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Abstract 

Distributed simulation allows a simulation program to run across different computers and 

locations. The benefit of using distributed simulation is that it solves the limited 

performance of simulating a large-scale system on one computer and enhances the 

efficiency of Modeling and Simulation (M&S) systems. In this thesis, we focus on how to 

apply distributed simulation methods to the entire processes of the M&S ecosystem, and 

we propose an architecture that uses a message broker to connect to all processes within 

the M&S life cycle. The architecture combines an Event Broker, a cloud platform for 

design and visualization of buildings, and a discrete-event simulator. The research shows 

how a message broker can simplify communication between each M&S software through 

its Publish/Subscribe technique. The architecture has the potential to bridge M&S systems 

and make various M&S software platforms work in collaborative fashion. 
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Chapter  1: Introduction 

 

In recent times, the field of Modeling and Simulation (M&S) has been experiencing rapid 

growth and development. This surge in interest is primarily driven by the increasing need 

to comprehend complex real-world systems and predict their behavior accurately. M&S 

finds its applications in diverse areas such as engineering[18][19][20], economics[59][60], 

and social sciences[15][16], making it a crucial tool for decision-making and problem-

solving. 

The M&S process involves several essential steps that work together to create simulations. 

These steps include creating models that represent real-world systems, running simulations 

to understand how these models behave, analyzing the results to draw conclusions, and 

visualizing the outcomes to make them understandable[1][2]. Each of these steps 

contributes to the overall accuracy and reliability of the simulation. 

However, making all these steps function seamlessly within an M&S system can be 

challenging. This is because different software components are involved, and coordinating 

their interactions can be complicated. For instance, software used for modeling might need 

to communicate with simulation software, and the analysis software might need to 

exchange data with visualization tools. To build a good M&S system, people have to use 

different software for different uses. But the developers cannot be good at every software, 

and only one software is hard to cover all the steps as well. 

To address these challenges, the concept of distributed simulation has emerged. Distributed 

simulation involves breaking down a simulation into smaller parts and running them on 
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different computers that are connected[3][4]. There are different types of distributed 

simulation: distributed computing systems, distributed information systems, and pervasive 

systems[4]. By using these architectures, the computers could tackle the complexity of 

simulations that require a lot of computational power and resources[21][22][35][36]. It also 

allows simulations to be carried out across different geographical locations[25][26][27]. 

With the advancement of distributed simulation technology, the role of middleware has 

become crucial. Middleware acts as a mediator between different software components, 

facilitating communication and coordination between them[58][8][4][5]. Among the 

available options, message-oriented middleware [7][8][9][10], often referred to as a 

message brokers, could provide a better choice. Message brokers provide a 

Publish/Subscribe architecture that allows software share and access information by 

publishing or subscribing to a topic (the message address). This architecture has been used 

in many different fields such as Big Data [37][63][64], Internet of Things [61][62], and 

others. Many developers employ this technique to access real-time data from databases or 

sensors for decision-making. 

A message broker enables communication between different software components that 

might operate at different times and places. It acts as a messenger that passes messages 

between components without requiring them to directly interact. Each step can function 

independently, meaning that if one part encounters an issue, it won't affect the other parts 

of the simulation. This enhances the overall robustness and stability of the simulation. 

Therefore, each process within the M&S life cycle could keep the independence, 

meanwhile, they could directly communicate with each other as well. This means that using 

message broker in an M&S ecosystem could reduce the necessity of mastering all the 
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associated software within the M&S field. For example, developers focused on the 

simulation process do not need to learn how to use modeling software for building scenario 

models, and those concentrating on visualization do not have to learn about simulating 

executions. 

Considering the above, the objective of this thesis is to define and implement an 

architecture for facilitating communication throughout the M&S lifecycle. This 

architecture aims to enable seamless interaction between simulation software and 

modeling and visualization tools. To achieve this goal, we introduce a system in which all 

software components are integrated through a message broker. The architecture's validity 

is assessed by constructing an M&S project, followed by testing the communication 

interfaces between these components. 

One contribution of this work is the establishment of a bridge that enhances interactions 

within M&S software. Within this model, we implement the fundamental functionalities 

of a message broker to ascertain the practicability and advantages of incorporating a 

message broker across various stages of the M&S lifecycle. Additionally, the message 

broker provides support for several supplementary features, thereby enhancing the overall 

interoperability of the system. 

In our model, we integrate the Solace event broker [29] into both the Cadmium [51] 

simulator and the Autodesk Forge platform. The Solace Event Broker is a message broker, 

as previously discussed, that supports a variety of messaging protocols and patterns. 

Notably, it offers features such as message persistence, high availability, and different 

messaging approaches. On the other hand, the Cadmium simulator is a simulation tool for 

users to build and define Discrete Event System Specification (DEVS) models [43], a type 
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of M&S that allows the system to be modeled as a series of discrete events occurring over 

time. Finally, Autodesk Forge [41] is a cloud-based development platform created by 

Autodesk that provides a set of Application Programming Interfaces (APIs) and tools for 

integrating Autodesk products. It enables developers to integrate 3D modeling, 

visualization, and collaboration capabilities into their applications and workflows. 

By means of the architectural framework we introduce, both Autodesk Forge and the 

Cadmium simulator are poised to facilitate streamlined access to their respective essential 

data. In instances where the Cadmium simulator endeavors to retrieve the BIM model from 

Autodesk Forge, or when Autodesk Forge seeks to acquire the simulation results generated 

by the Cadmium simulator, the complex steps can be greatly reduced allowing for a direct 

exchange of messages between the two components. 

 

1.1 Thesis Organization 

The remainder of the thesis is structured as follows: In Chapter 2, we provide a concise 

background on distributed simulation. This includes an exploration of its development, 

applications, as well as an overview of the message-oriented middleware and the specific 

message broker employed in this study. Additionally, we offer insights into various 

modeling and simulation software tools, namely Autodesk BIM 360, Autodesk Forge, and 

Cadmium simulator, alongside a presentation of the simulation technique employed: 

Discrete Event System Specification (DEVS), including its extension known as Cell 

Discrete Event System Specification (Cell-DEVS) formalisms. Moving on to Chapter 3, 

we introduce and formally define the system architecture proposed in this thesis. Chapter 

4 consists of results and case study of the described model in chapter 3. Finally, Chapter 5 
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draws conclusions, summarizes the key findings, and outlines potential avenues for future 

research endeavors. 



 6 

Chapter  2: Background 

 

2.1  Distributed Simulation 

Distributed simulation is a concept that allows a simulation program to be divided into 

smaller programs that run on multiple processors [3][4]. There are several reasons why 

people want to use distributed simulation. Firstly, it can reduce the time to execute the 

simulation and allow the execution of large-scale simulation programs that cannot run on 

a single computer. Secondly, distributed simulation allows different simulators to run in 

the same environment. Rather than creating a new model which contains all submodels, it 

can create a new simulation environment to connect different models. In addition, 

distributed execution can be executed over a broad geographical area via Internet, which 

saves costs and resources. The simulation is executed on many machines and 

communicates with each other by the network. Fujimoto [3] discusses two widely used 

architectures of distributed simulation: client-server and peer-to-peer. For the client-server 

approach, the simulation runs on one or more server machines, and the user can get the 

results from the servers. In Peer-to-peer networks, every user could be a client or a server.  

Distributed simulations usually need to rely on the support of middleware to run in a 

distributed computing environment. For instance, the Run-Time Infrastructure (RTI) 

middleware software [5] can provide real-time functions based on High-Level Architecture 

(HLA). HLA[11][12] is an architecture initially designed by the US Department of Defense 

(and later adapted as an IEEE standard) for the reuse and interoperation of the simulations. 

It divides into three major components: the HLA rules (the standard that simulations must 

obey), the interface specification (the way that simulations interact with RTI), and the 
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object models (the template for describing simulation elements). Other distributed 

simulation middleware have been developed; for instance, ARTIS [35], based on the HLA 

to support heterogeneous and distributed models of a complex-system simulation. Lasnier 

et al. [36] combined Ptolemy, an M&S tool, and HLA for distributed simulation of the 

cyber-physical system. 

In parallel with the development of distributed simulation methodologies, the rapid 

development of web technology allowed the definition of web-based simulation software, 

tools, and standards [13][14]. This technology has been used in different fields, including 

medical applications [15], mathematical models [16][17], engineering [18][19][20], etc. In 

[15], the author presents several web-based simulation platforms for nursing education, 

such as The Neighborhood and Second Life. These platforms offered several simulation 

programs for nursing students to learn CPR, mental health management, intravenous 

cannulation, etc. Dormido et al.[16] designed a web-based tool for control education, 

students can learn many nonlinear behavior phenomena in control engineering. Lazaridis 

et al.[17] built a web-based learning tool to solve linear problems using animation and 

visualization techniques. In [18], the authors present a tool for control engineering using 

Java applets. This tool allows for the analysis and simulation of the single-input-single-

output linear control system. Dominguez et al.[19] proposed a web-based simulation 

environment that centralizes the tasks for testing different electrical distribution system 

configurations and facilitates the detection of defects in a design system.  

The advance of distributed system technology and the emergence of cloud computing 

introduced a new concept: Modeling and Simulation as a Service (MSaaS). Many cloud-

simulation tools have been developed following these ideas. In [21], Calheiros et al. 
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developed a CloudSim toolkit for modeling and simulating extensible Clouds. It provides 

simulation-based approaches for researchers to test their methods and mechanisms for 

efficiently managing Cloud infrastructures. Sriram[22] designed a simulation tool for 

Elastic Cloud Infrastructures named SPECI. This tool can simulate and predict the 

performance and behavior of data centers according to different sizes and middleware 

policies. Lim et al. [23] built a flexible and scalable simulation platform for conducting and 

analyzing multi-tier data center performance and power issues.  

Since researchers hope that distributed simulation provides plug-and-play interoperability, 

web-services-based simulation became a useful method for distributed simulation systems 

Ma and Tian [25] proposed a web service-based Multi-Disciplinary Collaborative 

Simulation System(MDCSS). In MDCSS, various engineering application programs are 

integrated as a web service federation. This temporary federation provides an alternative 

to using the software tools in a “pay-as-you-use” method. Wei She et al. [26] developed a 

web service simulation system called WS-Sim. It is based on realistic data from actual web 

services and applications. In [27], the authors proposed a distributed simulation 

environment for a System-on-Chip design based on a Simple Object Access 

Protocol(SOAP). The communication will be only based on HTML and XML protocol. In 

[28], Wainer et al. designed a distributed simulation engine (D-CD++) based on CD++, a 

modeling and simulation toolkit for DEVS and Cell-DEVS simulation. They use web 

service technology like SOAP and XML to enable CD++ execution in a distributed 

environment.  

Al-Zoubi and Wainer [6] proposed the RISE (RESTful interoperability simulation 

environment) middleware based on RESTful Web Services. In RISE, each resource uses 
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the uniform resource identifier (URI) template, and these resources will use uniform 

channels to exchange information using XML. Compared with the distributed simulation 

using SOAP-based WS, it has been shown this modeler-oriented middleware greatly 

improves the simulation interoperability and model reuse. 

 

2.2 Message-oriented Middleware 

Besides the different types of middleware for distributed simulation discussed in the 

previous section, this research is interested in applying Message-Oriented Middleware 

(MOM) to distributed simulations. MOM software enables many different users to send 

and receive messages in a distributed architecture. Specifically, it allows many applications 

to exchange data in the form of a message [7]. There are two types of MOM middleware 

[8]: Message Passing/Queue and Message Publish/Subscribe. In Passing/Queue 

architecture, applications send a message by using a client MOM, and a MOM server 

selects the request in a specific order from the queue. The MOM server acts as a router to 

the message and does not usually interact with it. In a Publish/subscribe architecture, the 

MOM is event-driven. We will detail this pattern in section 2.3. 

MOM is a family of software or middleware platforms, a technology that can be used to 

implement an Event-driven architecture (EDA), Service Oriented Architecture, or other 

architectures. EDA [9][10] has the ability to detect events and react to these events. An 

event is a change of state that will cause the system to take action. In an event-driven 

architecture, an event that happens in a system will notify people who are interested in this 

system, and then people can take action based on this event. For example, when smoke is 
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detected by a sensor, this event triggers the smoke alarm, which will ring and issue a signal 

to a fire alarm control panel. 

 
2.3 Solace Event Broker 

The Solace PubSub+ platform [29] provides a variety of open standard protocols and APIs 

for developers to create their applications. In particular, the Solace event broker [30] is a 

middleware appliance, software, or SaaS, based on the event-driven architecture. It is used 

to transmit information between event senders and receivers, and it facilitates and mediates 

the interactions of different applications and platforms. Solace event broker is available for 

installation into various environments such as clouds, PaaS, iPaaS, and on-premises, and it 

supports many programming languages such as C/C++, C#, Java, JavaScript, etc. [31]. 

Solace event broker allows information or events to be transmitted from one application to 

another application or from one platform to another platform. For example, the producer 

can publish the messages through MQTT, and the others can subscribe to the messages 

through SpringBoot. 

The event broker is built using some basic design concepts discussed next. 

1. Messaging: the term messaging refers to the technology that lets computer systems 

share information without requiring either direct connections or awareness of each 

other’s location. The architecture of Solace messaging contains five components, 

as shown in Fig. 1 [32]. 
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Figure 1. The Architecture of Solace Messaging 

 Publisher: The application or entity that sends a message to a topic; 

 Subscriber: The application or entity that receives the message from a topic; 

 Message: The data exchanged between applications. The Messages often contain 

events, queries, commands, or other information; 

 Topic: A type of address that is used to exchange messages. It is used when more than 

one subscriber is intended to consume the message; 

 Queue: A type of address that is used to exchange messages. It is used when the 

message is consumed by at most one subscriber.  

2. Exchange Patterns: there are three message exchange patterns available in the event 

broker. a) Point-to-Point, b) Publish-Subscribe, and c) Request-Reply [33]. Point-

to-Point messages sent by the Producer are processed by a single Consumer. With 

Publish-Subscribe messaging, messages sent by the Producer are processed 

multiple times by different consumers. Each consumer receives their own copy of 

the message for processing. For the Request-Reply pattern, applications achieve 

two-way communication using separate point-to-point channels: one for requests 

and another for replies. 
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3. Delivery Mode: the event broker supports Directed and Guaranteed message 

delivery modes [34]. Direct messaging is meant for use with high-speed 

applications that can tolerate occasional message loss. Producers can publish 

messages to a topic, and when these messages are received by the event broker, 

they are delivered to Consumers with matching topic subscriptions. For the 

Guaranteed mode, clients can publish messages to an event broker. When the 

messages are received by the event broker, they are saved in the event broker's 

message spool. Then, the acknowledgment is confirmation to the publisher that the 

event broker accepted the message. Those messages are persisted on the event 

broker until they expire, or the consuming client acknowledges the messages. 

Guaranteed Messaging can be used to ensure the delivery of a message between 

two applications, even in cases where the receiving application is offline, or there 

is a failure of a piece of network equipment. It keeps a copy of the message until 

successful delivery to all clients and downstream event brokers has been verified. 

Besides the Solace event broker, there are many other MOM tools, such as IBM MQ[54], 

Apache Kafka[37][38], Rabbit MQ[55][56], and Active MQ[39][40]. We will simply 

introduce you to Apache Kafka and ActiveMQ. Apache Kafka is a distributed event stream 

platform developed by LinkedIn [37]. It uses a public-subscribe messaging architecture. 

Kafka is built from three main components: Kafka Cluster, Kafka Connect, and Kafka 

Stream. Kafka Cluster consists of one or more Kafka brokers organized by topics. The 

Brokers store data that are sent by producers. Kafka Connect is used to transmit data from 

Kafka and external applications. Kafka Stream is for data stream processing [38]. 

ActiveMQ [39][40] is an open-source message broker built on top of Java. It implements 
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Java Message Service (JMS), a Java API that allows applications to send and receive data 

asynchronously. ActiveMQ currently has two versions: Classic and Artemis. ActiveMQ 

must be installed in the Java Runtime Environment. 

 

2.3.1 Architecture and Workflow of Solace Event Broker for Interaction 

The Solace event brokers provide a foundation for messaging across multiple protocols 

and standards, including Solace Message Format (SMF), JMS1.1, MQTT3.11, REST, and 

AMQP1.0. As events move through the broker, they are translated from an ingress 

messaging protocol to an egress messaging protocol for each consumer that receives 

messages. This section will discuss how the Solace SMF protocol makes use of the event 

broker's messaging components to move data from the producers to the broker and from 

the broker to the consumers only. The figure 2 shows how applications interact with a 

Solace event broker. 

 Step 1: An application initiates the Solace API and the context that acts as a 

container in which sessions are created and session-related events can be handled. A 

session is the communication channel between the API and the broker. 

 Step 2: The app creates a session and configures the properties of this session. In 

this process, the username, password, IP address, and Message Virtual Private Networks 

(VPNs) will be set. Message VPNs are managed objects on Solace event brokers that 

enable the segregation of the topic space and the clients. They also group clients connecting 

to a network of event brokers, so that messages published within a particular group are 

only visible to that group's clients. Clients in different Message VPNs are allowed to 
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subscribe to the same topics, and two clients in different Message VPNs are allowed to 

publish messages to topics that correspond to those clients’ subscriptions. Based on the 

membership of Message VPN, only a client connected to the same Message VPN as a 

particular subscriber can receive messages from that publisher. 

 Step 3: The Solace Session connection opens up a flow-controlled and bi-

directional TCP connection from the application to the broker. All communications for 

producers and consumers to send and receive messages for all Message Exchange Patterns 

are based on this bi-directional connection. 

 Step 4: The broker authenticates the connection. The basic authentication scheme 

is the default client-authentication scheme for a Message VPN. For client applications, it’s 

available using any of the Solace messaging APIs. In a basic authentication scheme, a client 

can authenticate with an event broker by providing a valid client username and password 

as its credentials. 

 Step 5: The broker authorizes the connection. Once a session is connected to the 

required services and authenticated, we proceed to the authorization stage. Based on the 

client username in the connection credentials, two profiles are applied: the Client Profile 

and the ACL Profile. The Client Profile sets the broker resources that are allowed to access 

by clients. And the ACL Profile defines which data events the client can produce and 

consume. 

 Step 6: The application’s software development kit(SDK) creates a publisher flow. 

In this process, SDK sends “last messageID sent” and “last messageID ACK received”, 

then, the broker sends “last messageID received” and “last messageID AQCK sent”. This 
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state is maintained by the application as a message flow to allow for correct re-

transmissions as required on reconnects 

 Step 7: When a message is published, Application SDK sends the message and 

decrements the available window by one. After receiving, routing, and persisting this 

message, the broker sends ACK. The application SDK then receives ACK and increments 

the available window by one. 

 Step 8(Optional): This step deals with the establishment of application 

subscriptions. Application Subscribes by adding a subscription to the queue. In this step, 

the application sends a SUBSCRIBE message with a topic and an endpoint. And API 

forwards that message. Based on the subscription endpoint, the broker adds that 

subscription to the connection or the backing queue and then sends SUBACK. 

 Step 9: The application SDK creates a consumer flow and connects to the flow. 

The application API handshakes with this flow and binds it to a Queue/Endpoint. Then, the 

Message is able to move from broker to subscriber. 

 Step 10: The Application starts to flow. When the broker sends a message, it 

decrements the available window by one. The client API then receives the message and 

passes it to the application. 
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Figure 2. The Architecture of Solace event broker for interaction[57] 

 

2.4 Modeling and Simulation Software 

In the rest of the research, we have used different simulation platforms that are described 

in this section.  

 

2.4.1 BIM 360 

Autodesk BIM 360 [52] provides tools for modeling and visualization. It is a cloud-based 

platform that allows people to create BIM (Building Information Modeling) projects. It not 
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only allows design and construction teams to work more efficiently, but it allows them to 

capture the data they create during the process to benefit operations and maintenance 

activities. By using BIM360, people can design and manage all projects in a single 

platform, and they can easily access their projects anywhere.  

 

2.4.2 Forge Platform 

Autodesk Forge [41][42] is a platform of web service APIs that allow you to integrate 

Autodesk SaaS products (such as BIM 360, PowerBI, etc.) into your workflows, and it 

helps people to access and use their design and engineering data through the cloud.  

Forge is a cloud platform that allows users to build custom applications to access Autodesk 

SaaS products. It mainly contains various foundational web services APIs, namely: 

Authentication, Data Management, Data visualization, Model Derivative, Design 

Automation, Viewer, BIM 360, and Reality Capture. These services will be described in 

detail next.  

The Authentication API, also called OAuth (Open Authorization), is for token-based 

authentication and authorization. The API generates tokens based on the OAuth 2.0 

standard for authenticating requests made to the Forge APIs and SDKs. OAuth 2.0 that is 

a method for granting access to a set of resources that uses access tokens (a token is a piece 

of data that represents the authorization to access resources on behalf of the end user). The 

basic workflow is as follows: a client (application) makes an HTTP call to its Forge 

authorization server and provides its credentials. A token is then returned to the client. 

Then, the client can make subsequent calls to various APIs on the platform. At call time, 

the platform keeps track of what resources are allowed or denied access by the token's 
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permitted range. Once the token expires, the client will have to retrieve a new token by 

going through all of these steps again. After the users obtain the token, they are allowed to 

access the services that are provided by the Forge platform. 

The Data Management API provides a consistent way to access data across BIM 360 Team, 

Fusion Team, Object Storage Service (OSS), and others. BIM 360 Team and Fusion Team 

are cloud-based collaboration tools that enable users to work efficiently together in a 

central workspace. Users are able to view, share, and review 2D and 3D file formats from 

any device such as browsers and mobile devices. BIM 360 Team is used for sharing BIM 

models while Fusion Team is for 3D engineering products like electronics and Printed 

Circuit Board (PCB) design. OSS is a service within the Data Management API that is 

responsible for managing and storing files from user’s Forge application (this service we 

will be explained in detail later). Using this API, a number of workflows can be built, 

including workflows for accessing a BIM model in BIM 360 Team and obtaining an 

ordered structure of elements, IDs, and properties to generate a list of materials in a 3rd 

party process. The Data Management API is composed of the following services: (1) 

Project Service: Navigate to a project that is from a hub. A hub is a collection of one or 

more users with their related projects. The project represents the entry point to all the 

related information and data for BIM 360 projects and Fusion projects; (2) Data Service: 

Navigate and manage the 2D and 3D designs in terms of folders, items, and versions, as 

well as the relationships between these entities. An item could be one or more versions of 

files. Each item can have multiple versions; (3) Schema Service: This allows your 

application to understand the structure and semantics of extended datatypes; (4) Object 

Storage Service: This allows your application to download and upload raw files (such as 



 19 

PDF, XLS, DWG, or RVT) that are managed by the Data Service. These files are 

independent of any Autodesk SaaS application and come from your app on the Forge 

platform. As shown in Figure 3, block A and block B represent the hub and the project, 

respectively. C is the folder of a project. A project could have one or more folders. D is an 

item in the House folder and E is a version of this item which is a file that could be 

downloaded using the endpoints exposed by the OSS. 

 

Figure 3. The hierarchy of a BIM360 project 

The BIM 360 API allows users to access, store, and download Revit models on the Forge 

platform in such a way that users do not need to directly access the BIM data. The use of 

the BIM 360 API allows us to integrate and expand our applications with the services of 

Autodesk BIM 360 . This allows us to access the BIM projects that the modelers create in 

the Autodesk BIM 360 platform. This API consists of many services such as BIM 360 

Account Admin, BIM 360 Asset, BIM 360 Checklists, BIM 360 Cost Management API, 

and so on and so forth. In our article, we will explain these three APIs that are used in our 

project: BIM 360 Account Admin, BIM 360 Data Connector, and BIM 360 Document 
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Management API. The BIM 360 Account Admin API enables you to manage your 

Autodesk BIM 360 account and its projects and members. It could create, update, and 

retrieve information about BIM 360 projects and project users. The BIM 360 Data 

Connector API exports data from the BIM 360 service modules in order for users to create 

their own custom analytics and reports. Users are able to request data (such as Admin 

information, issues, locations, cost, and so on.) from one or more of the BIM 360 services. 

The BIM 360 Document Management API could access, upload, and share 2D plans, 3D 

BIM models, and any other project documents. Most of the BIM 360 endpoints relating to 

the storage and management of BIM 360 documents are housed within the Forge Data 

Management API. The BIM 360 Document Management API is a part of the Data 

Management API and for this reason, we are able to manage and access our BIM 360 

project through Data Management API. And users are able to use the Forge Viewer API to 

visualize the BIM model in their applications. 

The Viewer is a client-side JavaScript library based on WebGL for rendering 3D and 2D 

models. It is strongly dependent on Three.js API. The Viewer allows design patterns to be 

viewed and shared on the web from a wide range of products including AutoCAD, BIM 

360, Revit, and many others. And developers can customize the Viewer's appearance and 

behavior through the Extension API within Viewer. The user would need to initialize the 

Viewer and create a Viewer instance before loading a model onto the Viewer. Then the 

Viewer communicates with the Model Derivative API who translates the model into the 

SVF/SVF2 format so that the model can be displayed on the Viewer. 

The Model Derivative API allows users to represent and share their designs in different 

formats and to extract valuable metadata. This API mainly provides file translation and 
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data extraction services. In the case of file translation, the Model Derivative could translate 

designs into the SVF, STL, OBL, and so forth formats and generate thumbnails of different 

sizes from design files. In the case of the data extraction service, this API could extract 

design metadata (such as object properties and hierarchy) and build it into our workflows. 

It could extract the parts of the model and export their geometric representations as well. 

One of the most common uses of the Model Derivative API is to translate designs into SVF 

or SVF2 formats in order to be able to display them on the Viewer that we mentioned 

above. 

 

2.4.3 DEVS and Cadmium Simulator 

We will combine different platforms with models defined using the DEVS formalism, 

which was created for the modeling and simulation of discrete-event dynamic systems. An 

introduction to the DEVS simulation is presented in [43]. First of all, the DEVS formalism 

can describe a system as a composition of atomic and coupled components. The atomic 

model consists of the set of input events (X), the set of output events (Y), the set of 

sequential states (S), the external state transition function (δext), the internal state transition 

function (δint), output function (λ) and time advance function (ta). The external state 

transition function could combine the current state and input events to generate a new state. 

The internal state transition function changes the state after a period of time. When time 

expires, the model outputs the value by the output function, and then it changes to a new 

state by internal function. Therefore, an atomic model can be specified as M=< X, Y, S, 

δint, δext, λ, ta>. The coupled model can be defined as CM=< X, Y, D, Md, EIC, EOC, 

IC, select>. In this function, D is the set of component names. Md is a basic DEVS model. 
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EIC is the set of external input couplings. EOC is the set of external output couplings. IC 

is the set of internal couplings, and select is the tiebreaker function. Because DEVS 

formalism is appropriate for event-driven models[44], DEVS could be used in many 

simulation fields. In article [45], a simulation to evaluate how the cloud and the fog can 

work together to enhance the user experience by using DEVS to model a cloud-only and a 

cloud-fog scenario. In [46], DEVS was used to build an agricultural model based on an 

equipment model and a field model based on DEVS to model a variety of agricultural fields 

with different shapes and different equipment. Similarly, in [47], the authors presented an 

electrical power system for energy planning based on DEVS which has a Storage module, 

Generator module, Load module, Dispatch module, and Transmission module. 

In addition, there are several extensions of the DEVS model, like Cell-DEVS [43] and 

Parallel DEVS (PDEVS) [48], etc. The PDEVS formalism proposed a parameter called 

confluent transaction function to solve the collision behavior and reflect the co-occurrence 

of events in the system, which cannot be modeled by DEVS formalism [48].  

A Cell-DEVS model is a defined as an n-dimensional cell space. Each cell is an atomic 

model. hence, the atomic model can be defined as TDC=< X, Y, S, N, delay, δint, δext, t, 

λ, D >. X is the set of input events. Y is the set of output events. S is the state set. N is the 

set of input values. Delay is the type of delay. δint is the internal transition function. δext 

is the external transition function. λ is the output function. t is the local computing function. 

D is a state’s duration function. When the external event occurs, the local computing 

function is executed, and then the results will be transmitted when the state changes in a 

delay. There are two types of delay which are transport delay and inertial delay. For 

transport delay, state changes must be informed in the futures, their values and scheduled 
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times are stored in a local queue. Whereas, the inertial delay prevents any scheduled change 

from taking place upon receiving an external event from a neighbor cell before the 

scheduled time. In addition, the coupled model of Cell-DEVS is GCC=< Xlist, Ylist, I, X, 

Y, η, {t1,...,tn}, N, C, B, Z, select>. X is the set of input events. Y is the set of output events. 

Xlist is the list of input couplings. Ylist is the list of output couplings. η is the neighborhood 

size. {t1,...,tn} is the size of the cell space. N is the neighborhood set. I is the set of state. 

C is the cell space set where are Cell-DEVS atomic components. B is the border set. Z is 

translation function. select is the tie-breaking selector function.  

The Cadmium simulator is a C++17 header-only simulator implemented as a library. It 

allows users to define and execute DEVS models [51]. The architecture of Cadmium has 

four levels: Simulation, Abstract modeling, Bridge, and Concrete modeling. The 

simulation level is where all the modules in charge of running the simulation of the 

implemented model are defined [51]. There are three types of classes at this level: 

Simulator classes, Coordinator classes, and Runner classes. The simulator class manages 

the abstract algorithm for atomic models. The coordinator class manages the abstract 

algorithm for coupled models. It’s a top-down implementation where Runner sends an 

advance request to all Coordinators. Then, each Coordinator receiving one of these 

messages will send requests to all its Simulators. The simulator runs the simulation of its 

model sequentially and sends results to its parent Coordinator until all the results are 

collected at the Root level. Finally, the root coordinator routes the message to Runner. The 

Abstract modeling level defines the modeling class interfaces used by the simulation level. 

The Bridge level includes the Atomic wrapper and link implementation modules for 



 24 

connecting the model and abstract model class. Finally, the concrete modeling level is for 

defining all the concrete models.  

 

Figure 4. An example of a DEVS Coupled model 

Figure 4 shows a sketch of a DEVS coupled model. In this model, the generator will send 

a “gene_out” message to the processor when the generator receives specific instructions. 

The processor then will process the “gene_out” message and generate the output messages. 

The “coupleM” model (coupled model) can be defined as follows: 

X = {in} 

Y = {out} 

D = {generator, processor} 

EIC = {(in, gene_in) } 

EOC = {(proc_out, out)} 

IC = {(gene_out, proc_In)} 
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As mentioned above, we can define the generator model (atomic model) as follows: 

generator = < S, X, Y,  dint , dext , l, ta > 

X = {gene_in} 

Y = {gene_out} 

S = { Active, Passive } 

dint(Active) = {Passive; } 

dext(gene_in, Passive) = {Active;} 

l(Active) = {gene_out; } 

ta(Active) ={0} 

ta(Passive) ={inf;} 

The format of the processor model’s definition is the same as the generator model. 

Based on these DEVS formalism structures, we can define them in Cadmium. The atomic 

model is defined in an hpp file. Figure 5 shows the templates for defining the ports and the 

states. Cadmium defines ports as a structure that contains all the input and output ports of 

this model. It’s called model_name_ports_define. Since the ports were declared in 

structure, to access the input and output ports, we need to use 

model_name_ports_defs::in_port_name and model_name_ports_defs::out_port_name. 

The state variables of the model are declared in a structure called state_type. All the state 

variables of the model must be declared inside the structure. Figure 6 shows the templates 

for the internal transition function, external transition function, output function, and time 

advance function. First of all, the internal transition function is defined as a void method 

called internal_transition(), which takes no parameters. Then, the external transition 

function is defined as a void method called external_transition. The method takes two 
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parameters, the elapsed time (e) and a bag of input messages (mbs). There is one bag of 

messages per input port. make_message_bags<> is a template data type declared in the 

Cadmium library used to declare a bag of messages for input or output ports. Next, the 

output function called output() is defined as a constant method that returns a bag of 

messages in the output ports. And the time advance function is defined as a constant method 

that returns the time of the next internal transition and takes no parameters. It is called 

time_advance(). 

 

Figure 5. The templates for defining ports and states 
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Figure 6. Templates for transition functions  

Coupled models are defined inside the main function in a cpp file. Figure 7 shows how to 

define the “coupleM” model. In coupled models, we can omit grouping all the ports in a 

single structure and declare them as shown. To assign the input and output ports that are 

already declared to a coupled model, Cadmium uses the data type Ports. Ports is a data 

type used to define input and output ports. For the definition of submodels, they are stored 

inside a variable of type Models. Models is used to define the components of a coupled 

model, which is defined in the cadmium library. It is a vector that takes as elements pointers 

to models. The name_ component _instance is the name given to the variable that stores 

the instance of the component of the coupled model or atomic model. Then, Cadmium 

provides a similar method to define EICs, EOCs, and ICs. The sets are stored as a vector 

with elements of type EIC, EOC, and IC, respectively. The function make_EIC<>() is used 
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to create an EIC structure, and it returns an element of type EIC. Function make_EOC<>() 

is similar to make_EIC<>(), but for the External Output Couplings. And make_IC<>() is 

used to create the internal couplings. they all take template parameters in a specific 

order(from-to) 

 

Figure 7. the template of the coupled models 
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Chapter  3: System Architecture 

 

3.1 Overall Architecture 

As discussed in the previous chapter, we can use a message broker as a method for 

distributed simulation. As discussed in Chapter 2, some applications for message brokers 

focus on the communications and transactions between simulation models. In those cases, 

different models run on different servers and the message broker is used to send and receive 

messages. Specifically, these applications split a large complex simulation into one or more 

federations that collaborate. The federations could run on different servers, on the web, 

desktop, or cloud computing devices. The communication between each federation is 

conducted through the message broker. For example, Al-Zoubi and Wainer [6] built a 

DCD++ system that could execute Parallel DEVS simulation on the web via RISE, which 

is a Message-Oriented Middleware. The message broker can be used not only in the 

communication of distributed models, but also throughout the entire process of the M&S 

lifecycle (problem definition, conceptual modeling, specification, implementation, and 

experimentation). 

In an M&S ecosystem, the modelling tools are used for the transformation of the conceptual 

model into a simulation model based on a certain formalism such as DEVS, Petri Nets, 

Finite State Automata, etc. In order to study the behavior and performance of a real or 

theoretical system, simulation tools can assume many forms and experimental 

environments. And visualization tools are used for presenting the simulation data in the 

form of geographical maps, graphs, heat maps, statistical charts, etc. 
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During these processes, each piece of software is independent, which means that 

interaction between different tools could be a problem. Developers of an M&S project are 

required to install many different pieces of software and spend time learning about the 

usages of the software. To extend software capabilities and simplify development costs, 

we introduced the Solace broker as a core component of distributed simulation in M&S 

projects. 

The use of the Solace means that developers do not need to install any other software. Users 

could obtain appropriate data such as model configuration files, statistical analysis results 

via the broker. 

The modeling, simulation, visualization, and analysis software could connect with each 

other through the message broker as shown in Figure 8. 

 

Figure 8. System architecture 

As seen in the figure, the software with different functions interact with each other through 

the broker. In our case, the modeling software could send a BIM or GIS model to the 

simulation engine. The simulation software would send simulation results to the 

visualization or analysis software as well. The modeling software can publish scenario 

models related to the topic they create, and then any application subscribing to the 

corresponding topic can receive the model and use it for simulation or other uses. A 
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simulation tool that runs a program can also publish the results to another topic so that 

other applications can use these results for visualization and analysis, etc. 

In the next chapters we introduce a prototype implementation, in which we used Cell-

DEVS as the formalism of the simulation model, the Cadmium simulator as the tool for 

Cell-DEVS simulation, and Autodesk Forge as the tool for modeling and visualization, 

nevertheless the chosen formalisms and tools can differ. Figure 9 shows the three major 

components of the system architecture that were defined and implemented during this 

research, namely, the Forge platform, the Solace Event Broker, and the user’s desktop. 

 

Figure 9. The Proposed Architecture 

As noted above, Forge is a web service API platform that allows users to integrate 

Autodesk SaaS products. It is a web-based application and runs on the Forge Server. Since 

it allows people to access BIM 360 services, it is used as a model tool. And because Forge's 

Viewer service is a WebGL for rendering 2D and 3D models, we use it as a visualization 

tool in our project as well. 

Cadmium is a C++17 header-only simulator implemented as a library. It allows users to 

define and execute DEVS and Cell-DEVS models. In our project it works on the local 

desktop. When we use Cadmium for Cell-DEVS simulation, we need a Cell-DEVS 
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configuration file. Therefore, after obtaining the BIM model file from Forge, the BIM-to-

DEVS parser converts the BIM model file into the appropriate format for Cadmium. In 

addition, for the Forge application to be capable of reading and displaying simulation 

results from Cadmium, the data refinement program is required to convert the simulation 

results to a Forge-readable format. 

Using this method, one or more clients can receive the data when the publisher decides to 

send the message. Next, we will detail the structure of each of the components. 

 

3.2 The Forge Component 

The Communication between Solace and Autodesk Forge is based on the Forge BIM-to-

DEVS architecture presented [52], which uses an architecture that allows interaction 

between a BIM model and a DEVS model using the Forge platform. Based on this original 

idea, we introduced new methods used to connect Forge publishes the model to the Solace 

broker, introduced in Figure 10. 

 

Figure 10. Software architecture using the Forge platform 
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Our architecture uses some of the foundational services of the Forge cloud platform (which 

allows users to build custom applications using various web services), namely 

Authentication, Data Management, Model Derivative, Viewer, and BIM 360. 

To publish a model to the Solace broker, our first step is accessing the Revit models on the 

Forge platform. This stage occurs on the server side of the platform. To do so, we must use 

authentication, BIM 360 and Data Management services. The Authentication service is 

used for token-based authentication and authorization, and it enables users to call Forge 

APIs and use its services. The BIM 360 service enables users to integrate BIM 360 services 

onto the Forge platform. And the Data Management service can access the data from BIM 

360, Fusion team and OSS and display them on Forge. We should first obtain permission 

to access BIM 360 data. Once we login to our Forge platform through the Authentication 

API, it will redirect the user to an Autodesk login page where we can authorize our forge 

platform to access the BIM 360 data. The authentication API will then return an 

authorization code through a callback URL (Uniform Resource Locator). With this 

authorization code, we can send a request to Forge server for an access token. Once the 

token has been obtained, we are then allowed to access the BIM 360 data (Revit Model) 

via the Forge platform. 

Next, we use the Data Management API to navigate and access which project and model 

we want to use. In order for our model to be presented in the browser, we need the Viewer 

and Model Derivative APIs. As discussed in Chapter 2, the Viewer service is a JavaScript 

library that allows us to view and share BIM models on the web. This API is the client side 

of the Forge application. As mentioned earlier, we would need to translate the model into 

SVF or SVF2 format if we wish to present the model through the Viewer. Therefore, the 
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Viewer API will communicate locally with the Model Derivative API to translate and 

retrieve data in the model. 

 

Figure 11. The process of fetching data 

Figure 11 illustrates how to use the Model Derivative API for translating and retrieving 

data. After we obtain the BIM 360 file through the Data Management service, a request for 

translation will be sent to the Forge server via “POST job” endpoint of the Model 

Derivative API. Then, the user could get a manifest file. The manifest file is a JSON 

document that contains all the information about all the model's translations that you've 

requested so far. Once the translation process completes, we can locate information about 
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the SVF-format translation such as the Uniform Resource Name (URN) of the model by 

“GET derivative” endpoint. Then, the model could be displayed on the Forge platform by 

embedding the string value of the URN of the model into an instance of the Viewer object. 

When the user has decided the model that they want to publish in a model database, the 

process proceeds to the Data Extraction stage (shown in figure 3). We will extract 

corresponding data from the Revit Model. The Model Derivative service and the Viewer 

service has also been used in this stage. To extract the model, the Model Derivative API 

will be firstly used to get the whole objects’ manifest file. Then, the Viewer API will scan 

the whole model to make sure which objects should be fetched and then communicate with 

the Model Derivative API to extract the information from the manifest file. 

A variety of data scanning methods are available through the Viewer API: (1) bounding 

boxes, (2) ray interactions and (3) box colliders. A bounding box is an invisible three-

dimensional space that contains an entire object and all the edges are facing the cardinal 

direction. In this method, a bounding box is returned for each object by fetching the ID 

from the object's database as a parameter. Complex shapes can be accurately extracted 

using the ray intersection method. This method generates a ray for each pixel intersecting 

the bounding box of the BIM model and determines the objects by selecting each object's 

database ID in an array and a ray, an instance of ray caster. Then, the extraction records 

each ray intersection as points to a voxel format with the object type. The box-collider uses 

an SQLite database for extracting the metadata from the BIM geometry. We send queries 

from the client-side viewer with the model’s properties such as model's id, and the type of 

objects (walls, doors, windows, etc.). Their respective database ids are transmitted to the 
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server for extracting the BIM data. Next, the server downloads the list of files related to 

the project and the database of properties from Forge. 

At this stage, the Model Derivative API is used for extracting information about all objects 

within the model first. As shown in figure 4, the model derivative service will return the 

information such as the Database ID and the type of the object through “GET metadata” 

endpoint. Once the fetch objects are finished, we use the bounding box method to obtain 

the overall length and width of the model and then divide this configuration into smaller 

cells. We now turn to the ray intersection method. Each Database ID of ray intersection 

points will be compared to the Database ID of the objects we extracted in the first place. If 

the intersection point has the same Database ID, then the position of the intersection point, 

Database ID, and the type of the object will be recorded. After going through all the 

intersection points, we can get a whole configuration file. Once the model has been 

extracted, we need to connect to the Solace event Broker for model publication. This 

process will be explained later.  

For the data visualization component, we used the Viewer service and D3 JavaScript 

library which allows people to bind data to a document object model to show the Cell-

DEVS simulation results, which maps these results on the BIM model. 

As we discussed in Chapter 2, Cell-DEVS combines DEVS and cellular automata where 

each cell acts as a DEVS atomic model. It is natural to use the point-cloud technique to 

visualize Cell-DEVS models, because we can bind each point to a cell in a Cell-DEVS 

model. A point-cloud is a dataset of points under a coordinate system. Each of these points 

could contain varied information, including three dimensional coordinates, color, 

classification, intensity, time, and so on. Therefore, we can map Cell-DEVS simulation 
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results into the point clouds, as the simulation results of a cell in Cell-DEVS can contain 

varied information such as status, position, time, etc., and a point in a point cloud could 

carry this information and show it using different point sizes, colors, and etc. 

Considering the fact that our models are built using Cell-DEVS, and having seen that the 

point cloud technique is well suited to show the results of the Cell-DEVS simulation, we 

now need to address how to use this technique in BIM model so that the Cadmium 

simulation results will be shown on the Forge platform. We will now detail how we use 

this technique to let Cell-DEVS simulation shows on the Forge’s BIM model. 

Before visualizing the results that we received from the Solace broker directly, we need to 

use D3.js to manipulate the simulation results first. D3.js is a tool that helps you create 

interactive graphics and charts using data. It works with common web languages like 

HTML, SVG, and CSS. It combines visual elements with a data-driven approach to make 

your graphs and charts engaging and dynamic. The d3.csv() function can load and parse 

the CSV (Comma-Separated Values) file that is sent to the Forge server and turn that data 

into an array of objects. Then, we can use these data for visualization. In order to match 

the filtered data to the BIM geometry, the coordinates of the cells in the array must have 

the appropriate offset. In this case, we use the THREE.BufferGeometry() function. 

BufferGeometry is a representative of mesh or point geometry. It stores information such 

as vertex position, colors within a buffer. The THREE.BufferGeomery() method is used to 

create a BufferGeometry. When we obtain the BufferGeometry of the BIM geometry, each 

cell can find a corresponding position in the geometry. Once the data has been mapped, it 

can be read and displayed within the Forge Viewer as a point cloud geometry. We then use 

the THREE.PointCloud()function to generate the points. This function is based on the 
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point’s material which is the size and color of the points and the BufferGeometry to create 

a point cloud geometry. This function will use two parameters: the point’s material which 

is the size and color of the points, and the BufferGeometry to generate the points. And each 

point will be in a corresponding cell in BufferGeometry. Finally, the d3.select().append() 

function can append a new element with a specific name as the last child of each element. 

We use it to append information, cell’s status, into each point, so the point could show the 

corresponding color and attributes within the visualization. The point clouds then will 

update at every timestamp as part of the animation. The UI provides a countdown timer to 

allow the Viewer to know how much time remains until the end of the simulation. 

 

3.3 The Cadmium Component 

Figure 12 shows the Cadmium component, which runs on the user’s local devices. It 

includes three subcomponents: a BIM-to-DEVS parser, the Cadmium simulator, and the 

Data Refinement module. 
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Figure 12. Software architecture using Cadmium simulator 

The BIM to DEVS Parser is built as a python script which allows the received data to be 

converted into a format that can be used for the Cadmium simulator. The parser makes use 

of the coordinates system provided by the BIM data extraction to create a Cadmium 

configuration file. This tool analyzes the ray trace of the BIM model and generates the 

corresponding configuration file for the simulation of the Cell-DEVS model. The script 

first detects the scenario dimension based on the point set extracted from the BIM model. 

Then, it divides the space into smaller cubes and classifies each ray trace point with the 

cube that contains it. For each of these cubes, the script counts the number of points inside 

and classifies them according to their object type. Then, this converted JSON file could be 

used for Cadmium Cell-DEVS simulation. For each of these cubes, we first count the 

number of points in a cube and all these points are stored as tuples with the types of points 

and object IDs. Then, we count the number of point types that are in this cell and the 

number of points in each type. Finally, we can get the cell’s type by comparing the number 

of points in each type. The type of point that has the most occurrences is used as the cell 

type. After we define the type of each cell, we add a Cell-DEVS default configuration (for 

instance, the default concentration of CO2 in a cell). Then, we use a dictionary to store the 

value of each cell and the whole cells will be stored in a list. Once the value is stored, we 

save the outcome in a JSON file.   

When the simulation finishes, it will generate a text file containing the simulation results 

that we need. This state file logs the status of every cell at each timestamp, using the format: 

“State for model CO2_lab_(x, y) is <counter, concentration, type>”. For instance, when 

we get “State for model CO2_lab_(1,7,0) is <-1,500,-100>”, “(1,7,0)” represents the 
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position of a cell as Cartesian coordinates, and “<-1,500,-100>” represents the cell’s status. 

In this case, the first number is a counter that records the number of people in the simulation 

scenario and -1 is a default number. The second number is the concentration of CO2. And 

the third number represents the types of the cell (for instance, if it is a wall, a window, air, 

and so on).  

However, the Forge platform needs to use CSV files to visualize the simulation results. 

These files should contain 6 parameters: time, x coordinate, y coordinate, previous value 

(for instance, the previous CO2 level in a CO2 simulation), current value (i.e., CO2 level) 

and the cell type. We use the Data Refinement subcomponent to convert the previous text 

file into a new CSV file. 

The Data Refinement subcomponent is a python script that receives the results file from 

Cadmium, and it parses each line. Since each output event is represented in a separate line 

in the file, we can use regular expression operations to distinguish it from the cell’s state 

line. Then, as explained above, the format of cells’ position is “(x, y)” and the format of 

cells’ state is “<counter, concentration, type>”. Therefore, we could use find() method to 

determine the position of each parameter. Once we fetched all these parameters in one line, 

we output this line to an output file. Then continue until the end of the input file. 

 

3.4 The Solace Component 

Once the Forge or the Cadmium component decide to publish or subscribe a message, we 

need to connect them to the Solace Event Broker. Any software that wants to connect and 

communicate with the Solace broker must integrate the Solace API services because, as 
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explained earlier, an application needs to connect to the Solace session to send and receive 

messages. The Solace session is the basis for all clients to communicate with the Solace 

message router. And Solace API can help users to create and connect Solace session. 

Based on the Section 2.3.1, when we now discuss how to interact with the Solace broker. 

To do this, there are 4 main steps: (1) API Initiation; (2) Session Creation; (3) Session 

connection; and (4) Flow creation. In the first step, we use the solace.init () function to 

initiate the Solace API. This function allows the Solace session to be created. Next, the 

Solace session allows the application to send and receive messages from the Solace broker. 

The second step focuses on creating and configuring the session with username, password, 

localhost address, etc. through the function solace.createSession(session’s properties). In 

the next step, we use the session.connect() function to let our application connect to the 

session. This function initiates the TCP session and send CONNECT message to the 

broker. Once the broker authorizes the connection, we are able to create publish flow and 

subscribe flow through the publisher.session.send(message, topic) method, which allows 

users to send and receive event messages. The parameter of the message could be the BIM 

data or simulation results and the topic is the address we want to send so that the broker 

knows where the destination is. On the subscriber side, we use the 

subscriber.session.subscribe(topic) function to receive messages and the event handler 

function message.getBinaryAttachment() provided to extract the model or simulation data 

from the event message. After the communication is complete, we use the function 

session.disconnect() to close the channel and then the applications cannot send and receive 

messages again. 
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We now show how these three components connect together and interact with each other. 

The entire communication process between Cadmium and Forge is shown in Figure 13. 

 

Figure 13. The process of communication between Forge and Cadmium 

Initially, the modelers create their models on BIM360, and these models can then be 

uploaded to the Forge platform. As mentioned above, if the modelers wish to share models, 

the Forge platform can retrieve data from the BIM project via the Model Derivative API. 

Once the Forge platform has finished extracting the data, it publishes the data to a topic 

such as "forge/bimmodel" (Step 1 in figure 3). The topic has the format: a/b/... /c, where a, 

b, c, and so on are identifiers in a hierarchical scheme that you've designed that allows you 

to classify your data. 

Step 2 executes on the Cadmium user’s side. To do so, we integrate the Solace API into 

the BIM to DEVS Parser, which allows the received data to be converted into a format that 

can be used for the Cadmium simulator. The BIM to DEVS parser will first connect to the 

broker and obtain the message by subscribing to the corresponding topic. The raw JSON 

file will be fetched from the message payload. This file will be stored on the user's local 

machine and then be converted to Cadmium Cell-DEVS configuration file. Users can use 
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either the converted file for the Cadmium simulation or the raw file for other applications. 

Then, the Cadmium simulator runs the simulation based on the configuration file and 

generates a "state.txt" file that records the states of every cell at every time step. 

Next, we extract the information such as time, coordinates, cell’s state, and cell’s type and 

then generate a CSV file at Data refinement stage. Next, we connect to the Solace broker 

and create a new Solace session and publish the CSV file to a new topic (“simu/result”), 

which is the step 3 presented in figure 13. 

Finally, the Forge application connects to the same Solace message router and subscribes 

to the topic “simu/result” in order to obtain the CSV file and store it on the server. The 

Forge application visualizes the simulation results through the Forge Viewer or analyze the 

results through other Autodesk products. In our project, we use the Forge Viewer to 

visualize these results on BIM model by point-cloud technique that we explained above. 

In conclusion, this is the entire process of allowing the Forge application and the Cadmium 

simulator to interact with each other through the Solace Event Broker. 
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Chapter  4: Study Cases 

In the previous chapter, we presented the structure of our proposed framework using 

SOLACE for distributed simulation. In this chapter, we will discuss an example of using 

the software developed and an implementation of the framework using Cadmium, the 

Solace broker, and the Forge application. Additionally, we will discuss the proposed 

framework from an application point of view and include a case study implementation to 

support it. 

As described in Chapter 3, the process of model transmission involves three steps – 

extracting the BIM data, publishing/subscribing the message, and converting the data to a 

Cell-DEVS configuration. Initially, the users choose a model to share on the Forge 

platform, and the application scans the model to fetch all objects and record them in a JSON 

file. Upon completion of the extraction process, the Forge application will send a JSON 

file to the Solace broker and wait for other users to subscribe to it. Upon receiving the 

message, the parser will convert the data into an appropriate format for the Cadmium 

simulator. The process for transmitting simulation results is similar – the application will 

convert the format of the simulation results, send them to the Forge platform through the 

Solace broker, and visualize them using the point-cloud technique. 

We integrated the Solace API into the Forge platform and Cadmium simulation tool. The 

following section will delve into the implementation details, demonstrating how the 

processes work in practice. 
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4.1  BIM Model Transmission 

As discussed in section 3.2, when users decide to send a BIM model, the Forge application 

will access its Revit model through the BIM 360 service and the Data management service. 

Then, the Forge application will send a request to its Model Derivative API to access all 

the information about that BIM project. All the processes described above are based on 

their original architecture or application. However, in the Data Extraction step, it is 

necessary to determine which information needs to be extracted and how the Solace API 

can be integrated to enable data transmission. This is the primary focus of our current 

implementation efforts. Figure 14 shows an excerpt of the whole architecture (explained 

earlier in Figures 9 and 13), in which we focus on the “Extract BIM Data” box, discussed 

in this section. This component retrieves the model through the Model Derivative Service 

to get whole objects’ manifest file and then it scans the BIM model to extract the 

appropriate information from the manifest file. 

 

Figure 14. The cut of the whole system 

The methods have been implemented according to the definitions provided in section 3.2. 

As discussed in that section, the data scanning methods were implemented using the 

bounding box and ray-shooter methods. To do this, the Data Extraction process, records 

the total length and width of the scenario for calculate the bounds of the room.  
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var cellSize  = 0.25; 
const bounds = viewer.model.getBoundingBox();   

const width = Math.floor((bounds.max.x - bounds.min.x) / cellSize);   

const height = Math.floor((bounds.max.y - bounds.min.y) / cellSize);     

 

We first use the getBoundingBox() function for returning the overall length and width of 

the model. This is calculated by subtracting the minimum coordinate from the maximum 

coordinate (bound.max-bound.* methods). In order to record all objects efficiently, we 

divide the layout into smaller cells of size 0.25m×0.25m×0.25m. Then, the layout of length 

and width will be represented as the number of cells, i.e., the height and the width above. 

In addition, the Math.floor() method is used for rounding down and returning the largest 

integer less than or equal to a given number. 

After this step, we must record all the objects in the model. Then, the ray-shooter method 

can generate the corresponding number of rays for those cells. We generated rays to scan 

the bounds to determine the object type of each cell by comparing the objects with database 

ID. Once we make sure the object type and position of a cell, we store their information, 

and add color for the cell based on its object type (for example, “Wall” is black, and 

“Window” is red). The colors are represented as a combination of red, green, blue, and 

opacity values, each ranging from 0 to 255, as follows.  

for (let j = 0; j < height; j++) {   

   for (let k = 0; k < width; k++) {   

        ray.origin.x = bounds.min.x + k * cellSize;   

        ray.origin.y = bounds.min.y + j * cellSize;   

        const intersection = viewer.impl.rayIntersect(ray, false, dataID);      
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        if (intersection){   

        //getting the intersected points to be used for Cadmium input    

            for(let c = 0; c < data.length; c++) {   

                if(data[c].id == intersection.dbId)   

                   intersectionData.push({"point":intersection.     

                    intersectPoint, "dbID":intersection.dbId,  

                         "type":data[c].type});   

 

For each cell, we set the x and y coordinates of the origin property of the ray object. Then, 

*.rayIntersect() is called with the ray object as the first argument, false as the second 

argument (which means the method should not perform any occlusion tests), and dataID 

as the third argument. The dataID is the database ID of an object from the manifest file. If 

the rayIntersect() method returns an object, it means that the ray intersected an object in 

the viewer. In this case, the code loops through an array of data (which is a data list 

extracted from the manifest file), and checks if the dbId property of the intersection object 

matches the id property of any of the data objects. If there is a match, the code pushes an 

object to the intersectionData array, which contains the intersection point of the ray with 

the object, the dbId of the object, and the type of the object.   

Then, we add the color information into this intersection data. Different type of objects will 

have different value. Figure 15 shows an example of the output from this module as a JSON 

file. It records the position coordinates of each intersection point we explained above, the 

databaseID from BIM360 database, and the object type. Each object type has a specific 

databaseID, for example, “Wall” is 3053, “Door” is 3127, “Window” is 3170. 
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Figure 15. The JSON file of BIM data 

When the extraction finishes, the file is sent to the Solace broker, as seen in in Figure 14 

(the arrows from the Solace API to forge/bimmodel).  

 

Figure 16. The architecture of sending message 

As mentioned in section 3.4, to send or receive a BIM model through Solace, we must 

connect to Solace first (the process of building connection between the Solace session and 

the Message VPN is described in figure 16). There are three steps to connecting to the 

Solace event broker: loading and initiating the Solace factory, creating a Solace session, 

and connecting to the session.  

The first step is loading and initiating the factory (or context). The factory acts as a 

container for sessions, as seen in figure 16. As discussed in Chapter 3, the Solace session 
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is embedded inside of the Solace factory. It encapsulates the network IO and event 

notification threads, and it is the first entry point to the Solace API. The following snippet 

shows part of the implementation of this process. We generated an instance of Solace 

Factory named window.factoryProps at the global scope. As explained earlier, to generate 

the Solace session, we first need to generate the factory . Before initiating the factory, we 

set the version of Solace API that the factory will use. And then, the *.init() method from 

Solace API will help us to initiate the factory as shown in figure 16.  

// Initiate factory with the most recent API defaults   
window.factoryProps = new solace.SolclientFactoryProperties();   

factoryProps.profile = solace.SolclientFactoryProfiles.version10;   
solace.SolclientFactory.init(factoryProps); 

 

The second step is creating the Solace session part in Figure 16. The session is the 

communication channel between the API and the broker. It is responsible for client 

connection, publishing, and receiving messages. The factory is used to create a session by 

defining the properties of a session. The following code snippet shows a part of this 

implementation 

try {   

    publisher.session = solace.SolclientFactory.createSession({   
    // solace.SessionProperties   

    url: "ws://localhost:8008",   
    vpnName: "default",   

    userName: "cl1",   
    password: "",   

         });   
}   

// connect the session   

try {   
    publisher.session.connect();   
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}         
 

We create a Solace session instance called publisher. Then, the *.createSession() creates a 

session with the parameters: URL, VPN name, and username.  

The last step is connecting the session to a Solace message router. For this, we only need 

to call the *.session.connect() function and this will create the connection shown figure 16 

between the Solace session and the Message VPN. This is also the connection from Data 

Extraction to Solace broker in Figure 14. 

Based on this session, we added the topic name “forge/bimmodel” to the publisher. As 

mentioned in section 3.4, the topic has a hierarchical scheme to classify the data. In our 

case, “forge” is the root topic, and “bimmodel” is the subtopic. The date from BIM 360 

will be published to this topic through our Forge app. Then, the Forge application connects 

to this specific topic automatically when the messages are published, as shown in Figure 

16. 

As for the process of connecting the BIM-to-DEVS parser to the Solace broker, this is 

basically done in the same way as the connection of Forge platform to the Solace Broker. 

After the Forge platform and the BIM-to-DEVS parser connect to the Solace broker, these 

two applications can communicate with each other at different times and locations. 

Next, we will discuss the implementation of the BIM-to-DEVS parser, which allows the 

received BIM data to be converted into Cadmium scenario configuration, as shown in 

Figure 17. 
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Figure 17. Cadmium component structure (excerpt) 

As discussed in section 3.3, The BIM to DEVS Parser allows the BIM data to be converted 

into a format that can be used for the Cadmium simulator. We adapted the data to a 

corresponding format and change the offset of all coordinates by finding the minimum 

coordinate for each dimension, so that we could get an unbiased BIM data and store it in 

a dictionary named data_unbiased. Then we went point by point from 

data_unbiased.items() as shown in snippet to identify which cell this point corresponds to 

and appended this point into the list: data_cell[cell], in this case, each cell is a cubic meter. 

 data_cell = dict()   
 for coordinate, data in data_unbiased.items():   

    cell = tuple(int(coordinate[i] // cell_size[i]) for i in range(len(cel_size)
))   
     if cell not in data_cell:   

         data_cell[cell] = list()   
     data_cell[cell].append(data)   

 

After computing the scenario shape (which is the transform from the original points 

position to cell position) and adding all the cells to the scenario configuration, we added 

the custom information for those cells such as the concentration of CO2, which is the aux 

in snippet. The get_cell_type() function will count how many points of each-type points 
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are in the cell to determine the cell’s type based on the list data_cell[cell] we obtained 

above. 

 cells = list()   

 for cell_id, data in data_cell.items():   
     aux = {   

         'cell_id': cell_id,   
         'state': {   

             'concentration': 500,   
             'type': get_cell_type(data),   

             'counter': -1,   
         },   

     }   
     cells.append(aux)   

 

Figure 18 shows the output (or the JSON file) from the BIM-to-DEVS parser module in 

figure 13/17. Compared with the output file from the model-extraction component, it 

becomes more readable. The file adds the default configuration such as the type of the 

CO2 spread, CO2 level, number of people, and so on. In addition, it converts the x, y, z 

coordinates into the more readable cell’s position which is the “cell_id”. 
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Figure 18. The converted-configuration file 

In Figure 18, the object "scenario" represents the default set of the entire model. Within 

this object, the parameter "wrapped" denotes the type of border cell used. If the border cells 

are wrapped, they can communicate their results to neighbors on the opposite border. On 

the other hand, non-wrapped borders have fixed boundaries. If a cell is outside the cellular 

space, it will return an undefined value. The value "transport" corresponds to one type of 

delay used for the Cell-DEVS model. As we mentioned in Chapter 2, there are two types 

of delay: transport delay and inertial delay. In the case of transport delay, state changes 
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must be communicated in the future. The values and scheduled times are stored in a local 

queue. In contrast, inertial delay prevents any scheduled change from occurring upon 

receiving an external event from a neighboring cell before the scheduled time  

The "default_cell_type" represents the cell type defined in the Cadmium atomic model file. 

It can be assigned any name based on the modeler’s definition used in the atomic model 

file. The "default_state" refers to the default cell states. In the default case, the cell type is 

air (represented by the number -100 in the figure) with a CO2 concentration of 500 ppm 

and no occupants (counter = -1). In the "default_config" setting, "CO2_cell" represents the 

default concentration of CO2 in a cell. Here, "conc_increase" indicates the incremental 

increase in CO2 level within a cell that contains a CO2 source. The base level of CO2 is 

500 ppm, the time used to calculate the concentration increase is 5 seconds, the CO2 level 

around windows is 400 ppm, and the CO2 level around vents is 300 ppm. 

Next, the "neighborhood" defines a finite set of nearby cells for each cell. In our scenario, 

we used von Neumann's neighborhood, which enables communication with four nearby 

cells (North, West, South, East), and “range : 1” means that a cell can only affect cells that 

are one grid away from it. The "shape" represents the overall configuration of cells in the 

scenario, with dimensions of 31×31×8 cells. Finally, "cells" is an array that includes all the 

cells in the scenario and their initial configuration. For instance, in Figure 18, the cell at 

position (0, 0, 1) has no occupant (or CO2 source), a CO2 level of 500ppm, and it is a wall 

(identified by the type -300).  

After discussing the overview of the entire process, we will now show how this process is 

presented within the Forge app. Figure 19 shows the user interface of the Forge app. As 

previously discussed in section 2.4.2, the sidebar serves as the directory that enables users 
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to locate and access the BIM 360 project through Forge. The right canvas represents the 

Viewer, which allows for visualization of the project. Within the Viewer, there is a default 

toolbar (labeled as D) that provides various functionalities for inspecting the entire BIM 

model, such as moving and rotating the view. Additionally, a customized bar (labeled as 

E) is dedicated to rendering our 3D model, and this bar will be further explained in section 

4.2. Similarly, buttons A, B, and C consist of a customized bar. These buttons facilitate the 

connection to the Solace broker and the publication of the BIM models. Specifically, button 

A establishes the connection to the broker, button B is responsible for publishing the 

models, and button C allows for disconnecting from the broker. 

 

Figure 19. The interface of the Forge app 

On the publisher side, we choose this specific house as the model to be transferred. To 

initiate the process, we establish a connection with the broker. Once the connection is 

established, we can proceed with sending the model. As depicted in Figure 20, the console 

section displays the app's successful connection to the broker and the designated topic, 
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which in this case is "forge/bimmodel." Furthermore, the console indicates that the app is 

sending the message to the broker. 

 

Figure 20. The connection of Forge and Solace 

Once the publishing process is successfully completed, the console log will display the 

message "Message Published." Additionally, a new canvas will appear below the screen, 

presenting the model that has been extracted from the Revit model (as shown in Figure 21). 

And Figure 22 provides a comparison between the original model (Figure 22.a) and the 

extracted model (Figure 22.b). 
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Figure 21. The interface after the publishment 

 

(a) The original BIM model 

 

(b) The extracted model  

Figure 22. The comparison of the original model and the extracted model 

On the subscriber side, the process is simpler. As shown in Figure 23, our terminal serves 

as a “subscriber”. Once users run the BIM-to-DEVS parser, the terminal will display that 

we have successfully connected to the Solace broker using direct messaging. The topic 

name remains ‘forge/bimmodel,’ as mentioned earlier for the publish side. Subsequently, 

the parser enters a listening mode for the messages that are sent to the topic. 
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Figure 23. The terminal of running BIM-to-DEVS Parser 

When the publisher (the Forge app) sends the BIM data to the broker, the parser receives 

this raw data and converts it into a Cadmium configuration, as depicted in Figure 24. The 

converted files will be stored in the "parserDemo/.." directory. The "raw.json" file contains 

the BIM data shown in Figure 15, while the "model.json" file holds the converted 

configuration displayed in Figure 18. 

 

Figure 24. Receiving the files 

The parser will continue listening to the topic until we choose to exit the application. When 

we decide to stop messaging, the parser will disconnect from the broker and terminate the 

application, as illustrated in Figure 25. 
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Figure 25. Teminating the service 

 

4.2 Simulation Results Transmission 

As discussed in the previous parts of this chapter, we implemented an application for using 

Solace to transmit BIM models, and later, we performed the process of sending data from 

Cadmium to Forge through the Solace broker as mentioned earlier. This section of the 

chapter will focus on the simulation results from the Cadmium simulator and how these 

results are transmitted and displayed on the Forge platform.  

From section 3.3, once the Cadmium simulator receives the scenario configuration and 

runs the simulation, it generates two files, one containing the model’s output messages, 

and the other the internal state changes, as shown in Figure 26. The output message file 

can be used to debug as well as to identify the ports of an output stream. On the other hand, 

the simulation results can be studied by analyzing the state changes. 
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Figure 26. Cadmium simulation execution 

Figure 27 illustrates parts of the simulation output at 0 seconds, 10 seconds, and 98 

seconds. The file records the time on the first line and sequentially lists each cell's state, 

including its position, counter, CO2 level, and cell type. 

 

Figure 27 the fragment of the simulation results 

Once the simulation is complete, the Data Refinement program converts the output file into 

an appropriate CSV format, as depicted in Figure 28 (or Figure 13). 
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Figure 28. The process of data conversion 

As discussed in section 3.3, the Data Refinement is a Python script. When this module 

receives the text file, it first converts it into a CSV file. Since simulation results can be 

quite large and the message size for Solace transportation is limited, we divide the data into 

several chunks and send them through the broker one by one. We will explain this aspect 

later; for now, let's focus on illustrating how we perform the data conversion. 

The "convert_to_csv" function takes two file objects, "in_file" and "out_file," as 

arguments, representing the input and output files, respectively. The function reads each 

line of the input file and processes it based on its content. 

During the conversion process, each line of the output file contains the following columns: 

time, x, y, previous_state, current_state, and type. To handle this, we create a dictionary 

called "states". This dictionary is used to store previous states associated with specific 

coordinates (x, y, and z). When processing new data, the function checks if the current 

coordinates are already present in the states dictionary. If found, it records the previous 

state's value for inclusion in the CSV output. 

Regular expressions are employed to differentiate between time values and data values. 

Time values are identified by a pattern of consecutive digits, enabling the function to set 

the current time appropriately. Non-time lines are further processed to extract relevant data. 
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From the format of the state file, the function extracts the three values, x, y, and z, from 

the substring between the first occurrence of '(' and the first occurrence of ')'. It then 

converts these values to integers using list comprehension. Similarly, it extracts the 

parameters 's1', 's2', and 's3' from the substring between the last occurrence of '<' and the 

last occurrence of '>'. The function then converts these values to integers using list 

comprehension. 

After completing the data conversion, we adopted a strategy to divide the large CSV data 

into smaller chunks to enhance transfer efficiency. Each data chunk was encapsulated in a 

Solace message and subsequently published by the Solace broker. The entire process is 

illustrated in Figure 29.  

 

Figure 29. The process of message transportation 

The first step in the process involved loading the CSV data into memory using the pandas 

library, creating a DataFrame to store the dataset. The pandas library is an open-source data 

manipulation and analysis library for the Python programming language. It provides data 

structures for working with structured data, such as tabular data, time series, and 

heterogeneous data. This approach was chosen for its ease of data manipulation due to its 

intuitive and user-friendly API that simplifies common data operations, such as filtering, 

sorting, joining, and grouping. It enables users to perform data transformations and analysis 

without the need for complex coding. The DataFrame was then transformed into a CSV 
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string. This string represented the payload of the Solace messages that would be transmitted 

through the messaging service. 

Next, we created a message builder responsible for constructing the Solace messages. The 

builder was initialized with properties such as "sample_id", "application" and "language" 

providing relevant metadata to the messages being published. These are custom properties 

that can be attached to the outbound message being built. These properties provide 

additional metadata or information related to the message content. In our program, the 

property "application" represents the name of the application that generated the message. 

The "language" indicates the programming language we used to create the message 

content. 

With the setup complete, we proceeded to publish the data.   

# Prepare outbound message payload and body   

outbound_msg_builder = messaging_service.message_builder().with_application_message_id(
"sample_id").with_property("application", "samples").with_property("language", "Python"
)   
TOPIC_PREFIX = "simu/result"   
# Get the size of each chunk in bytes (approximately 500KB)   

chunk_size_bytes = 500 * 1024   
try:   
   count = 1   

   #while count <= 5:   
   for chunk_start in range(0, len(message_body), chunk_size_bytes):   

       #if count > 5:   
           #break   

       chunk_end = chunk_start + chunk_size_bytes   
       chunk = message_body[chunk_start:chunk_end]   

   
       topic = Topic.of(TOPIC_PREFIX + f'/{count}')   

       outbound_msg = outbound_msg_builder \   
                       .with_application_message_id(f'NEW {count}')\   

                       .build(f'{chunk}')   
       direct_publisher.publish(destination=topic, message=outbound_msg)   
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       print(f'Published chunk {count} on {topic}')   

       count += 1   
       time.sleep(1)   

As show in the code snippet, to prevent large message sizes, the CSV data was divided into 

smaller chunks. The start and end indices of each chunk were defined based on the 

predetermined chunk size of 500KB, and the chunk was extracted from the CSV string 

representation accordingly. 

With the Solace topic ready, we built a Solace message using the previously configured 

message builder. The current chunk was set as the payload for the message, and a unique 

application message ID was assigned to each message to facilitate efficient message 

routing and management.  

This was achieved by using a predefined topic: "simu/result," followed by an incremental 

count value to ensure a distinct topic name for each chunk. For example, topics such as 

"simu/result/1," "simu/result/2," and so on were created for the respective chunks. 

As mentioned in Section 3.4, the topic structure followed a hierarchical scheme with the 

format "a/b/... /c". Consequently, on the subscriber side, users could subscribe to the topic 

"simu/result/*" to receive all the chunks from the publisher. 

Finally, we published the outbound message to the respective Solace topic using a direct 

publisher.  

On the subscriber side, once the Forge app receives the complete simulation results, it 

proceeds to save the file and utilizes the D3.js library for CSV file manipulation and the 

point cloud technique for visualizing simulation data within the Forge Viewer, as 

elaborated in Section 3.2. 
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Figure 30 displays the terminal console of the Data Refinement program, functioning as a 

publisher. When the Cadmium simulator concludes the simulation, this program converts 

the simulation results into a CSV file. Following completion of the conversion, it 

establishes a connection with the Solace Broker and progressively publishes the chunked 

data via the directed publish method. Upon the successful publication of the entire 

simulation results, the app unsubscribes from the topic and disconnects to the broker.  

Figure 30 displays results obtaining by the Data Refinement program functioning as a 

publisher. The application starts converting the simulation results into a CSV file, and 

following completion of the conversion, it establishes a connection with the Solace Broker 

and progressively publishes the chunked data via the directed publish method. Chunks are 

sent to the subtopics of “simu/result/”, and upon the successful publication of the entire 

simulation results, the app unsubscribes from the topic. 

 

Figure 30.Data refinement program sending the simulation data 

The Forge app functions as the subscriber in this scenario, as illustrated in Figure 31. 

Within the figure, there are options for the visualization of the simulation results, for 

subscribing to the Solace broker and receiving the simulation data, and to disconnect the 

Forge app from the Solace Broker. 

In figure 31, the left side shows the BIM projects available and the right side is the Viewer. 

We can start visualization of the simulation results, subscribing and disconnecting to the 

Solace broker, etc.  



 65 

 

Figure 31.The UI of the subscriber side 

When the Solace message encapsulate the simulation data and send them to the specific 

topic: “simu/result/*”, the Forge app integrates the Solace API, and it will connect to the 

same message broker and subscribe to the same topic to receive the simulation data for 

visualizing them on BIM model (shown in Figure 29/ step 4 in Figure 13). 

In Figures 32 and 33, when users subscribe, the Forge app establishes a connection with 

the broker, subscribes to the "simu/results/*" topic, and waits to receive data from the 

sending side.  

Figure 32 shows how the Forge app connects to and subscribes to the broker. At timestamp 

“00:02:35”, Forge subscribes to “simu/topic/*” and is ready to receive data from the 

publisher side. In Figure 33, at "00:04:01", Forge received the first message from the topic 

"simu/result/1." Subsequently, it receives the remaining messages at a rate of one message 

per second. 



 66 

 

Figure 32. Connecting to the Broker 

 

Figure 33. Receiving the simulation results 

Upon receiving the data, users can proceed to visualize the simulation results, as seen in 

Figure 35. Unlike Figure 31, this visualization generates and maps multiple points above 

the BIM model. Each point corresponds to a CO2 concentration state within a cell. The 

color schema in the status bar indicates the CO2 level in the visualization, with darker red 

denoting higher CO2 concentrations. In our experiment, we designated places A and B as 

two CO2 sources within the house. Figure 36 illustrates the changing CO2 levels within 

the room. 

Upon receiving the data, users can proceed to visualize the simulation results, as seen in 

Figure 35. There is a matrix of points above the BIM model, generated using the point 

cloud method introduced in section 3.2, obtained from the Cell-DEVS simulation results 

that Forge just received. Each point is mapped to one cell of the BIM model and 

corresponds to a CO2 concentration state within a cell. On the top of the Viewer, it is a 

color schema which indicates the CO2 level in the visualization (a CO2 concentration from 
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100ppm to 1200ppm, with darker red denoting higher CO2 concentrations). A and B 

represent two locations designated as CO2 sources within the house in the Cell-DEVS 

simulation.  

 

Figure 35. The visualization of the simulation data 

Figure 36 illustrates the changing CO2 levels within the room. In Figure 36.a, at the 

beginning of the simulation, the majority of cells exhibit normal CO2 concentrations 

(around 500ppm), except for the two CO2 sources. In the middle of the simulation 

(Figure 36.b), the CO2 concentrations increase in cells surrounding the sources due to 

inhalation and exhalation, while cells near doors and windows remain at lower levels, 

indicated by the color blue. At the end (Figure 36.c), the CO2 levels stabilize. Rooms 

with CO2 sources maintain higher CO2 levels, whereas rooms without sources exhibit 

significantly lower concentrations, such as the upper-left corner room. 
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(a) Early stage of the simulation (b) Middle stage of the simulation 

 

(c)Final stage of the simulation 

Figure 36. Change in the CO2 concentration 
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Chapter  5: Conclusion 

Modeling and Simulation is a complex field with many different processes. When we work 

on M&S projects, people like modelers, programmers, and analysts all play important 

roles. M&S researchers proposed distributed simulation methods, which allow different 

models to be executed on different computers using middleware techniques, which solved 

the limited resources for large simulation projects. 

Although distributed simulation bridges a gap between simulation models, the gap between 

the different parts of the M&S life cycle still exists. This is because the independence of 

the software causes communication complexities. It is inconvenient to exchange 

information, such as scenario models and simulation results, between each software. Also, 

the requirement for developers to possess knowledge of multiple software adds a layer of 

complexity to the workflow. 

In this thesis, we proposed a new method to apply distributed simulation to connect the 

modeling software, simulation software, and visualization software together by using a 

message broker.  

As discussed in the document, the architecture consists of three components: Solace Event 

Broker, Autodesk Forge and the Cadmium simulator. We integrate Solace broker into 

Forge platform and Cadmium simulator so that the BIM models from Forge and the 

simulation results from Cadmium could be obtained by each other through subscribing to 

the same topic that we defined in Solace broker.   

The case studies showed that we can use an event broker like Solace to build this 

integration. The broker's API provides a wide range of functions to facilitate data 

transmission, logging, and customization through property parameters that permits 
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seamless integration of the components, allowing developers to use this architecture based 

on their original system without minimal changes. 

In addition, some people may be concerned that the size of data may exceed the payload 

of a Solace message. The research introduced a way to deal with this problem by cutting a 

large file into smaller pieces. A subscriber who wants to receive the messages can easily 

get all the data by connecting to their parent topic. 

In future work, an error feedback mechanism needs to be established so that the system can 

handle situations where subscribed messages do not match the messages that users require. 

And we could try other delivery modes provided by message brokers to enhance the 

asynchronicity of the system in various contexts. 
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