (2012), structural

DEVS metamodeling can be supported. As in EMF-DEVS, behavior specification for

the atomic DEVS metamodel is not supported (see Section 2.3).

In the MOF technology space, some works have employed DEVS Natural Lan-

guage (DNL), XML Schema, and Extended BNF for defining DEVS models. These

support behavioral modeling using mostly the same ideas and methods. The MS4Me

(Seo et al., 2013) focuses on modeling using DNL as described by (Zeigler and Sar-

joughian, 2012). The DNL as meta-language supports Finite-Deterministic DEVS
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models (Hwang and Zeigler, 2009). MS4Me uses Xtext (Eclipse Foundation, 2013)

to enforce DNL rules for simple inputs, outputs, states, state transitions, and timing.

As a modern Java-like language, Xtend supports developing FD-DEVS models. The

MS4Me models can be augmented to become Parallel DEVS models using the full

expressiveness of the Java language. It supports adding Java code to the model and

thus developing Parallel DEVS models while maintaining a tight connection with the

FD-DEVS models. The Java code is injected into slots in a structured manner using

tagged code blocks. These are inserted directly into the generated source files. These

tagged code blocks are used to specify additional behavior for initializing, internal

transition, external transition, and output. Compared with FD-DEVS, classic, or

parallel DEVS models that have these kinds of code blocks are difficult to validate.

The DEVSML (Mittal et al., 2007) is developed for DEVS simulation models that

can be executed in net-centric computing environments.

Some works employ SysML (Nikolaidou et al., 2008) and UML (Borland et al.,

2003; Risco-Mart́ın et al., 2009; Mooney and Sarjoughian, 2009; Pasqua et al., 2012).

The authors developed a SysML profile for classical DEVS. An atomic model is de-

fined as a collection of stereotype blocks. State Definition and Association diagrams

define the behavior. Atomic Internal and External diagrams describe the internal

and external functions, respectively. Descriptions for the time advance and output

functions are parts of the Atomic internal diagram. Similar to the above approaches,

simple states with constraints are defined. The external diagram follows FSM with

control elements such as choice, fork, and join elements. Time allocated to states can

only be defined in the internal diagram. The DEVS SysML profile and DEVS MOF

are intrinsically different due to their technology spaces. There exist other approaches

that use metamodeling abstraction (Fard and Sarjoughian, 2015; Ighoroje et al., 2012;

de Lara and Vangheluwe, 2004). Garredu et al. (2014) give a survey that discusses
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the uses of some MDE approaches for DEVS.

3.2 Atomic DEVS Metamodeling

The mathematical properties and constraints defining an atomic DEVS model can

apply to any implementation of it. Therefore, it is useful to have a framework that

can not only capture the atomic model's formal specification (i.e., a metamodel) but

also enforce its syntax and semantics for domain-specific metamodels. Another im-

portant advantage is to define models independent of any particular simulator. That

is, metamodels can transform into concrete models that can execute in simulators im-

plemented in specific computing platforms. This framework must (help) validate the

behavior of any concrete atomic DEVS model against its metamodel. To achieve this,

we propose introducing behavioral metamodeling to structural metamodeling. The

resulting metamodeling framework must also lend itself to developing metamodels

for modelers domains of interest. This framework is also desired to support defining

domain-specific concrete models for desired systems.

We intuitively define behavioral metamodeling as a set of concepts realized in

a framework that supports specifying operational details of the internal, external,

output, and time advance functions of any atomic DEVS model. These generic op-

erations can be used to define behavior for any domain-specific DEVS metamodel.

Domain-specific behavior can be specified by extending the generic DEVS metamodel

behavior. That is, the behavior of these functions is defined independently of comput-

ing platforms in which they can be fully implemented. The properties and constraints

in the domain-neutral and domain-specific functions for the concrete models can be

validated. The properties and constraints of the functions that are not satisfied in

any concrete model are automatically identified and reported.

Figure 3.1 illustrates the concept of meta and concrete mathematical and UML
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modeling. The structure, unlike behavior, of mathematical atomic and coupled DEVS

models can be completely specified both abstractly (as a metamodel) and concretely

(as a concrete model). In mathematical modeling, a concrete model has more infor-

mation relative to its metamodel. In the metamodel, δext, δint, δcon, λ, ta functions are

abstract mathematical constructs. The abstract atomic DEVS model functions do

not have sufficient details, for example, as in Statecharts. Indeed Statecharts also

does not capture the levels of detail in the functions that an arbitrary atomic model

can have. In contrast, arbitrary concrete atomic models must have details, including

decision logic and control in the state, output, and timing functions.

The concept of meta and concrete models in UML are distinct as compared with

the ones just described for a mathematical model. While UML metamodels are in-

dependent of computing platforms, concrete-models are not. Separating models to

be platform-independent and platform-specific is important (see Section 2.1). Meta-

models are technology (simulator) agnostic. Concrete models include details that are

specific to target simulators. The meta and concrete models can be related to one

another.

Focusing on behavioral modeling, the line arrows from the concrete model and

metamodel are conceptual. For mathematical modeling, one may construct relation-

ships to show, for example, state transitions in an external transition function in a

concrete model conform to the abstract external transition function specification. In

UML modeling, one can include rules that can apply to concrete models. The block

arrows at the metamodel and concrete model levels involve complex modeling and

software development tasks, requiring detailed design and code development.

Considering the distinct roles mathematical and UML modeling offers, a desirable

goal is to support both. The EMF framework (Steinberg et al., 2008) is a strong

candidate as it already supports UML meta- and concrete modeling, and it can sup-
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port developing specific metamodels as in EMF-DEVS. In particular, the relationship

between meta (M2 layer) and concrete models (M1 layer) is formalized. Furthermore,

the EMF includes the meta-meta model (M3 layer) and instance models (M0 layer).

Given these, we extend the EMF-DEVS (Sarjoughian and Markid, 2012) structural

metamodeling to enable behavioral (functional) metamodeling. Generic and domain-

specific metamodels with built-in and user-defined properties and constraints for the

external, internal, output, and time advance functions are supported. Modelers may

develop metamodels in a structured setting, thus leading to the automation of meta-

model validation as defined in EMF. (We note that validation is not referring to sim-

ulation validation.) Constraints defined for the generic and domain-specific atomic

DEVS metamodels enable validating concrete atomic models.

3.2.1 Meta-Behavior Modeling in EMF

We begin by sketching the basic details of the M2, M1, and M0 layers for the

atomic DEVS model shown in Figure 3.1. At the M2 layer, the Ecore is an instance

of the Ecore at the M3 layer. The M3 Ecore metamodel is at a higher level of

abstraction for the atomic DEVS metamodel. That is, the DEVS metamodel extends

the instance of the M3 Ecore. The role of the M2 layer is to support developing

concrete models at the M1 layer.

As noted earlier, the DEVS-Suite simulator is developed in Java, a strongly typed

language. The kernel of the modeling engine contains data structures and operations

that satisfy the DEVS modeling formalism. Thus, at the M1 layer, user-defined

models can be generated from the DEVS metamodels. Suppose we want a Processor

model which can receive bags of input, process one of them, and generate one or more

outputs. Assuming we have an eProcessor metamodel, it can be used to create the

concrete Processor model. This concrete model at the M1 layer can be created for
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a platform-specific simulator, such as DEVS-Suite. The DEVS-Suite simulator can

execute an instance of the concrete model at the M0 layer.

In MDA, the M0 layer refers to the instances of the user models. These can be

physical objects or executable software objects (e.g., compiled code). Such instances

can be modeled as UML Object diagrams. As software objects, they can exist at

execution time, and their states may be stored, for example, like XML or byte code.

In contrast, for simulation, the M0 layer refers to the users parameterized atomic and

coupled models. Therefore, at this layer, we have not only parameterized models but

also their instances as part of other coupled model instances (see Figure 3.1).

Figure 3.1: From Mathematical to UML to EMF Modeling.

Although metamodeling is not as expressive as programming languages such as

Java, it is shown to be useful, for example, as in the Graphical Modeling Frame-

work (Gronback, 2009). The metamodel behavior specification for DEVS functions is

achievable using Statecharts (Harel, 1987). The elements of a parallel atomic model at

M1 can be arbitrarily complex. An example is the external transition function. It can

have any attribute type, expressions, and control structures that a target computing
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platform supports.

The signature definitions for the atomic model external and internal transition

functions can be defined using structural metamodel as in EMF-DEVS. The abstract

definitions for these two functions must include some operations needed to result in

some appropriate state change. State changes in these functions can be defined as

transitions amongst source and target states. A transition may have input events,

conditions, and actions. A prototypical state transition is set to transition from a

source state to a target state. Such a constraint for state transitions can be identified

and validated at the M2 layer. The output and time advance functions can also be

set using operations and control structures. An operation can have attributes and

statements (McNeill, 2008). A metamodel behavior specification requires identifying

abstractions for state transitions in the external, internal, and confluent transition

functions.

Similarly, appropriate abstractions are needed for the output and time advance

functions at the M2 layer. The behavior of all DEVS functions as just described,

can be validated using EMF. The definitions for the atomic model functions must be

consistent with the abstract DEVS simulation protocol.

To model the content of EOperation, we need to extend the EMF Ecore metamodel

(McNeill, 2008). Therefore, we will extend the Ecore metamodel to model DEVS

functions that have been defined as EOperations (i.e., interface definitions) in EMF-

DEVS. Our goal is not just to validate domain metamodels. We also aim to execute

these functions after concrete models are generated for a specific simulator, DEVS-

Suite, for instance. The code generation creates the corresponding code for the defined

elements in the metamodel. In EMF, the generator model plays a significant role in

how the resulting code could be generated and organized via some settings that may

differ based on the targeted platform. Those settings can be configured separately
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to ensure that the model maintains its platform independency. The process can be

manipulated in a way that will lead to producing concrete models.

Thus, the general metamodel, shown in Figure 3.2, extends the EMF Ecore meta-

model with some definitions for state transitions, actions, and conditions. It also in-

cludes essential elements of the atomic DEVS model. The metamodel extends Ecore

elements with DEVS functions and also others for defining behavior. By extending

Ecore, we are enabling EOperation (which is used to define DEVS functions) to in-

clude some content that can transform into the concrete code rather than just having

operation signatures. The extended EOperations will be contained in the extended

EClass (eAtomic in our case) since they cannot be contained in EClass itself. This

is a reason for extending EClass and EPackage since the Ecore elements themselves

(EClass and EPackage) will not allow adding the extended ones (Extended EClass

and EOperation) McNeill (2008). Therefore, we first extend EOperation as a basic

step to support behavioral DEVS metamodeling. Second, we extend EClass to allow

adding the extended EOperation. The third step is extending EPackage to enable

adding the extended EClass.

The second part of the metamodel (shown in the middle of Figure 3.2) is specializ-

ing eDEVSOperation to represent external transition, internal transition, output, and

time advance functions. All of these can include operations that have statements and

local variables. They also may have return values. The eDeltExt and the eDeltInt

represent external transition and internal transition functions. Both compose transi-

tions defined to capture the concept of state transition. State transition has a name

defined as an EString, source, and target defined as an ETypedElement, input de-

fined as an optional reference of type eInput to be used in the external transition

function. It can also have some actions and conditions. We also added two spe-

cialized state transitions for the phase and sigma primary states. Source and target
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phases are added to the state phase transition (StatePhaseTransition) and defined as

an EString. Source and target states for sigma are added to the state sigma tran-

sition (StateSigmaTransition) and defined as an EDouble. Any other specific state

transition can also be defined in the same manner for domain-specific models.

The behavior is consistently captured at the general and domain-specific meta-

modeling at the M2 layer. The generic behavioral metamodel is predefined for the

modeler. The domain-specific meta-behavior can be defined by the modeler as needed.

The same approach is followed for the actions and conditions that are represented

abstractly and then specialized in providing the support for developing the behavior

at the concrete model. The eOutput and eTA elements refer to the eState in addition

to the inherited composition feature from eDEVSOperation to support having other

operations for more functionalities.

3.2.2 Constrained Meta-behavior Modeling

The metamodel shown in Figure 3.2 is based on the parallel atomic DEVS model.

This model has an infinite state-space, and therefore model validation (as in model

checking) is impractical. A sub-class of DEVS called Finite-Deterministic DEVS (FD-

DEVS) (Hwang and Zeigler, 2009) has finite state-space, which makes it attractive for

behavior modeling at the M2 layer. The total state of the atomic DEVS metamodel

can be defined as {primary} × {secondary} × R[0,∞] . An atomic FD-DEVS model

restricts the range of values for the time advance function to Q[0,∞]. Model validation

is computable when the values for inputs, outputs, and states (including the time

to next event) are finite. These constraints can be validated for having legitimate

output, time advance, and internal and external transition functions. Constraints for

state transitions (belonging to both external and internal transition functions) can

be validated. For example, states in any state transition can be validated to include
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Figure 3.2: A Metamodel for Atomic DEVS Model with State Transitions.

only the states defined in the model's state set, and there are no unreachable states.

For the external event, its input event can be checked to be included in the input

set. State to output mappings can also be validated by checking whether or not every

output belongs to the output set. We can also check if outputs are computed using

states that belong to the state set. Time to next event for every state transition must

also belong to Q[0,∞]. When the time interval is infinity, three is no output. Validation

of behavior domain-knowledge can be augmented with user-defined constraints.

Considering a domain-specific metamodel, they may have their constraints on the

input, output, and state sets as well as the atomic model functions. These constraints

must be defined by the user, for example, by extending the EMF-DEVS metamodel.

Users may specify domain-specific constraints using the EMF Eclipse framework and
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tool. Of course, user-defined constraints cannot contradict those that are defined

for the generic metamodel. We note that the restrictions in the atomic FD-DEVS

model and its dynamics may require complex control structures. State transitions in

the external (or internal) transition function may have to be synthesized in complex

patterns. Transitioning between external and internal transition functions can have

many configurations.

Similarly, the output and time advance functions may have complex structures.

These considerations restrict the behavioral metamodeling describe above. Nonethe-

less, the capabilities afforded by MDA is advantageous as compared with model de-

velopment where there is little or no means to start from metamodeling and reach

executable models. Specific state transitions can be individually validated at the

M2 layer. Behavioral metamodeling developed in this research aids model validation

before transforming them into an M1 model and M0 simulation. Once concrete FD-

DEVS models are generated from metamodels, they can be validated using existing

techniques and tools (Dill, 1989; Hwang and Zeigler, 2009).

3.3 A Processor Example Behavioral Metamodel Snippet

In this section, we will demonstrate the process of developing a domain-specific

model (eProcQ as shown in Figure 3.3), which represents a simple processor with a

queue. The processor metamodel is developed using the definition provided at the

atomic DEVS metamodel. The root element is eDEVSPackage, which can contain

the eAtomic models such as eProcQ and any other EClass such as Entity and Queue.

Entity and Queue EClasses are defined similarly to their definition in the DEVS-

Suite GenCol library (ACIMS, 2017b). Figure 3.3a shows all the model elements in

the EMF editor and Figure 3.3b depicts the corresponding Class Diagram for the

eProcQ Ecore model. Detailed specifications are provided for the external transition
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function relative to other modeled elements such as model states and variables.

We created two transitions and gave the values associated with each one. The

first transition is for the phase, and the other one is for the sigma. Figure 3.3c shows

the specified properties for the state phase transition that complies with the state

phase transition definition. The phase transition has a condition and an action. The

condition is modeled as inequality for the queue size. The action is modeled as a

method call for add operation, which is defined in Queue EClass. The action allows

specifying the object, an action name that can be any operation associated with

that object, and parameters. All of them have been defined as EReferences to their

targeted model elements (see Figure 3.3d). Figure 3.3e shows an inequality condition

specified based on the queue size. It has a left-hand side which is specified as an

action (queue.size() as shown in Figure 3.3f) and right-hand side which is specified

as an integer value of type EInt in this case. Currently, the metamodel is limited for

only those scenarios since they are the only ones defined within the atomic DEVS

metamodel. The implementation is done on a Windows 7 Computer. The models are

created using Eclipse Mars Milestone 6 with Eclipse Modeling Tools and EMF Ecore

2.11.

3.4 Conclusion

The term metamodel invokes different understandings since it refers to some model

abstracted to another. It can encompass theories, methods, tools, and domains of dis-

course, including simulation. As such, metamodeling is used by theorists, developers,

and practitioners in software and simulation engineering, among others. We consid-

ered the modeling formalisms, and in particular, asked at what levels of abstraction

can the behavior of a prototypical atomic DEVS model be specified. Our inquiry is

to distinguish meta-, concrete, and instance modeling layers from the standpoint of
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(a) Ecore Editor View for the Processor.

(b) A Class Diagram for the Processor.

(c) Phase Change for Tran-

sition t1.

(d) Action for Transition t1.

(e) Less Than Inequality for

Transition t1.

(f) Left Hand-Side for the

Less Than Inequality for

Transition t1.

Figure 3.3: Ecore for a Processor with Primary State Transitions for the External

Transition Function.

Model-Driven Architecture. These layers can form a basis for building a new gen-

eration of modeling and simulation frameworks and tools that can help move from
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metamodeling to simulation code step-by-step. It is helpful to have modeling methods

with tools that can not only represent mathematical abstractions within the MDA

layers but also introduce capabilities to enforce verification and validation as much

as possible in the M2 before resorting to the M1 and M0 layers.

One of the challenges facing building such ideal modeling and simulation tools is

the difficulty of specifying the behavior of models. We focused our attention on the

atomic DEVS model. We proposed defining meta-behavior for general and domain-

specific modeling using the concept of state transition from Statecharts for external

and internal transition functions (see Figure 3.3). We then extended the EMF Ecore

operation with the external, internal, output, and time advance functions. These

functions, unlike the mathematical counterparts, can have some of their behaviors

defined. These functions can also be validated to a limited degree. To validate, we

described the necessity of restricting DEVS to Finite-Deterministic DEVS. We devel-

oped an example to show behavioral metamodeling for the atomic DEVS model. We

focused this work on the platform-independent metamodeling. We briefly discussed

its role in developing platform-specific tools. Looking further into metamodeling,

we observe that a target simulator must lend itself to the behavior defined in terms

of state transitions, output, and time advance functions. Each function can have

parts that are arbitrary and specific to the system being modeled. Thus, mapping

behavior at a higher-level abstraction (as in the M2 layer) to lower-level abstractions

(as in M1 and M0 layers) involves execution semantics (e.g., simulators may handle

simultaneous event and communication differently despite being consistent with the

abstract simulation protocol). Thus, it is desirable to lift behavior modeling as much

as possible to the M2 layer with support to checking syntax and semantics with as

little dependency as possible on the M1 and M0 layers. It is also necessary to account

for simulator design/implementation choices.
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Knowing the high degree of DEVS expressiveness and the MDA framework, it is

easy to see approaches that such as FD-DEVS should simplify the development of

verification and validation methods and tools. The degree, to which the behavioral

metamodel may apply to other kinds of modeling formalisms also, remains as future

work. In particular, for models that cannot be represented as DEVS, our approach

for specifying meta-behavior may turn out to be useful. Finally, we believe exciting,

challenging theoretical, methodological, developmental, and practical research remain

to be formulated and answered for achieving general and domain-specific multi-layer

behavioral modeling, including meta-modeling.
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Chapter 4

AN APPROACH FOR ACTIVITY-BASED DEVS MODEL SPECIFICATION

The Unified Modeling Language (UML) and the Model Driven Architecture (MDA)

framework are commonly used to specify models of systems. They offer modeling

constructs (e.g., activity node and control flow) capable of specifying DEVS atomic

model behavior. Furthermore, it is possible for some UML behavioral specifications,

in conjunction with the MDA framework, to be shown to conform to the DEVS for-

malism. Tools, supporting MDA, offer built-in capabilities to validate user-defined

DEVS models in a disciplined manner. Enabling early validation of simulatable mod-

els has significant benefits, especially as systems continue to grow in complexity and

scale rapidly. These benefits can be achieved once the model development envi-

ronment is enriched with some formalism that has a well-defined syntax (modeling

constructs) and a sound semantic (execution protocol). The DEVS formalism and its

abstract simulator provide a suitable means to satisfy these needs for developing and

simulating system-theoretic models (Zeigler et al., 2000).

Many approaches use popular languages (such as Statecharts) for specifying the

behavior of discrete-event models. Some efforts focus on restricted variants of the

DEVS formalism such as FD-DEVS (Hwang and Zeigler, 2009), supporting model

verification. More recently validation of DEVS behavior, grounded in UML meta-

modeling and the Eclipse Modeling Framework (EMF), a realization of the MDA,

has been proposed by Sarjoughian and Markid (2012). Auto-generated simulation

models have also received attention with few tools supporting some basic behavior

modeling.

To specify the behavior of atomic DEVS models using UML specification methods
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such as Statecharts, it is necessary for the methods to conform to the DEVS formalism.

It implies that both the syntax and semantics of the atomic model (structure and

behavior) must be captured in UML models (such as Activity models) and their

variants. Furthermore, the atomic model specification and its simulators need to

be loosely coupled. That is useful for the models to be not specific to some target

simulator.

The availability of software system modeling frameworks with their increasing

automation capabilities is invaluable for reducing the gap between DEVS and UML

abstractions (Sarjoughian et al., 2015; Sarjoughian and Markid, 2012; Zeigler and

Sarjoughian, 2012). Advanced architectures of frameworks such as EMF offer im-

portant functionalities across the model development lifecycle. Some capabilities are

straightforward to employ the following guidelines and standards, but others require

rigorous analyses and further development to apply for simulation purposes.

To define behaviors of any arbitrary atomic DEVS models, we customize the UML

activities according to the atomic DEVS formal specification. We will describe the

metamodel of activities in the context of atomic modeling. Due to the nature of

the Activity modeling language as a subset of UML, the usage of the activity meta-

model significantly varies with different views and aspects in the modeling process.

Therefore, we consider different views that can be taken when employing activities

to describe the behaviors of DEVS atomic models. The activity explicitly defines

a set of modeling capabilities such as sequencing which leads to many possibilities

corresponding to different ordering and partitioning of the behavior being modeled.

In this work, we briefly give a background about some candidate languages for

developing behavioral atomic DEVS models with an emphasizes on the UML activities

as defined in the UML 2.5 specification (OMG, 2012). After the related work, we

present our approach by going through different views for specifying the behavior
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followed by presenting an activity specification for the atomic DEVS model. Then,

we illustrate the usage of the actions in the atomic model, followed by an example.

After that, we discuss further the relationship with the DEVS Statecharts (Fard and

Sarjoughian, 2015). Finally, we conclude and briefly discuss ongoing future research.

4.1 Related Work

There are many works on the concepts, methods, tools, and technologies to make

DEVS more accessible to users. We focus on some of the ongoing works that use cer-

tain UML behavioral diagrams for DEVS model specifications. Some works address

the need to create models that are ready for simulation via transformation and trans-

lation techniques. They take into account some conventional approaches for modeling

the behavior of systems such as Statecharts (state-based approach) and activities (flow

and event-based approach). They target specific simulators where high-level model

specifications can be partially translated to code that can be executed using a specific

simulator. Other works consider model-driven techniques in addressing the problem

of specifying behavior at different levels of abstractions. They consider metamodeling

and model-driven architecture as a means for defining modeling languages that take

into account the behavioral specifications of the system. Formal verification is being

addressed as well in some of these approaches and frameworks using a variety of soft-

ware engineering methods and tools. Our work focuses on behavioral atomic DEVS

model specification. We neither focus on transforming models nor translating models

to simulatable code. We aim to enrich developing the behavioral model specification.

There have been some studies in using Statecharts for modeling atomic DEVS

behavior. In an early work, the use of Statecharts for defining the behavior of DEVS

models was proposed by Schulz et al. (2000). A mapping from DEVS models to UML

Statecharts is offered to support graphical DEVS model development (Zinoviev, 2005).
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In another work, an executable framework based on UML Statecharts is developed

by Mooney and Sarjoughian (2009). This work shows a subset of UML Statecharts

models that conforms to certain properties, making them executable. In recent work,

a Statecharts metamodel specialized for DEVS is proposed (Fard and Sarjoughian,

2015). Other works focus on defining UML state machines for behavioral definition

along with use case, sequence, and timing diagrams (Risco-Mart́ın et al., 2009).

There is a significant distinction between viewing the behavior of atomic models

in activities as opposed to Statecharts. We also think that activities as a language

for specifying system behavior have not received sufficient attention, especially after

the release of UML 2.5 (OMG, 2012). There have been few works that consider ac-

tivities as a way to approach the simulation for models specified at higher levels of

abstraction. They focus on transforming the higher-level models into an executable

form. In (Foures et al., 2012), the goal is to provide a simulation for activity diagram

conforming to OMG SysML specifications. The solution was not developed for DEVS

models (Pasqua et al., 2012). Instead, it proposes transforming sequence diagrams to

FD-DEVS models. It also generates Java code for atomic models that have simple

behaviors. In the SysML profile for classic DEVS (Nikolaidou et al., 2008), the ac-

tivity diagram is used to facilitate the definition of the external transition function.

There are also other three sub-diagrams for describing the behavioral specification

of the atomic model. Those diagrams are SysML constraint diagram for defining

states, parametric diagram for establishing state association, and state machine dia-

gram for describing the internal transition, output, and time advance functions. In

recent work, UML activity modeling is used to define the external, internal, output,

and time advance functions for atomic models of a health care system (Ozmen and

Nutaro, 2015). These models, as compared with mathematical specification or code,

are more attractive to domain experts. However, the use of activities in this work
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incorporates with the simulation routine resulting in agent-based models. Behavior

modeling is achieved by representing the functions of the atomic and coupled DEVS

model component of a system as UML activities. Defining their relationships takes

place in terms of the DEVS simulator protocol.

Ptera (Feng et al., 2010) is also another way of specifying an event-oriented model.

It contains actions, final, and initial parameters that can attribute to an event that

represents a vertex in the model. The activity has different notations for each one of

those attributes. It lacks the rigorous definition of time as opposed to the Ptera model

of computation. In contrast to the existing works, our focus is to employ activities and

the activity metamodel itself and how to enrich it to arrive at activity-based DEVS

model specifications. We will view the activity as a major diagram in the object-

oriented paradigm to support the specification of an atomic model. However, rather

than using UML activity modeling as-is, we are interested in specializing it to capture

the atomic DEVS model syntax and conform to the DEVS execution semantics. The

specialization is necessary since the UML activity syntax and semantics is aimed at

satisfying a wide range of needs. Thus it lacks the essential constructs to specify

atomic models that can conform to the DEVS formalism.

4.2 Approach

We begin by considering DEVS metamodels (i.e., DEVS to SMP2 (Yonglin et al.,

2009), MDD4MS (Cetinkaya et al., 2011), and EMF-DEVS (Sarjoughian and Markid,

2012)) that have been proposed based on MDA. Based on such metamodels, we

focus on the behavioral specifications using a model-driven approach to be consistent

with the other existing approaches. UML State Machines (Nikolaidou et al., 2008)

provides a specification based on an object-oriented variant of the original Statecharts

formalism (Harel and Politi, 1998). However, the metamodel of the UML State
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Machines associates the Behavior element with the State and Transition elements.

The behavior defined as an effect of Transition may also have actions assigned to

it. Likewise, Behavior can be defined for State as an entry, exit, and doActivity.

The action takes place in an activity as an executable node. A subset of UML 2.5

metamodel is shown in Figure 4.1.

Behavior

Activity

ActivityNode

StateMachine

ControlNode ObjectNode

0..1

*

ExecutableNode

Action State

Transition

Region

Vertex

0..1

1..*
1

*

0..1
*

0..1

0..1

ActivityEdge

0..1

*

Figure 4.1: A Subset of Behavior Elements and their Relationships In UML 2.5 Meta-

model.

Here, we examine how activities can be employed in the context of atomic DEVS

modeling. Activities may be used from a different point of view in modeling behavior

of an atomic model. A view may also depend on using other kinds of models. We

consider three views for specifying the behavior using activities. The first view is

to create a separate activity diagram for each routine belonging to a function. For

instance, the activity captures the behavior, including actions and their order, for

using an input to set the state of an atomic model. For each control state, there

is a set of activities defined to handle one or more inputs. The second view is to

create an activity for each function. For an atomic model, five activity diagrams

are corresponding to each of the external transition, internal transition, confluent,

output, and time advance functions. The third view defines one activity diagram that

corresponds to the behavior of an atomic model as specified by all of its functions.
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(b) One Activity for the Atomic Model.

Figure 4.2: Different Views of Activities DEVS Modeling.

4.2.1 Three Views for Specifying Atomic Model Behavior

In the first view, an activity is defined to specify the behavior for each event-

routine as a subordinate unit of the corresponding DEVS atomic model component.

We refer to them as sub-activities. It takes advantage of the existing definitions

provided in the activity diagram to complement Statecharts by ordering actions. It

does not involve complex behavior handling concerning other DEVS components nor

the simulator. However, it can represent some basic patterns intrinsic to modeling, for

example, the external transition function, as shown in Figure 4.2a. Other procedures

are assumed to be handled externally in a separate activity or even in a different model

that can communicate with the activity model. An example of this behavior would

be managing decision points based on the control state for the external transition

function. The selected activity is executed directly once being called. Thus, it is a

suitable when those activities become sub-models due to their simplicity. The option

removes most of the encountered complexity when handling the total state of an

atomic model in state transitions.
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The notion of activities provide some means for handling more complex scenarios

among atomic model parts in addition to the capability of handling flows. We devised

the second view to capture the concept of control in DEVS functions. An activity is

created for the external and internal transition, confluent, output, and time advance

functions. In this view, we use additional constructs for representing behavioral

patterns that can be captured in the DEVS functions. For example, a decision node

can be used to check for the current phase. Decision nodes can also be used to monitor

ports and input values. Arbitrariness is presumed for any order that is not explicitly

defined in the model; this conforms to the parallel DEVS formalism. For instance,

the expansion region construct can be used to iterate a collection of received inputs

in an arbitrary order. The execution of such a scenario is given by the simulator

protocol and its implementation in some target simulator. These activity models, as

compared with the first view, have more artifacts for handling more complex patterns.

However, the modeler has more capabilities at hand in modeling and constraining the

behaviors of atomic DEVS models.

Considering the functions of an atomic model to be viewed in one activity is also

possible; this is the third view. However, this holistic view necessitates having defini-

tions and artifacts involving relationships between the atomic model functions. Unlike

the second view, implicit relationships, for example, between internal and external

transition functions may be modeled. In this view, we may also take into account the

simulation protocol. For example, in the DEVS-Suite simulator, the atomic models

components are specified and also simulated independently of each other. In this

view, the behavior of the model is defined explicitly in some structure that accounts

for the simulator. Such a structure must conform to the simulator interfaces using

some activity artifacts such as accept event actions. A major drawback for this view

is that model specification is tightly dependent on the abstract simulator. The be-
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havior of a simple processor model (Zeigler et al., 2000) (it processes inputs it receives

and sends out processed inputs) is shown in the first view Figure 4.2a and the third

view (Figure 4.2b). Next, the second view is detailed along with the processor model

shown in Figures 4.3 and 4.4.

4.2.2 Activity Specifications for Atomic DEVS Model

Considering all the UML activity constructs (OMG, 2012), we can model even

more complex behavior by using a fork, join, decision, merge nodes, and expansion

regions. We also use call behavior actions. The nodes are to specify the behavior

of the atomic model components where the call behavior actions are to depict the

communication points with other models. Each node is used to represent some specific

concepts in the atomic models. We describe these artifacts and their corresponding

concepts in the atomic DEVS model. Then, we present how these artifacts (see Table

1) can be used to define the behavior of the exemplary processor model with multiple

inputs.

The fork node splits the flow into concurrent flows, each having multiple input

events. The expansion region can also be used for the same purpose. Unlike the

fork node, the expansion region is a specialized action which is a structured activity

node. It defines concurrent flows of its included elements for the number of input

events in the collection of received input events. However, the execution might be

performed sequentially based on the simulation engine design and its implementation.

The iterative expansion region processes the collection of received inputs sequentially.

The order of processing these inputs is arbitrarily determined. In a parallel atomic

DEVS model, multiple inputs can be received simultaneously. Therefore, the activity

has a collection of inputs processed in an iterative expansion region. Further, these

inputs can be examined inside the region via some activity nodes nested in the same
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region. The activity can be terminated inside the region.

The decision node provides a means for controlling the flow by having multiple

outgoing edges with guards assigned to all edges. For example, the decision node can

be used to control the flow based on the phase. The phase is read in a preceding

action and then evaluated by some guard conditions associated with some outgoing

edges from the decision node. An else can also be defined as a guard for one of the

outgoing edges.

We can also use a special kind of action called CallBehaviorAction. It allows the

invocation of some behavior in a different model. We can use this action to call the

behavior specified in the sub-activities discussed in the first view. For each input

arriving in some control state, the sub-activity is called synchronously meaning that

the main activity will not proceed until the called behavior completes.

We now create multiple activities for atomic model behavior, as shown in Table 1.

These activities are created for modeling the behavior of an atomic DEVS model with

multiple inputs. We model the external, internal transition, and output functions,

each in a separate activity. Activity models for the time advance and confluent

transition functions can be specified similarly. We use the artifacts as described in

Table 1 to provide the required modeling capabilities for capturing the behaviors of

atomic DEVS models. The semantics of these artifacts as defined in UML specification

aligning with the concepts described for DEVS.

4.2.3 Action Specifications for Atomic DEVS Model

Actions are used as executable nodes in the activity diagram. They are the fun-

damental units of behavior specification in UML. Some actions change the state of

the system. This kind of action in our approach satisfies how states can change in

the DEVS atomic internal and external transition functions. For example, a phase
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change is modeled using add structural feature value action named Set phase. The

value of the target phase is modeled using value specification action with the value of

the target state. The value, to be assigned, transmits through the output pin using

an object flow connected to the value input pin of Set phase action. The actions

can take place in the activities corresponding to the external and internal transition

functions. A similar procedure follows for setting sigma or other state variables.

Other kinds of action support handling objects. Read self action is used to obtain

the current object context and place it in its output pin. Value specification action is

also used to provide specific value and put it in its output pin. The structural feature

actions are used for either assigning or retrieving some features of an object. Both

are used for the phase, although they can be used for other features or more complex

objects.

Event actions can also be used. An accept event action can be used to model the

waiting for an event to occur in some other entity to proceed in the activity flow. In

the context of UML actions, this event can be caused by the simulation protocol to

trigger some other parts of an atomic model. It may also trigger other models that

decompose the behavior into multiple models. There can also be an accept time event

action which is used to model wait time. We also use a send signal action which can

be used to model invocation for some other components. It is also used to enforce

some order when used with accept event explicitly. For example, to enforce the order

of executing the output and internal transition function, a sending event signal must

complete enabling the accept event action. However, this sort of scenario could be

viewed as part of the simulation protocol.

We also use invocation actions. An example of these actions is send signal action.

A call behavior action is used to call either an operation or an activity. The action can

be synchronous if it has to wait for the called behavior to complete. Otherwise, it can
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be asynchronous and then immediately proceed after calling the associated behavior

or operation. We use synchronous call behavior action in the external transition

activity to enforce the activity to wait for the completion of sub-activities before

proceeding to other activities. Suspending is necessary since the behavior of the

atomic model executes sequentially (i.e., the behavior in any of the functions of an

atomic model is sequential).

Using the described activity diagram artifacts, we can create activities for the

output and internal transition function for the processor model shown in Figure 4.3.

The activity for the external transition function shows in the following section.

deltInt

Set phase Set sigma

output

Read phase

Make 
content

y
[busy]

Figure 4.3: Activity Models for the Processor (Simplified).

4.3 Statecharts and Activities

The actions belonging to activities can be used with states and transitions in Stat-

echarts. These actions can be viewed as the sub-activities in activity models detailed

in the previous section. This approach follows the syntax of UML 2.5 where the effect

of the transition is described using the Behavior element which is a generalization for

the Activity as well as the State Machine (see Figure 4.1). We consider the DEVS
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metamodel (Sarjoughian and Markid, 2012) as a higher-level abstraction to couple

behaviors of atomic metamodel (Sarjoughian et al., 2015). The proposed abstraction

offers to couple their input and output ports as formalized in the parallel-coupled

DEVS model.

Together Statecharts and Activity models support richer behavioral modeling for

atomic DEVS models. Figure 4.4 illustrates this approach and highlights the basic

relationships between Activity and Statecharts models. The DEVS structural meta-

model for the atomic and coupled DEVS models is not the focus except the input

and output ports for atomic models. The top left-hand side shows the coupled model

GP (GeneratorProcessor) composed of a generator (Generator) and processor (Pro-

cessor) models. The top right-hand side shows the external transition function of

the exemplary processor in the activity model. The bottom left-hand side shows the

external function of the same exemplary processor as a Statecharts. Finally, the bot-

tom right-hand side shows one of the sub-activities. The sub-activity can decompose,

such that, it includes other activities to develop simpler behavior models. That is,

we avoid developing unnecessarily complex behavioral model specifications. The de-

composition process must conform to the relationships with the Behavior element as

defined in the UML 2.5 metamodel.

The Activity and Statecharts models show in Figure 4.4 to provide complemen-

tary behavioral specifications for the processor model. Both can be used to describe

DEVS model specifications; none of these alone is known to be sufficient to have a

complete specification of an arbitrary atomic model. Given the modularity in DEVS

(models can only communicate with one another through couplings), the Activity

and Statecharts models can only represent encapsulated behaviors of atomic models.

These behavioral models capture different aspects of atomic models using distinct

modeling syntaxes and semantics. We can use these behavioral models to concretely
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represent the abstract mathematical specifications of the atomic model functions. In

the processor Activity model, the inputs for the atomic model processor is defined

as an input parameter for the activity. The input, however, is defined as an event

for its corresponding transition in the Statecharts model. Both models define phase

state transition from passive to active. In the activity model, we use multiple actions

and control nodes to describe the implementation specified in the state transition.

We use the read phase action, decision nodes, and set phase action. This sequence

of nodes in the activity model is equivalent to state transition and actions defined in

the Statecharts model.

Using Activity modeling overcomes some limitations in the other Object-Oriented

modeling methods given its unique capabilities such as sequencing, control, and data

flow. The use of DEVS Activity modeling is promising for generating models that

can be executed in simulators. Such models are especially useful when considering

the ongoing efforts to have tool support for defining model specifications and auto-

mated code generation. Overall, as Figure 4.4 shows, Statecharts and Activity models

complement each other and support creating a richer specification for atomic models.

The activity diagrams in Figure 4.4 may be developed in tools such as Papyrus

(Eclipse Foundation, 2016b). A modeling engine specialized for developing activity

models for atomic DEVS models can also be developed. The coupled GP model and

the external transition function belonging to the Statecharts of the Processor model

are developed in CoSMoSim ACIMS (2017a).

4.4 Conclusion and Future Work

Few approaches are proposed to utilize the potential benefits of employing MDA

concepts for DEVS. These approaches follow guidelines to enrich the development of

simulation models. Including behavioral specifications in a model, the development
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Figure 4.4: The Overall View of the Approach and Relationships between Different

Models of Consumer Behavior.

lifecycle demands careful usage and guided by the MDA framework. Building models

in stages can help modelers move across model abstractions. We can start developing

Activity models and supplement them with Statecharts models, for example.

In this work, we described using modeling artifacts such as activity nodes and

activity edges to specify behavior patterns such as sequencing and synchronization

defined in Activities Behavior metamodel. We proposed customizing activity mod-

eling to specify behaviors for atomic models. The activity metamodel can be used

in various ways. We discussed creating activity models considering different views

and exemplified behavioral activity modeling for an atomic processor model by a set

of DEVS-based activity constructs. For future work, we plan to extend this work

to support domain-specific activity-based behavioral DEVS modeling. We also plan

to extend the CoSMoS to support Activity modeling for DEVS atomic models. The

extension requires Statecharts and Activity models not only conform to the DEVS

formalism but also consistent with one another. Achieving this kind of capability
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may lead to improved model verification and validation.
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Chapter 5

DEVS SPECIFICATION FOR MODELING AND SIMULATION OF THE UML

ACTIVITIES

The path toward utilizing the capabilities available in discrete event system mod-

eling is essential. We are currently still far away from fully enhancing the use and

therefore preventing failures that may arise in such systems. The concern of advanc-

ing and investigating discrete event systems has been continuously growing to attain

an appreciation of the potential solutions and consequently taking advantage of them.

UML has been dominant in the world of software modeling. Some aspects of it bear

resemblance with discrete event systems which have been subject to research in the

last decade from two points of view. The first one is to use UML as a language for

system specifications while the other one is to supply UML with concepts to overcome

its weakness in terms of formal grounding. The potential value that can be added

to UML by providing a rigorous mathematical specification is priceless. It brings the

value of formal specification into a widely used language by modelers.

However, there is a substantial complexity that can arise while trying to bring

the formal specification to such a language. First, we are dealing with a high level of

ambiguity that is necessary to maintain some level of generality. The language has

standardized around the concept of allowing end-users to comprehend its models in

a human-understandable manner. Adding formal specification may potentially result

in relatively sacrificing some general ideas and definitions. Such exclusion certainly

makes the problem challenging in addition to the inherent complexity and ambiguity

that might arise in the language itself.

The problem has been widely discussed in research from both theoretical and
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practical aspects. The solutions also widely vary. Researchers have been continu-

ously providing extensions, frameworks, and tools. Some solutions rely on further

knowledge about the intended domain while some others attempt to remain more

neutral and domain-independent. The same perspective has also applied regarding

platforms and applications. The notion of behavioral DEVS metamodeling is in-

troduced in a previous work (Sarjoughian et al., 2015) to provide some support for

behavioral specification at the meta-levels. SysML is one of the most common UML

profiles that has been devised based on similar motivation for system engineering,

and yet it is challenging to simulate (Nikolaidou et al., 2016).

Some current solutions do not incur the current lack of formality. Others require

a substantial amount of additions and extensions to resolve some ambiguities. On the

other hand, many approaches take a different direction and address the problem from

an implementation standpoint, for example, by operational semantics for well-formed

models. The Model-Driven Architecture (MDA) as well has been extensively used to

address the problem from an architectural point of view.

A suitable candidate to be used for activities is Parallel DEVS (Chow, 1996).

In so doing, the fundamental activity behavioral elements of UML (OMG, 2012),

which are mainly action nodes in activities, can map to Parallel DEVS based on

their resemblance with atomic models. Elements of this subset may have inputs and

outputs. The transition function can be then devised for each element to implement

the behavioral specification according to their semantics. For example, the semantics

of the fork node can be specified. This realization can result in a conveniently visual

representation and simulation of surface UML models that have a collective behavior

in terms of its foundational elements such as in fUML (OMG, 2018). This is achieved

by utilizing a Parallel DEVS simulator such as DEVS-Suite (ACIMS, 2017b).

In this work, we begin by giving some background about related matters of UML
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activities and the foundational UML subset (fUML). We then discuss the related

works. Next, we describe the basis for our rationale about the concept of activity

modeling and simulation and what does it mean in terms of DEVS modeling. Then,

we establish a fundamental ground for mapping between activities and DEVS con-

cepts. We demonstrate the approach with a simple illustrative example. Finally, we

discuss some findings and steps toward continuing the work in both the near and long

term future.

5.1 Related Work

A significant effort has been continuing to enhance the process of model-driven

practices for modeling in general and simulation modeling as well. The notion of

allowing models to be executable has existed for a while. In (Harel and Gery, 1996),

an integrated set of languages are developed for object modeling around statecharts.

The goal is to produce an executable model which cannot be achieved without defin-

ing a precise semantics. That follows by an attempt to define a formal operational

semantics for UML statecharts (Latella et al., 1999). Another executable UML has

been introduced by (Mellor et al., 2002) to complement UML with the code to make

it executable using model compilers. The notion of the proposed executable model is

inspired by approaches such as (Stahl et al., 2006). In (Kirshin et al., 2006), a UML

simulator is defined based on a generic model execution engine. The simulator relies

on the available knowledge in the model upon the start of the simulation. It suspends

when there is missing information via user/tool interaction. More recently, the fUML

(OMG, 2013) is proposed to provide the semantics necessary for executing a subset of

UML. Mayerhofer (2012) used fUML to enable model testing and debugging. These

capabilities become accessible in a model execution platform called MOKA within

the Papyrus Eclipse (Eclipse Foundation, 2016b).
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There has also been an effort to employ model-based and model-driven method-

ologies for the system-theoretic specification (Risco-Mart́ın et al., 2009; Mittal and

Mart́ın, 2013a). Mooney and Sarjoughian (2009) utilized DEVS for the creation of ex-

ecutable UML models based on statecharts. This approach, unlike other DEVS-based

approaches, is grounded by providing both specification syntax and execution seman-

tics with well-defined timing. Such grounding is necessary for concurrent handling of

events when developing composite executable UML models.

Activities have been a major modeling approach to resolving some limitations in

the current modeling practices. We characterize these efforts based on their purpose.

Some efforts aim toward automating and producing models that are suitable for

production, where the others are built based on the theory of modeling and simulation.

The model is a foundational element from both perspectives. The latter can also be

considered as a theoretical basis for general system design instead of just being tied

to simulation purposes. Thus, on one end, this is an attempt to devise a methodology

based on the DEVS formalism for activity modeling. On the other end, it provides a

profound means for specifying their precise semantics.

Our methodology relies on a different perspective in approaching model execu-

tion. We consider that the creation of the activity model is conducted for simulation

purposes even though it is intended and often used for actual software product de-

velopment. We want to ensure that the models are established based on rich system-

theoretic specifications. At the same time, we also maintain the same capabilities by

debugging techniques such as visualizing, controlling, and tracing the execution yet

in a disciplined manner. We take a similar position with Risco-Mart́ın et al. (2009)

and Mooney and Sarjoughian (2009). However, as in our previous work (Alshareef

et al., 2016), we keep our focus on the activity modeling and try to achieve our new

target goal exploiting the DEVS formalism.
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5.2 Activities Simulation Through DEVS: Finding Rigor

There is some level of difficulty when it comes to modeling for simulation. A

profound simulation for activities accounts for further knowledge and details beyond

basic debugging capabilities provided in some approaches and tools. Although there

are some temporal aspects in the process of model debugging (Mayerhofer, 2012), the

notion of time is not explicit in the debugging modes. The step is intrinsic to the

simulation modeling of dynamical systems based on a more expressive time notion.

In DEVS, the time period assigned to any state change due to external and internal

transition functions has arbitrary accuracy. Furthermore, the construct called elapsed

time allows inputs to be handled by the external transition function at any future

arbitrary time instance. These definitions can be effectively utilized to provide a

stronger foundation for the simulation of activity modeling. Instead of using a step-

wise or breakpoints as mechanisms to handle the execution of the activity model, the

time advance function and the notion of sigma are used. The step can then take place

during runtime based on these definitions. Figure 5.1 shows an overall view of how

the concepts of modeling and simulation employ in current practices. We will make

use of these entities as defined by Zeigler et al. (2000) to better perform the task.

SimulatorModelSystem

Debugger

Simulation RelationModeling Relation

Figure 5.1: A Simplified View of Employing Concepts in M&S for Activities Modeling.

We construct the activity simulation based on the hierarchical and modular simu-

lation framework for the DEVS simulator. A set of atomic models generally specifies

the basic activity constructs. Consequently, each construct can be then simulated.

69



The coupling takes place between atomic models. The activity model is collectively

defined via coupled models. The communication between elements is handled through

messaging to represent the control as well as the object flow. The locus is transmitted

to other components according to the semantics of the activity.

5.2.1 A DEVS Grounding for UML Activities

This subsection presents how UML activities are treated from a DEVS stand-

point, including their structural and behavioral properties. A mapping is proposed to

facilitate the process of understanding the bridging points between activities and the

DEVS formalism. The mapping includes the general constructs and more concrete

constructs thereof. We also discuss the modularity and the generality of the mapping

in subsequent sections. We shall begin with the activity nodes and then consider the

edges.

The activity node, which is the most abstract node element in activities, is gen-

erally specified by an atomic model. Most of the specialized activity nodes bear

resemblance in terms of their structural properties as opposed to their behavior.

Therefore, the specification of the atomic model needs to be specialized further for

the atomic model behavior to define the semantics of the corresponding activity node.

The action, for instance, is treated as an atomic model with some input and output

ports (see Figure 5.2). The behavior of the atomic model is defined by the (external,

internal, and confluent) transition, output, and time advance functions. It is defined

as the most concrete element in the current activity hierarchy. The activity node

specializes as control, object, and executable nodes, among others. These elements

also specialize further. For example, the decision node is a subtype of the control

node. Its semantics are defined in the behavior of the atomic model that corresponds

to the decision node. Although its structural properties are set at a higher level,
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since all elements share the same structural characteristics. The expansion region is

a particular case of the activity node where the coupled model is used for it. The

reason is quite straightforward since the expansion region may contain multiple nodes

and edges, which in turn map to their corresponding atomic models. The elements

of any activity are unique and may also have unique relationships to other elements

in the activity. This abstraction exactly mirrors that of flat DEVS coupled model

specification.

Atomic Model ActionInput pin Output pin
outin

DEVS UML

Figure 5.2: The Action, Which Is a Special Type of Activity Node, Is Treated as an

Atomic Model with Some Input and Output Ports.

The internal coupling is used to specify the activity edge, which is a supertype

for the control as well as the object (data) flows. The input and output ports make

modeling more accessible and therefore used to specify the input and output pins

alongside with ports to handle the flow. The activity node has at least one input

port, which is used to enable it. Note that, Parallel DEVS is selected since it allows

for receiving input (event) values simultaneously via multiple input ports. The nodes

vary in the number of their input ports based on their concrete types and incoming

edges. The multiplicity is, in a sense, similar to the activity nodes in having input or

value pins, or not having any. The output ports are treated similar to inputs except

they account for the outgoing edges and output pins. We note that, at a minimum,

a non-trivial atomic model must have at least either external or internal transition

state transition, two outputs, and two state variables. One variable represents the

assignment of time duration for operations. The other one represents at least two
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values for the model to be in (Wymore, 1993).

Thus, the previous components can serve collectively to form an activity model.

The model is viewed as a coupled model from a DEVS perspective. Edges establish

the connection between different activity constructs. In the DEVS formalism, the

specification of the external input and output interfaces, components, and the cou-

pling relation are included to serve as a means for establishing models from yet other

DEVS models (Zeigler et al., 2000). The external input coupling specifies the connec-

tion from the input parameter in the activity and considers it as an external input.

It conforms to having two distinct components as required by the Parallel DEVS

coupling legitimacy property. The coupling connects to some component ports. The

external output port is also used in the same manner but for the activity output. The

internal couplings are used as discussed in the previous paragraph to specify edges.

Table 5.1 shows a subset of the mapping, although additional elements might be

needed to put the activity in a purely modular object-oriented modeling context. For

example, internal couplings can take place for communication between objects. Some

object node can request this communication in the activity model, and then outputs

are sent out to other actions accordingly. Other couplings are used for controlling the

model concerning the activity semantics. In the UML activity, it is not necessary to

require two components to communicate via ports strictly. That is, a component can

invoke operations of some other component instead of using signals (messages).

5.2.2 The Semantics of Activities

The basis of any simulation environment for activities has to account for execution

semantics. The objective is to define semantics that is specific to DEVS modeling

and yet general in the context of activity modeling. The activity initializes by either

an initial node or some external influence. For example, the activity can reside in
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Table 5.1: A Subset of the Mapping for Activity Elements

Activity DEVS

Activity Coupled model

Activity node Atomic model

Expansion region Coupled model

Input and value pin Input port

Output pin Output port

Activity edge Internal coupling

Activity parameter External input coupling

Activity parameter External output coupling

the context of some other model such as a class. Any valid flow can represent an

execution of a particular activity performed by a course of action. The control nodes

manage that flow; however, they do not impose changes on the associated objects.

Each control node, as well as to object and action nodes, has its semantics. Our

objective is to define their semantics formally in a set of DEVS models. For instance,

the semantics of a decision node can be defined in the behavior of its corresponding

atomic model. Upon input arrival, the phase is changed to ”executing” to denote the

existence of an active node in this particular execution path. Then, in the next time

step, the condition associated with this specific decision node is evaluated.

The result of the evaluation will determine via which port the output sent out.

If the assessment of the guard condition is true for more that one case, the output

will be sent out via one of the output ports arbitrarily. It is, however, the modeler's

responsibility to account for such a scenario if a mutual exclusion is required, for

instance. Finally, the phase is set back to passive by the internal transition function.
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The formal specification of the atomic model that corresponds to that is defined in

Parallel DEVS as

DEV Sprocessing time = (XM , YM , S, δext, δint, δcon, λ, ta), where

IPorts = {“in”, “in1”}, where Xp = V (an arbitrary set);

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

S = phase× σ × condition× store, where

phase = {“passive”, “executing”}, σ = R+
0,∞,

condition = {true, false}, store ∈ XM ;

OPorts = {“out”, “out1”}, where Yp = V (an arbitrary set);

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

δint(phase, σ, condition, store) = (“passive”,∞, condition, x) where x ∈ XM ;

δext((phase, σ, condition, store), e,XM) =

((“executing”, processingT ime, !condition, (p1, v1), · · · , (pn, vn))

if pi ∈ {in, in1}, i ∈ {0, · · · , n};

δcon(s, ta(s), x) = δext(δint(s), 0, x);

λ(“executing”, σ, condition, store)

= (out, store.v) if condition = true and store.p = in,

= (out1, store.v) if condition = true and store.p = in1,

= (out, store.v) if condition = false and store.p = in1,

= (out1, store.v) if condition = false and store.p = in, where(p, v) ∈

XM ;

ta(phase, σ) = σ.

The processing time is defined as an abstraction to represent the step-wise exe-

cution of the activity model. The other control nodes are defined similarly to the

decision node while distinguishing between their unique structural and behavioral

properties. The fork and join nodes are for branching in and out the flow with a
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synchronizing capability. That is, the join node waits for all incoming flow loci to

transition to an executing state and the fork sends out loci via all its outgoing flows.

The initial node does not have an incoming flow, and therefore, no input ports shall

manifest for this purpose. Similarly, the final node does not have an outgoing flow. It

should be noted that any output from an atomic or coupled model automatically du-

plicates per number of couplings that it has to output to. The duplication of outputs

takes place according to the external input and output couplings as well as internal

couplings.

5.3 Network Switch: an Example

Grounding activity models into DEVS has been accomplished at the meta-layers.

Thus, the process of creating concrete models becomes easier. We choose the network

switch for several reasons. It can be specified as a coupled model. It illustrates the

handling of inputs in Parallel DEVS. It also exemplifies inherently different behaviors

since it contains a switch as well as a processor. The model is described in (Zeigler

et al., 2000) as shown in Figure 5.3. The internal transition function applies before

the external one in the case of having both the switch and one processor imminent.

The switch decides to send out the job via one of its output ports based on its polarity.

It does either one of the following scenarios. The first scenario, incoming input from

the first input port gets directed to the first output port. Also, inputs incoming from

the second input port gets directed to the second output port. The second one, if it

is on the other polarity setting, it reverses the first scenario. The nature of the switch

in its general form resembles the semantics defined for the decision node of activity.

From another perspective, the decision node can be considered as a higher level of

abstraction of the switch. Therefore, the activity model in Figure 5.4 can be seen as

a higher-level abstraction of the coupled model.
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Figure 5.3: The Network Switch Parallel DEVS Coupled Model.
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Figure 5.4: An Activity for the Network Switch Coupled Model.

In addition to the abstraction, the semantics of activities are incorporated as well.

The behavior of the switch accounts for the semantics of the decision node. In other

words, the polarity and inputs are checked as conditions. Once evaluated, the node

will send out the job to a corresponding processor. Actions are treated as atomic

models in general. However, they are treated as a processor in this example. This

treatment is due to the processor behavior, which accounts for the semantics of the

action. In other words, the semantics of activities are specified in the set of atomic

models that are then underpinned by the semantics of the simulation protocol for the

DEVS formalism.

5.3.1 Modularity

Thanks to the closure under coupling property, we can ensure the feasibility of

constructing a hierarchical model based on the elemental constructs. The mapping is

established based on the most abstract activity constructs, and then the behavior is
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specialized accordingly. The most concrete elements are mapped into atomic models

and used in an activity or expansion region via coupled system specifications. The

coupled DEVS specification for the network switch activity is

A = (X, Y,D, {Md|d ∈ D}, EIC,EOC, IC),

where

InPorts = {“in”, “in1”},

where Xp = V (an arbitrary set), XM = {(v)|v ∈ V };

OutPorts = {“out”}, where Xout = V , YM = {(“out”, v)|v ∈ V };

D = {DecisionNode0, Action0, Action1};

MDecisionNode0 = DecisionNode;MAction0 = MAction1 = Action;

EIC = {((Activity0, “in”), (DecisionNode0, “in”)), ((Activity0, “in1”),

(DecisionNode0, “in1”))};

EOC = {((Action0, “out”), (Activity0, “out”)), ((Action1, “out”),

(Activity0, “out”))};

IC = {((DecisionNode0, “out”), (Action0, “in”)), ((DecisionNode0, “out1”),

(Action1, “in”))}.

Since this is also a system specification itself, it can be used further in a broader

context within other system specifications. This also stands to provide additional

benefits in the context of UML. However, more investigation on the mapping has

to be carried out, given the current system specification that corresponds to only

activities and their substances only. Various behavioral and structural subsets of the

UML metamodel need to be investigated to determine how they can be treated in

this broader context.
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5.3.2 The Generality of the Models

Assuming the simulation protocol is domain-agnostic, we think the DEVS models

that are built for the execution semantics of activities are also domain-agnostic. The

behavioral specification is polymorphic in the sense that they capture the behavior

that accounts for multiple types and values. The notion of specifying structure at the

meta-levels is well established but not for the state transition behaviors (Sarjoughian

et al., 2015). We think of the created DEVS models along with their behavior to be

situated at the M2 layer in the MDA. Their generic behavior can be used to simu-

late any specific instance. Despite that they are extensible, their current behavioral

specification is sufficient to be applied to well-formed instances at the concrete level

M1. A view of the simulation for some of the high-level activity constructs shows in

Figure 5.5.

Figure 5.5: A Simulation View for the High-Level Activity Constructs Used to Model

Network Switch (Implemented in DEVS-Suite).

Another important aspect of the models is regarding metamodeling; that is, the

behavior of these models can be viewed as activity models. One activity corresponds

to each function of the atomic model Alshareef et al. (2016). Such correspondence

is due to the existence of the meta-layers and the conformance relationship between
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them. The models that encompass the semantics of the activities can be viewed as

activities. However, they are currently realized in Java code snippets that can take

place in the DEVS-Suite simulator. The representation of these snippets in activity

notation can be thought of based on the Annex A provided within fUML specification

(OMG, 2013).

5.4 Future Work

We are currently working on the development of two packages for DEVS-Suite for

full support for the simulation of any well-formed activity model. One package is to

encompass the semantics of different control nodes as well as actions without losing

generality. The second package is for interpreting activities as a previous step before

simulating them.

The activity package contains the activity metamodel as discussed. It also contains

generic code snippets for the semantics of each control node. The action is treated as

a general construct. Additional research is yet needed to support further elaboration

for specific types. The research includes specific concrete details of the action type

as well as a mechanism to incorporate it with the current specification.

The interpreter is also added to make it easier to incorporate an activity model

from the activity package standpoint. A certain checking has to take place to ensure

the injected models are well-formed. We can benefit from that by eliminating as much

of the code portions possible for target execution platforms. The transformation to an

executable form is restrictive, particularly from the standpoint of automatically gen-

erating code for behavior specified in atomic models (Sarjoughian and Elamvazhuthi,

2009; Sarjoughian and Markid, 2012; Seo et al., 2013; Mittal and Mart́ın, 2013a).

Thus, the potential of the interpreter in further automation of the process while hav-

ing some control over the abstraction levels can be promising. We are working on this
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issue, and our target objective is to ultimately provide these capabilities and make

them accessible to modelers who use simulators such as DEVS-Suite. The direction

of the transformation in a general sense remains open for future research.

5.5 Conclusion

In summary, we proposed a DEVS specification for UML activities in conjunc-

tion with the concept of executable modeling. The objective is to obtain a rigorous

grounding for the modeling and simulation of activities based on system theory. We

proposed mapping for activity elements into DEVS models. The mapping centers

around the concept of activity nodes, including actions since they collectively serve

as a basis for the activity and connecting them via edges. Also, we complemented that

with the definition of their semantics. We demonstrated the approach by developing

some examples of atomic and coupled models for a network switch according to the

Parallel DEVS formalism. We also discussed some remarks regarding the modularity

and expressibility of the models.

The research on behavioral modeling remains quite challenging. We employ a

variety of concepts, frameworks, methodologies, and tools in a manner that is consis-

tent with formal model specifications. The specification is important to be sufficiently

powerful to account for non-trivial dynamical systems and their models. Approach-

ing the creation of executable modeling from a modeling and simulation standpoint

is useful. The value of enabling rich and mature concepts such as experimental frame

(Zeigler et al., 2000) can be achieved whenever possible by techniques that can help

in the movement from different modeling layers to simulation and execution.

Introducing simulation, as opposed to debugging and testing, accompanied by its

full power to the UML activity modeling, leads to benefits. Among these benefits

is enabling underlying simulators to be employed for studying models during their
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development life cycle. Such a goal is difficult to achieve without having precise model

semantics. The DEVS formalism can be utilized to define these semantics. It is a

suitable candidate to accomplish this objective. Moreover, it establishes the notion of

time yet more rigorously which can be utilized further, for example, for cyber-physical

systems and more broadly Internet-of-Things. The defined DEVS specification for the

semantics can effectively serve as a basis for the concrete counterparts allowing a wide

variety of component-based simulators.
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Chapter 6

ACTIVITY-BASED DEVS MODELING

Constructing simulation models, despite being quite costly and complex, remains

indispensable and highly beneficial, especially for systems that do not lend themselves

to analytical methods. System dynamics need to be determined in enough detail to

sufficiently address its different aspects understudy to attain the potential benefit ul-

timately. The models have to be then realized in certain computational and physical

environments to enable the simulation and experimentation after that. As system

complexity grows, so does the importance of behavioral modeling. There are existing

concepts and techniques where the structure modeling can be handled systematically

to account for further system complexity and growth. However, these techniques fall

short concerning behavioral modeling. Increasingly, behavioral models are becoming

large and therefore difficult to understand, formulate, and maintain using conceptual

(informal) and mathematical modeling as well as their implementation in program-

ming languages and evaluations.

The Discrete Event System Specification (DEVS) formalism (Zeigler et al., 2000)

can effectively serve as a basis for simulation-based design and formulation of modu-

lar, component-based system models. The parallel DEVS formalism, based on time,

input, output, states, and state transition, is widely supported by simulators, DEVS-

Suite (Kim et al., 2009) for example, that have been implemented in different com-

puting environments. Simulators need to serve different needs through advanced

complementary capabilities, including action-based behavior specification. The input

for simulators is mainly models, although the simulators significantly differ in the

form by which the models have to be formulated, simulated, and evaluated. This
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has led to the rise of utilizing the so-called Model-Driven Engineering in simulation,

especially for the focus on creating platform-independent models. Models of this

nature are less inclined to carry details specific to the execution environments and

therefore can be used and maintained for a broader set of M&S platforms, a key ben-

efit of Model-Driven Architecture (MDA) (Soley and the OMG Staff Strategy Group,

2000). The definitions in this approach have been proven to be consistent with the

theory of modeling and simulation in multiple occasions (Risco-Mart́ın et al., 2009;

Cetinkaya et al., 2011; Sarjoughian and Markid, 2012; Mittal and Mart́ın, 2013b;

Sarjoughian et al., 2015). In fact, it is desirable to have models of this nature. It

allows modelers to focus on the problem and solution specifications in more neutral

terms regarding specific details of simulation frameworks. Behavior specification is

not as simple as structure specification, especially when system dynamics require un-

derstanding and formulation beyond conditional state changes and event handling.

This fact is accounted for the recent approaches that adopt some of the other lan-

guages and formalisms (e.g., UML state machines) with capabilities that can afford

to specify complex behaviors.

While some behavioral languages are adopted for the specification of DEVS atomic

models, they significantly differ in their suitability, complexity, and provided capa-

bilities. In this work, we attempt to dig deep into the activity modeling as a major

modeling approach for the DEVS atomic model and by extension coupled model be-

havioral specifications. The approach is gaining more attention, given its promising

prospects for enhancing system modeling in multiple domains. Activity metamodel

has also undergone major advances in the recent decade especially the release of the

UML 2.0 (OMG, 2005) and the foundational subset of UML (fUML) (OMG, 2013).

The idea essentially is to adopt the UML activities for the behavioral specification of

the DEVS atomic model according to the state of the art standards. Activities provide
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some unique capabilities for other behavioral diagrams. We want to leverage them in

a way that shortens the distance between the concrete models and their mathematical

abstractions. The handling of actions in the activities gives a premise to overcome

some of the behavioral modeling difficulties in general and the ones encountered in

the other behavioral approaches (e.g., finite-state machines). A richer specification

can be achieved when modelers consider a variety of behavioral specifications that

better serve their needs.

We will discuss some necessary background on this subject. We will also compare

and contrast our contribution with some of the existing approaches toward meeting

the need for expressive behavioral modeling. We elaborate on the selected approach

based on previous work (Alshareef et al., 2016) in conjunction with further discussion

and alignment with the DEVS formalism. A modeling engine is created as manifest

to implement alongside the processor with the queue model as an exemplar.

6.1 Related Work

Researchers have employed the notion of behavioral modeling for different pur-

poses. It has been used to bridge some distance between the mathematical specifi-

cation of the system-theoretic model in the DEVS formalism and their counterpart

incarnations in computational forms. We characterize these efforts in two major cat-

egories. The first one is a state-based approach, such as statecharts, while the second

is a flow-based approach, such as activities. Both approaches are considered to be

primary behavioral diagrams in UML 2.5, which we attempt to align with as much as

possible without compromising rigor. The state-based approach has been employed

by many (Schulz et al., 2000; Zinoviev, 2005; Mooney and Sarjoughian, 2009; Risco-

Mart́ın et al., 2009) to support defining behavior in the form of statecharts or state

machines. These add new means to identify behavior for DEVS atomic models.
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Furthermore, this approach provides graphical model development and mecha-

nisms for validating models without execution, for example, using EMF (Sarjoughian

and Markid, 2012; Fard and Sarjoughian, 2015). Another related work is Action-

Level Real-Time (ALRT) DEVS modeling. In such work, the external and internal

transition functions are formalized not only for the state but also actions. Actions

have their timings and therefore executed using a real-time simulation protocol (Sar-

joughian and Gholami, 2015). However, this variant of the parallel DEVS formalism

does not account for the UML metamodel concept and the activity modeling.

Since some existing methods (statecharts and state machines) are aimed at certain

aspects of behavioral modeling, the use of other methods becomes quite compelling.

By doing so, it explains the tendency to use activity modeling as an approach to aid

the development of DEVS models. The use of activities for the DEVS atomic func-

tions (δext, δint, δcon, λ, ta) complements other behavioral specifications with certain

capabilities such as ordering and the containment of actions within a UML context.

Also, there have been recent advances, especially for model execution using the foun-

dational UML subset (OMG, 2013). Activity modeling is also used for SysML models

(Nikolaidou et al., 2008; Foures et al., 2012) as well as developing model abstractions

for application-specific domains (Ozmen and Nutaro, 2015). In the latter, activity

modeling is purposed for simulation protocol, but not, for example, in terms of actions

and controls within atomic models.

In this work, we consider activities as a complementary modeling approach for the

visual behavioral specification of the parallel DEVS atomic model. We specialize in

the activity metamodel to serve as a basis for action-level behavior modeling as well

as proposing and developing a modeling engine for parallel DEVS atomic modeling

(see Section 6.3). The activity models are graphically developed utilizing the capabil-

ities provided with Eclipse Modeling Framework (EMF) and its Graphical Modeling
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Framework (GMF). We create an Ecore metamodel to encompass the defined ele-

ments and constructs according to the activity modeling approach. Our objective

is to account for as many details as possible of behavioral specifications relative to

simulators. At the same time, we consider the principles defined in the Model-Driven

Development and Model Driven Architecture. Such principles enable the approach

to expand further to incur the expected complexity that may arise during the model

development for behavior. The ability to come across some level of control over the

different levels of abstractions in such a grounding can be highly beneficial.

6.2 Activity-based DEVS Modeling Approach

We thoroughly investigate the use of activities in DEVS modeling starting by

bringing into a common perspective the DEVS formalism, behavioral specification,

and UML behavioral diagrams. We show where activities can come into place within

existing DEVS metamodels (i.e., DEVS to SMP2 (Yonglin et al., 2009), MDD4MS

(Cetinkaya et al., 2011), and EMF-DEVS (Sarjoughian and Markid, 2012)). We also

show where they can come into place by benefiting from a model-driven approach

and considering the other behavioral diagrams, specifically state machines. Then, we

discuss possible views to employ activities for DEVS modeling and then elaborate on

these views to establish the selected approach.

The functions δext, δint, δcon, λ, and ta are defined in a DEVS metamodel (Sar-

joughian and Markid, 2012). These functions capture both the abstract structure

and behavior of the formal DEVS atomic model specification. Each function has one

or more elements defining its structure. For example, the structure of the external

transition function is defined strictly only to have input events and state. On the

other hand, the structure of the output function is defined to have only output events

and state. The behavior of these functions defines what in the model can be changed
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(allowed behaviors). For example, in the external transition function, the state of

the model can change, but in the output function, the state change is not allowed.

Therefore, the behavioral specifications can be defined at the meta-layer to represent

a system’s behavior, for example, state machines. The activities can also be used to

define the syntax for the functions mentioned above. In the UML state machines,

a variant of the original statecharts formalism (Harel and Politi, 1998), the meta-

model of the UML 2.5 associates the behavior element with the state and transition

elements. Behavior defined as an effect of transition may also have actions assigned

to it. Likewise, behavior can be defined for state as an entry, exit, and doActivity.

The action takes place in an activity as an executable node, which is a subtype of

the ActivityNode. According to the subset of UML 2.5 metamodel in Figure 4.1, the

activity can be used to define behavior. This behavior, therefore, can either be super

or be nested in some other behavioral model such as state machines. For example,

the activity can be associated with the transition to define the effect of it as discussed

in Section 2.3.3. However, in this work, we focus on the use of activities, although

various views exhibit.

The Activity can be viewed to collectively represent the behavior of the atomic

model or some of its constituents thereof. We ignore the holistic view of activities for

the whole atomic model since that imposes some of the ordering relationships among

the different functions which must be handled by the simulation protocol. Thus, we

consider each function separately by devising an activity for each one and design

activities for the subordinates thereof. The advantage of creating activities for the

subordinates is to allow them to compose in various ways with potentially different

kinds of models. For example, they can be contained within other activities as an

action for external behavior or within state machines as an effect for a transition.

We now create multiple activities for the atomic model specified behavior by

87



each function. These activities are created for modeling the behavior of an atomic

DEVS model with multiple inputs. We model the external, internal transition, and

output functions, each in a separate activity. Activity models for the time advance

and confluent transition functions can be specified similarly. We use the modeling

elements as described in Table 6.1 to provide the required modeling capabilities for

specifying the behaviors of atomic DEVS models. The semantics of these elements,

as defined in the UML specification, have been aligned with the DEVS concepts.

A template for an activity diagram for the external transition 

function receiving a collection of inputs and processing them in 

iterative expansion region

A template for an activity diagram for the output function with an 

output parameter node

A template for an activity 

diagram for the internal 

transition function

An action to call behavior 

specified in another activity

Read structural feature action to 

read the input and assign it to the 

output pin

Receive a value and assign it to 

the phase

Read structural feature action to 

read the phase and assign it to 

the output pin

Set value and assign it to the 

output pin

Read value of the received 

feature via the input pin

An action for making content to 

be used for preparing output

deltExt

x
<<iterative>>

output

y<<iterative>>

deltInt

Call sub-act

Read port

Read state

Read value

Set value

Set state

Make content

Table 6.1: Activity Specifications for Atomic DEVS Model

The activity diagrams in Figure 4.4 depicts some of the behavioral specifications

of the processor model (a richer formulation to be demonstrated in Section 6.4) as

well as a holistic view of the devised approach. The activity in the upper right cor-

ner depicts the behavior of the external transition function, while the activity in

88



the lower right corner represents a subordinate unit for a state transition. There-

fore we call them sub-activities. A modeling engine specialized for developing these

activity models is developed and will be discussed in the following section. A cou-

pled Producer-Consumer (PC) model (upper left corner) and the external transition

function belonging to the statecharts of the processor model (lower left corner) are

developed in CoSMoS (ACIMS, 2017a).

6.2.1 Categorizing the Activity Specification

According to the proposed specification (see Table 6.1), the components in activity-

based models can be categorized into composite and primitive. The specifications for

the external, internal transition, and output functions are composite. In every exter-

nal transition function, a bag of external inputs is received and modeled as an activity

parameter. The output function sends out the output which is modeled as an activ-

ity parameter, although it is an output parameter. The internal transition function

can manipulate the state of the model via the use of some primitive components.

These abstractions after that can serve as a basis for the behavioral specification

of the DEVS atomic model. And their contained components, whether composite

or primitive, can collectively form the behavior of each function. Hence, the primi-

tive components can also be used in a different function or possibly different models

such as the action of making content or setting the phase to passive. Therefore, the

single-action can also collectively form the behavior of the system while maintaining

modularity.

The primitive components can also be characterized by their roles in the model,

such as changing the state from a DEVS standpoint. Other primitive components may

include any action that contributes to the behavior of the model, such as assignment.

Primitive components are the fundamental units of the behavior. Their semantics
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vary according to their role in the model. In changing the state, the model should

primarily determine changes in the phase and the sigma as primary variables for the

total state in the atomic model. In some assignment action, the value should assign

to its corresponding variable.

The two categories provide a means to establish a stronger context, especially for

the primitive components. Since the objective of this work is to provide means for

restraining complexity from a behavioral standpoint, the relationship between these

components within some context is quite crucial. For example, the activity node takes

place within an activity that is created to represent an external transition function.

An investigation of whether the same node is simultaneously used in another activity

for another element or not could be useful.

6.2.2 Note on Coupled Models and Behavioral Specification

It is important to note that the coupled model has a significant role in delivering

the expected outcome of this research. For this reason, at the implementation level,

we attempt to put things in a consistent perspective with the existing CoSMoS in

which the specification of coupling is supported. CoSMoS recently has been equipped

with the capability of behavioral modeling, which is currently based on statecharts as

mentioned previously in section 6.1. However, the specification of an atomic model

is encapsulated regarding other atomic models. The behavior of a model can only

communicate through I/O ports and couplings with other models. Therefore, their

abstractions can also differ in a way that preserves this property. An atomic model

specified in some form can couple with some other atomic model specified in a different

form. In our case, it should be possible to couple models specified in CoSMoS with

their behavior modeled using statecharts. Moreover, it should also be possible to

couple them with atomic models in which their behavior is modeled using the activity-
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based specification as discussed in this work. It is important to help in achieving

better outcomes toward the enrichment of the behavioral specification of the parallel

DEVS formalism.

Moreover, the mandated behavior via coupling is also crucial in constituting the

totality of system dynamics. Since the interaction between different atomic and cou-

pled models is strict via I/O ports and couplings, therefore, their influence on the

inner atomic model logic is also restricted to the arrival of the external inputs. More-

over, their impact on other models is also contingent on sending outputs through

their output ports.

Many others support the concepts above and capabilities in CoSMoS and inte-

grated with DEVS-Suite. The creation of Parallel DEVS and Cellular Automata is

supported in CoSMoS as component-based models (Sarjoughian and Elamvazhuthi,

2009). Then, the corresponding code is automatically generated, although for only

the structural aspects. There is no code generation provided for statecharts modeling.

This research contributes to providing a richer modeling basis for further code gen-

eration and transformations. The path toward having a more disciplined simulation

model development requires a collective achievement by multiple abstractions with

further emphasize on their complementary role consistently.

6.2.3 Controlled Coupling Using Activities Control Nodes

The provided capabilities in control nodes are used to control the transmission of

input/outputs among different atomic and coupled models. Communication of events

(i.e., input to input, output to input, and output to output) among all components

of any coupled, hierarchial DEVS model are instantaneous. This is described at

a high level of system specification to represent the component interactions with

each other via I/O ports thereof. The activity abstraction can become useful for
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further mandating these interactions among different components. Various control

capabilities of the flow can be used to describe the composition of components. The

components themselves are modeled separately at a different level. The behavioral

specifications can be characterized then by activity specification as we discuss in

this work or by various means such as statecharts. In the following, we present two

common examples of handling the flow among different components.

Synchronizing inputs

As discussed, multiple inputs can arrive at some input ports and at arbitrary time

instances at the DEVS atomic and coupled models. The join node can be used to

synchronize various inputs sent among different couplings. For example, the join node

can be used to associate two different flows before an adder model. Consequently,

the inputs will arrive at the same time, for instance, at the adder input port. Hence,

the behavior of synchronizing multiple inputs has separated from the domain model.

Therefore, the domain model may or may not account for this need in its behavioral

specifications.

SyncActivity

Generate

Process

Generate

Figure 6.1: An Activity for Synchronizing Outputs from the Generators Prior to

Processing. The Simulation View (Right) Is for the Corresponding Implementation in

DEVS-Suite. The Join Node as an Atomic Model Is in Waiting Phase to Synchronize

the Input through the Other Port from the Second Generator.

The join node can be used to specify the synchronization of inputs, as shown in

Figure 6.1. Two generators produce inputs for a processor model. The outputs from
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both generators are held at some point before their arrival at the processor model.

This scenario can be specified as a join node which is modeled as an atomic model

with its behavior to be specified to encompass the semantics of the join node. The

outputs by generators do not have to produce at the same time instant necessarily.

However, having the synchronization ensures the simultaneous arrival of the inputs

at the processor’s input port. This behavior is defined in the behavior of the corre-

sponding atomic model to the join node, where the model has multiple input ports.

Upon the arrival of input, the phase is changed to ”waiting” to denote the existence

of input. Therefore it waits for other inputs from other input ports to arrive the

output dispatches upon the arrival of all the inputs. The phase is changed then to

passive by the internal transition function. The formal specification of the atomic

model for the join is defined in Parallel DEVS as

JOIN = 〈XM , YM , S, δext, δint, δcon, λ, ta〉

,

where

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S = phase× σ × condition1× condition2× store, where

phase = {“passive”, “waiting”}, σ = R+
0,∞,

condition1 = {true, false}, condition2 = {true, false}, store ∈ XM ;

IPorts = {“in1”, “in2”}, where Xp = V (an arbitrary set);

OPorts = {“out”}, where Yp = V (an arbitrary set);

δint(phase, σ, condition1, condition2, store) =

(“passive”,∞, false, false, x) where x ∈ XM ;

δext((phase, σ, condition1, condition2, store), e,XM) =
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((“waiting”,∞, true, condition2, (pi, vi))

if pi = in1 and condition2 = false

((“waiting”,∞, condition1, true, (pi, vi))

if pi = in2 and condition1 = false

((“waiting”, 0, condition1, condition2, (pi, vi))

if pi = in1 and condition2 = true

((“waiting”, 0, condition1, condition2, (pi, vi))

if pi = in2 and condition1 = true;

δcon(s, ta(s), x) = δext(δint(s), 0, x);

λ(“waiting”, σ, store) = (out, store);

ta(phase, σ) = σ.

The atomic model is defined with two input ports and one output port. The

model is initially in phase “passive” until some input arrives through any port. Two

conditions exhibit as secondary state variables to recognize the port through which

the input arrives. Both conditions initialize with false. As soon as an input is received,

the external transition function toggles the condition corresponding to the input port.

For example, if the input is received through port “in1”, then the toggled condition

is “condition1”, and so on. If all conditions are true, the sigma is assigned a zero

value causing the output function to occur. The output function then sends out all

the stored received inputs. Finally, all state variables set to their initial values in the

internal transition function.

Network switch

Just as we can model the synchronization as a join node, we can also model the

network switch with decisions for directing the flow of input and output events. The

synchronization is not necessary though. The selected control element is the decision

94



node in terms of activity modeling. The switch directs the flow by sending the received

inputs through the corresponding output ports under some defined condition.

As discussed in (Alshareef and Sarjoughian, 2017), the switch model illustrates

the handling of multiple inputs arriving simultaneously as in Parallel DEVS. In that

model, the switch is characterized to be a controlling component, while the processor

model exhibits different behavior. Together, they constitute, along with the other

elements, the behavior of the network switch coupled model. The behavior of the

processor model is described in detail in section 6.4.

6.3 EMF-based Modeling Engine

It is important to assist modelers in developing specifications for all parts of an

atomic model. The proposed approach requires building a modeling engine that sup-

ports the activity-based modeling concepts and constructs introduced in Section 6.2.

This engine should be robust and powerful enough to handle the potential complex-

ity that might arise in DEVS activity behavior modeling (i.e., from individual to

composite parts forming atomic functions). Therefore, we expand our work by con-

structing a modeling engine that utilizes the previous specifications and translates

them into a runtime environment. The resulting engine accounts for formal speci-

fications of DEVS as well as concepts introduced for the atomic model behavioral

specification. It also leverages the available tools and technologies to facilitate the

process of building those models as well as ensuring the extensibility to allow for

future works, including model verification and simulation validation.

6.3.1 Activity-based DEVS Ecore

Using the current realization of the UML2 metamodel in EMF (Eclipse Founda-

tion, 2016a), the Activity metamodel is realized similarly. We try to use it to provide
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some support for the DEVS atomic model behavioral specification. The created Ecore

is currently aimed to be incorporated with EMF-DEVS and used to provide a graph-

ical modeling capability using the Eclipse Graphical Modeling Framework (GMF).

The Ecore consists mainly of activities and DEVS packages, as shown in Figure 6.2.

DEVS package contains essential elements from EMF-DEVS for both structure and

behavior as discussed in previous works (Sarjoughian and Markid, 2012; Sarjoughian

et al., 2015) with some additional elements. The activities package contains elements

to realize the activity-based specification. They have been created by taking into

account the UML 2.5 specification as well as UML2 metamodel (Eclipse Foundation,

2016a) in Ecore.

We construct the relationships between DEVS, activities, and actions metamodels

using extensions and references via ESuper types and EReference as defined in Ecore

(Steinberg et al., 2008). The state transition functions, output, and time advance

functions are specialized from DEVSActivity, that is, specialized from the Activity

EClass. The goal is to maintain common properties among those four functions in

this common abstract DEVSActivity. Thus, they become distinguishable from other

activities. References are established in the Atomic EClass for each DEVS function.

The atomic model may have up to one of δext, δint, δcon, and λ functions. For example,

the reference for the external transition function may not set for the producer model.

Therefore, the reference is defined to have zero as a lower bound and one as an upper

bound. The references are contained within their corresponding atomic model. It

ensures that the strong modularity required for the DEVS formalism is maintained.

Specializing actions for DEVS modeling is accomplished similarly. The behavior

can be then characterized by those actions in addition to the comprehensive set of

actions defined in UML. The current list of actions as specialized in the Ecore includes

(but not limited to) the following:
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(a) An Ecore Package Containing Activities Metamodel.

(b) An Ecore Package Containing the Behavioral Constituents of DEVS Metamodel

and Actions.

Figure 6.2: Activity-based DEVS Metamodel.
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• SetState: to change the current state due to some state transition. This com-

ponent is defined to be abstract.

• ReadState: the current state is checked before making changes to some state.

This component is defined to be abstract.

• ReadValueOnPort : to read input value that has arrived via some input port.

• SetSigma: to assign a time period for some state.

• MakeContent : create (port,value) pairs where one or more output events are

assigned to one or more output ports.

This set of actions is based on the common use in many DEVS atomic models

supported in the DEVS-Suite Simulator. However, they are generalized and thus

can be employed by other simulators that conform to the DEVS formalism. Their

implementations can be specified and mapped according to their definitions in the

metamodel.

6.3.2 Activities Graphical Definition and Tooling

The GMF framework supports creating visual editors for modeling languages such

as statecharts. We have leveraged this framework and built an expressive graphical

notation for modeling behavior based on the activity-based approach. The visual

syntax is defined to be consistent with that of the UML activity modeling. There-

fore, any activity model created using the graphical activity definition is a legitimate

UML activity diagram. The specialized elements for DEVS are given their superclass

graphical definitions. For example, SetPhase action is defined to have the same visual

notation as the one for manipulating the structural feature that it specializes. This
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modeling engine supports the development of Activity-based DEVS models such as

those shown in Figure 4.4

Figure 6.3: Visual Canvas for Activity-based DEVS Modeling.

The canvas for Activity-based DEVS allows creating behavior models through the

use of nodes and connectors. The canvas consists of figure galleries, nodes, connec-

tions, compartments, and labels. The figure gallery is used to define a set of graphical

notations enabling defining the elements of any atomic models as depicted in Figure

6.3. GMF, by default, generates rectangles for node elements and solid polylines for

link elements. The definition is modified to represent the graphical notation for ac-

tivities. The notation includes a variety of unique shapes such as rectangles, rounded

rectangles, arrows, and diamond. Customization is often necessary for more specific

shapes. A sample of the graphical definition for the decision node is shown in Ta-

ble 6.2. Graphical definitions for all other elements have been created similarly. Note
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that we have made minor changes to some notations for simplicity reasons. One dif-

ference is on the expansion node notation by making it a grey rectangle instead of a

divided rectangle. The other change, we do not include the rake symbol on the call

behavior action. Instead, the action name is appended with sub-act keyword at the

end.

The tooling definition is created to define the used tools for creating graphical dia-

grams such as palette and popup menus. Those tools can be then customized further

to support specialized graphical interfaces to facilitate the modeling process. Primi-

tive and composite model elements are ensured to satisfy the combined UML Activity

and DEVS behavioral model development. This kind of tooling allows for organizing

the modeling elements in more useful ways for the modelers and therefore enabling

easier and simpler modeling. The UI includes, but not limited to, features like palette

grouping, icon images, modeling hints, and guidelines. With these features, modelers

are well-positioned to specify complex behaviors iteratively. The palette elements

are organized according to their classification from a semantic point of view for ac-

tivities and DEVS modeling. The palette lists UML activity nodes followed by the

DEVS nodes such as the nodes for specifying phase and sigma. Specialized image

icons for nodes are provided to capture their mathematical counterparts in the DEVS

formalism. For example, SetSigma is associated with an image icon of sigma symbol

(σ).

6.3.3 Mapping

Finally, we create a mapping model where the elements defined in the metamodel

map to their corresponding counterparts in the graphical definitions and tooling. The
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Element Property Value

Canvas Name BehavioralDEVS

Figure Gallery Name Activities Figures

Figure Descriptor Name Diamond

Rectangle

Name Diamond

Fill False

Outline Flase

Polygon Name Diamond

Template Point X, Y 15,0

Template Point X, Y 0,15

Template Point X, Y 15,30

Template Point X, Y 30,15

Node
Name DecisionNode

Figure Diamond

Default Size Facet

Dimension Dx, Dy 30,30

Node
Name MergeNode

Figure Diamond

Default Size Facet

Dimension Dx, Dy 30,30

Table 6.2: Decision and Merge Node Figure Definition

result leads to combining the three essential models in GMF (i.e., the domain model

which is in our case the metamodel, the graphical definition, and the tooling defi-

nition). GMF wizard allows distinguishing between nodes and links in the mapping
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model. However, it only provides the necessary customization capabilities. The tool-

ing model is manipulated further. The model, graphical, and tooling elements are

linked with each other using the node mapping feature and specifying its properties

accordingly.

6.3.4 Preliminaries on the Validation of the Activity-based DEVS Models

The validation of the proposed approach is currently based on the provided val-

idation capabilities by EMF. The metamodel is shown in Figure 6.2 captures the

concepts by representing them in a set of classes, attributes, and references. It after

that forms the ground for further constituting the validity of the instantiated models.

After being specified, the validation is performed by the EMF engine.

Although a thorough validation study is considered as future work, we briefly

discuss some of the validation capabilities and benefits obtained for the behavioral

specification. Many of these benefits are acquired through the merit of the existing

metamodel itself in general. Also, many others are also acquired by virtue of effec-

tively utilizing the underlying framework. EMF engine has a validation engine that

allows defining and checking the validity of model constructs. Any validation can

be conducted by merely customizing the default properties of different models as far

as going all the way to modifying the generated code and defining more constraints

yields possibly to a more restrictive modeling environment. Therefore, the legitimacy

of the constraint must be ensured to be valid for all corresponding models before

enforcement. For example, the value of the sigma must always be non-negative. This

constraint is defined and enforced with an error message in case of violation. Less

restrictive constraints can also be specified. In the case of not receiving any inputs, a

warning message shows up. Some particular circumstances in the model do not have

to receive inputs such as an autonomous generator model (i.e., has no input ports).
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For any non-mentioned validation, using EMF-based metamodel provides a suit-

able ground nonetheless to simplify the process of adding further analyses by defining

constraints or through extension mechanism. Such validation can be for a general

property or specific to a particular domain. This can serve for the behavioral specifi-

cation of domain-specific models (e.g., (Zhu et al., 2017)). A framework is proposed

to deal in part with complications that are likely to arise during model development

regarding behavior. Linking to such domains can be possible after establishing the

necessary extensions and transformations.

Although some constraints can be validated to ensure the legitimacy of model

specification, validation in the sense of simulation is impractical due to the infinite

state space of DEVS models. Further constraints can be made for a specific domain

on the model inputs, outputs, and states, for validation purposes. The constraints

for models complement the validation of simulated behavior. They can apply to the

state transitions by controlling the elements that deal with state changes (e.g., order

in which state or non-state variables can change their values). Extracting inputs can

also be checked in the reading inputs and ports elements in conjunction with their

corresponding sets as defined by the model. The same can also work for outputs.

Such ability has been possible after dissecting the behavioral modeling approaches.

Processes such as identifying, categorizing, and characterizing each element, help to

look into more specifics after that.

6.4 Activity-based Modeling for Multiple Input Processor with Queue

A model of a processor with a buffer exemplifies the essence of the Parallel DEVS

formalism. The processor can handle multiple input events (e.g., jobs to be pro-

cessed) from the standpoint of their arrival and storage. Various inputs may arrive

simultaneously on one or more input ports. The buffer is used to store jobs when
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the processor is busy processing another job. The saved jobs proceed in the order in

which they have stored in the queue. The model is defined in Parallel DEVS (Zeigler

et al., 2000) as

Processorqueue = 〈XM , YM , S, δext, δint, δcon, λ, ta〉

,

where

IPorts = {“in”}, where Xin = VX (an arbitrary set);

XM = {(p, v)|p ∈ IPorts, v ∈ Xin} is the set of input ports and values;

S = {“passive”, “busy”} × R+∞
0 × q;

OPorts = {“out”}, where Yout = VY (an arbitrary set);

YM = {(p, v)|p ∈ OPorts, v ∈ Yout} is the set of output ports and values;

δint(phase, σ, q)

= (“passive”,∞, q) if queue is empty

= (“busy”, processingT ime, q′)

otherwise remove head of the queue;

δext((phase, σ, q), e, ((“in”, x1), (“in”, x2), ..., (“in”, xn))), xi ∈ Xin

= ((“busy”, processingT ime), x1, x2, ..., xn) if phase = “passive”

= ((phase, σ − e), q.(x1, x2, ..., xn))

otherwise add input events to the tail of the queue;

δcon((s, ta(s)), x) = δext(δint(s), 0, x);

λ(phase, σ, q) = (“out”, q.head), q.head ∈ Yout, if phase = “busy”;

ta(phase, σ, q) = σ.

Activity models are created for the internal transition, external transition, and

output functions (see Figure 6.4). Specifying the remaining function is straightfor-

104



ward from an activity modeling standpoint. Modeling some parts of the processor

model (e.g., queue) is currently out of our scope. However, they are being manip-

ulated in which their impact cascades to the specified behavior. We note that the

initialization and termination of the modeled activities do not appear. Their exclu-

sion is due to the simulation protocol being responsible for handling the execution

order of different functions in a way that complies with the operational semantics of

the abstract simulator.

A notable advantage of the developed modeling engine is that it enables the mod-

elers to visualize a more comprehensive array of DEVS activity models. It allows

viewing the model in various ways, including textual representation, although this rep-

resentation was not our primary focus. The powerful unifying capability attained by

the reliance on Ecore reduces some difficulties associated with modeling approaches,

including the UML state machine.

6.4.1 Interpreting the Processor Model in the DEVS-Suite Simulator

The path toward concrete realizations of the proposed abstraction can take place

through model transformation. More elements have to be accounted for since the

concrete models are more restrictive than their representations at some higher level.

Concepts such as visibility and data typing need to be strictly defined by the trans-

formation to achieve fully specified models. In the case of the DEVS-Suite simulator,

the code that corresponds to the atomic model can be obtained via interpretation or

code generation. The manipulation of the primary state variables, which are the phase

and sigma, is more accessible than the secondary ones, especially with specific parts

such as a queue. The queue is classified as a non-simulatable model (Sarjoughian and

Elamvazhuthi, 2009) as compared with the simulatable processor model. Therefore,

since our focus is the behavioral specification, we assume that the queue is already
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(a) An activity for the external transition function with an overview of the tool 

(a) An activity for initializing the processor atomic model 

(b) An activity for the internal transition function 

(c) An activity for the output transition 

(d) A sub-activity for adding some job input to the queue (e) A sub-activity for processing job 

Figure 6.4: Activity-based DEVS Modeling for Multiple Input Processor with Queue.

defined as in (Sarjoughian et al., 2015). As a result, the manipulation of its elements

could be performed directly during the transformation. The implementation of the

external transition function shows in Listing 6.1. The for loop is for checking any

bag of received inputs. Then, the phase is checked as in the if statement in cor-

respondence to the decision node in the activity model. The phase is defined as a

String in the DEVS-Suite simulator. We consider that in the transformation, not

in the activity model. The sigma is also manipulated similarly, while the data type

is double. The details are accounted for during the transformation to complement

models at a higher level with the necessary constructs and definitions to make them

concrete.

106



Listing 6.1: External transition function for the processor with queue

public void d e l t e x t (double e , message x )

{

Continue ( e ) ;

for ( int i =0; i< x . getLength ( ) ; i ++){

i f ( phase I s ( ” pa s s i v e ” ) )

for ( S t r ing inPort : inPort s )

i f ( messageOnPort (x , inPort , i ) )

{

job = x . getValOnPort ( inPort , i ) ;

sigma = INFINITY ;

phase = ”busy” ;

}

else i f ( phase I s ( ”busy” ) )

for ( S t r ing inPort : inPort s )

i f ( messageOnPort (x , inPort , i ) )

{

job = x . getValOnPort ( inPort , i ) ;

q . add ( job ) ;

}

}

}
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6.5 Conclusion

The use of various modeling approaches and methodologies for behavioral model-

ing is invaluable as it paves the way for reasoning about the system’s properties and

dynamics. We aim to contribute to this need by providing a basis for this emerging

approach for the behavioral specification of discrete system modeling and specifically

for the parallel DEVS formalism. We described the basis for Activity-based DEVS

modeling. We considered different views for adopting activities as a candidate be-

havioral modeling language for specifying DEVS atomic model (and by extension

coupled) behavior. The view has to account for compliance with concepts from for-

mal and semi-formal modeling methodologies to enable and enrich the utilization

and enrichment of model development. We proposed an approach where behavioral

abstractions in the DEVS formalism and statecharts are extended with those of the

UML activity.

We chose MDA as the basis for defining foundational artifacts key for detailing

behaviors belonging to the DEVS atomic model functions. The potential value of

behavioral metamodeling concepts for developing simulation models can be unlocked

by proper employment to that among different MDA layers. As the complexity and

scale of systems continue to grow, disciplined use of the DEVS modeling formalism

and the model-driven development, especially concerning system behavior simulation,

is attractive.

We demonstrated the approach by developing a first-generation Activity-based

DEVS modeling engine supported with multiple capabilities using the GMF frame-

work and tool. This engine facilitates developing atomic model behaviors at scale.

This GMF-based tool supports evolving model behavior with automation (e.g., en-

suring conformance to the DEVS syntax and semantics for functions).
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Promising future work includes furthering behavioral artifacts supporting higher-

order control structures. These can be key for building more useful simulations for

Systems of Systems including Cyber-Physical Systems and Internet-of-Things. An-

other future research interest is to reduce the size of behavioral models similar to

design and code refactoring.
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Chapter 7

PARALLELISM SEMANTICS IN MODELING ACTIVITIES

Abstractions are indispensable for human understanding as a way of thinking

about a complex world. Models are representations of the world, and yet themselves

may become quite complex, each of which is some structure or behavior abstraction.

Having a way of abstraction is fundamental in constructing models, yet poses key

challenges. An effort to establish a stronger grounding for modeling methodologies

and frameworks resulting in new insight is highly beneficial. A possible path can be

sought through approaches for incrementally constructing complementary models at

multiple abstraction layers.

Abstractions for systems are created using informal, semi-formal, and formal

methods. The latter method can be captured conceptually in some sets of structural

and behavioral specifications (see Figure 7.1). Different combinations from multiple

categories can be selected to serve as a framework in which numerous formalisms,

languages, and methods can be used. For example, a collection of modeling meth-

ods such as the UML Activities, State Machines, and Class can provide powerful

computational abstractions. When adhering to strong metamodeling concepts, the

development of these semi-formal methods as well as formal methods can be aligned

to benefit from their potential synergy collectively.

Complexity issues may arise within models with relatively non-trivial structures

and behaviors. It is essential to account for that by restraining the complexity and

scale traits of models (Sarjoughian, 2017). For semi-formal methods, the encountered

complexity can also associate with a high level of ambiguity, which can make the

problem even more difficult. Any formalization effort could be subtle since it may
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formal Semi-formal

Structure

Behavior

• Timed (continuous, discrete)
• Untimed (process network, dataflow, …)

• Framework (MDA, …)
• Standards (UML, HLA, FMI, …)

• Connection (couplings, ports, edges, …)
• Component (nodes, processes, …)

• State (state transition, location)
• Flow (places, transitions, tokens, …)

• Relationship (aggregation, inheritance, …)
• Class (classes, associations, …)

• State Machines (state transition, guards, …)
• Activities (control nodes, action, flows, …)

Figure 7.1: A Classification for Formal and Semi-Formal Component-Based Modeling

Approaches with Respect to Structure and Behavior.

result in sacrificing some general concepts and specification expressiveness.

Through enriching abstractions (e.g., Activity diagrams), we do not only benefit by

understanding them in multiple ways but also making their use more straightforward

given different structural and behavioral specification granularity. The challenge of

defining constructs and artifacts for behavior is demanding, in part due to time-based,

parallel properties intrinsic to dynamical systems. Therefore, there is quite a need

for efforts that may help in the further restraining of complexity and scale associated

with dynamic behavior.

Introducing the concept of action can be useful for component-based modeling

to allow modelers to delve into behaviors that have a relatively high level of logical

and time complexities. In the DEVS formalism, the concept of action is absent in

general (except in RT-DEVS (Cho and Kim, 1998) and ALRT-DEVS (Sarjoughian

and Gholami, 2015) where the context is real-time modeling). We think that action

can provide a suitable means to complement the state-based behavioral specification

of Parallel DEVS models. Thus, we consider the action as a bridge for establishing
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abstractions in general, and for multi-processor architectures specifically by which

we use throughout the paper to exemplify the discussed concepts. The abstraction is

proposed to complement both the DEVS formalism and other action-based behavioral

modeling approaches with the necessary definitions to overcome challenges associated

with behavioral modeling.

Although it is quite advantageous (or even necessary) to increase the level of

expressiveness, especially with behavioral specifications, it could be the case where

the semantics become obscured. In this work, we consider the parallelism semantics

as a way to investigate the activity modeling approach, as presented in the UML

2.5 (OMG, 2012). Behaviors are observed through the lens of the DEVS formalism

(Zeigler et al., 2000), along with its extension Parallel DEVS (Chow, 1996) by which

parallelism is further exploited among different state transitions and the handling of

events. In doing so, we are not aiming a new formalization of the UML activity, but

rather dissecting into the semantics of its essential constructs, in particular, control

nodes. The modeling and simulation of UML activities in Parallel DEVS have been

proposed in previous work (Alshareef and Sarjoughian, 2017).

This paper is organized as follows. We discuss the role of action in behavioral

modeling, especially in activities and for modeling in DEVS in Section 7.1. Then, we

discuss some architectures for parallel processing in DEVS along with their proposed

abstractions in Section 7.2. We examine parallelism semantics with control constructs

in activities in Section 7.3. Then, we discuss related works in Section 7.4. Finally, in

Section 7.5, we summarize this research with a discussion on future work.

7.1 The Role of Action in Activities and Other Behavioral Models

An action is a fundamental unit of behavioral models. A set of actions partially

describes the situation in which the behavioral model as a whole is specified. Actions
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are linked in certain ways or associated with other artifacts per a chosen modeling

language. The order or the control mechanism, by which actions connect together,

constitute the overall behavior. Some approaches allow explicit specifications of the

actions along with control, such as in the activity modeling. In general, each specifi-

cation elaborates through introducing new or enriching existing elements in support

of describing non-trivial behaviors. Complexity in a behavior arises quickly and quite

overwhelmingly. Therefore, a potential role of actions is further restraining the com-

plexity in systems where action-level specifications are realized.

In UML 2.5, control nodes are major subordinates in modeling activities. The

node can be either initial, final, split, join, decision, or merge. The initial and final

are used to initiate and terminate an activity, respectively. We exclude them from the

focus of this work. The split and join nodes are visualized with an opaque rectangle

while the decision and merge nodes are visualized with a diamond. The split node

receives one incoming flow and produces multiple concurrent flows. The join node

receives multiple flows and produces only one. The flow can be a control or data.

Further knowledge about flows is necessary for handling individual cases where

multiple flows for a single node vary. The decision may take up to two incoming

flows and produces multiple. Each outgoing flow is associated with the condition

that evaluates to determine which flow should be selected to direct the incoming

flow. The merge node receives multiple flows and produces only one. As opposed to

join node, it addresses the flow as soon as it gets one of the incoming flow without

waiting for others. The focus of this paper is on these four nodes and their abstraction

roles in representing the archetype architectures for multiple processing units.

7.1.1 Atomic Model and Action

The formal specification of the parallel atomic model
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DEV S = 〈Xb, Y b, S, δext, δint, δcon, λ, ta〉 (7.1)

is defined to provide the basis for constructing discrete event models in hierarchi-

cal and modular form. Based on modularity, the system can grow in a well-formed

manner via coupling and composability. By understanding Classic DEVS, Parallel

DEVS, and relations between them, modelers are obliged to ask subtler questions

about models and their semantics. Thus, we propose DEVS specification for creating

a correspondent atomic model for action (Alshareef, 2017) to be able to understand

their encompassing behavioral models based on system-theoretic concepts. The pro-

cessor model is used to describe the abstraction of action. Other atomic models are

used to describe the abstraction of the other control elements. Together, they for-

mulate a chain of actions (i.e., coupled models) (Sarjoughian, 2017). A wide range

of execution semantics can be examined based on a time base and when generating

time trajectories for observing behavior. Time advance, for instance, and processing

time, in particular, is well suited to capture semantics that is relevant to duration

with actions.

The processor as an atomic model is well described in (Zeigler et al., 2000). It can

be in either a busy or passive phase. The jobs arrive through one or possibly multiple

input ports. While not receiving any external input event, the processor remains in a

passive phase indefinitely. Upon receiving external inputs, the processor transitions

to an active phase and may store the job in unitary or multiple unit storage such

as a queue. The processor produces output or multiple outputs also through one or

multiple ports simultaneously. As far as the action is concerned, it can take place

within a context of a behavior classifier. Action in this context can be associated

with some input and output pins, which may cause changes in the state of the model

according to some semantics.
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7.1.2 State and Time for Actions

Introducing the concept of the state allows us to enjoy the progress and pro-

foundness made in the theory of modeling and simulation. The notion of action has

been evolving throughout the history of computing. In (Gelfond and Lifschitz, 1993),

action, or a series of actions, is used to describe the world in addition to state tran-

sitions. In (Shoham, 1989), the author identifies the concept of action is primitive as

a problem because of isolating time. Then, he proposes a time-aware framework to

extend action as defined in some AI systems with the notion of time. Understanding

system dynamics has to be based upon temporal structure to enable describing the

world after that. Analyses about the deadline, delay, and concurrency can ensue. In

this framework, actions define states, and they are not merely connecting or serving

as intermediaries between states. That is, an action in some given state defines the

next state. In parallel DEVS formalism, the next state is defined by the state tran-

sition functions. For example, in the external transition function, the next state is

defined by the current state, inputs, and elapsed time.

The notion of time is inherent, but not the action. The concept of action is

introduced within some variants of DEVS, namely Real-Time (RT) DEVS (Cho and

Kim, 1998) and Action-Level Real-Time (ALRT) DEVS (Sarjoughian and Gholami,

2015). The latter has been proposed to support defining real-time constraints at the

action level from both modeling and simulation point of view alongside the concept

of locations defined for real-time statecharts (Giese and Burmester, 2003). That is,

the modeler will be able to develop a real-time model. Under certain conformance

conditions, the real-time simulator (DEVS-Suite (ACIMS, 2017b; Sarjoughian and

Gholami, 2015)) will be able to simulate this model in which the abstract simulator

has been extended for real-time systems. It fundamentally depends on parallel and
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Figure 7.2: A View of an Action and State.

real-time DEVS and real-time statecharts.

By introducing the concept of state (see Figure 7.2), behavioral models are equipped

with actions by which both conceptual and design benefits can be obtained. There-

fore, we can conduct further analyses and probably reason about actions. Modelers

may or may not assume that actions are instantaneous, or they happen with a zero

time advance. The general formalism does not impose restrictions in this regard,

although modelers ought to decide on which restriction has to take place to attain

some benefits such as verification. Action as an atomic model is inclined to the ordi-

nary minimum requirement from a system-theoretic standpoint for the model to be

non-trivial (Wymore, 1993). Two state variables are defined for the action. The first

variable is phase, where at least two values can be given for the model to be in. The

second variable is sigma, where time duration for a given phase is assigned zero, a

positive real number, or infinity value.

7.2 Multiprocessor Architectures

Different architectures for computational processors have been extensively dis-

cussed in the literature from DEVS viewpoint (Sarjoughian and Zeigler, 1998). They

deliver different outcomes at various computational efficiencies (e.g., turnaround time

and throughput). It is essential to have a means for investigating these architectures

to help modelers to understand and conduct studies about them. For example, prop-

erties such as throughput and turnaround time are essential for making key decisions
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for processes in different domains and technologies such as web-services. With Par-

allel DEVS, evaluations of different architectures can take place by examining their

performance measurements either individually and relative to each other. Other ben-

efits can be attained by the employment of other variants of the DEVS formalism such

as the Finite and Deterministic DEVS (Hwang and Zeigler, 2009) and Constrained-

DEVS (Gholami and Sarjoughian, 2017). Abstractions become important to make

these benefits accessible in different domains while grounding them with a fundamen-

tal theoretical basis. Architectures such as multi-server can reveal valuable insights

when examined in simulation and model checking contexts.

In the simplest case, jobs can be assigned and processed by a single processor.

Other cases, where the architecture includes multiple processors, involve a coordinat-

ing procedure to assign jobs to their designated processors and handling them under

pipeline or divide and conquer regimes. In general, jobs get assigned to processors

according to the concept of partitioning, which is, to some degree, the basis of parallel

computing (Wilkinson and Allen, 2005). The general goal of these multi-processor

architectures is to process externally received jobs as fast as possible with as few

resources as possible. However, regarding performance, further elaboration can be

made.

The performance of the architectures can evaluate properties such as processing

time after setting some objective. A common goal would be to increase the efficiency

of the architecture by keeping processors busy for as long as possible without losing

any jobs. Coordinators can manage the distribution of jobs among processors. More-

over, the performance of the architecture according to the set objective, is examined

through an experimental frame (Rozenblit, 1991). In our approach, the processor as

an atomic model is realized in correspondence with the activity modeling approach

as an abstraction (Alshareef and Sarjoughian, 2017) to capture the concept of action.
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Then, after introducing the concepts of time and state, we create our models along

with their corresponding abstractions to come up with the necessary observations re-

garding the semantics of parallelism. In Figure 7.3, we show archetype architectures

for processing jobs along with their possible counterpart abstraction for activities.

A1

A2

Multi-server 
coordinator

P1 P2 P3 P1 P2 P3 P1 P2 P3

D C

A3

A1

A2

A3

A1

A2

A3

(a) Multi-server architecture (b) Pipeline architecture
(c) Divide & Conquer 

architecture

D M

S

D1

M

D2

S J

Pipeline 
coordinator

Divide & conquer 
coordinator

Figure 7.3: We Examine Different Abstractions for Different Architectures. The

Component Views with Couplings Are Shown in the Top, and Their Corresponding

Activities Are Shown in the Bottom. The Areas in Grey Highlight the Control Nodes

That Are Used to Represent the Coordinating Procedure in Each Architecture. The

Letter P Stands for Processor and A for Action. In (A), the Coordinator Is Rep-

resented by the Decision Node D to Direct the Job According to Some Condition

Associated with the Outgoing Flow. Conditions Are Visually Omitted. In (B), the

Job Is Either Brought Back to the Decision Node d1 to Be Directed Again, or Sent

out If Completed. In (C), the Job Is Divided in the Split Node S and Combined Back

in the Join Node J after Processing.
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7.3 Parallelism Semantics

Parallelism is exploited to some extent within the context of UML. We focus

on activities in which parallelism is exploited using the semantics of specific control

constructs. In Table 7.1, we show a brief explanation of the syntax and semantics

along with a brief discussion on how to handle such semantics in DEVS. In the

following subsections, we intend to elaborate further on some elements with details

relative to their role in parallelism. The observations are made visible within the

context of modeling and simulation. While having abstractions is certainly useful

for facilitating modelers' understandings, enriching them is also beneficial from both

conceptual and concrete standpoints. In activities, the overall behavior is broken

down into a set of activity nodes where action comes into play (along with other

elements such as control nodes) as a specialization of the activity node. It is necessary

to examine semantics of individual elements to deduce about their overall behavior

as a collective.

As shown in Table 7.1, the semantics of Join constitute the synchronization of

multiple incoming flows with the possibility of collisions between internal and external

transitions and the simultaneous arrival of inputs. From a DEVS perspective, a

parallel atomic model with multiple input ports can be specified with the capability of

processing multiple inputs. The confluence function is responsible for resolving order

between state transitions. The elapsed time can be used for any state interruption,

although according to (OMG, 2012), interruption is not allowed in some specific

scenarios when executing the Join node.

Without a temporal structure, it is hard to draw observations about the split

node, for example, and its subsequent concurrent flows whether they are control or

data flows. In general, the ordering of the action execution, which comes at the heart
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Table 7.1: A Subset of Activities Elements and Briefly Their Semantics with Respect

to Parallelism in Correspondence with DEVS

Syntax Semantics DEVS

Join Synchronizing multiple

flows and multiple inputs

Atomic model with multiple in-

put ports with confluence func-

tion for output collision

Split Concurrent outgoing flows Atomic model with multiple out-

put ports with confluence func-

tion for input collision

Action Actions can be within con-

current paths

Atomic model with some input

and output ports and may ex-

ecute concurrently with another

components

Expansion

region

Multiple input processed in

iterative or parallel manner

Coupled model with an atomic

model receiving a bag of inputs

of activities as opposed to state machines, may not hold (see Figure 7.3c). We note

that it does not necessarily mean that the multiple paths after the split node must

execute in parallel. Moreover, it also does not have to enforce an order for executing

them. That is, the execution should also be valid if it is accomplished in a parallel

manner.

In the view of representing an action as an atomic model, the modeler can account

for these details and more due to the high level of expressiveness encountered in Par-

allel DEVS. The component-based simulation accounts for modularity and hierarchy.

Two components can only communicate through ports, and their influence on each
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other shall be accounted for in the modeling process. Based on the simulation time,

the component may proceed in parallel according to the model specifications with-

out implicit enforcement of some order. Lifting such constraints can be beneficial

for modelers since it allows them to manipulate behaviors of the model in a more

dynamic yet well-formulated way.

7.3.1 Multiple Branching via Split Nodes

Split (also called fork) node allows for controlling the flow by splitting the in-

coming flow into multiple outgoing concurrent flows. Activities in UML do not lend

themselves to DEVS or any other formalism with explicit time notion or with stronger

support for atomic operation (i.e., Lamport, 1986). However, the semantics of split

nodes are inclined to further elaboration concerning time. For example, the subse-

quent nodes of the split node shall receive the produced flows at some point in time,

which may vary. A failure in receiving the flow by the subsequent node at the time of

producing it does not necessarily mean that the flow is lost. It instead indicates that

the target may accept the flow at a later time. Other issues can arise during process-

ing the split node and the nodes that are after it (possibly actions). As mentioned

earlier, some notion of time has to exist to attain a valid execution of the model.

In Parallel DEVS, multiple outputs can dispatch through different output ports

simultaneously, which makes it possible to capture the semantics of the split node for

its outgoing flows. Therefore, outputs are guaranteed to arrive at their corresponding

target nodes simultaneously too. However, they are not necessarily accepted or pro-

cessed. This can be due to different reasons among which the state of the receiving

node or action, whether it is passive or busy. It may also differ according to the

capability of the node to store data. Similar to that, the processor model can be

with or without a queue. On the one hand, the processor without queue may lose
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jobs when it receives them while in a busy phase processing other jobs. On the other

hand, the processor with a queue starts processing the jobs when it receives them in

phase idle. It only stores them in the queue for later processing when the jobs are

received while in phase busy. Another aspect is the concurrent execution of actions

(see Figure 7.3c, action A1 and A2). These actions are enabled after the split node.

Then, they may (or may not) proceed at the same time. The formalism is expressive

to capture the different scenarios that might arise. The ordering, in this case, is not

strictly imposed, neither it should. The execution of the nodes may take the order

A1 then A2, A2 then A1, or they can proceed in parallel. None of these orders shall

be imposed according to the semantics (see Figure 7.4c for the behavior of a possible

scenario). The formal specification of a correspondent atomic model to the split with

two output ports is the following

SPLIT = 〈Xb, Y b, S, δext, δint, δcon, λ, ta〉
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, where

Xb = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

Y b = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S = phase× σ × task, where

phase = {passive, sending}, σ = R+
0,∞, task ⊆ XM ;

IPorts = {in}, where Xp = V (an arbitrary set);

OPorts = {out1, out2}, where Yp = V (an arbitrary set);

δint(phase, σ, task) = (passive,∞, task);

δext((phase, σ, task), e,Xb) = (sending, 0, (in, v1), · · · , (in, vn));

δcon(s, ta(s), x) = δext(δint(s), 0, x);

λ(sending, σ, task) = ((out1, task′), (out2, task));

ta(phase, σ) = σ.

We note that the outgoing flows from a split node are synchronized. Synchroniz-

ing can take place by sending the same output (duplicates) via the same port through

different couplings, or via different output ports through different couplings simul-

taneously. In the case of data flows, it is not necessary to send out the same data,

although possible. Such need explains the rationale to use two different output ports

to allow different outputs to take place. If the same output is being duplicated and

sent out to different destinations through different couplings, then one output port

suffices. However, the formalism lacks a mechanism to identify duplicates. Therefore,

there has to be some handling for this issue in the model if needed. In a case of

multi-processor, the split node sends task’ through the output port out1 to notify

the destination that the task has been processed while it sends task after processing
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through the output port out2. It allows for distinguishing between the arrival of new

tasks and the notification of task completion.

7.3.2 Joining Multiple Paths and Interruptions

Join node is used to combine multiple incoming flows. The node waits for flows

whether they are control or data to arrive before producing the outgoing flow. Ac-

cording to UML, if the join node is associated with specifications, then it must not

be interrupted by any incoming flow during the evaluation process. From a modeling

perspective, we think this is quite restrictive. Unless the execution is assumed to be

instantaneous, the modelers may need means to account for such interruptions, which

can occur via elapsed time. Also, the modeler might need other means to account for

combining the multiple incoming inputs.

Therefore, the correspondent parallel atomic model shall account for such an elab-

oration in the following means. Firstly, multiple inputs may arrive simultaneously

within the same or different input ports. Secondly, an interruption might happen

during the state, especially while waiting for inputs from other input ports to ar-

rive. Thirdly, a combination mechanism of the different inputs shall take place before

producing the outputs. For instance, identical inputs can merge into one output.

We note that a queue is defined in the join node to handle the arrival of inputs

through the same port before the arrival of input from the other port. Since the

node has to wait for input through each incoming flow, the input may interrupt the

node while it is waiting for the input from the other port. In this case, the input

will be stored in a FIFO queue and popped out upon the arrival of the input that

corresponds to it from the other port. In the case of collision among transitions, the

internal transition function executes first. The formal specifications of decision and

join nodes are discussed in (Alshareef and Sarjoughian, 2017) and (Alshareef et al.,
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2018) respectively.

7.3.3 Using Control Nodes for Job Coordination

The multi-processing architecture is usually equipped with a coordination unit for

scheduling and distributing jobs among the corresponding processors. In our case, the

coordinating unit is represented by an atomic model (or a set of atomic models) that

captures the semantics of the split, decision, join, merge, or some semantics for other

control element. An atomic model (or possibly multiple) is specified for each. We

demonstrate three different types of architectures, a coordinator that assigns jobs to

multiple processors, a pipeline, and another with a divide and conquer coordinator. In

all cases, the processors may execute concurrently, but not necessarily. Based on the

conducted experiment, the coordinator determines the assignment or the partitioning

of tasks among one or different processors. Then, the actions of processing the jobs

may take place concurrently according to the logical time by the simulator. Figure 7.4

shows the component view for the multi-processor architecture. It also shows some

time trajectories for each architecture.

In architectures with multiple processors, the coordinator is responsible for the

assignment task under different conditions. Any outgoing flow from the decision

node is associated with a condition. The decision is used to model the condition

under which the flow will direct to a specific target action with the possibility of

directing multiple flows to different target actions. However, each output will only

direct to one action. We use this abstraction for the assignment of jobs for different

processors. While the coordinator eventually collects jobs, this is accounted for in

the activity abstraction by merging node. The node redirects the flow as soon as it

receives anything through one incoming flow. After that, the split component sends

outputs to the decision component to notify it about the job completion and through
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the external output coupling. The component view in Figure 7.4a corresponds to the

architecture and abstraction shown in Figure 7.3a. The I/O trajectories are produced

for the scenario of injecting a job at the beginning of the simulation (at time 0, see

the left side in Figure 7.4b). On the right side of Figure 7.4b, the phase, and sigma

superdense time trajectories are produced to demonstrate the sending transitory state

(since it has a zero time advance).

In divide and conquer architecture, the job can divide into multiple jobs for many

reasons among which delivering better utilization of processors or making the job

simpler to process by an individual processor. The procedure starts by dividing the

job according to some mechanism, then conquering each part, and ends up com-

bining them concerning the dividing mechanism. The semantics are akin to their

counterparts in both split and join nodes for dividing and combining respectively.

The semantics of action among the concurrent paths are partially captured in the

processor. This architecture is suitable for a wide range of problems. The parallelism

resides in many aspects during processing at the atomic and the coupled level. The

outputs of the coordinator are dispatched concurrently with a strong simultaneity.

Then, they are also received at the same time instant by their corresponding pro-

cessors. Although not necessary, the processors may execute concurrently. However,

their outputs for the processing cycle shall produce before the combining procedure.

Regarding the pipeline architecture, it is possible to have a series of processing

components in a simple pipeline. However, the created abstraction is made by mod-

eling the coordination unit in a set of decisions and merge nodes. The first decision is

made to direct the job to the corresponding node. The other one is to decide whether

the job has completed. If yes, then it gets directed to the external output port. If

not, then it gets directed back to the first decision node. Multiple jobs may arrive

simultaneously through the same or different channels with also the possibility of
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collision between external and internal transitions. The architectures differ mainly in

the condition for assigning jobs and the control nodes. In Figure 7.4, one animation

view of multi-server architecture is shown. We plan to discuss and show others with

more details in future work. A scenario takes place in such a way; a job injects upon

the beginning of the simulation run of each coupled model. In the first cycle, the

job (perhaps multiple jobs as in divide and conquer) directs to the right component.

Then, the time trajectories for the phase variable are observed for each, as shown in

Figure 7.4c until the processing completes. The trajectories are produced using the

component tracker feature in DEVS-Suite 3.0.0 (ACIMS, 2017b).

7.4 Related Work

We consider works that focus on the importance of behavioral specifications in the

context of modeling and simulation. The recently adopted foundational UML subset

(fUML (OMG, 2013)) has been developed to support executing models. As a semi-

formal method, it imposes some restrictive semantics. Parallelism is weakly accounted

for. For example, the semantics of UML for the join node prevents interruptions

during the evaluation of the value specification for the incoming flow. However, the

semantics of this node does not consider the notion of the collision between inputs

and outputs. Also, the means for input entrance (such as pins or ports) necessary

for control nodes are not supported. That is, ports allow distinguishing between

multiple inputs arriving through the same flow or different flows. Specifications for

such concurrent dynamics are key for the join node and other nodes. Our work uses

the formal DEVS modeling method with a sound simulation framework to examine

concurrency of inputs and outputs relative to their handling in the external and

output functions in DEVS-Suite.

The semantics of UML activities and actions, in particular, are also studied from
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(a) An Animation View at the Initialization of Multi-Server Architecture (Figure 7.3a)

In DEVS-Suite Simulator.

(b) I/O Trajectories for the Multi-Server Coupled Model (Left), and Time Trajectories

for the Decision Atomic Model (Right), Note That Sending Phase Only Shows in the

Superdense Time Trajectory Because It Is a Transitory State.

Figure 7.4: A View of the Architectures and Some of Their Corresponding Behaviors.

the theoretic vantage point (Crane and Dingel, 2008). A modeling language choice is

Petri nets (e.g., Störrle and Hausmann, 2004). That is, activities can map to the Petri

nets concept and elements. For example, Muram et al. (2014) defines a transformation

of activities to Linear Temporal Logic (LTL) and then uses the semantics of Petri

nets for execution. Such works do not account for arbitrary inputs nor behaviors.

They target the verification of specific properties for the workflow (modeled as a flow

of tokens as in Petri nets) or symbolic model checking. In other words, activities
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(i) Multi-server (ii) Pipeline (iii) Divide & Conquer

(c) The Time Trajectories for the Phase in Each Atomic Model a1 and a2 in the

Three Multi-Processor Architectures When Receiving One Job at the Beginning of the

Simulation Only.

Figure 7.4: A View of the Architectures and Some of their Corresponding Behaviors.

can support rich behavioral expressiveness in terms of data and control flows with

designated modeling elements and relationships. These constructs are not directly

accounted for in Petri nets, LTL, or DEVS. Our work proposes using Parallel DEVS

for enriching the parallelism semantics of activity models.

7.5 Conclusion

The DEVS formalism supports systematically developing complex, hierarchical

dynamical models. It can be used to create activity models that can then be executed

using a compliant Parallel DEVS simulator. We proposed introducing the concept

of state to action. Thus, along with atomic model definitions for control nodes, we

examined the use of the Parallel DEVS formalism for enriching the semantics of the
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semi-formal activity modeling. We demonstrated key aspects of parallel processing

of a collection of jobs in multi-processor architectures by showing their counterpart

abstractions as activity nodes and then discussed their semantics. The DEVS-Suite

grounded in system-theoretic modularity and hierarchy supports modeling and sim-

ulating reactive dynamics with arbitrary timing, which is used to study parallelism

semantics of activity nodes. This is demonstrated through input, output, state behav-

iors (shown as superdense time trajectories) for the archetype multi-server, pipeline,

and divide-and-conquer architecture that are simulated and examined. Further work

includes a closer examination of activity model syntax and semantics given formal

discrete event modeling methods and abstract simulation protocols.
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Chapter 8

MODEL-DRIVEN TIME-ACCURATE DEVS-BASED APPROACHES FOR CPS

DESIGN

In Cyber-Physical Systems (CPS), as in other complex systems (Simon, 1962),

the system can be recursively built upon smaller parts that are much simpler to de-

velop, operate, and maintain. This method of incremental construction ultimately

is aimed at achieving correctness through restraining behavioral complexity (Szti-

panovits et al., 2011; Derler et al., 2012). In the literature, concepts and formalisms

are extensively discussed to establish the basis for systems to be designed in such dis-

ciplined and accurate manners utilizing modularity. Some formalisms allow models

to be specified separately or collectively based on component and composition con-

cepts (Zeigler et al., 2000; Giese and Burmester, 2003; Alur, 2015). These definitions,

as well as their other corresponding incarnations, are shown to be key for designing

CPSs (for an example see Mosterman and Zander (2016)).

Inherent in any CPS is substantial interaction among decision points in some

computational world and their interacting components in the physical world. The

nature of such a relationship is tight, making the flow of information central in both

directions. One direction is from computational to physical. The other one is from

the other way around. As a result, coordinated interactions must satisfy both logical

and physical rules. The immersion of computational consequences on the physical

environment denotes one direction of the relationship while the other direction is

indicated by the information observed in the computational parts. The relationship,

in its broader sense, is considered from multiple perspectives besides the direction.

Multiplicity and containment are two important examples of relationship properties
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by which the complexity of such systems can be determined. In the context of CPS, a

specific type of relationship is also considered where one end is the physical entity. The

broader properties can be specialized in this particular type to ensure the correctness,

especially for critical interactions.

Timing is a crucial aspect of CPS. Significant difficulties arise in CPS due to the

physical nature of time (NIST, 2016), which is inherent and yet cannot be strictly or

adequately controlled. Operations of some computational and physical entities are

not inclined to the isolation of uncontrollable phenomena as physical time passes. The

impact of the overall performance of system components can be affected to a more

considerable degree relative to the variety of conditions that are accompanied by the

timing specifications. Any breach of the timing agreement between the heterogeneous

entities of the system may reveal threats to the entire system and therefore pose

further difficulties.

The seclusion of timing in modern software as well as hardware systems has led to

a significant deficiency for time-critical CPSs. Much of the process design is currently

performed on the basis of as fast as possible execution with as much time granularity

that can be afforded. Therefore, significantly abstracting out the time aspect is

evident to achieve an optimal or even a satisfying result. However, in the critical

stages of system design, including validation, some computation may turn out to be

not useful and possibly at the expense of some others. A late execution may not

be valid and may even cause serious damage. The validity of taking unsanctioned

actions may not hold under some timing constraints.

Several concepts have taken place in the theory of modeling and simulation to

inherently account for timing needs. These concepts, such as elapsed time, deadlines,

and time intervals, are very beneficial. And their importance increases symmetrically

relative to the cruciality of the CPS. In this work, we attempt to work on the assimila-
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tion of the system-theory definitions toward better accommodation of modern system

design concepts as manifested by the CPS. An action-level modeling approach is in-

troduced with an emphasis on actions constrained with time-invariant for real-time

environments. The conformance of the developed models is improved through meta-

modeling in which the higher concepts are addressed at a higher level of abstraction

when possible. A model-driven approach is then attained for the behavioral specifi-

cation for model components at the individual and composite levels. The proposed

approach makes a clear distinction between actions for the logic associated with the

computational entities and their interactions with physical entities.

Thus, it is possible to characterize actions in the CPS to appropriately account for

their consequences. Overall, actions may perform at any point in time for different

purposes subject to adequate and possible time granularity. Some of these actions

only take place in the computational part of the system, others in the physical region.

An example for the former can involve any pure computations. The latter can affect

physical operations and responses. Another set of actions includes the interaction

between the computing environment and the physical parts. We characterize these

actions to be actuating and sensing actions. This set of actions is crucial in the

context of CPS since they deal with coupling between computational and physical

parts, as shown in Figure 8.1.

We begin by presenting some of the necessary backgrounds about the underly-

ing formalisms of this work. That is, a brief background is given about P-DEVS,

RT-DEVS, and ALRT-DEVS, all of which are targeted for simulation. To support

verification, instead of validation, the Finite-Deterministic DEVS (Hwang and Zeigler,

2009) is developed. FD-DEVS is a DEVS variant for model-checking. More recently,

Constrained DEVS is developed. It targets the underpinning non-deterministic and

stochastic aspects of CPS (Gholami and Sarjoughian, 2017). The background is also

133



Actuating 
Action

Sensing 
Action

Physical 
Action

Cyber 
Action

Cyber World Physical World

Figure 8.1: Actions in the CPS Are Characterized into Four Types. the Types in

Grey Are Crucial from a CPS Standpoint since They Are Akin to the Tight Coupling

between Cyber and Physical Parts. Actuating Actions, for Example, Can Impact the

Physical Environment Directly and Therefore Their Consequences Are Critical.

given for timed automata formalism. We follow that with a discussion of the present

works with a focus on model-driven DEVS-based methodologies for addressing similar

problems that can apply to CPS. Then, we present the action-level specification for

modeling CPS. Before concluding, we demonstrate the approach by modeling the dy-

namics of a traffic intersection with multiple relays and a controller with a discussion

on the verification.

8.1 Background

There are many extensions of classic DEVS. In every one, the extensions and

variants maintain some of the key concepts and properties while extending or replacing

them for specific needs. A prime example is parallel-DEVS, where atomic and coupled

models can execute simultaneously as compared with classic DEVS. Several extensions

have taken place for the time advance function. The aim is to provide capabilities

such as real-time Real-Time DEVS (RT-DEVS) which uses time-window (aka Time

Interval (TI)) (Wang and Cellier, 1990) and actions. This work relies on Action-

Level Real-Time DEVS, which introduces real-time statecharts for modeling actions.
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We will describe these briefly as well as other related formalisms in the following

sub-sections.

8.1.1 Parallel DEVS

The set-theoretic specification of the atomic model is an abstract representation

of a system component. The formal specification can be defined independently of

any specific platform, language, and simulator. The Parallel DEVS (P-DEVS) was

proposed by (Chow, 1996) to provide both conceptual and execution benefits for the

modelers. The basic formalism of P-DEVS model is an algebraic structure – atomic

model = 〈Xb, Y b, S, δext, δint, δcon, λ, ta〉. X is the set of input events. S is the tuple of

sequential states with at least two variables which are sigma (σ) and phase. Y is the

set of output events. δint and δext are the internal and external transition functions,

respectively. δcon is the confluent transition function, which can be specified to handle

the collision between external and internal events. λ is the output function which

transforms S into Y at specific time instances. ta is the time advance function which

maps the internal state into a positive real number using elapsed time since last state

transition.

8.1.2 Real-Time DEVS (RT-DEVS)

8.1.3 Action-Level Real-Time DEVS (ALRT-DEVS)

(Sarjoughian and Gholami, 2015) proposed this extension to support defining real-

time constraints at the action level from both modeling and simulation point of view

and assisted with the concept of locations identified for real-time statecharts. That

is, the modeler will be able to develop a real-time model. Under certain conformance

conditions, the real-time simulator will simulate this model. The simulator extends
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the abstract simulator for the real-time software system. It fundamentally lies based

on the parallel and real-time DEVS as well as real-time statecharts.

The notion of time in ALRT-DEVS is defined based on both theoretical and

pragmatic perspectives. A unified concept with formalized specification for logical-

time, real-time and physical-time underlie ALRT-DEVS formalism with algebraic

structure – atomic model = 〈Xb, Y b, S, A,Γ,Ω, ψ, λ, ti〉. The time in models, as well

as their simulators, is concertized according to a physical clock where the distinction

between physical-time, real-time, and logical-time, is well-established. The physical

time denotes the time in the actual (physical) environment in which infinite accuracy

and precision exist. All other timing schemes include a physical signal (NIST, 2016).

Therefore, real-time is an approximation of physical-time but not equal to it due

to uncontrollable factors in computing platforms. The logical-time is an abstract

computable quantity to provide the basis by which the software logical clock can

proceed increasingly. It only ideally has the properties of the physical clock.

First, state variables are characterized to be primary and secondary variables.

The primary state variables are the phase and the sigma σ by which the next state is

determined in P-DEVS models generally. The secondary state variables are defined

as needed to denote for specific system dynamics. The notion of location is therefore

defined to enable a different kind of transition on the basis to the state change,

whether it is associated with a primary or secondary state variable. Transitioning

between different locations is usually associated with which guards are specified in

terms of the secondary state variable. Actions, which are the fundamental units in

the scope of the current work, can be individually specified for locations.
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8.1.4 Timed Automata

The theory of timed automata (Alur, 1999) explicitly admits the notion of time

by which it becomes suitable for the modeling and analysis of real-time systems

as opposed to basic logical model checking. The behavior of such systems can be

modeled in state-transition formal notations. The notation is then annotated with

timing constraints using clock variables. Further restrictions can be therefore imposed

on the state space to allow for the verification of some system properties under the

given timing constraints. A transition system is defined by a set of states, a set of

initial states, a set of labels or events, and a set of transitions. The timing constraints

are then introduced with a finite set of real-valued clocks for a finite graph where

the vertices are called locations, and the edges are called switches. The locations are

associated with some time-invariant to constrain the elapsing of time in that location.

The switches are instantaneous.

8.2 Related Work

There have been several DEVS-based approaches that are suitable for use in CPS.

Sarjoughian et al. (2013) proposed a new model for interacting an ALRT-DEVS

with a physical system. The simulation is composed of a computational-physical

system. This kind of system can be considered a cyber-physical system if it offers the

designated capabilities for CPS. The DEVS-Suite 3.0.0 is extended to support the

capacity of communication between computational and physical parts of the system.

An experiment is devised with a tight coupling connection to ensure the validity

of the model under hard real-time constraints. The connection between a 4-relay

Phidget and real-time simulation is thoroughly conducted under different settings

to examine the turnaround time for the switching actions. The role of reviewing
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such a hard constraint is complementary to the logical-time restrictions. Therefore,

together, they form a stronger basis for carrying out different experiments about the

CPS under study.

Many other works do not directly address CPS. However, they can be utilized in

that direction since the problems, in which they try to address, are akin to their coun-

terparts within the CPS context. In Risco-Mart́ın et al. (2016), although the work is

not directly targeting CPS, the authors propose a model-driven hardware-in-the-loop

method to obtain embedded hardware starting with their software representations in-

crementally. The methodology depends on the DEVS formalism. Instead of extending

the simulator, as proposed by Hong et al. (1997), the hard real-time constraints take

place in the parent formalism through star models. Star models are an interface for

atomic models to allow for building abstract models for the concrete hardware ones

based on the concept of the transparent simulation environment. The elevator circuit

real-time model (Zeigler et al., 2000) is designed and implemented with the adder as

a HIL component.

Nonetheless, the major problem persists in modeling CPS notwithstanding the

ongoing efforts in languages, notations, and tools (Derler et al., 2012). In digi-

tal hardware, time-accurate modeling is necessary to examine digital designs at a

fine-grained resolution. The CPS sensitivity to such requirement poses challenges.

Time-accurate approaches are significant in the modeling of CPS. Regardless of the

usefulness of modeling languages such as (OMG, 2012, 2018), the missing seman-

tics and the weaker notion of time are two primary causes for not using them in

time-critical system design.
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8.3 Action-Level DEVS Specification Using Activity Modeling

Previously, we proposed establishing a DEVS foundation for activity modeling

and simulation (Alshareef and Sarjoughian, 2017). However, the time notion was

limited to support the simulation step to somehow correspond to the debugging step.

We extend this notion of time to be supported at the action level. That is, the action

can be defined with time constraints to enrich the activity modeling further toward

time-accuracy.

8.3.1 CPS Activities Metamodel

The metamodel of the UML activities (OMG, 2012) is circumscribed and then

extended with necessary definitions to elevate the support for the concept of the state.

The path for doing such can be through providing the basis for their conformance

to the DEVS formalism at a higher level. The metamodel consists of three major

elements. The first element is the action in its broader sense to support modeling at

the action level. The second major element is the control node to support defining

control logic. The last but not least is the activity edges where they can also be

specialized to be control and object flows. Their mapping to DEVS has been discussed

thoroughly in the previous work (Alshareef and Sarjoughian, 2017).

We note that the performed process is not merely transformation from one form

to another, but rather, grounding activity modeling with the rigorous formal specifi-

cation. We argue that the DEVS formalism is a suitable candidate for this purpose.

On the one hand, the definition of state with a strong notion of time can take place

as a fundamental basis for the proposed modeling approach. On the other hand, the

modeler can also benefit from the behavioral modeling constructs that are provided

within the activity metamodel. Therefore, the action exhibits as an abstraction of its
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corresponding atomic model (Alshareef and Sarjoughian, 2018b).

The action specializes from the activity node, which also defines the super-type for

the control nodes. The control and object flows are both specialized from the activity

edge. The edges are instantaneous. For the action, we define time boundaries based on

DEVS temporal structure. The ongoing action can have an elapsed time. Therefore,

it can be interrupted at any point in time upon receiving some external input events.

The elapsed time also indicates the completion of the action. These boundaries

are defined in terms of the time advance function. Their corresponding values at

the time base may differ without violating their time-invariant. Such difference is

crucial, especially in the modeling of CPS since actions may not always complete,

and therefore, further considerations should take place during the modeling process.

With the existing DEVS metamodel (i.e., Sarjoughian and Markid (2012)), we can

incorporate these definitions with the DEVS metamodel at the higher level (see Figure

8.2).

8.3.2 The Modeling and Simulation of a Traffic Intersection

The process of interest is a traffic intersection where multiple cars may approach

the intersection from various directions. Many crucial time-sensitive requirements

have to be accounted for in this model in different modeling environments. From

a physical point of view, cars can approach the intersection from one and only one

direction. There are also temporal logic requirements as well where the car has to

approach the intersection before it enters it. Such hard real-time constraints would go

beyond the logical constraints toward the physical environments and the encountered

limitations when interacting with physical aspects. Such issues arise from phenom-

ena like time latency from dispatching events to a physical relay until getting the

acknowledgment back. Each of these aspects is crucial at the design stage of the
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Figure 8.2: The Activities Metamodel Is Circumscribed and Extended with CPS

Action. ALRT-DEVS Metamodel Is Also Linked with the Activities Metamodel at

a High Level to Establish the Grounding for the DEVS Modeling and Simulation of

the CPS Activity. The X, Y, and S Sets Are the Same as Those Defined for P-DEVS.

Some Cardinalities Are Visually Omitted. The Elements with Italic Are Abstract

Super-Type Elements.

CPS.

We have covered the logical aspects at the activity level in the previous work. We

now discuss the temporal ones to some extent. Then we present a real-time extension

of the approach for the subsequent Section 8.4.

In Figure 8.3, we simplify the process of the traffic intersection by creating yet

another abstraction of it at the action-level in the collective activity. The actions are

timed in such a way to ensure safety by accounting for ramifications. The actions

of approaching an intersection can be in some active state in parallel. However, we

assume that the crossing must allow the flow for one direction only. Otherwise, an

accident happens and gets reported to the monitoring model after that. Parallel

entrance to the intersection can happen only for vehicles approaching from the same

direction. These constraints are mere examples, and yet further elaborations can
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be made by the modelers throughout the model development life cycle. The goal is

to establish the basis to take such models and interpreting them by the simulator

to conduct the necessary analysis and verification based on their specifications. The

state-space of the coupled model consists of all permutations for all the possible states

of the actions thereof. We will discuss some possibilities of verifying such models in

Section 8.5. For the simulation, after the activity, it gets interpreted as an activity

digraph in the DEVS-Suite simulator (ACIMS, 2017b) (see Listing8.1). This code

snippet shows reading activity nodes and instantiating the atomic models after that.
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LinkedList<ViewableAtomic> atomics = new LinkedList<ViewableAtomic>();
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atomics.add(new ActivityNodeAtomic(node.getName(), step));
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Figure 8.3: The Activity for Modeling Traffic Intersection and Simulating It In DEVS-

Suite.
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Listing 8.1: The activity interpretation in DEVS-Suite elaborated with decision and

action nodes.

for ( ActivityNode node : nodes ){

ViewableAtomic atomic ;

i f ( node . getType ( ) . equa l s ( NodeType . DECISION) )

atomic = new Decis ionAtomic ( node . getName ( ) , s t ep ) ;

else

atomic = new ActionAtomic ( node . getName ( ) , s tep ) ;

atomics . add ( atomic ) ;

map . put ( node , atomic ) ;

}

The semantics of the decision node has been specified in its general form for

the UML. Therefore, it is a domain-specific abstraction in the P-DEVS, which yet

generally represents the corresponding semantics of the decision node in handling

incoming flows. First, the atomic model initializes in a passive state for an unbounded

time. Then, upon receiving input events, the model reacts to these input based on

the condition associated with the incoming flow which maps into a coupling and input

port in the corresponding atomic model. After checking the input and the condition,

possibly along with the other state variable, the next state is determined. The output

is sent out after that when applicable, and then the internal transition is performed.

This kind of modeling and simulation falls into the realm of methods for ana-

lyzing and designing CPS. We consider the modeling and simulation by Damodaran

and Mittal (2017) and Alur (1999) to be relatively part of this taxonomy. These

approaches focus on logical aspects and temporal logical ones, whether it is based

on the DEVS formalism, such as Damodaran and Mittal (2017), or on the notion of

clock variables with real values, such as Alur (1999).
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8.4 Interacting with Reactive Computational-Physical Systems

One of the significant challenges in modeling CPS is the integration of the notion

of time with the current frameworks and tools (Derler et al., 2012). ALRT-DEVS

(Sarjoughian and Gholami, 2015) uses the idea of time windows to recognize the

uncontrollable factors in which an imperfect physical environment operates. In the

following work (Sarjoughian et al., 2013), the focus is on the actuating actions within

the context of a CPS action. The experiment was conducted to carefully investigate

the turnaround time of the performed action on the physical entity, which is a 4-relay

Phidget. The experiment has been conducted within multiple settings to examine the

property in real-time. We note that this taxonomy of modeling is distinct from the

previous one since it focuses on dissecting the real-time properties during the run-time

of the simulation with real-time constraints. That is, TIs are introduced at the action-

level of the modeling. They become enforced after that by the extended simulator

where the synchronization between the cyber and physical actions takes place. In a

sense, it is cyber-physical modeling and simulation for CPS, which can be suitable

for simulation with hardware-in-the-loop. It does not restrict to the computational

aspect of CPS. The time constraints are strictly enforced on the actuating and sensing

actions. For example, an actuating action has to take place within a certain time

window. Otherwise, it is considered to be invalid. Missing the execution of actuating

actions, as well as sensing ones, may result in losing the fidelity of the model depending

on the critical situation of the system. Some systems may have less or more tolerance

than the others based on the domain and potentially other variables in which the time

can play a critical role. The important aspect from a modeling perspective is that

such properties are rigorously accounted for in a formal specification and well-formed

models.
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Since we look closely into actions, this taxonomy applies to the CPS actions, that

is, the actuating and sensing actions where interactions between the computational

and physical worlds take place. The time windows enforced on these actions given

some time restrictions (i.e., time invariants are specified for these actions). We note

that a connection can take place with the taxonomy discussed in the previous section

(see 8.3.2) to enable the actuating and sensing actions to take place in real-time. For

example, the actuating actions can be employed for the intersection to control the

relay of the traffic flow or signals by sending actuating actions. Also, the sensing

actions can take place by detecting the moving vehicles toward the intersection to

perform the necessary computations and send the corresponding actuating actions

after that. Both types of actions can only take place under hard real-time constraints.

Figure 8.4 shows different phase trajectories of toggling the relay as a CPS action.

The time granularity is in milliseconds. The TI is defined with tmin = 0 and tmax = 40.

Thus, the transition to active succeeds in Figure 8.4a because the TI is met when

the switching takes place after 32 milliseconds. In Figure 8.4b, the TI is not met;

therefore, the switching fails. These scenarios are produced using 4-relay Phidget

InterfaceKit-0/0/4.

8.5 Verification of the CPS Activities Models

The verification of CPS activities manifests to some degree by significantly bound-

ing the state space that defines a model’s dynamics. A key goal is to sacrifice, as

little as possible, both rigor and expressiveness of the model as measured. Although

this places restrictions on the degree to which a model can be simulated, this leads

to achieving formal verification through model checking (Gholami and Sarjoughian,

2017).

In such a simulation-based verification approach, the constructed model can help
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(a) A Scenario Where the Time Window Is

Met When Switching Therefore Transition

to Active.

(b) Another Scenario Where the Time Win-

dow Is Not Met When Switching.

Figure 8.4: Phase Trajectories for Different Scenarios for Toggle as a CPS Action.

ensure various temporal properties, particularly considering that cyber-physical sys-

tems are non-deterministic and stochastic. The goal is to use modeling of activities

given a set of a priori defined atomic models behaving as expected. It also enables the

use of other verification techniques. Many scenarios are drawn to verify the behavior

of the activity after being interpreted by the DEVS simulator. For example, in the

traffic model (see Section 8.3.2), we can check if the model corresponding to the deci-

sion node reports a crash when multiple cars approach it in the same direction. This

scenario indicates that the model is not behaving correctly according to the problem

specification. We also can check if the car gets directed to the correct destination

after passing through the intersection. We can also check if the crash gets reported by

directly injecting two vehicles into the intersection at the same time. These scenarios

are checked, for example, by thoroughly disciplined experimentation. The DEVS-

Suite simulator uses and expands the notion of experimental frame (Rozenblit, 1991)

where defined temporal properties can be verified.
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8.5.1 Reasoning About Temporal Behavior

We aim to build an integrative environment to allow the development of activities

as standalone behavioral models and also enable further reasoning capabilities about

them. Reasoning can take different forms. However, it is quite common to be used

in the form of model checking to facilitate various forms of knowledge representation.

From this point of view, knowledge is represented in the form of a DEVS model. On

the other hand, the reasoning capabilities are also used to perform the model checking

after imposing restrictions on the state, timing, ports, and external/internal events.

Thus, the history of the causal effects is computed using an Answer Set Program-

ming (ASP) tool (Bartholomew and Lee, 2014) for a fixed integer m that represents

the length of the history. The tool itself aims at the first-order logic; however, the

introduction of history makes it possible to deduce about some temporal properties.

The formulation of the ASP program takes into consideration bounded ranges and

sends them out to the model as well as the transducer. An example of that could be

the phase state variable of the intersection and some direction toward it. The rule

that describes the causal effects considering the temporal aspect can be formulated

as i : phase(pre − eastbound) = occupied → i + t : phase(Intersection) = occupied

where i is the timestamp, and t is determined time advance for the phase occupied

in the pre-eastbound atomic model. This rule can be examined within some defined

finite m under the imposed restrictions on the state space and specifically the time

advance. Other properties can also be checked similarly. Outputs of the ASP program

are generated and fed to the model. Then the transducer checks for the verification.

The following rules describe the effects approaching from the pre-eastbound (PE) and

pre-northbound (PN) actions and their rules for the intersection node (I):

i+ t : phase(I) = occupied← i : phase(PE) = occupied
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i+ t : phase(I) = occupied← i : phase(PN) = occupied

i+ t : location(x) = I ← i : location(x) = PE

i+ t : location(x) = I ← i : location(x) = PN

i+ t : phase(Crash) = active← i : location(x1) = I ∧ location(x2) = I ∧ x1 6= x2.

Based on the previous rules, when t is one, we can formulate questions about some

basic facts such as:[
1 : phase(Crash) = active ∧

(
0 :
∨
l

location(x) = n

)]
→ 0 : location(x) = I.

The rules and the entailment question can be both represented in the language of

F2LP (Lee and Palla, 2009). Future work is considered on providing some action-level

verification capabilities for behavioral models that are specified while recognizing the

notion of action.

8.6 Conclusion

Substantial effort is required to bring definitions from the DEVS formalism and

its variants along with their underlying simulators and model-checkers for analyzing

and designing cyber-physical systems. We expect that the process can benefit from

employing model-driven approaches where they have been useful in multiple occa-

sions for DEVS modeling within different variants (Cetinkaya et al., 2011; Moallemi

and Wainer, 2010). The promising capabilities of the employment of Model-Driven

Engineering (MDE) concepts can be achieved with proper conformance to the Model

Driven Architecture (MDA) meta-layers and the DEVS formalism. A combination

of MDA and DEVS stands to benefit the process of model development by account-

ing for some domain-specific knowledge added to the general-purpose DEVS model

abstraction (Sarjoughian et al., 2015). In this work, our attempt can be viewed as

a contribution to the effort required to concretize behavioral abstractions. There-

fore, further effort is required to account for activity-based behavioral specifications
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relative to the MDA modeling layers.

We have demonstrated how the design of CPS can be approached with the help

of activity-based modeling incorporated into system-theory and DEVS in particular.

The use of the P-DEVS formalism and its underlying simulators as a platform for

CPS is effective due to the inherent timing and modularity enabled by benefiting

UML behavioral activity modeling and grounded with ALRT-DEVS modeling for-

malism. In contrast, many existing approaches do not account for the notion of time

intrinsically and therefore leading to possible inconsistency and conflicts unless these

issues are resolved at the implementation level. Furthermore, modularity can also

serve as a means for the scalability at the structural and behavioral specification of

cyber-physical systems. Such systems have strong non-determinism and stochastic

traits.

Another significant advantage of this work is overcoming the issue of ending with

a large fUML model that is hard to develop. This problem arose in the (OMG, 2018).

It is the reason for not creating the models of the execution model in activities.

Instead, they have been specified in their corresponding Java code because significant

activities quickly become too large to handle. Recent work has been proposed to

address it (Bedini et al., 2017). Richer fUML models tend to grow large, which may

lead to other issues concerning scale. As discussed in the traffic example, the activity

models have been significantly richer to handle complex time-critical dynamics in the

traffic model with relatively fewer elements. This improvement is due to the DEVS

formal grounding.
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Chapter 9

METAMODELING ACTIVITIES FOR HIERARCHICAL COMPONENT-BASED

MODELS

Models can be perceived in different ways, especially at a meta-layer. It is useful

to examine various models and metamodels as representations of some components.

However, issues may arise due to using different representations and possibly at dif-

ferent layers. Model-Driven Architecture (MDA) has been proposed (Soley and the

OMG Staff Strategy Group, 2000) to provide a framework to work with abstract and

concrete models across a four-layer architecture. It defines a semi-formal approach to

guide the process of developing models and metamodels across these layers and the re-

lationships between different layers and within the same layer. Essential relationships

are instantiation, interpretation, conformance, and transformation.

Metamodeling is used to provide a means to describe systems in general (Henderson-

Sellers, 2012) and the relationship between systems of systems. A key to metamodel-

ing is to identify and relate essential artifacts of a system of interest from higher-level

abstractions. The problem is evident because these abstractions are representatives

of their corresponding realizations to some lower-level abstraction and eventually in

the implementation space. Multiple understandings arise when metamodeling certain

elements of the system. As such, handling differences becomes quite challenging, es-

pecially when system complexity is high or partially known. Representing instances

raises issues in metamodeling too. According to (OMG, 2018), the notion of instan-

tiation is only meaningful within a metamodel. The relationship across meta-layers

is defined through the interpretations of the model from the higher layer in the im-

mediate lower layer.
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The model itself is one of the four basic entities in the modeling and simulation

(M&S) framework (Zeigler et al., 2018b). It forms the fundamental component with

a sound mathematical foundation. The model is conceived as a set of instructions by

a simulator. Therefore, it simulates the model and correctly produces its state and

output trajectories based on the input trajectories for a given initial state. According

to the I/O requirement for deductive and deterministic models (Wymore, 1993), one

unique output trajectory is generated for each input trajectory and initial state. As

such, the definition of the model has a precise semantics, which is not the case in the

existing semi-formal methods such as the MDA and the Unified Modeling Language

(UML) (OMG, 2012).

Actions and states are two commonly used concepts when ascribing system be-

havior. They provide suitable means for abstractions about behavioral system speci-

fications. However, their semantics may pose challenges when they are considered at

a high layer in the MDA hierarchy. A key aspect of the problem resides in having a

way of interpreting states and actions into concrete system models. The relationship

between action and state can collectively formulate a basis for how their definitions

and specifications are used together to describe system dynamics. We can examine

such relation from the individual as well as integrative standpoints. In both ways,

the complementary perspective of their roles is taken to account for richer behavioral

specifications. Neither one is known to be sufficient to produce proper manifestations

at the implementation level.

This work focuses on the trio of component, state, and action, in formulating

abstractions about complex systems. We examine relations between action and state

at a higher level, from one side, and their possible corresponding representation in

the theory of modeling and simulation, on the other side. We also discuss the relation

between the two abstractions themselves, the action, and the state. The discussion is
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grounded in the context of metamodeling activities where the role of action collectively

serve with control toward behavioral specifications of the component-based models.

In the following section (Section 9.1), we discuss the notion of component modeling

in the context of this work. In Section 9.2, we describe the server systems as perceived

in the system-theoretic literature. In Section 9.3, we discuss behavioral specifications

across the different layers for metamodeling activities. We discuss the related work

and the concluding remarks in the Sections 9.5 and 9.6, respectively.

9.1 Component-based Modeling

As much as we are concerned about identifying components concerning their struc-

ture, it is also essential to understand their behavior by which system dynamics are

defined. Components at the higher level can bear hierarchical relationships with other

components. An example is the template model (Zeigler and Sarjoughian, 2017).

Some instance template models can extend the template model. Instance template

models can transform into instance models after that. The relationships between the

model mentioned above types allow modelers to incrementally develop models while

obtaining simulations after adequately providing their specifications.

Specialized components define a type of relationship where some components share

and mimic the structures and behaviors of some other components. Therefore, a

component specializes in another, such that, it redefines its structure and behavior.

As properties, functions, and relationships add up to a component, the component

becomes a more accurate representation of its counterpart in the real system. After

that, the instance model type transforms the instance template model and choose all

specialization relationships. The resulting model can have multiple components via

decomposition.

In Figure 9.1, a hierarchical component view is designed using the Component-
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based System Modeling and Simulation (CoSMoS) (ACIMS, 2017a). The tool’s frame-

work provides a means by which components can be defined along with their cou-

plings, whether they are internal, external input, or external output coupling. We can

define both primitive and composite models as components with possibly composition

and specialization relationships. Considering the Discrete Event System Specification

(DEVS) formalism, primitive and composite models correspond to atomic and cou-

pled models, respectively. Atomic model functions are the state transition functions

including the internal (δint) and the external (δext) transition function, the output

function (λ), and the time advance function (ta). The confluence function (δcon) is

defined to exploit parallelism in the Parallel DEVS formalism further. In CoSMoS,

such behavior can be defined using a variant of statecharts devised to incur certain as-

pects of the behavioral specifications in a state-based manner (Fard and Sarjoughian,

2015). The coupled model is a composite component that has a finite number of

components thereof along with input and output ports and couplings. An external

input coupling defines the coupling between an input port of a coupled model and an

input port of one of its components. An external output coupling defines the coupling

between an output port of a contained component and an output port of a coupled

component. An internal coupling resides between two components of a coupled model.

The DEVS formalism is modular such that communication between components is

only allowed through coupling and their designated ports. The component receives

input or bag of inputs arbitrarily, and after that, it may only accept them according

to the correspondent specifications.

The dual server composite template model is devised to include three components,

one instance of the coordinator template model, and two instances of the server

template model. We define couplings as shown in Figure 9.1a. The components are

identified to mimic the dual server system, such that, the job is assigned to the first

153



(a) The Components, Ports and Couplings

for the Dual Server Model.

(b) The Structural Metrics for the Dual

Server Model.

Figure 9.1: Modeling the Dual Server System in CoSMoS.

server if it is available. Otherwise, it gets assigned to the second server. If both

servers are busy, then the job is added to a queue to wait for one of the servers to

become available.

We define the dual server coupled model with one input port for receiving jobs.

We also define it with two output ports. One port is sending notifications about the

job dispatched to its corresponding server, and another is for producing the com-

pleted jobs. The coordinator template has two input ports and three output ports.

An input port is for receiving jobs, and another port designated for receiving a no-

tification when the job gets completed which means that the corresponding server

becomes available. Besides, the coordinator has three output ports. Two of them

are for sending output to servers. The third one is coupled with the dual server outt

port, which is for experimental purposes. The server template is defined with one

input port for receiving assigned jobs and one output port for producing them after

finishing their service. An internal coupling is defined for each server output to the

notify input port of the coordinator. A notification goes through this coupling to

coordinator to highlight job completion. It consequently indicates the corresponding
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server availability.

The formal specification of the dual server coupled model is the following:

A = 〈X, Y,D, {Md|d ∈ D}, EIC,EOC, IC〉, where

InPorts = {in},

where Xin = V (an arbitrary set), XM = {(v)|v ∈ V };

OutPorts = {out, outt},

where Xp = V , YM = {(p, v)|v ∈ V and p ∈ OutPorts};

D = {coordinator1, Server1, Server2};

Mcoordinator1 = Coordinator;MServer1,Server2 = Server;

EIC = {((DualServer, in), (coordinator1, in))};

EOC = {((coordinator1, outt), (DualServer, outt)),

((Server1, out), (DualServer, out)),

((Server2, out), (DualServer, out))};

IC = {((coordinator1, out1), (Server1, in)),

((coordinator1, out2), (Server2, in)),

((Server1, out), (coordinator1, notify)),

((Server2, out), (coordinator1, notify))}.

Some complexity aspects of this model are determined by looking into the com-

ponents and the communication between them. Figure 9.1b shows the structural

metrics after defining the model in CoSMoS. The metrics of components, ports, and

couplings are easy to compute since all elements of the dual server persist in a rela-

tional database. Different coordination mechanisms could result in different measures.

Moreover, different designs of the same coordination mechanism could also result in

different measures. The ability to easily observe such metrics becomes important,
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especially when such models become larger and ordinarily more complex. Models of

such nature are developed to grow, especially when accounting for such complexity

at the early stage of design. Further examination of such metrics is necessary to

understand their meaning, if they have one, whether in domain-specific settings or in

general.

The ability to be characterized with scale and complexity traits (Sarjoughian,

2017) is essential even though measures for behavioral characteristics may be taken

qualitatively. Quantitative measures are usually taken for structural aspects such as

the ones in Figure 9.1b. In the context of metamodeling activities, some metrics about

syntactical properties of actions and flows could be easily obtained. More information

can also be obtained about the input/output pins and control nodes. However, this

information needs to be further examined to determine their relevance in contributing

to the overall behavioral scale and complexity traits.

9.2 Coordinating Between Server Components

The server system (Wymore, 1993) consists of servers along with a queuing com-

ponent that coordinates dispatching of jobs to one or more server components. The

server system can accept inputs via three ports. The first port is for receiving ele-

ments of the queue. The second one is to accept the service time produced by the

generator. For example, service time determines job processing according to some

probability distribution such as the exponential distribution. The third port is added

to receive a random Boolean to indicate the existence of an error to determine the

result of conducting the processing operation. In the model shown in Figure 9.1a, we

omit this port and, instead, we designate a port for the receipt of the job completion

by a server. The job itself and the service time are both accepted via the input port

in.
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State variables for Parallel DEVS atomic models are categorized into primary and

secondary variable types. The primary state variables are generally defined by phase

and sigma (σ). In the coordinator component, they are used to determine how the

model responds to the arrival of a job whether by storing it in a queue or sending

it out to the corresponding server. In the case where some server is available, the

sigma is assigned to zero time advance and therefore sends out the job to the selected

available server. Otherwise, if there is no available server, the job is stored in a FIFO

queue.

Also, the state of the coordinating unit includes several secondary variables. The

received job is maintained along with its accepted service time in advance to assigning

it to some designated server. The coordinator consists of a queue to hold on the

received jobs in the case that all servers are busy. The stored jobs in the queue are

also time-stamped by their arrival time to facilitate analyzing their turnaround time

at a later stage. Another state variable of the coordinator is an array to maintain

the availability status of each server. When a server is assigned a job, its availability

status is changed to be false until receiving the job completion notification from it.

It is changed to true afterward. The determined server id for assigning the job is

also maintained to send out the job through its designated port and coupling. Hence,

the number of servers is static and therefore known by the coordinator during the

initialization stage. The current model does not account for structural changes during

the simulation.

An activity model corresponding to the external transition function of the coordi-

nator is depicted in Figure 9.2. This model is devised using our previous activity-based

DEVS model specification approach (Alshareef et al., 2016). It describes coordination

and assignment of jobs to servers (see 9.1a). Inputs are received and then processed

in an iterative manner by the expansion region. For each job arriving through the in
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port, the coordinator model either assigns it to an available server or stores it in its

queue. In the case of assigning a job to a server, the sigma set to zero and the phase

set to sending for immediate dispatching of the jobs. For the inputs arriving through

the notify port, the availability of each server is updated since each received input

indicates processing of a job has been completed and therefore its assigned server be-

comes available. When a server is available and there are jobs waiting to be processed,

then as many jobs as possible are removed from the queue and dispatched to available

servers and marking them as unavailable. This type of activity is characterized with

fine-grain nodes with details about the inner specification of the atomic model. The

activities in the Figures 9.3 and 9.5 are collectively specified and therefore reside at

different abstraction layers.

Update Server 
Availability

Assign job 
to S1

in

input through “in”

Set Sigma Set Phase

Assign job 
to S2

S1 is available

S2 is available

Add job 
to queue

No server is 
available

notify

Remove job 
from queue

input 
through 
“notify”

queue is 
not empty

Figure 9.2: An Activity for the External Transition Function of the Coordinator.

The coordinating unit can consist of a component or multiple components of the

multi-processing architecture system. Different coordination can also be considered

to account for different processing architectures such as the pipeline and divide &

conquer (Alshareef and Sarjoughian, 2018b). Changes in coordination can take place

158



through state definitions or manipulation of the primary or secondary state variables.

They can also take place via different designs of the components and their couplings.

The coordinator is a subsystem within a larger subsystem or the system itself. Such

a subsystem can consist of one component or multiple components where they are all

closed under coupling to collectively achieve the coordinating task. In the context of

activities, parts of the coordinating task are delegated to a set of control constructs to

arrive at the intermediary stage of modeling a different kind of processing architecture.

For example, decision and split nodes can be used to enrich models at a higher level

for logic descriptions of the coordination task for multiple processors. On the one

hand, conditions of the outgoing flows from the decision node are employed to check

for the availability of servers. On the other hand, dispatching outputs synchronizes

for different servers such as in divide & conquer. They dispatch to the server and

the transducer, such as in the multi-server architecture. This synchronizing, of such

a task, takes place through the split node.

Inputs to such a system are generated externally and fed into it through the

external input coupling. The flow synchronizes mainly at the arrival of inputs to the

input port of the coordinator. It also synchronizes at the end of completing the job

after service. Therefore, servers can operate independently, yet their outputs have to

be synchronized. Such synchronization is depicted in activities by the merge and join

nodes (the activity in Figure 9.3 is to be discussed in Section 9.3). Due to modularity,

this dependency is exclusive. The components are stimulated only through their I/O.

In Parallel DEVS, parallelism is exploited when possible by providing a means by

which all imminent components can execute concurrently in any given simulation

cycle.

Concurrent flows with single or multiple servers among them can provide a con-

crete basis to a wide range of semantics for control as well as data flows among the
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activities. Useful simulations can be obtained to observe and monitor different behav-

iors of models that have been attained incrementally through complementary views

of their representations at higher layers. The granularity of the time base may vary

depending on the system and the input/output requirement. For example, the behav-

ior can be observed for a limited time base for some purposes among which testing

or debugging for specific scenarios can take place. Evaluation of the performance is

also essential and can take place through crafted simulations with specific observation

capabilities.

9.3 The Specification of Action and Control in Activities

The activities metamodel (OMG, 2012) essentially consists of the major flow and

node elements. The flow can be classified into control or data flow types. The node

can be classified further in many different types. Action is a major node in activities.

It is a fundamental unit in dictating the behavior of systems. Along with other types

of nodes, such as control nodes, they form the overall behavior in an encompassing

activity. There are four major types of control nodes, decision, merge, split and join

nodes. Each one has some semantics to handle flows in activities.

Action is an abstract classifier to represent a wide range of possibilities for the

model to behave in many different ways. In (OMG, 2013), several types are introduced

to provide a means to handle different behavioral aspects. For example, structural

feature actions manipulate structural features, including reading and writing. We

conceive the notion of action based on system-theoretic principles, particularly the

DEVS formalism. Therefore, it needs to align with the notion of the component

as well as state as defined in DEVS. Action is not merely an intermediary means

upon state transitions. In (Shoham, 1989), action defines state. In the context of

activities, action, and control elements are both specializations of the node type. They
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can be used to represent different dynamics at a higher level before realizing their

implementations. In previous work (Alshareef and Sarjoughian, 2018b), we devised

an interpretation facility to support the simulation of activities in the DEVS-Suite

simulator (ACIMS, 2019).

The control nodes provide a suitable means to direct the flow, including the ones

carrying data. The coordination task can be specified using different variations of

controlling constructs based on the dynamics of the system of interest. For example,

coordinating for a conventional multi-server system requires directing jobs to different

servers. It could also require maintaining the status of each server. The coordinator

could also maintain the queue. The state variables of such a system are discussed in

Section 9.2. The controlling constructs of activities can be selected to be a consistent

representation of the coordinator when possible considering the semantics of each

construct. The decision node is used to determine which outgoing flow is selected.

The merge node could receive multiple flows. As soon as it receives a flow, it directs

it to the corresponding node. The split node is used to produce multiple flows concur-

rently while the join is used to synchronize multiple incoming flows. These constructs

and different combinations of them can collectively serve as a representation for the

desired coordination dynamics. These are significant relative to specifying behavior

solely in terms of states and transitions with strong simplifications on actions.

Actions of activities can have input and output pins. Unlike actions, control

nodes do not have such means. Therefore, as a semi-formal approach, it needs to be

compensated with such a definition of the port as a necessary mechanism for handling

the I/O. In the DEVS formalism, communication among different components can

only exhibit through the designated ports. In our approach, the action is encapsulated

within the component and yet explicitly specified to define the total behavior. The

multiplicity may vary based upon the complexity of the behavior of which the activity
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constructs are set to represent (see Figure 9.1a). The activity itself can have input and

output parameters. Both parameter and pin are specializations of the object node.

They both serve as means for communications among and between activities. The

former is for communicating between activities, and the latter is for communicating

among them.

Thus, we create an activity of the multi-server archetype architecture (Figure 9.3).

The activity receives its input through input parameter. The coordination decision

node then decides based on state variables and depicted in the conditions C1 and C2

to which server the job is to assign. The subsequent splitting nodes then produce two

flows, one to the server, and another for Merge1 node. The flow to Merge1 is devised

to notify outputt parameter about the job assignment to server. This notification can

be used for experimental purposes such as performance evaluation. After servicing

the job, a flow is issued from the server to Merge2 which is then directed to the split

node. The latter node produces two flows, one to output parameter, and another to

notify the coordinating procedure about the availability status of the corresponding

server.

For richer model specification, the semantics of the described connections in this

approach is complemented by the semantics of couplings in Figure 9.1a and the se-

mantics of flows in Figure 9.3. On the one hand, the flows are endowed with the

formal and precise semantics of coupling. On the other hand, different types of flow

at different layers provide the means for richer specification with the notions of con-

trol and data. Having such a capability is significant with proper use of model-driven

methodologies across abstraction layers. The elements within the dashed line area in

Figure 9.3 show the presence of two internal and one external output couplings for

the coordinator component.
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Coordinate Merge1

S2

S1

Merge2

output

input

outputt
C1

C2

Figure 9.3: Activity of a Multi-Sever Archetype Architecture Is Devised Using Various

Activity Constructs. S1 and S2 Actions Represent the Jobs Service. C1 and C2

Represent Conditions for Choosing Flow Directions. The Nodes inside the Dashed

Line Area Highlight the Role of the Activity Control Elements in the Manipulation

of the I/O Flow.

9.3.1 Coordinator Statecharts

We devise the coordinator as a component in Figure 9.1 and therefore, its behavior

can be looked into from the statecharts standpoint. The statecharts (see Figure 9.4)

mainly consists of two states, passive and sending. The passive state is to represent

the state of the coordinator when it is not manipulating any job. When receiving

an input, then the coordinator checks through which input port the input has been

received. Input through in indicates arrival of a new job. The coordinator fetches the

job and figures out its service time. It iterates through the secondary state variable

that maintains the availability status of servers. If there is an available server, the job

gets assigned to it, and a transition to sending state occurs. If there is no available

server, then the server remains at passive state and the job gets stored in the FIFO

queue. The inputs through port notify indicate the completion of job servicing and
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consequently, the availability of the designated server. Therefore, a transition to

sending occurs if the queue has some jobs waiting for service. The job is removed

from the queue and dispatched to the available server. If there is no waiting job in

the queue, then no transition is made, and the model stays at the passive state.

Figure 9.4: Modeling the Coordinator Statecharts in CoSMoS.

Both activities and statecharts are approached from a complementary standpoint.

Together they provide a richer basis to specify behaviors, although challenges may

arise to establish a total perspective by which the notion of action and state are both

fully considered. Neither can alone dictate the overall process of specifying behavior

nor eliminate the necessity of manipulating codes to provide proper implementations.

9.3.2 Constructing Hierarchy within Activities

Based on the DEVS hierarchical model specification, an activity model can con-

ceptualize as a layer in a hierarchy. Such hierarchy leads to activity models at higher

abstractions using activity model elements. For example, a control node has a higher

abstraction relative to the primitive fork node. Higher-level elements represent higher-

level concepts as compared with primitive elements. Thus, activity models at multiple

abstraction levels can be constructed. In other words, higher-level activity models

can place constraints on the primitive elements used in activity models. Given the

lack of hierarchy concept directly in the standard UML activity modeling, we consider
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using the activity model elements according to the DEVS model hierarchy and its

corresponding abstract simulator. Constructing and coupling activity models for the

atomic DEVS models lead to specifying coupled DEVS activity models that conform

to the DEVS closure under coupling property. Behaviors of certain activity elements

can be determined using their DEVS specifications. For example, a part of an ex-

ternal transition function can be defined using a fork node and a part of an output

function can be defined as a decision node. Together, these activity elements can

define an internal coupling between two atomic models contained in a coupled model.

This approach supports defining hierarchical (higher-level) behavior at finer-grain

abstraction levels. Such support is useful as behavior specification for hierarchical

components can have additional details.

The model in Figure 9.3 has a flat structure (i.e., there is one coupled model which

contains several atomic models). The hierarchy level for this model is one. Now, we

redefine this model by replacing both of its atomic models that correspond to the

servers S1 and S2 with two coupled models. In this hierarchical example, the model

hierarchy level is limited to two. The contained coupled model, which is created to

correspond to the second server, does not contain any coupled models. This example

shows the communication semantics between activity models according to the DEVS

formalism as well as the semantics of the activity model elements. The aim is to help

better understand and specify behaviors for coupled models using activity modeling.

The DEVS simulation protocol provides the semantics for executing activities within

atomic models as well as the input and the output communications between mod-

els. Communication between two activities belonging to different models is defined

between any main activity and its nodes.

The activity node S1 is reconsidered in Figure 9.5 and replaced with a distinct

activity (Activity 1 ) that is being communicated with through signals sent and re-
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Process1
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Figure 9.5: Hierarchical Construction with Activities.

ceived from the main Activity 0. The node S2 becomes also an activity (Activity 2 ),

but it is contained within Activity 0. Elements in red (gray) color represents the

model elements added to satisfy DEVS modularity. These two cases have different

representations and hierarchy specifications in DEVS. The former leads to a coupled

model at a hierarchical level corresponding to the main activity. The coupled models

communicate through ports and external I/O couplings. The latter leads to establish-

ing a new hierarchical level with the coupled model at hierarchy level one contained

within the coupled model at hierarchy level two. Figure 9.5 illustrates how the two

different cases can represent in correspondence to the main activity.

9.4 Demonstrating with Activity Modeling Tool

The development of the tool starts by creating an Ecore model to account for

the activity metamodel to support the creation of activity models in a hierarchical

fashion. The hierarchy is accounted for in the composition relationship (see Figure

9.6) between Behavior and Activity elements. The Ecore model also shows the other

EClass, EReference, and EAttribute elements that are used to facilitate the model

creation process.
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Figure 9.6: A Metamodel for Hierarchical Activities Developed Using Ecore.

The graphical properties are defined using Viewpoint Specification in Sirius (Eclipse

Foundation, 2018). Figure 9.7 shows some screen-shots of different parts of the spec-

ification. Figure 9.7a shows the part for defining the geometric shapes by which the

model artifacts are to visualize. For example, a rectangle with rounded corners refers

to the action node. Similarly, other shapes are defined for other nodes in addition to

the edge to represent activity flow. Figure 9.7b defines some rules to issue a warning

or error message to notify the modelers. Examples of rules are shown in the screen-

shot, such as the label name's uniqueness and setting. Figure 9.7c shows the section

parts where geometric shapes are associated with their counterpart definition from

the domain model (Ecore). The section offers further capabilities to manipulate other

properties such as the context of the created element. It also offers to modify the

instance model upon certain changes. The rules need to be defined within the view-

point specification file using languages such as Object Constraint Language (OCL)

or Acceleo Query Language (AQL). An example is the deletion of flows upon the
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(a) The Part of the Viewpoint for Different Nodes Creation with Their Designated

Geometrical Shapes.

(b) The Part of the Viewpoint for Validation Such as Ensuring Label Name Unique-

ness and Setting.

Figure 9.7: Viewpoint Specification in Sirius.

deletion of their corresponding nodes, which is shown in Figure 9.7c.

The tool then can be used to create diagrams such as the one for the multi-server

activity (Figure 9.8). Figure 9.8a shows the creation of the main activity along with

the tool palette. In the subsequent Figure 9.8b, 9.8c, and 9.8d we only show a screen-

shot of the canvas. After developing these activities, the code generation process can

take place. The code generators are implemented using Acceleo and the result in the
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(c) The Part of the Viewpoint for Associating the Graphical Aspects with Their

Counterparts in the Domain Model along with Context Handling and Properties

Assignments.

Figure 9.7: Viewpoint Specification in Sirius.
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(a) The Screen-Shot Shows Developing the Main Activity Diagram for the Multi-

Server with Hierarchical Construction as Described in Figure 9.5. In Addition to

the Canvas, the Palette and the Properties View for the Activity Are Shown.

Figure 9.8: Modeling Multi-Server Activity in the Developed Activity Modeling Tool.

set of models as java files that are necessary for the simulation to take place in the

DEVS-Suite simulator, as shown in Figure 9.9.

9.5 Related Work

Enriching models at the higher levels of abstractions while providing supports

for implementations via different code generation facilities has been of interest for
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(b) The Corresponding Diagram for Activity 0.

(c) The Corresponding Diagram for Activity 1.

(d) The Corresponding Diagram for Activity 2.

Figure 9.8: Modeling Multi-Server Activity in the Developed Activity Modeling Tool.

many research efforts (e.g., Lei et al. (2009); Cetinkaya et al. (2012); Sarjoughian and

Markid (2012); Kapos et al. (2014); Mittal and Mart́ın (2013a); Sarjoughian et al.

(2015)). These works address the problem holistically and yet thoroughly for the

specifications in general (Lei et al., 2009; Cetinkaya et al., 2012; Mittal and Mart́ın,

2013a; Kapos et al., 2014) and for behavioral specifications particularly (Sarjoughian

et al., 2015). In Lei et al. (2009) MDA is serving the aim of model transformation

and primarily from a structural vantage point. In (Cetinkaya et al., 2012), structural

metamodeling is the focus. In (Mittal and Mart́ın, 2013a), the authors attempt to in-

tegrate the concepts in Model-Based System Engineering (MBSE) and Model-Driven
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Figure 9.9: The Simulation View of the Developed Activity for the Multi-Server

System after the Code Generation for DEVS-Suite Simulator.

Engineering (MDE) for the DEVS by employing modeling frameworks and tools that

are MDA-based. The notion of activities is not explicit. In Kapos et al. (2014), the

integration is for the System Modeling Language (SysML) based on the similarities

between DEVS and SysML. Therefore, SysML definitions are carefully examined rel-

ative to DEVS concepts. A subset of SysML aligns with DEVS by conforming to

the SysML profile devised in close consideration to DEVS concepts. Models of such

characteristics in the devised profile are made simulatable in a DEVS environment

via transformation and code generation. In (Sarjoughian et al., 2015), the extension

mechanism is accomplished by defining behavioral constructs and then incorporating

them into the DEVS metamodel itself. It describes the action in the metamodel and

associates it with different state transitions through meta-behavior based on EMF-

DEVS (Sarjoughian and Markid, 2012). The DEVS metamodel extends the Ecore
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metamodel of the Eclipse Modeling Framework (EMF). Kapos et al. (2014) used ac-

tivities of SysML to define parts of the atomic model behavior along with other state

and parameter diagrams. The work targets SysML at large, including its various

metamodels such as those of block, state, parameter, constraint, and activity. The

total SysML model is made simulatable after adequately providing the specification

required by a DEVS simulator. All the mentioned works comply to varying degrees

with the MDA hierarchy to support the creation of models that conform to their

corresponding metamodels in a disciplined incremental manner.

This work focuses on notions of activities, mainly control and action. We propose

an explicit definition of action and control in the DEVS formalism across different

modeling layers. We also examine a relation where, on one end, is the hierarchical

component models and on the other end, resides action and control as fundamental

units for identifying behaviors. As a result, richer activity models can be obtained.

The notions of component and state are both used according to their underlying

system-theoretic concepts. The action is introduced based on its definition such as

in the UML (OMG, 2012) and with consideration of existing DEVS variants that

explicitly define it such as ALRT-DEVS (Sarjoughian and Gholami, 2015). These

definitions align across meta-layers, and their corresponding implementations in CoS-

MoS are examined.

Harel and Politi (1998) implemented a system with different capabilities, among

which the ability to simulate one-step or in an interactive manner. The actions are

defined to be carried out only instantaneously during a transition between different

states. The formalism is set for the system under development (SUD) to provide a

means for such a system to be developed by multiple modelers from different stand-

points. The statecharts govern the activity and actions. Also, the component is

defined for the physical module. In the DEVS formalism, the time advance function
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is defined for the atomic model. It could be assigned zero in the case of zero time

advance. However, successive zero time state transitions must be finite to guarantee

model legitimacy. Starting in the 1990s a variety of efforts began on using DEVS

and various kinds of state machines as complementary paradigms, but they did not

consider activity modeling.

In (Störrle et al., 2005), the authors consider Petri nets for ascribing semantics

to activities in UML 2.0. The work considers the basic Petri nets formalism along

with several extensions of it to address further some more expressive properties in

activities such as control and data flow. Authors use extensions such as Colored

Petri nets, Procedural Petri nets, and extension of the Procedural Petri nets. These

extensions are used to try to incur further expressiveness encountered in activities but

not in Petri nets. They conclude that mapping activities to Petri nets do not scale,

meaning that extending the mapping with relatively non-trivial behavioral aspects

thereby breaks the basic intuitions. Although limited, such transformations can lead

to verification of specific properties in the context of the component-based model.

9.6 Conclusion

Some capabilities, such as parallel processing and synchronization, are exploited

in the proposed modeling approach with the exemplar dual-server model. These

capabilities have been possible using the underlying DEVS formalism and defining

models in correspondence with activity-based behavior specification. Such models can

aid modelers to confine and develop simulations based on their well-defined semantics,

both structurally and behaviorally. The proposed approach suggests the use of more

intuitive diagrams to facilitate the development of models having complex dynamics.

Hence, some of the described capabilities are not obvious due to using either the

semi-formal or formal modeling methods.
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The use of multiple abstractions exhibits the difficulty of handling ambiguities

in some prominent modeling languages and terminologies. Rough definitions may

accumulate, but they may increase the burden placed on the shoulders of modelers,

especially when the aim is to arrive at more useful simulations. Accounting for

different abstractions can strengthen the process of incremental model development.

Modelers are obliged to raise fundamental questions about their models, starting from

basic concepts. As a result, the discovery of such models and their corresponding

suitable abstractions (MDA four-layer architecture) is guided but remains in part

unrestricted. The correctness of multiple entities in a given modeling framework is

employed to increase the rigor needed for systems that continue to grow in both scale

and complexity.
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Chapter 10

ACTIVITY SPECIFICATION FOR TIME-BASED DISCRETE EVENT

SIMULATION MODELS

Dealing with different parts of a system model can be problematic particularly

when they are scattered within and across different abstraction hierarchies. At some

point, the abstraction layers of a hierarchy, each possibly having multiple levels within,

have to be bounded with some constraints to make them useful and prevent issues

such as circularity relationships. For example, the model-driven architecture (MDA)

is defined as a four-layer hierarchy from M0 through M3, where the former represents

the most concrete, and the latter represents the most abstract. Although useful, it

remains challenging to define boundaries and relationships in a clear-cut manner, for

example, from the standpoint of executable models and simulation in particular.

The problem of partitioning models into components and relationships becomes

evident for structure as well as behavior. For the structure, complications may arise

with a significant increase of multiple message types and communications requiring

computation synchronization and concurrency. For the behavior, dissecting the inter-

nals of communicating components of a system can also pose difficulties in developing

executable abstractions. At some point, nonetheless, behavioral specifications at mul-

tiple levels of abstraction must take place in controlling and conducting some lower

level computing tasks. The delegation of lower level tasks becomes challenging due to

the central role abstraction hierarchies play in managing complexity and scale across

complementary model specifications.

Considering the ongoing efforts in further deepening the hierarchy for component-

based models, we propose examining and using the action and control elements at
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the meta-layer activities, mainly focused on the M1 and M2 layers. Therefore, the

notions of component and state are both used in activity modeling based on their

underlying system-theoretic concepts. Moreover, the notions of action and control

are also used to complement component and state definitions. Our goal is to arrive at

an understanding of the different roles played by each part, especially from multiple

meta-layers viewpoints. Moreover, the specifications of such layers are distinct and

explicit for simulation modeling purposes.

In discrete systems (Wymore, 1993; Zeigler et al., 2018b; Alur, 2015), a variety of

needs institute the time scale upon which the system representation or approximation

can execute. Real systems such as smart manufacturing or transportation are known

to be large in both scale and complexity. Such systems have numerous components

with various types of connections between them. Components do not have to resem-

ble each other except at high levels of abstraction that are often rendered difficult

to concretize. Given these types of systems, some models, such as synchronous re-

active components, provide strong constraints in terms of timing, state changes, and

composition.

In contrast, discrete models can be asynchronous. For a complex discrete system,

simpler models with single-input and single-output can be placed within architectures

that pose different multiplicities in terms of their inputs and outputs. Observing the

degrees of detail with sufficient confidence is challenging, yet essential, in order to

proceed in the process of the system as well as simulation development.

The Turing machine (TM) can be described as a discrete system, and the Dis-

crete Event System Specification (DEVS) describes TM as a modular composition

according to the hierarchy of system specifications (Zeigler et al., 2018b). Interesting

results can disperse via simulation studies; however, sophisticated observations can be

accessible and clearly understood only through rigorous experiments. Useful analyses
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such as throughput might be achievable through making such models subject to full-

fledged experimental designs, but such analyses with a keen sensitivity to temporal

aspects are impossible or otherwise hard to achieve.

In this chapter, we examine activity specification as a standalone approach across

different modeling meta-layers with the intent to arrive at useful simulatable mod-

els. We first discuss some frameworks and architectures that can facilitate modeling.

Then, we present the DEVS specification for activity modeling. In the remaining sec-

tions, we detail the semantics of the modeling approach in conjunction with demon-

strations of certain aspects of multiprocessing architectures.

10.1 On Simulation Modeling Architectures and Frameworks

We begin with discussions about related works and background regarding the

development of architectures and frameworks to support discrete event simulation

modeling. First, we give a brief description of MDA and then discuss some of its

concepts, particularly when applied to modeling and simulation. Second, we highlight

a few existing studies and present the researchers' viewpoints regarding what accounts

for the ongoing efforts in dealing with models that can be developed using different

abstraction means.

10.1.1 Modeling Layers

An earlier study, Sarjoughian et al. (2015) proposed a metamodel for the DEVS

atomic model spanning a variety of concepts and techniques based on MDA. We

extend the core Eclipse Modeling Framework (EMF; Steinberg et al. 2008) model

with primitive notions for behavioral specifications in an attempt to make behavioral

modeling possible along with structural specifications. Although useful, there are

some inherent limitations of using such means for behavioral modeling.
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The MDA layers M3, M2, M1, and M0 lay the groundwork and guidelines for

incrementally developing models of component-based systems. These guidelines can

be useful if followed carefully. However, the nature of extending techniques among

metamodels may result in mere complications with unnecessary complexity and over-

head (Fondement et al., 2013). Concepts at a meta-layer necessitate further efforts

to substantiate them, which can often be expensive. Across all the MDA layers, the

key idea is to create a classifier and multiple extensions and instances thereof. The

directions of extension and instances are believed to be orthogonal. However, the

Object Management Group (OMG) has made more elaborate standards by which

distinctions of notions of cross meta-layers and within a single meta-layer are drawn.

Interpretation and the latter by instances ascribe the former. In some cases, exten-

sions reside horizontally within the same meta-layer in the hierarchy, and instances

reside vertically in the next layer below. The connection is reversed in other cases.

In our work, we observe both standards and attempt to deal with the subtlety of the

issue by relying on the theory of modeling and simulation for a demonstration from

a system-theoretic vantage point.

It is essential to establish a more rigorous means of facilitating the creation of

models at a concrete layer. It is also significant and yet far more challenging to

realize, with confidence, connections between models at the concrete layer and their

counterpart abstractions at some high layer. The difficulties symmetrically increase

with layers that are higher in the hierarchy. We thoroughly examined the concepts

and presented works that attempted to map concepts from upper layers downward

using a variety of methods. The results are promising for relatively simple systems

but have generally proven to not be particularly useful for complex systems. We will

discuss this further in the following section.
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10.1.2 Related Work

Leaping models and abstractions of models to some counterpart manifestation at a

concrete layer is increasingly recognized as a significant problem that has been a topic

of great interest to a number of researchers. Some researchers have focused primarily

on efforts to realize implementations of models based on model-driven and model-

based support for engineering. The system-theoretic standpoint varies significantly

among these efforts. In statecharts (Harel and Politi, 1998), models are perceived to

construct the system under development. In some others, the system viewpoint is

absent, and yet the effort is focused on ascribing semantics for the intended modeling

language (Störrle et al., 2005). While many others make a more deliberate attempt

toward employment of model-driven frameworks to integrate simulation as a means

for precisely observing the system under study (Yonglin et al., 2009; Risco-Mart́ın

et al., 2009; Kapos et al., 2014; Bocciarelli et al., 2019).

Efforts have been made at utilizing MDA to provide model transformation frame-

works. A general objective in certain studies (Yonglin et al., 2009; Risco-Mart́ın

et al., 2009) was to promote model reuse across different platforms. It is quite often

the case that specific capabilities are offered in a target platform but do not apply in

others, which led to the notion of platform-independent solutions. The problem may

also become more difficult for inherent considerations. For example, different timing

accounts pose key challenges across execution environments. The challenge can grow

significantly when transforming between time agnostic means to environments with

stronger accounts for various temporal aspects and techniques. Timing is a signifi-

cant issue in crossing between different modeling environments by which many of the

proposed transformation models between UML and DEVS have been affected. MDA

alone falls short of providing a concrete solution for behavioral specification, although
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it has been essential in guiding certain advances in different DEVS-based modeling

frameworks (e.g. Yonglin et al., 2009; Foures et al., 2012; Risco-Mart́ın et al., 2009).

On the one hand, efforts and standards have pushed toward enabling the cre-

ation of a platform-independent model (Soley and the OMG Staff Strategy Group,

2000; OMG, 2017). On the other hand, the feasibility of executing these models with

techniques such as code generation becomes subject to fundamental questions with

knowledge gaps and arbitrary semantics (Nikolaidou et al., 2016; Zeigler et al., 2018a;

Alshareef and Sarjoughian, 2018b). Profound simulations become of particular im-

portance when it comes to realizing behavioral specifications of different models. As

such, this paper can be characterized as an attempt to achieve that goal.

In previous work, Alshareef and Sarjoughian (2017), Alshareef et al. (2018), and

Alshareef and Sarjoughian (2018b) laid the groundwork for the modeling and simula-

tion of activities regarding parallel DEVS formalism and its abstract simulator. Some

exemplary models demonstrate the basic mapping of action to the atomic model, as

proposed by Alshareef and Sarjoughian (2017). The mapping attempts to utilize the

full capability of a rich simulation framework as opposed to debugging (Mayerhofer,

2012) or execution with a fixed time step. We discussed the approach and the map-

ping in more detail (Alshareef et al., 2018) with regard to the I/O function in the

system specification hierarchy. Recently, Alshareef and Sarjoughian (2019) extended

the work to the coupled component with a focus on the model hierarchy to facilitate

the construction of the component-based models. Here, we propose DEVS models

to account for the syntax and semantics of the control nodes of activities. We also

propose a framework for simulating activity models while characterizing their object

and control constructs and examining their usage that accounts for different timing

considerations. In doing so, we attempt to make use of the experimental frame to

acquire richer analyses of activities across different abstraction layers.
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10.2 DEVS Specifications for Activity Nodes

Previous studies (Alshareef and Sarjoughian, 2018b; Alshareef et al., 2018) have

examined different semantics of activities and created a set of specifications that

correspond to various elements in the UML activity metamodel. We formulate the

specifications primarily for two types of activity elements known as action nodes and

control nodes.

In a nutshell, every activity is essentially a graph that consists of nodes and edges.

Edges are referred to as flows, while the nodes can be an object, control, or action.

Control nodes include join, fork, merge, or decision. The fork node is the one that

synchronizes the production of outputs through its outgoing flows. Similarly, join

synchronizes the flows but regarding its inputs where it expects an input through

each incoming flow. Because they are symmetric, we will later refer to fork and

join together as the SY NC specification (Listing 10.1). In the same vein, the merge

and decision nodes are used to select one flow for proceeding. In the former, it

is incoming, and in the latter, it is outgoing. We will refer to them jointly in the

SELECT specification (Listing 10.2).

Action nodes are the most fundamental unit of behavior in the Unified Model-

ing Language (UML) 2.5 metamodel (OMG, 2017). They are defined as an abstract

node in the metamodel and are refined in the foundational subset of the executable

UML Models (fUML) (OMG, 2018). Sets of specific actions are sub-types of the ab-

stract action. For example, one category suggests a collection of actions to be reading

actions, and therefore, their specifications are partially defined in the UML specifi-

cation. To provide an implementation for such descriptions, the standard provides a

mapping to the Java programming language through interpretations. The capability

of running fUML models is delivered through model execution environments such as
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Moka within Papyrus (Eclipse Foundation, 2016b). The modeling capability is in

Papyrus. In our work, we focus on providing an execution capability by exploiting

a DEVS-compliant simulator such as the DEVS-Suite simulator (ACIMS, 2019). We

argue that the inherent account of time (i.e., as a standalone part of an executable

model) is necessary, to an extent, to navigate through the semantics of various activity

constructs (Alshareef and Sarjoughian, 2018b).

Control nodes in activities are also essential for guiding the flow. Their roles varies;

however, we mainly categorize them into two major types. The first type consists of

the fork and join nodes. The second type consists of the decision and merge nodes.

We refer to the first type as SYNC and the second type as SELECT. These two

major types mainly differ from each other in the synchronization of their incoming

and outgoing flows. In the former type, the flows are synchronized, but that is not

necessary for the latter. The specifications of different nodes are discussed in previous

studies by Alshareef and Sarjoughian (2017); Alshareef et al. (2018); Alshareef and

Sarjoughian (2018b).

Next, we define a formalized mathematical specification for each type according

to the parallel DEVS formalism. Listing 10.1 shows a formal specification for the first

type. The syntax and semantics of this specification, as with the second type, strictly

conform to the parallel atomic DEVS model abstraction.

Listing 10.1: SY NC Atomic DEVS Model Specification

SY NC = 〈Xb, Y b, S, δext, δint, δcon, λ, ta〉, where

Xb = {(p, v) : p ∈ IPorts, v ∈ Xp,

IPorts = {in1, ..., inn}, Xp = V (an arbitrary set)}

is the set of input port and value pairs;
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Y b = {(p, v) : p ∈ OPorts, v ∈ Yp,

OPorts = {out1, ..., outm}, Yp = V (an arbitrary set)}

is the set of output port and value pairs;

S = phase× σ × task × C, where

phase = {passive, waiting}, σ = R+
0,∞, task ⊆ Xb,

C = {(p, c) : p ∈ IPorts, c ∈ {true, false}}

is the set of input ports and conditions;

δext((phase, σ, C, task), e,Xb) =

(waiting,∞, (pi, true), (pi, vi))

if pi = ini ∧ ∃(pj, cj) 3 cj = false, i 6= j

(waiting, 0, C, (pi, vi))

if pi = ini ∧ ∀(pj, cj) 3 cj = true, i 6= j;

δint(phase, σ, C, task) =

(passive,∞, nil, x) x ∈ Xb;

δcon(s, ta(s), x) = δext(δint(s), 0, x);

λ(waiting, σ, task) = (p, task);

ta(phase, σ) = σ.

In the case of join, the node expects the arrival of input via all incoming flows

before dispatching output. Therefore, this is represented in the SY NC specification

by having multiple input ports. The state is used to distinguish incoming inputs

arriving on multiple ports from one another. The distinction is carried out via (p, c) ∈

C. As soon as all expected inputs have arrived, the output is dispatched with a

zero time advance assuming no delay is expected to take place for producing and

dispatching the output. The fork behaves similarly, except that multiple outputs

follow for a given input.
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The formal specification corresponding the second type of control node (for merge

and decision) is detailed in Listing 10.2.

Listing 10.2: SELECT Atomic DEVS Model Specification

SELECT = 〈Xb, Y b, S, δext, δint, δcon, λ, ta〉, where

Xb = {(p, v) : p ∈ IPorts, v ∈ Xp,

IPorts = {in1, ..., inn}, Xp = V (an arbitrary set)}

is the set of input ports and values;

Y b = {(p, v) : p ∈ OPorts, v ∈ Yp,

OPorts = {out1, ..., outm}, Yp = V (an arbitrary set)}

is the set of output ports and values;

S = phase× σ × task × C, where

phase = {passive, sending}, σ = R+
0,∞, task ⊆ Xb

C = {(p, c) : p ∈ OPorts and c ∈ {true, false}}

is the set of output ports and conditions;

δext((phase, σ, C, task), e,Xb) =

(sending, 0, C, (in, v1), · · · , (in, vn));

δint(phase, σ, C, task) = (passive,∞, (p, false), task);

δcon(s, ta(s), x) = δext(δint(s), 0, x);

λ(sending, σ, C, task) =

(pi, task) if ∃(pi, ci) 3 ci = true;

ta(phase, σ) = σ.

The above specification is generalized for the decision and merge nodes. We

note that elaboration has to take place to account for execution semantics. The

structural part of this specification (input, output, and state constructs) is the same

as for the SY NC model. The behavioral specification represents the dynamics of the
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SELECT model. The SY NC and SELECT models have the same time advance

function specification.

In previous reserach, Alshareef and Sarjoughian (2017) discussed in detail a disci-

pline for a network switch example. The selection specification describes the decision

node where the flow is directed in such a network based on a polarity condition.

The condition is maintained and updated at each input arrival time. The SELECT

specification resembles multiple aspects of the example in the previous work. We

will discuss this specification with a slightly more concrete example in the following

sections.

10.2.1 Mapping UML Activity Control, Object, and Flow to DEVS Model, Port,

and Coupling

We note that according to the activity metamodel in the UML, the notion of a

pin can be defined only for the executable activity node. The pin can be an input,

an output, or a value pin. Other types of activity nodes (e.g., control node) cannot

be defined with pins, and therefore, the handling of I/O is tacit or left undefined. In

the DEVS formalism, an atomic model can be equipped with a finite but unrestricted

number of ports. Each port, whether it is input or output, can be arbitrarily attached

to one or more internal or external coupling. Thus, we create two ports for each

channel (i.e., coupling), one as an output and the other as an input, where the coupling

is added to link the two ports. A channel, with its input and output ports, corresponds

to a flow in the activity diagram. It serves as a means to transfer I/O through different

models, whether they correspond to actions or control nodes. By assigning a distinct

port to each coupling, we eliminate the possibility of duplicating I/O in the DEVS

network and therefore needing some elaborate mechanism for handling many ports

per coupling. Each I/O or some part thereof gets transferred only to the intended
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element.

From the UML vantage point, flow is classified by control and object flow types,

each having its syntax and semantics. A closer examination of the flow types for

the fUML model reveals the notion of locus to facilitate execution by carrying out

(i.e., transmitting) information through activity nodes during the execution life cycle.

Control flow is defined to dictate order, while object flow is defined to also dictate

order but to do so while carrying data between different nodes. Control nodes do not

distinguish between flow types, nor do they require pins to link with object flows. The

pins are designated for carrying whichever kind of flow they are connected with. They

pass any received object along to its designated nodes without any manipulation. An

action can have, at most, one input pin and, at most, one output pin. An action

node's input and output pins can be linked to object flows; other flows for the action

node can be of a control type. Action can receive and produce as many object and

control flows as possible, but a finite number of flows can link to action, whether

incoming or outgoing. Control nodes cannot connect with pins, but they can relate

with as many flows as possible, whether object or control. In our proposed approach,

we ignore this classification, and every flow is defined as coupling. That is, we make no

distinction between object and flow controls. We account for the syntax mentioned

above and semantics through the definitions of the port of atomic/coupled DEVS

models. In addition, the arbitrary handling of I/O is due to the DEVS abstract

execution protocol, which is domain agnostic.

SYNC activity model:

In this atomic model (Listing 10.1), one input port is defined as corresponding to each

incoming flow. An output port is also designated for each outgoing flow. For example,

if the join node has two incoming flows and one outgoing flow, then the correspondent
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atomic model would have two input ports and one output port. Then, a coupling is

attached to each port. Therefore, the SY NC atomic model initializes in a passive

state. As soon as it receives input through one of its input ports, it transitions to a

waiting state until other incoming inputs arrive from different ports, and the output

does not dispatch until all required input arrive. When an input arrives through each

input port, then the model transitions to a different state, after which it combines

all inputs and prepares the resulting outputs. The combining procedure is absent

from the metamodel of activities (i.e., the specifics of a procedure are to reside in

a concrete model according to some given application domain). The output then

dispatches through all output ports, and therefore, their distinctive couplings are

used for delivery to their destinations.

The SYNC model describes the correspondence to both the join and the fork

nodes, and thus, it accounts for the syntax and semantics of both nodes. The join

node can have multiple incoming flows and a single outgoing flow, while the fork node

can have single incoming flows and multiple outgoing flows. The behavioral semantics

of both nodes are captured in the specification of δext, δint, δcon, and λ functions. For

structural semantics, the model has a list of queues, each corresponding to an input

port for holding inputs while waiting for other inputs to arrive through other input

ports. Once there is an element in each queue, the model moves into a transitory

state to dispatch the output.

The role of the ports in the SY NC atomic model captures the syntax of the

join node. The ini input ports and the outi output port correspond to incoming

and outgoing flows for the join node (see Figure 10.1 (c) and (d)). The behavior

specification for the SYNC model (see Listing 10.1) shows the importance of providing

structural and behavioral semantics for flows into and out of the UML activity node,

and the inclusion of the ports for the SYNC model enhances coupling it to action
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nodes. The coupling with ports is more expressive as compared with flows that

abstractly connect activity nodes. The same observation applies to the SELECT

model.

SELECT activity model:

Similar to the SY NC model, the SELECT model (see Listing 10.2) has one input

port for each incoming flow and one output port for each outgoing flow. However,

based on the semantics of the decision and merge activity nodes, the SELECT model

transitions to an active state as soon as it gets input through one of its input ports.

Then, based on specific conditions, it decides which port the output is dispatched

from. After determination, the output gets dispatched only through that particular

output port. In the case of a merge, the output is always dispatched through the same

output port since the model has only one. In other words, the SELECT model with

multiple input ports and one output port corresponds to a merge node. Moreover,

with a single input port and multiple output ports, it corresponds to a decision node.

It also corresponds to both if it has multiple inputs and multiple output ports. Figure

10.1 illustrates basic mapping from activities to DEVS.

The merge and decision nodes are both control nodes, and they are symmetric

in terms of their incoming and outgoing flows. The merge node receives multiple

incoming flows and produces a single outgoing flow, while the decision node receives

a single incoming flow and produces multiple outgoing flows. From a semantic point

of view, they receive or produce flows that their guarding conditions evaluate as true.

Only a single flow is selected for a particular I/O. Similar to the case in the SYNC

model, the behavioral semantics of both the merge and decision nodes are captured in

the SELECT model in the specifications of δext, δint, δcon, and λ functions. A list of

Boolean values is attached to correspond to the flows for the evaluation. Also, a queue
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Figure 10.1: Illustration of the Mapping of Different Activity Nodes with Accounts

to Multiple Ports and Couplings.

is defined for holding elements in case of receiving inputs while in a busy state. Once

an element is received, a transitory state is instantaneously entered before dispatching

output.

Coupled activity model:

In the DEVS formalism, each coupling is attached to a port at both ends. For internal

coupling, the beginning of the coupling assigns to an output port, and the end assigns

to an input port (i.e., the coupling is unidirectional). It is, however, permissible for a

port to be attached to multiple couplings. For example, a model A with one output

port out can be attached to two couplings c1 and c2 where c1 links the output port

out in A to the input port in in model B, and c2 links the output port out in A to
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input port in in model C. In such a mechanism, any output dispatched from model

A will be duplicated and simultaneously sent out to both models B and C. This

discipline may appear to be suitable for the SYNC specification or the fork node in

particular. It allows for a dividing or combining mechanism in model A. Conversely,

such a mechanism, once needed, ought to also be part of the receiving models that are

B and C. Such a scenario is possible in this example, but it should not be imposed.

Therefore, we propose dedicating a single output port for each coupling, as shown

in Figure 10.1, to allow for combining or dividing mechanisms to be defined in any

one of models A, B, or C or any combinations thereof. Hence, such mechanisms

are left undefined in both DEVS and UML. They are both abstract in terms of

requiring mechanisms to handle output getting dispatched through outgoing ports or

pins (single or multiple) with multiple links attached to them (couplings or flows). In

the parallel DEVS formalism, the receipt of multiple inputs through the same input

port is possible. However, they operate in an arbitrary order if they arrive at the

same time instant. In the UML, defining an input pin with multiple incoming flows

imposes join-like semantics dictating that execution should wait for inputs from all

incoming flows before proceeding (Eclipse Foundation, 2016b).

10.3 Exploiting Parallelism

The notion of parallel simulation is exploited in the proposed activity specification

based on the parallel, modular, and hierarchical DEVS formalism (Chow, 1996). Par-

allel discrete event simulation (PDES) is divided into two categories (Fujimoto, 2000).

First, conservative approaches are developed based on strictly preventing causality

violations. The second category is optimistic PDES, where the simulation allows

violation of causality constraints while employing mechanisms to detect them when

they happen. The Parallel DEVS simulator (Zeigler et al., 2018b) exploits paral-
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lelism based on the causality constraint as in PDES without carrying out optimistic

processing. Events in some models can cause or otherwise influence events in other

components. Due to modularity, the components only communicate events through

input/output couplings. In each simulation cycle, all imminent components execute

in parallel. Once all output events have taken place, all the corresponding influencees

will execute in parallel for the subsequent processing of input events (received output

events). The simulation protocol maintains the variables for the time of last event and

time of next event along with output message bags to exchange among components

through flat and hierarchical couplings.

10.3.1 Parallelism Semantics

The use of activities stands to serve as a basis for describing different patterns

that include parallelism semantics. Encountering such situations is an essential part of

developing activities, and therefore, should be examined in a simulation environment.

In this section, an example (divide and conquer multiple processor archetype) is

selected to demonstrate the use of the first type for control activity nodes (i.e., fork

and join nodes), which demonstrate some aspects of parallelism semantics because

they allow for parallel flows to proceed within an activity. They are both shaped with

an opaque rectangle (see Figure 10.2). And to a limited degree, they also resemble

the semantics of the transition concept in Petri nets (Murata, 1989). The fork node is

used to concurrently split an incoming flow into multiple outgoing flows. The offering

of the flow can be arbitrarily accepted by the receiving nodes. The join node, on the

other hand, receives multiple incoming flows and produces one after synchronizing

them. The concurrent flows in a1 and a2 are two independent components. However,

they synchronize at two junctions, at the flows of events into and out of the fork and

join components.
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Archetype.

(b) The Initial Simulation View of the Di-

vide and Conquer Architecture.

Figure 10.2: Activity-Based Modeling of the Divide and Conquer Architecture.

Due to the modularity in the DEVS formalism, the representative components

for semantics mapping are defined with input and output ports. An atomic model

component generally has multiple input and output ports. The simultaneous arrival

of a bag of inputs may occur through the same or different ports. In the case of having

a coupling between one output port of a model and multiple input ports belonging to

another model, the output is duplicated and sent to each of the input ports. Although

the formalism does not have a built-in mechanism to prevent the duplication of events,

it can be accounted for in the model.

On the one hand, the fork node may dedicate an output port for each outgoing

flow. On the other hand, one output port can correspond to all outgoing flows. In the

former, distinct outputs are sent through different couplings. In the latter, an output

is carried through all correspondent couplings, which can be replaced with some other
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logic in the model. The expressiveness, complexity, and scale of these approaches can

be further examined.

Communicating I/O through coupling is instantaneous. Therefore, inputs arrive

at the corresponding models in parallel (i.e., at the same time instance). It is, then,

the model’s responsibility to process, hold, or lose any input it receives. Multiple

inputs can be simultaneously obtained by the same model. The processing can take

place if the model is in a “passive” state (i.e., a state in which the model can accept

inputs). The holding occurs if the model has some queuing mechanism. The inputs

that cannot be processed or otherwise stored are lost.

Another important aspect of parallelism is the handling of event collisions. The

input may arrive at the same time instant when output is scheduled to dispatch.

The confluence function δcon can handle this collision between input and output. The

order was imposed in the classic DEVS formalism using a select function where output

dispatching precedes the processing of inputs. Moreover, only one atomic model of a

coupled model must execute at once; however, in the parallel DEVS formalism (Chow,

1996), this restriction is relaxed. Every atomic model can specify the simultaneous

input and output ordering and execution independently of any other atomic model

because the constituent atomic models accommodate for the simultaneity of the input

and output events. They also account for the unidirectional external input and the

internal and external output couplings.

10.3.2 Simple Experiment for an Archetype Divide and Conquer Architecture in

DEVS-Suite Simulator

An experiment was devised to demonstrate some of the aspects discussed earlier

with the DEVS-Suite simulator is used for developing and executing the experiment.

The DEVS-Suite simulator is equipped with capabilities such as animations and linear
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and superdense time trajectory run-time tracking, and these capabilities are used to

observe and monitor key aspects of the behavior of the archetype architecture. First,

the divide and conquer architecture is coupled with an experimental frame (EF) model

(Rozenblit, 1991). The EF has a simple generator to stimulate the archetype model by

sending it inputs. For demonstration purposes, this simple experiment generates out-

puts every five time units. The transducer is used to analyze the model’s properties,

such as turnaround time and throughput for processed jobs. The generator commu-

nicates with the divide and conquer coupled model (Figure 10.2b) via an external

input coupling, and the transmission of a job through each coupling is instantaneous.

It is easy to assign a delay to job transmission by, for example, introducing a delay

component between the sender and receiver of the job. Alternatively, a delay can be

added to the time assigned for processing the job. Once the job arrives at the fork

node, the model sets its sigma to a zero time advance. Therefore, it only transitions

to a transitory state which instantaneously sends out the job. Essentially, a delay

period can be set, as we will discuss further when making observations about timing.

Nonetheless, we note that coupling in DEVS is instantaneous. The account for such

delay can only be made through the notion of elapsed time or in the time advance

function, which is defined within the atomic model.

A dedicated port corresponds to each coupling. However, the output is dispatched

simultaneously by the output function in the fork component. The components a1

and a2 (i.e., processors) receive the inputs simultaneously. If a processor is in the

phase passive, it transitions to the phase busy. To observe a certain behavior, a1 is

set to process inputs five times faster than a2. Each processor has a FIFO queue

to hold jobs, and the stored jobs are the ones received during phase busy. The join

component is specified to receive both inputs after being processed by the a1 and

a2 components. When an input arrives on a port, it waits for an input from the
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other input port. The received inputs are combined, and then there is the possibility

to add delay before dispatching. Note that the state trajectory for the phase of a2

(Figure 10.3) remains unchanged in phase busy because it processes jobs slower than

a1. The time needed for processing is greater than or equal to the job arrival rate.

Therefore, a new job arrives before or immediately after finishing the current one.

In this configuration, we set the processing time to be equal to the job arrival rate

to illustrate superdense time trajectories, as shown in Figure 10.3 right beneath the

phase time trajectory. In such a case, a phase repositioning to passive happens at the

same time instant of receiving subsequent jobs and therefore it transitions back to

busy. Note that this repositioning does not appear in the main trajectory because it

is instantaneous. The property of a2 remaining in phase busy can be formulated and

checked in tools with formal verification capabilities such as UPPAAL. The archetype

can also be specified using constrained DEVS (Gholami and Sarjoughian, 2017), and

then verified using the DEVS-Suite. It indicates that once a1 enters the phase busy,

it remains in this phase forever, which is consistent with the state trajectory shown

in Figure 10.3.

10.4 Flow Selection Schemes

In a multiprocessor pipeline architecture, a job may travel through multiple stages

before being completed. At each step, the model may have to decide whether the

job has been completed or if additional processing is needed. A decision node in

Figure 10.4 depicts this choice. Such a node only represents an abstract element for

selecting one of its outgoing flows. It has yet to be equipped with certain conditions or

perhaps a utility function to facilitate decision-making. In this architecture example,

the decision node is concerned about the completion of the job.

Further considerations may take place in this decision logic. Activity diagrams
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Figure 10.3: The Trajectories for the State Variable phase and the Input in and

Output out Ports With Events for the a2 Component.

alone do not stand to support such elaboration. The outgoing flows from the decision

(choice) node are associated with abstract conditions that are left to be elaborated in

one or more concrete layers following the MDA concept. In our approach, we examine

concretization by developing a simulation of the decision node based on the DEVS

formalism. Meanwhile, the separation between the abstract layer/layers and their

counterpart concrete ones is iterative and thoroughly maintained.

We define the processing stage to be a stage where a job undergoes partial pro-

cessing accompanied by a delay. Since the job travels through multiple stages, its

processing time is simply the total of the delays encountered at each processing stage.

Hence, an activity is too abstract when it comes to the concept of time, and neither

activity nodes nor edges can account for the delay in the UML metamodel 2.5 (OMG,

2017). In DEVS formalism, the notion of the passage of time is supported for atomic

models with dispatching and receiving of events between any two components occur-

ring in order at the same time instant. We propose the use of control nodes to provide

a means for the so-called controlled coupling (Alshareef et al., 2018), and we show
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that such a control node benefits from a more intuitive, yet rigorous, framework for

modeling time-based dynamics of distributed systems.

10.4.1 A Pipeline Architecture

As described above, a simple pipeline consists of multiple units for processing a

task (a non-trivial job) in a piecemeal fashion and in a particular order. Another

way is to introduce decision points among units to determine when the task has been

completed and to which unit the task needs to be assigned next. Many aspects of

the feedforward and feedback disciplines (Figure 10.4) can be accounted for in both

activity and DEVS models.

Considering activity modeling, a key to processing tasks as such is the way nodes

are organized to allow the flow of a certain task. Such activity elements can exist

in the flow. Each flow can also be characterized by the nodes that precede it and

the nodes that follow it. For example, the outgoing flows from a decision node can

relate to propositions that evaluate to either true or false. This is not necessarily

the case with outgoing flows from an action or even a fork node. Multiple outgoing

flows can be produced from the same node (e.g., a fork node) as described in the

divide and conquer architecture. Hence, in the pipeline with feedback, parallel flows

are allowed. In Figure 10.4a, we illustrate the discipline of a pipeline where the

task travels through single flows to different elements in a strict sequential order. In

Figure 10.4b, we illustrate the decision-making process, where each task also travels

through the same elements while allowing parallel flows for multiple actions. In this

architecture, a task encounters two decision-making procedures. First, the task is

checked before assignment to a certain processor. Second, whether or not the task

has been completed is checked. A possible scenario of processing one task starts with

the task being checked and assigned to a1. After some delay, the task is sent out
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(a) A Simple Pipeline.

a1

a2

d1 m

d2

(b) A Pipeline with Two Decision Nodes

and a Merge Node.

Figure 10.4: Different Abstractions of the Pipeline Architecture with Possibly Differ-

ent Temporal Attributions in Their Simulations.

from a1 to the merge node and immediately delivered to decision node d2. Decision

node d2 checks whether the task has completed or not. When the task has not

completed, it is sent back to d1 and then assigned for processing at a2. Afterward,

this processed task directs to the merge node and immediately to the decision node d2,

which dispatches the completed task if it has completed processing the required action

nodes. The two pipeline disciplines differ in their activity elements even though they

deliver the same outcomes from a the standpoint of timing and simulation. Having the

discipline with two decision elements allows for further control over the assignment of

tasks to different processors and checking for completion of the tasks. This discipline

provides a greater degree of specification of time granularity through the decision and

merge nodes (i.e., lifting the restriction on the choices for the incoming and outgoing

flows to be instantaneous). Therefore, the decision and merge nodes can be used to

devise different pipeline processing procedures. Furthermore, additional measures of

performance, such as throughput and buffering, can be computed.
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10.4.2 A Multi-Server Architecture

It follows from the previous two architectures, namely the divide and conquer and

the pipeline, that all of the essential activity nodes have been discussed and used

in both multiprocessing regimes. In this abstraction, the decision, merge, and fork

nodes are used (see Figure 10.5). An activity input parameter defines for the activity

and is where the decision node d receives its incoming flows, and a decision is made

to which subsequent node (i.e., a1 or a2) the task needs to be sent. Its outgoing flows

are subject to satisfying some Boolean conditions. Satisfying the condition redirects

the task to the most suitable nodes that can depend on action node availability (see

the section 10.5.3 for simulating activities in DEVS-Suite).

Other considerations can be taken into that account to achieve different compu-

tational goals. After the completion of the set of actions, the merge node m collects

the tasks and an output is produced. This acts as a bridge point for the flow toward

other nodes and separates the flows from the fork node f to avoid synchronization.

Because the two processors are independent in this architecture, as opposed to other

types, they do not have to be synchronized. Therefore, the activity in Figure 10.5a

demonstrates the way a flow can be allowed to proceed without waiting for another.

The other alternative is to link outgoing flows from both a1 and a2 to f directly,

but that would enforce waiting for both flows, whereas that is not necessary for this

particular architecture. The fork node receives the completed tasks and then pro-

duces two outgoing flows. One flow acts as a notification being directed back to the

decision node to notify it of the task completion. Thus, the corresponding resource

becomes available for processing another task. The other flow goes to the activity

output parameter.
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a2

d m

f

(a) An Activity for a Multi-Server Archi-

tecture.

(b) The Initial Simulation View of the

Multi-Server Model.

Figure 10.5: Activity-Based Modeling of the Multi-Server Architecture.

10.5 Framework for Activity Modeling and Simulation

In an eearlier study, Alshareef and Sarjoughian (2017) proposed and developed

mapping from the parallel DEVS formalism to the elements of the activity model.

The core focus of the mapping was on representing the behavior of the atomic DEVS

model. The illustrative metamodel in Figure 10.6 shows important aspects of this

relationship, where both the DEVS and activity metamodels are examined. On the

one hand, the concept of state change as defined in DEVS (i.e., state transition,

output, and time functions) is aligned to the activity node. On the other hand,

various notions of the behavioral activity diagram as defined in the UML complement

the atomic model. The I/O is also looked at from a DEVS vantage point to set the

basis for modular and hierarchical construction of models in the proposed approach.
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Activity Node

Action Control

Pin

Input Output

State I/O

Figure 10.6: A High-Level Sketch Illustrating (A) the Incorporation of Action and

Control Node on the One Hand and State on the Other, and (B) a Conceptual

Relationship between I/O and Activity Pin.

10.5.1 Time for Activities

The simulation of activities such as those described above can be precise using a

well-defined time base (Alshareef and Sarjoughian, 2018b). Explicit temporal specifi-

cations such as logical time can eliminate certain ambiguities that manifest themselves

during enabling execution. We also described some limitations related to the expres-

sive behavior of the atomic DEVS model, on the one hand, and the precision of the

activity model, on the other hand. It is difficult to account for limitations that are

rooted in behavioral specification by solely depending on, for example, debugging

code techniques and validation methods alone. Such defects particularly arise in be-

haviors with relatively more complex temporal structures such as the ones that must

be characterized using superdense time (Manna and Pnueli, 1992).

When simulating the mentioned archetype above architectures, it is essential to

observe certain phenomena, such as ordering and arrival of multiple inputs at any

instance of time. Such aspects might result in state transitions that may not be

traceable using typical software frameworks and tools. Since architecture complexity

is inherent, it is useful to have the means to generate superdense time trajectories for

executable models (Sarjoughian and Sundaramoorthi, 2015) and for parallel DEVS
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models, in particular. This feature is necessary on multiple occasions, including the

model development, testing, and the simulation experiment for different multipro-

cessor architectures. In all cases, the processing unit or any other component is

expected to receive either single or multiple inputs simultaneously. It is also likely to

have multiplicity and simultaneity for outputs.

When receiving multiple inputs, their order is arbitrary, and the model may or may

not account for that. The external transition function takes place given the current

state, in addition to the received bag of inputs and the elapsed time. If there is a

state transition due to a single input, then the transition is visible using a linear time

trajectory. The situation of zero time advance, as in the divide and conquer archetype

example in Figure 10.3, can be tracked using a superdense time trajectory. Such time

representation is due to some elements that are added to control the flow without

encumbering time delay. Therefore, state transitions that represent such elements

can only be made visible using superdense time. The same holds true for similar

nodes, especially the ones for control flow purposes only. We will discuss assigning

logical execution time to different node types using the time advance function.

It is essential to consider various representations for the notion of time in a sim-

ulation environment such as the ones presented by (Goldstein and Khan, 2017). In

some cases, limited time-based representations are inadequate when addressing rela-

tively challenging concurrency and synchronization issues. We demonstrate the use

of different taxonomies and how they may correspond to activities. The goal is to

facilitate earlier experimentation for different processing architectures, with possibly

varying lower level manifestations through conforming to MDA guidelines. Identify-

ing a broader set of timing needs can be cumbersome. Thus, it is crucial to facilitate

making a more informed decision, especially in cases where efficiency, cost, and scale

trade-offs may exist.
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10.5.2 Observations of Temporal Analysis with Activities

Notwithstanding the behavioral complexity detailed for multiprocessor archetypes,

a temporal analysis may follow, using an activity node classification based on the

activity metamodel (OMG, 2017). Different temporal aspects are characterized by

which components are used to describe their specifications and different temporal

characteristics can ascribe to components based on their specification aspects. For ex-

ample, some components represent control nodes, such as decision. The time elapsed

in these components is defined to be the time spent controlling the flow in some ac-

tivity. Likewise, the time elapsed in other components is characterized based on the

node type for which the specifications of these components ascribe.

Assume each node in the activity models mentioned above is associated with

processing time pt, which is either zero or a positive real number. We refer to the

activities in Figures 10.2a, 10.4b, and 10.5 as DC, PL, and MP, respectively. We also

consider a task that is carried out by one activity holistically and can be assigned

to one or divided among multiple activity processing nodes such as those defined for

DC. The total time required for the task completion must consume in the processing

nodes only. Assume the control nodes may consume time. However, this time can-

not count toward task completion. Instead, they account for other time-consuming

considerations such as overhead. We formulate such assumptions using the following

definitions:

Tpt refers to the time required for completing the task or some part thereof.

Tp refers to the time from when processing the task/tasks is initiated until its

completion, without accounting for overhead or the time consumed for controlling

the flows. Note that when the task is directed to one action only, then Tp is the same

as Tpt. Also, note that when the task gets assigned to N actions, then Tp will be
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equal to Tpt/N ad infinitum.

Tc refers to the time consumed by control nodes. Formally, for one component, it

is the total time elapsed for the atomic model while in a non-passive phase. Thus,

Tc of all control nodes in some activity is the total non-passive time for all atomic

models that correspond to these control nodes in that activity. This period may ac-

count for dividing tasks into multiple sub-tasks and combining them if necessary. It

may also account for synchronization and other timing considerations. Hence, time

consumption varies from one architecture to another since the controlling mechanism

may differ. In DC, Tc would include the time consumed by fork corresponding com-

ponents and refers to the time required for dividing the task to prepare it for being

processed by other parallel components. It also includes the time needed for combin-

ing multiple parts (the join) of the task after processing. In PL, Tc would consist of

the time consumed by both decision nodes. In the first decision node, it refers to the

time required for deciding to which processing node the task needs to be directed.

In the second one, it refers to the time needed for determining whether the task has

completed or not. In this architecture, Tc would also include the required time for

merging flows. In MP, Tc would consist of the time required for deciding to which

processing node the task needs to be assigned. It also includes the time needed for

merging flows and the time needed for redirecting the completed task and notifying

the decision component of the task completion.

ci,active refers to the control node i while being active in managing the flow during

the processing of the task.

ai,active refers to the action i while being active in processing the task or a part

thereof.

α is the task arrival rate.

The task is processed in either a1 or a2, as in the MP architecture. The task could

205



also be processed in parallel in a1 and a2, as in the DC architecture, or sequentially,

as in the PL architecture. For the above archetypes, time consumption is calculated

as Tpt(task) = Tpt(a1,active) + Tpt(a2,active) . For an archetype with an arbitrary size,

the time required for task completion is equal to the total active time of all actions

A that carry out the processing, which can be formulated as

Tpt(task) =
n∑

i=1

Tpt(ai,active), (10.1)

where n ∈ N is the number of actions that is, for example, two in the activities

mentioned above.

Similarly, Tc is defined to allow accounting for the overhead time in different

multiprocessor architectures with different performance schemes. In Figure 10.2a,

this accounts for the time consumed by the corresponding atomic models for the fork

as well as the join nodes. For the given DC, the Tc for a given task is defined as

Tc(task) = Tc(c1,active) + Tc(c2,active). Thus, the time consumed is equal to the total

active time of all control nodes, which can be formulated as

Tc(task) =
l∑

i=1

Tc(ci,active), (10.2)

where l ∈ N is the number of control nodes in that particular activity.

We assume the throughput can be measured based on both Tpt and Tc acquired

from Eq. 10.1 and 10.2, respectively. It can be used to identify the computational

efficiency of each architecture while accounting for the distinction between processing

time and other time-consuming elements. This type of difference is accessible through

the abstraction of the meta-layer, where control nodes are being defined and then

realized concretely in the simulation environment. Such measurements are essential

for making critical decisions in various application domains. In formal terms, the
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throughput is identified based on the arrival and departure of the tasks to the coupled

model that is created to correspond to the processing regime, with activity serving

as an abstraction.

We characterize the time assigned by control nodes to be consumed by task as-

signment to a particular node, dividing the task into sub-tasks, or synchronizing

sub-tasks. We assume these three are all used in the DC architecture since the task

has to be divided, assigned, and synchronized. In PL, only two of these mechanisms

take place, the division and the task assignment. In MP, only one takes place since

the task has to get solely assigned to a particular node in a general multi-processing

regime. Thus, a possibility for Tc of each architecture is to be assigned relative to the

number of actions.

Particular cases of throughput can be simply observed subject to restrictive as-

sumptions about the configuration of the experiment. For example, the number

of tasks and their arrival rates are both significant in determining the throughput,

especially with specific exploitation of parallelism. Under strict restrictions, some

observations may follow trivially. For instance, the divide and conquer regime will

outperform other architectures for one task if Tc consumes zero time in all architec-

tures for each task. Similar observations can take place when different assumptions

are given concerning other variables, such as the arrival rate of tasks or Tpt.

Other cases of throughput can be calculated under some strict assumptions for

Tpt and the arrival rate of tasks. In the case of the DC architecture, the throughput

can be calculated trivially based on these assumptions by simply dividing the number

of actions by the total processing time for the completed tasks. In other words, the

throughput is equal to n/Tpt. For the other archetypes (i.e., MP and PL), the case is

less trivial due to the minimum sequential processing time. Nevertheless, throughput

for these is the same as throughput for the DC architecture for the best-case scenario,
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Figure 10.7: Particular Cases of Throughput of the Multiprocessing (MP) and Pipeline

(PL) Architecture Are Observed with Different Assignments of the Number of Tasks and

Actions. Tpt Is Set to 10 Time Units in All Cases and Tc Is Assigned Zero.

where the number of tasks and the number of actions are equal (see Eq. 10.3). The

worst case scenario is where there is only one task that leads to less parallelism

exploitation and, consequently, resulting in lower throughput. In Figure 10.7, some

observations are made where Tp is calculated using the following formula:

Tp =

⌈
k

n

⌉
Tpt, (10.3)

where k is the number of tasks, and n is the number of actions. Figure 10.7a shows

throughput with different assignments for both n and k. Figure 10.7b shows through-

put when n = 10 and with different assignments to k. Note that the use of the ceiling

is due to the sequential part of the processing. This part has to be at least Tpt, result-

ing in throughput that is always at most one, and the cases of throughput get closer

to one as the number of tasks increase, as shown. In the following section, we discuss
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other cases where the simulation becomes necessary to arrive at certain results.

10.5.3 Simulating Activities in DEVS-Suite

A set of atomic models corresponds to the discussed DEVS specifications of the

activity constructs in the DEVS-Suite simulator. The aim is to create models that

complement the previously developed library and tool for creating DEVS models with

the activity notation. The library is made as generic and flexible as possible to allow

it to account for a broader range of activity-based DEVS models. Currently, the

library consists of two generic atomic models by which the primary activity control

constructs, in addition to the action, can be realized.

The decision node is realized with multiple output ports and an array of Boolean

values, where each value corresponds to a single output port. Upon the execution

of the output function, some output is dispatched through a designated port when

the Boolean condition that corresponds to the output is true. Hence, σ can become

assigned with some positive value by δext or δint functions in any atomic model that

corresponds to the decision node of any other node. The merge node is similarly

realized, but with multiple input ports. Note that a node can be instantiated to

have both decisions and merge properties as discussed earlier in Listing 10.2 for the

SELECT model.

The fork and join nodes are also realized in the SY NC atomic model, where

the implementation accounts for synchronizing input and outputs. Currently, the

combining and dividing processes only account for the timing requirement. It remains

an open problem to introduce a combining/dividing mechanism that may suit different

semantics. The model corresponding to the join node includes multiple queues, where

each queue accounts for a certain input port. Storing inputs in such a fashion permits

accounting for inputs coming from different models that may arrive through multiple
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ports at different time instances. Listings 10.3 and 10.4 demonstrate the external and

internal transition functions for the fork/join procedure, respectively.

Listing 10.3: The external transition function of SY NC

parameter: double e , message x

begin

cont inue ( e )

for i ← 1 to x . l ength

job ← value o f ith message

j ← port number

add job to jth queue

end for

if a l l queues are non−empty

& phase i s wa i t ing then

for i ← 1 to n

dequeue from ith queue

end for

holdIn ( sending , prep t ime )

end if

if phase i s pa s s i v e then

holdIn ( wait ing ,∞)

end if

end

Listing 10.4: The internal transition function of SY NC

begin

if a l l queues are empty then
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p a s s i v a t e

else i f a l l queues are non-empty then

for i ← 1 to n

dequeue from ith queue

end for

holdIn ( sending , prep t ime )

else

holdIn ( wait ing ,∞)

end if

end

In the snippets shown in these listings, the atomic model for join is equipped

with multiple queues to account for the multiple inputs arriving through different

ports, along with their order. Note that this presumes the input flows conform to

a particular order. When all queues are not empty, the first element of each is

supposed to contribute to constituting the output that is to be dispatched. However,

it is possible to prioritize elements of a specific queue based on heuristics. It is

also possible to do further manipulation of the queue itself and its enqueue/dequeue

procedures to satisfy different needs.

We also devised an experiment for the DC architecture to observe throughput

under different settings (i.e., the numbers for tasks and actions). In every setting,

the experiment initiates by generating all the tasks instantaneously, with ten units of

processing time for each task. It is possible to choose different configurations concern-

ing arrival rates for tasks and processing time based on a specific distribution (e.g.,

uniform distribution). In this particular example, we set Tc relative to the number

of actions, assuming more actions require more time to prepare for dividing and then
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combining sub-tasks. This setting amounts to the higher throughput encountered

with more tasks and fewer actions (see Figure 10.8). The plot shows the best case,

with ten tasks and two actions and worse throughput when there are more actions

and fewer tasks. The throughput is calculated upon the finishing time, which is pre-

cisely the time unit of dispatching the last task by the corresponding coupled model

of the DC activity. The final result gets calculated by merely dividing the number of

tasks by that total time.
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Figure 10.8: Throughput Is Observed by Simulating the Activity of Divide and Con-

quer in DEVS-Suite, Given Different Numbers of Actions and Tasks Arriving at the

Same Time. Tpt Is Equal to 10 Time Units in All Cases, and Tc Is Assigned Linearly

Relative to the Number of Actions, Where a Greater Number of Actions Requires a

Greater Tc Value.

10.6 Conclusion

While remaining at a meta-layer, a variety of elements can be proposed and con-

nected in many different ways. However, these elements might be ineffective or barely

meaningful when it comes to concrete realizations or under rigorous transformation

conditions. Conversely, lower level implementations cannot benefit from a sophis-

ticated simulation unless an extensive modeling effort takes place. An enormous
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amount of cross iterations with expensive endeavors is necessary to confine our choices

and hopefully arrive at some useful and concrete simulation for a reasonably small

set of the developed higher level constructs.

In this paper, we devised a subset of the activity metamodel and placed it in

the context of a discrete event system. We started with a taxonomy of simulation

modeling based on MDA and characterized different constructs of activity modeling

based on their actual behaviors. We then devised a formal specification for each fun-

damental element, along with their corresponding implementation in the DEVS-Suite

simulator. Different time notions are used to facilitate various temporal analyses. We

demonstrated the distinction between control time and processing time. The char-

acterization of activity constructs was used to classify and distinguish between their

timing requirements and constraints. We showed the use of activity modeling for

different multiprocessing architectures. Our goal is ultimately to be more capable

of analyzing computational models by making them subject to experimental designs

according to the modeling and simulation principles and guidelines.
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Section A.1 includes a demo which I presented in Spring Simulation Multi-Conference
2017 demo session. Section A.2 is a Ph.D. colloquium, which I presented in the Winter
Simulation Conference 2017.

A.1 Infusing Simulatability into Software Models

Abstract

The emergence of autonomous vehicles, also known as self-driving vehicles, poses
new research challenges to ensure system-wide safety property. In such time-critical
Cyber-Physical Systems, verification of software plays a crucial role while interacting
with physical parts. We demonstrate a Model-Driven approach using UML activities
for modeling a hypothetical scenario for a vehicle system. UML activity models
implemented as DEVS simulation models can help reveal certain time-sensitive safety
properties.

A.1.1 Transforming Activity Models to DEVS Models: Autonomous Vehicles

Recent advances in UML activity modeling cast them to the DEVS simulation
model Alshareef and Sarjoughian (2017). Such work highlights the key role that
accurate representation and manipulation of time have for more precise execution of
software behavior. We have created a generic library for simulating UML activities
utilizing the current architecture of parallel DEVS-Suite simulator ACIMS (2017b).
By doing so, the modeler can benefit from the DEVS as a modeling formalism and
yet be able to obtain time-accurate execution manifested by the underlying simulator.
The semantics of the activities are captured in a set of generic atomic models. These
models can be therefore specialized exploiting polymorphism to have specific instances
that collectively encompass activity models.

The library currently consists of modularized packages where each has a generic
and polymorphic set of atomic models (see Table A.1). Packages also contain some
complementary features to enable the use of the set of atomic models such as interpre-
tation and instantiation. The models are formalized first given the DEVS formalism.
Then, each atomic model is devised in a way to resemble its corresponding counter-
part in the activity metamodel. For example, the semantics of the decision node are
formulated in the decision node atomic model generically and then specialized for the
specific instance thereof.

Table A.1: A Set of Atomic and Coupled Models for Activities DEVS Modeling and
Simulation.

Activity Node Executable Node Control Node
Object Node Action Expansion Region
Initial Node Final Node Fork Node
Decision Node Merge Node Join Node

All models have been realized in a way to remain consistent and benefit from our
existing activities metamodel. The metamodel has been built based on the Eclipse
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Modeling Framework (EMF) and Ecore. In Figure A.1, we show how the implemen-
tation of the library is currently integrated within the architecture of the DEVS-Suite
simulator.

ActivityDiagraph

-makeActivity(LinkedList<ActivityNode>)

ViewableAtomic

ActivityNodeAtomic

ViewableDigraph

ImportActivity

Figure A.1: The Integration of the New Packages Within the Current Architecture.

Figure A.2 summarizes the details about our proposition in practice. The activity
model represents an intersection to direct the approaching vehicles and reports colli-
sions that occur in the intersection. The safety of vehicles entering and exiting the
crossing can be verified through simulating time-accurate activities of the software
dynamically detecting and controlling sensory and actuating signals.
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private void makeActivity(LinkedList<ActivityNode> nodes){
LinkedList<ViewableAtomic> atomics = new LinkedList<ViewableAtomic>();
for(ActivityNode node:nodes)

atomics.add(new ActivityNodeAtomic(node.getName(), step));
for(ViewableAtomic atomic: atomics)
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Figure A.2: The Multiple Views for Modeling and Simulation of an Intersection.

A.2 Toward Precise Semantics of Actions

Abstract

Action is the fundamental unit of behavioral specification in models. We propose
the use of Discrete EVent System Specification (the DEVS formalism) to specify the
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semantics of actions. Then, the coupling is used to form different kinds of behavioral
models. The statecharts and activities are two different approaches by which the
system behavior can be described. Actions are at the core of these two approaches.
Their specifications can collectively serve as a significant part of the overall behavior
alongside with behavior of other elements such as control. Thus, we propose an
approach introducing the concepts of time and state as defined in DEVS for actions;
these serve as an abstraction for modeling a wide range of systems.

A.2.1 Introduction

It is essential to use abstractions, languages, and metamodels for behavioral spec-
ifications to overcome complexity and scale demand. Any tiny change in the behav-
ioral specification of a model may result in vastly different dynamics. Thus, it is
necessary to tame this intrinsic characteristic in behavioral modeling. The problem is
approached through how the behavioral specifications are described. Using an ad-hoc
approach may not scale, mainly due to the complexity arising from a mesh of actions.

A.2.2 The Atomic Model and the Action

The goal is ultimately to create a means for actions to be specified as precise and
flexible as possible for systems that interact in arbitrary, but well-formed, fashion.
When modularity is maintained, the system can grow according to the principles of
coupling and composability. Thus, we propose DEVS specification creating a corre-
spondent atomic model for each action (see Figure 1). The formal specification of the
atomic model DEV S = (XM , YM , S, ext, int, con, , ta) is defined with respect to the
semantics of the corresponding action. In conjunction with the other defined atomic
models for describing a certain semantics for some behavioral diagram element, such
as decision node Alshareef and Sarjoughian (2017), these elements can together for-
mulate the correspondent chains of actions (i.e., coupled models) Sarjoughian (2017).
The processing time represents a broader range of execution semantics, including an
execution step. The time advance function is utilized in the correspondent action
model to establish the linkage to the time base. It is either continuous, discrete, or
some other as discussed in the literature in some DEVS variant formalisms. Such
restrictions can be leveraged to work around some computational compromises to
satisfy specific needs.

Action

Others

Statecharts ActivitiesDEVS
• Coupled Model
• Coupling
• I/O
• State
..

Atomic Model

S1 S2

Event [Guard]/Action
Action

Action

Action

Figure A.3: The Action Abstraction Is Situated at the Heart of Many Behavioral
Specifications and Thus Used As a Bridge Between the Formal Specification and
Other Semi-Formal or Informal Modeling Approaches.
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A.2.3 A Processor Model

We discuss an Activity-based DEVS abstraction specified for a processor model
described in Zeigler et al. (2000). The processor receives a bag of inputs and dis-
tinguishes between them for different kinds of communication. Data is commonly
exchanged as well as control according to their intended purposes. Instances of some
classes with variables are created at some locus. Therefore, inputs can be used for
communicating information about the model to different components. Although us-
ing the notion of time may significantly differ in the context of action, the processing
time can take various values. It then can model ordering or concurrency semantics
such as in the join node defined by the activity abstraction. It also may refer to
duration assuming that actions are not instantaneous. Another aspect is to consider
the instant of time in which an action may occur or start. Since the action is deemed
to be the fundamental unit of behavioral specification, their influence on the state
is specified explicitly to be able to provide guarantees across the system of interest.
This elaboration is certainly beneficial, especially when considering the possibility to
extend the notion of action with time. This forms a strong basis toward achieving
the goal of having a precise time-based semantics for actions.

The processor remains idle while not receiving inputs. It may store received
inputs in unitary storage or multiple inputs in a queue. Actions also have access
to other resources. Their situation in the context of the object model is yet to be
examined. In the UML OMG (2012), the action can be created within a context of
behavior classifier. Along with control elements, they constitute the overall behavior.
Different mechanisms of control then reveal the nature of the behavioral model, as
shown in Figure 1. As far as the action is concerned, it can initially or subsequently
takes some inputs. Then, the semantics of the action takes place considering these
inputs, causing some changes on the state and possibly producing outputs.

To conclude, the capability of developing the behavioral specification in stages
is beneficial but yet quite challenging. In our approach, we investigate metamodels,
frameworks, and tools to increase accessibility without compromising our models or
any of the artifacts thereof. The precise semantics of actions can take place as an
essential step in enabling simulation-based studies. Along with supporting control
structures, useful simulations for Systems of Systems can be attained.
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