DEFINITION OF A TRANSPARENT CONSTRAINT-BASED MODELING AND
SIMULATION LAYER FOR THE MANAGEMENT OF COMPLEX SYSTEMS

Kevin Henares Marina Zapater

José L. Risco-Martin
Embedded Systems Laboratory (ESL)

Dept. of Computer Architecture and Automation Swiss Federal Institute of
Complutense University of Madrid Technology Lausanne (EPFL)
Madrid, Spain Lausanne, Switzerland
khenares @ucm.es, jlrisco@dacya.ucm.es marina.zapater @epfl.ch
ABSTRACT

Modeling and Simulation (M&S) is one of the most multifaceted topics present today in both industry and
academia. M&S has been traditionally used as a tool to increase production and capacity. However, nowa-
days we are involved in a new M&S paradigm. Firstly, systems are becoming more complex by the day,
dealing with an ultra-connected world, with the inclusion of artificial intelligence in each aspect of these
models, and with the integration of all the collected information into decision making systems. Secondly, a
plethora of aspects are studied now in simulation, like analysis, reliability, scalability, verification, valida-
tion, human training, etc. As a consequence, the way in which we perform M&S must be adapted, providing
new ideas and tools to separate the model from the simulation, and the implementation from the analysis. In
this paper, we contribute to these ideas proposing a rule-based constraints evaluator, which helps the system
engineer to validate and verify the functionality of complex models on a transparent manner. This approach
allows us to define the constraints that the system must fulfill on a straightforward way. The constraints
definition process is completely independent from the model development process because (a) the set of
constraints is defined once the model has been developed, and (b) constraints are validated in simulation
time. The proposed Constraint M&S architecture has been built using the Discrete Event System Speci-
fication (DEVS) formalism, as it completely separates the modeling and the simulation layers, facilitating
the definition of our approach. Finally, the approach has been implemented using an existing DEVS M&S
library and tested on a validated data center simulation model.

Keywords: model checking, constraint modeling and simulation, discrete events, verification, data centers

1 INTRODUCTION AND RELATED WORK

The design, development and implementation of current systems continues to be a a challenging effort at
the systems engineeing level. The problem is much more accentuated today, as the new era of the Internet
of Things (IoT) dawns. Modeling and Simulation (M&S) of these complex systems are continuously de-
manding new formal methods to manage the design, development and implementation of such ultra-large
systems with a high level of quality and accuracy while fulfilling a wide range of real-time constraints(Mittal
2014). The way in which we perform M&S must be adapted, providing new ideas and tools to separate the
model from the simulation, and the implementation from the analysis. These M&S techniques remain dif-
ficult to verify and validate. Performing Verification and Validation (V&V) is an exhaustive exercise for

SpringSim-TMS/DEVS, 2019 April 29-May 2, Tucson, AZ, USA; (©2019 Society for Modeling & Simulation International (SCS)

Henares, Zapater, and Risco-Martin

any simulation model. Due to the inherent complexity in current simulation models that comprise multi-
faceted data-driven methodologies or co-simulation methodologies, V&V is a challenge of its own (Mittal
and Risco-Martin 2017).

Validation and verification (V&V) are used to reach the assurance that models are accurate representations
of their corresponding systems. Validation is the process of testing a model for validity. To validate, input
and output trajectories between the source system (whether real or conceptual) and the model under test
must be generated. Validity, whether replicative, predictive, or structural, requires these trajectories to be
equal (Zeigler, Prachofer, and Kim 2000). Verification is the attempt to establish that the simulation relation
holds between a simulator and a model (i.e. the simulator faithfully implements the model’s dynamic be-
havior). There are two general approaches to verification: formal proof of correctness and extensive testing
(Zeigler, Praehofer, and Kim 2000), (Sargent 2011). In this paper we focus on extensive testing. According
to Zeigler (Zeigler, Prachofer, and Kim 2000) and Sargent (Sargent 2011), the relationship between the con-
ceptual model and the computerized model is identified as computerized model verification. For Zeigler, the
simulator ensures that a strict relation (i.e. simulation relation) exists between the conceptual model and the
computerized model (Mittal and Risco-Martin 2017). This is the reason why our V&YV approach is finally
implemented at the simulation layer.

In this paper, we capture the idea of performing V&V at the simulation level and have implemented a
constraint specification architecture inside the simulation layer, transparent to the system engineer who
defines the model. Quantifying the interaction of all relevant entities or components in a complex simulation
model may be a complicated task. Moreover, the modelling process is a priority task in the system design
work-flow. As a result of this, it is desirable to analyze its interactions in an orthogonal step to the definition
of the model. The implementation of such architecture has been tested on a complex data center simulation
model (Penas, Zapater, Risco-Martin, and Ayala 2017). Once the model is defined, the set of constraints
are introduced using a text file. Next, the model can be simulated and each constraint is checked at every
iteration, showing whether the set of constraints is fulfilled or not. The proposed constraints MS architecture
allows for the first time the definition of the validation layer in an orthogonal process to the modeling phase,
and use it on a real data center simulation tool for research purposes.

There exist several modeling specifications that provide support for model checking. Among them, Timed
Automata with UPPAAL is a popular toolset for model checking (Bengtsson, Larsen, Larsson, Petters-
son, and Yi 1996). Another popular modeling language is Petri Nets (Jensen 2013), capable of describing
distributed systems. Both Petri Nets and Timed Automata are widely used to model, verify and validate
concurrent real-time systems. The main drawback of these two formalisms is that both of them share their
inability to handle complex data types. Timed Automata supports the exchange of basic signals and Petri
Nets can only operate using tokens. Our approach, on the contrary, uses the Discrete Event System Specifi-
cation (DEVS) (Zeigler, Prachofer, and Kim 2000) to define the Constraint MS architecture. DEVS perfectly
separates model structure and model behavior, as well as the model itself from the simulator. This simplifies
the definition of our architecutre. Furthermore, in DEVS, a model specification is not hardly coupled to the
application domain, which validates our architecture under a platform-independent specification context.

A variant of DEVS named Finite-Deterministic DEVS (FD-DEVS) was already introduced to support model
checking by previous work (Hwang and Zeigler 2009). However, FD-DEVS has been formulated for deter-
ministic systems. Therefore, non-determinism in transitions and advance functions are not accounted for,
whereas many engineered and natural systems are inherently non-deterministic. Another variant of DEVS,
called Rational Time-Advance DEVS (RTA-DEVS) was defined to allow only rational values in the time
advance function (Saadawi and Wainer 2013). RTA-DEVS has a method to transform RTA-DEVS models to
Timed Automata, allowing model checking. There are other approaches based on transformations (Pasqua,
Foures, Albert, and Nketsa 2012), where authors introduce a method to transform UML sequence diagrams
to FD-DEVS models. However, the limitations of both FD-DEVS and Timed Automata are still present.

Henares, Zapater, and Risco-Martin

There are other approaches tied to the application domain. For example, Di Filippo et al. present a mech-
anism to model and simulate the metabolism of cell populations based on the specification of a model and
a set of constraints(Di Filippo, Damiani, Colombo, Pescini, and Mauri 2016). Gholami and Sarjoughian
show a model checking verification method for Network-on-Chip models(Gholami and Sarjoughian 2017).
In this case, a constrained version of the atomic DEVS modeling formalism is formulated and applied to the
verification of a Network-on-Chip router. Our approach is different since the implementation is performed
in the simulation layer. Furthermore, to verify the model we allow the possibility of adding a set of inequa-
tions in the same way than constraints are defined in mathematical programming. There are not only related
to numeric variables, but also to complex data types.

The main contribution of this research is the definition and implementation of a method to perform model
checking through the specification of a rule-based constraints evaluator. It helps the system engineer to
validate and verify the functionality of complex models on a transparent manner. The set of constraints that
the system must fulfill are defined in a straightforward way.

The paper is organized as follows. We closely examinate our constraint M&S architecture in Section 2.
Section 3 shows the implementation of our approach. In Section 4, a complex model of a data center is
presented as the use case to validate our proposal. Finally, in Section 5, we summarize this research and
discuss some future work.

2 CONSTRAINT MODELING AND SIMULATION: ARCHITECTURE

In this Section we first provide a brief introduction of the DEVS formalism, upon which our proposal is
based. Next, we show the architecture of our approach and introduce a motivational example.

2.1 Introduction to the DEVS formalism

DEVS is a general formalism for discrete event system modeling based on set theory (Zeigler, Prachofer, and
Kim 2000). The DEVS formalism provides the framework for information modeling which gives several
advantages to analyze and design complex systems: completeness, verifiability, extensibility, and maintain-
ability. Once a system is described in terms of the DEVS theory, it can be easily implemented using an
existing computational library. The parallel DEVS (PDEVS) approach was introduced after 15 years as a
revision of Classic DEVS. Currently, PDEVS is the prevalent DEVS, implemented in many libraries. In the
following, unless it is explicitly noted, the use of DEVS implies PDEVS.

DEVS enables the representation of a system by three sets and five functions: input set (X), output set (Y),
state set (S5), external transition function (Jey), internal transition function (Jiy), confluent function (Jcon),
output function (A4), and time advance function (¢a).

DEVS models are of two types: atomic and coupled. Atomic models are directly expressed in the DEVS
formalism specified above. Atomic DEVS processes input events based on their model’s current state and
condition, generates output events and transition to the next state. The coupled model is the aggregation/-
composition of two or more atomic and coupled models connected by explicit couplings. Given the recursive
definition of coupled models, they can be a part of a component in a larger coupled model system giving
rise to a hierarchical DEVS model construction.

DEVS conceptually separates models from the simulator, making possible to simulate the same model using
different simulators working in centralized, parallel or distributed execution modes. DEVS models can be
encoded in different programming environments and simulated with a simple ad-hoc program written in

Henares, Zapater, and Risco-Martin

any language. However, there exist many DEVS M&S engines around the world, like DEVSJAVA, CD++,
xDEVS, aDEVS, etc. (Risco-Martin, Mittal, Fabero, Zapater, and Hermida 2017)

2.2 Constraint modeling architecture

Once a DEVS model has been defined, it is good practice to enable mechanisms to validate the implemen-
tation and check the correct behavior of all its components. Model verification can be performed defining a
set of constraints that must be fulfilled. These constraints are dynamic in nature. They can depend on both
the initialization parameters of the simulation and on the current state of the system. These constraints may
not be related to the outputs of a single component of the system, but involve combinations of outputs of
different components. These components can even coexist in the same constraint, but coming from different
levels of the hierarchical DEVS structure.

In the following, we present the architecture of the proposed constraint M&S system for model checking.
The set of constraints that the DEVS model must satisfy is defined through simple JSON text files and
is completely decoupled from the model and the simulation engine syntax. These constraints are specified
following a mathematical approach, in terms of arithmetic and logical equations. It is worthwhile to mention
that complex data structures can be used in these equations, as long as the operators are defined for such
data structures.

As stated above, DEVS models imply a hierarchical structure of components. There are two types of compo-
nents: coupled and atomic. Coupled components group other components inside them and are used to reach
this hierarchical design. Atomic components have an event based operation and define the actual behaviour
of the system. Both of them manage their input/output operation with ports. These ports are linked through
couplings that define the relation between components.

{
"vars": |
<variable_namel>: <arithmetic_exprl>,
<variable_name2>: <arithmetic_expr2>,

<variable_nameN>: <arithmetic_exprN>

by

"constraints": {
"constraint_namel": {"expr": <logic_exprl>, "level": <"info"/"error">},
"constraint_name2": {"expr": <logic_expr2>, "level": <"info"/"error">},
"constraint_nameN": {"expr": <logic_exprN>, "level": <"info"/"error">}

Figure 1: Formal definition of the set of constraints

As mentioned before, constraints are specified using JSON files. Following the proposed architecture, two
main sections can be defined, namely vars and constraints. Each section is represented with two main
elements in the JSON document. The vars section is optional and includes a collection of variables. Each
variable can represent a DEVS port or an arithmetic combination of DEVS ports. The constraints section
is mandatory and specifies the set of constraints that will be checked in simulation time. These constraints
are expressed as logical or arithmetic expressions. These expressions can include DEVS ports or previously
defined variables. As stated above, these variables (or port values) can involve complex data types, as long

Henares, Zapater, and Risco-Martin

as their corresponding operators have been overloaded. Arrays of variables are also allowed. Operations
over arrays require the same-length for both arrays, since the inequality is computed element-by-element.

Figure 1 shows the expected structure of a JSON constraints file. Each variable in the vars section is
expressed as a pair of <variable_name>: <arithmetic_expression>. The variable name must consist
of uppercase and lowercase letters, numbers and underscores. Output ports must be used as operators
of the arithmetic expressions. These ports are identified following the full DEVS path in the following
format: coupled;.coupled;..... coupledy.atomic,.port,, where coupled;, atomic, and
port,, are coupled, atomic and port identifiers specified in the definition of the DEVS model structure.
If the port used in the expression generate arrays instead of single values, it is necessary to indicate the
slice of the array that will be used. This is done specifying the start and the end indexes, as follows:
coupledl.coupled2.atomicl.portl [<start_index>:<end_index>].

In the contraints section, each constraint has the following specification format: ’<constraint_name>’:
‘expr’: '<logic_expr>’, ’level’: ’<info/error>’, being:

e constraint_name: identifier of the constraint. It has the same restrictions than variable names. This
identifier will be shown in the output messages when the expression is not satisfied.

e Jogic_expr: this expression indicates the activation condition of the constraint. It can contain arith-
metic C+’, ’-’, ’*" and ’/’) and logical (==,=", ’<’, '<=", ’>’, ’>=", ’&&’ and ’II’) operators. As
operands, the expression can contain the full path of a port, a number or boolean literal, or a defined
variable in the vars section. Some auxiliary functions can be used to deal with arrays, such as sum,
len, min, and max.

o level: this item specifies the severity level of the constraint. If is set to info, only warning messages
will be produced when the constraint is checked. If is set to error, the constraint will be treated as

critical and the simulation will be stopped when the related constraint is not satisfied.

Constraints are evaluated when all the involved ports have produced an output. Hence, if at least one of the
ports used as operator is empty, the constraint is not evaluated.

/ arr_ops \

arr_gen > logger

- /

sum

Figure 2: Example of a DEVS system

Henares, Zapater, and Risco-Martin

"vars": {
"arr_adder": "arr_ops.adder.out[0:5]",
"arr mult": "arr_ops.mult.out[0:5]",
"gen_sum": "sum.out",
"adder_mult": "arr_adder + arr _mult",
"mult_sum_0_3": "sum(arr_ops.mult.out[2:5])"
}I
"constraints": {
"adder_eqg mult": {"expr": "arr_adder == arr_mult", "level": "info"},
"ms_lt_gs": {"expr": "mult_sum_0_3 < gen_sum", "level": "info"},
"check_mult": {"expr": "arr mult > {59,61,3,4,5}", "level": "info"},
"check_mult_sum": {"expr": "mult_sum 0_3 >= 100", "level": "error"}

Figure 3: Example of JSON constraints file
2.3 Motivational example

Figure 3 depicts a complete example of a JSON constraints file. This set of constraints is applied over the
DEVS example given in Figure 4. The example comprises a generator (arr_gen), that generates arrays of
size 5 with random integer numbers. Some basic operations are applied on those arrays. Inside the arr_ -
ops coupled module, add_1 and mult_3 atomic modules add and multiply all the elements of the input
arrays by constants, respectively. The sum module adds up all the elements of the input arrays, returning an
integer as a result. All the outputs of these last three modules are sent to a 1ogger module, that shows the
results.

The two first variables of the constraints file (Figure 3) simply get the values of the two atomic modules
inside the arr_ops module. The third one (gen_sum) computes the sum of the original arrays generated
by the arr_gen module. The fourth one (adder_mult) sums the arrays contained in the first two variables.
The last one, (mult_sum_0_3), returns a scalar with the sum of the three last elements of the mult module
output. In the constraints section, four constraints are defined. They specify some basic rules that must be
applied over the system through logical expressions, using the previous defined variables and some literals.
The first three constraints are only informative, so when they are fulfilled only warning messages will be
displayed. The last one is a critical constraint, and the simulation will be terminated when it is checked.

3 CONSTRAINT MODELING AND SIMULATION: IMPLEMENTATION

The proposed architecture has been implemented in the C++ branch of the xDEVS simulation engine .

Figure 4 depicts a scheme of the final implementation. The set of constraints is initially given as a text
file. All the results of the model checking are stored in an output text file as well. When the simulation
starts, the DEVS engine performs the following steps (see Figure 4): (i) execution of all the output (lambda)
functions, (ii) propagation of the events produced and execution of the corresponding external, internal (or
both) transition functions, (iii) evaluation of constraints (new step), and (iv) all the events stored at the
input/output ports are removed. Finally, the simulation engine goes to step (i) and starts again, until the
maximum number of iterations or the maximum simulation time limit are reached.

Uhttps://github.com/jlrisco/xdevs

https://github.com/jlrisco/xdevs

Henares, Zapater, and Risco-Martin

(|
@

/ Simulation \
—){ lambda })[Int. event }

\ 4
loocoaoos Ext. event

Constraints eval.

\ 4
Cleaning

{ [

Figure 4: General view of the proposed constraint M&S system

As can be seen, all the constraints are repeatedly evaluated at the new step (iv), when all the events have
been propagated from the output ports to the corresponding input ports. It is worthwhile to mention that,
depending on the simulation engine, events are copied and propagated, existing in both output and associated
input ports, or just propagated, existing in the destination ports, only. In the case of XDEVS events are copied
and propagated. This must be taken into account when defining the set of constraints. As a general rule, we
assume the most restrictive policy, i.e., events are propagated but not copied.

Summarizing, right after the lambda and transition functions have been evaluated, and before the DEVS
simulation engine cleans the ports information, the set of constraints is evaluated. At this point, the outputs
of the ports implied in the specified constraints are examined. Based on these values and the constraints def-
inition, some mathematical expressions are evaluated. When a constraint is not satisfied, warning messages
are displayed or the simulation is finished (depending on the severity level of the constraint). As can be seen,
since the constraints are checked at the simulation layer, the execution is transparent to the system engineer
and independent from the model definition. This aspect is very useful when validating models, since the
validation process can be tackled once the model has been completely defined. Under a model checking
approach implemented at the modeling layer, the validation process must evolve with the definition of the
model, which from our point of view, is not practical.

Algorithm 1 shows the complete implementation of the model/constraints checking implementation in form
of pseudocode. A maximum time of simulation is given as argument (max_t ime). The simulation time
is initialized at the beginning of the procedure and updated at the end of each iteration. In this way, the
simulation will continue the execution until the simulation time exceeds the specified maximum time. The
actual xXDEVS implementation allows us to specify a maximum number of DEVS iterations as well.

As stated in Section 2, there are three types of couplings in a DEVS model: (i) Internal Couplings (IC)
connecting components that share the same first parent, (ii) External Input Couplings (EIC) connecting
the input ports of coupled modules to one or more of their child components, and (iii) External Output
Couplings (EOC) connecting ouput ports of components to one or more output ports of their first parents.
Following Algorithm 1, the propagation of values in these couplings is separated into two functions. Firstly,

Henares, Zapater, and Risco-Martin

Algorithm 1 Constraint DEVS M&S implementation
1: procedure SIMULATE(max_time)
2 sim_time < 0
3 while sim_time <= max_time do
4 for comp € components do
5: if sim_time = comp.next_event () then
6
7
8
9

comp.lambda()

propagateQut put ()
propagatelnput ()
: for comp € components do
10: if sim_time = comp.next_event() then
11 comp.int_event ()
12: if comp.has_input () then
13: comp.ext_event ()
14: evaluate_constraints()
15: sim_time <— next_event ()

IC and EOC couplings are propagated using the propagateOutput function following a bottom-up
procedure. After this, values in EIC are propagated using the propagateInput function in a top-down
way. This separation ensures a correct propagation of values, grouping the values generated by the different
components in the input ports of the coupled modules to then transmit them to the corresponding child
components and allowing an smooth check of constraints.

4 APPLICATION AND DISCUSSION

In order to validate the constraint M&S architecture we use as a case study the SFIDE data center simu-
lator developed as part of our previous work (Penas, Zapater, Risco-Martin, and Ayala 2017). SFIDE is
a DEVS-based data center simulation framework that enables researchers to incorporate server and data
center models, and assess the impact of both workload allocation and cooling control strategies. Given that
the main goal of SFIDE is to allow researchers to abstract their developments from the simulation internals,
having ways of checking the correctness of the models and policies implemented is of utmost importance.

In this section we start by briefly introducing the SFIDE simulator, highlighting the needs for verification.
Then, we describe the experimental scenario used as a case study, together with the different types of con-
straints being checked. Finally, we describe how the constraints M&S architecture is able to efficiently spot
both modeling errors and issues associated with the policies being tested in the simulator.

4.1 Overview of the SFIDE data center simulator

The skyrocketing energy consumption of data center facilities, which accounted for over 1.3% of the world
energy consumption in 2011, and grows at a yearly rate of 20% (Koomey 2011) has resulted in a growing
interest in the research community for the development of both workload allocation and cooling control
strategies to minimize the power consumption of data centers, while guaranteeing the performance (under-
stood as execution time or throughput) of applications. Because of the dynamism of server workloads, as
well as of the large amount of servers in data center facilities, simulating the behavior of these infrastructures
is not a trivial task.

Henares, Zapater, and Risco-Martin

The DEVS-based SFIDE (Simulation Framework and Infrastructure for Data cEnters) simulator allows re-
searchers in computer architecture and engineering interested to assess the performance, power consumption
and thermal behavior of the servers and data centers when running a workload while setting specific cooling
parameters. SFIDE allows defining the configuration of a data center, understood as both the server arrange-
ment in the room, the server type and model, its power and performance model, as well as the workload
it executes. Moreover, it allows to simulate the cooling both inside the data center room and the overall
facility level, allowing to obtain both computing and cooling figures for the overall facility. Furthermore,
the real benefit of SFIDE resides on its capability to implement, test and assess arbitrary workload allocation
strategies (i.e., algorithms to decide the specific allocation of incoming jobs to servers) and cooling control
policies. These two factors dramatically impact the overall energy consumption of the facility and have been
widely analyzed in literature.

4.2 Experimental setup and scenario

The scenario tackled in this case study consists on a data center equipped with 20 racks, each hosting 10
servers. The cooling equipment simulated consists of in-row coolers attached to the server racks, and cooled
down using a chiller and tower outside the server room. For further details about the cooling infrastructure,
the reader is referred to our previous work (Zapater, Turk, Moya, Ayala, and Coskun 2015). To showcase
the importance of the constraints M&S architecture, we assume an heterogeneous setup in which half of
the servers in each rack are Intel S2600GZ servers, while the other half are SPARC T3-2. These two
server models are chosen because they exhibit important differences both in their power consumption and
thermal behaviour, achieving different maximum power consumption (P™*, due to variations in the power
consumption of both the CPU and memory subsystems), and maximum reliable peak temperature thresholds
(T™%). The servers execute workloads of the SPEC CPU 2006 benchmark suite. As describes in (Penas,
Zapater, Risco-Martin, and Ayala 2017), the server models of the SFIDE simulator provide realistic power
and temperature values, which were obtained and validated using real traces.

Table 1: Summary of the most relevant parameters of the servers being modeled and simulated

Server type P™* T Core count
Intel S2600GZ 225 85 12
SPARC T3-2 620 90 32

The most relevant characteristics of the servers used in our experiments are highlighted in Table 1. P57,
Pye and T4 are the most relevant parameters that need to be checked to ensure the correctness of the
simulation. They are highly sensitive to both to programming errors (i.e, bugs) that could arise during the
implementation of both workload allocation and cooling control algorithms; and to errors on the models
themselves. Because of this, we use them to test the constraints M&S architecture. In particular, we add

constraints to the system to check the following characteristics:

1. Per-server maximum temperature threshold violation (7,5, T}},qy.). Surpassing this threshold would
lead to server turn-off in a real environment.

2. Per—s'erver max.imu.m power consumption (Pl’;ft“e);, P{pare)- Surpassing this threshold is physically im-
possible, and highlights a software implementation error.

In our scenario, both constraints are assumed to be critical and, therefore, abort the simulation when met.
Figure 5 shows a diagram of the data center scenario being simulated, whereas Fig. 6 shows the DEVS model
of the data center room (cooling is not shown for the sake of clarity), where we have highlighted in green

Henares, Zapater, and Risco-Martin

the variables upon which constraints are being checked, together with the parameters that have the highest
impact on these variables (server air inlet temperature and job allocation, in orange and red, respectively).

rack1 & N &Y Rack2 on o) protr
—_- o Cold air
Intel Intel = ﬁ/*? “~
1 Cooling
SPARC SPARC Tl /L tower
Intel Intel =]’ + f
SPARC SPARC Heat "
Intel IRC Intel 1
SPARC SPARC % 1
Intel (Lﬂ & z; Intel % :
SPARC SPARC 1
Intel Intel 1
SPARC SPARC -l

Figure 5: Diagram of the data center scenario

Workload allocator
(dispatches incoming jobs)
1 1

Job . I Allocator

(®olrcPower
(®oircrspower

@ olrciTPower
olrcAvgTempCpu
@ olrcMaxTempCpu

R

HE=q

Racks (R)
Servers (S)

InletTemp

IRC —>

Rack ' B Server
= Pmax,Tmax

—

I
i
|

|Coo||ngPowerEzl
|wearherTemp|:]

olrcHotWaterTemp olrcGallons - iWaterTemp

Figure 6: Diagram of DEVS room model of the simulated data center scenario

4.3 Results and discussion

We run SFIDE with the constraints M&S architecture in the experimental setup described above, and we
manually introduce implementation errors to mock the bugs usually introduced during any development
process. We introduce two errors: (i) an error in the C++ implementation of the workload allocator module,
and (ii) an error in the input configuration file, which sets the cooling temperature to a value that is too high.

Workload allocator policy: We create a new allocator policy, in charge of assigning tasks to servers, that
disregards the core count of the server and wrongly assigns more than one 12-core job to the Intel servers,
doubling the maximum server capacity. Given that the Server power model is workload-agnostic, power
computation will be incorrect, reaching almost 300W, which is way above the maximum power threshold
of 220W for Intel servers. This leads to a wrong temperature computation (and a fake thermal emergency,
surpassing 7;7'%7), which is propagated to the calculation of cooling power consumption. As this situation
does not result into any C++ error, the only way of checking the correctness of the result is via logging or

Henares, Zapater, and Risco-Martin

debugging. However, the constraints M&S architecture detects a violation on the constraint and aborts the
simulation.

Inlet temperature configuration: We modify the input configuration file of the simulator to force the inlet
temperature of the servers (i.e., the cooling set-point of the data room) at a value which is above the ad-
missible range (i.e., 35°C). In this case, both the Intel and the SPARC server violate the 7% threshold.
The constraints M&S architecture allows to easily spot the situation, enabling to backtrace the error. Fur-
thermore, a second constraint can be added directly on the cooling subsystem to prevent such a situation to
happen, as it also impacts the functionality of the cooling system.

5 CONCLUSIONS AND FUTURE WORK

In this work we presented a Constraint Modeling and Simulation architecture implemented as an extension of
the xXDEVS simulation engine. This architecture provides a transparent and straightforward way to validate
the behavior of DEVS complex systems. This architecture is conceived as part of the DEVS simulation
layer, making the validation process orthogonal to the model design. Also, the proposed architecture allows
us to check mathematical properties over different system components, even if they have been defined at
different levels of the DEVS hierarchical structure. The set of constraints is defined through JSON text
files. The structure and syntax of these files have been detailed. Moreover, the development of the DEVS
constraint checker has been provided.

The implementation of the Constraint M&S architecture has been tested on a complex DEVS model, the
SFIDE data center model presented in (Penas, Zapater, Risco-Martin, and Ayala 2017). This use case proves
the utility of the proposed validation layer.

As future work, we plan to extend our specification, for example including wildcards in the definition of
variables and constraints, or the utilization of model classes additionally to model names (to generalize even
more the use of each constraint). The use of states as operators is not planned for the moment, as this aspect
requires serious restrictions in the implementation of the DEVS simulation engine.

REFERENCES

Bengtsson, J., K. Larsen, F. Larsson, P. Pettersson, and W. Yi. 1996. “UPPAAL — a tool suite for automatic
verification of real-time systems”. In Hybrid Systems I1I, edited by R. Alur, T. A. Henzinger, and E. D.
Sontag, pp. 232-243. Berlin, Heidelberg, Springer Berlin Heidelberg.

Di Filippo, M., C. Damiani, R. Colombo, D. Pescini, and G. Mauri. 2016. “Constraint-based modeling and
simulation of cell populations”. In Italian Workshop on Artificial Life and Evolutionary Computation,
pp- 126-137. Springer.

Gholami, S., and H. S. Sarjoughian. 2017. “Modeling and verification of network-on-chip using constrained-
DEVS”. In Proceedings of the Symposium on Theory of Modeling & Simulation, pp. 9. Society for
Computer Simulation International.

Hwang, M. H., and B. P. Zeigler. 2009. “Reachability graph of finite and deterministic DEVS networks”.
IEEE Transactions on Automation Science and Engineering vol. 6 (3), pp. 468—478.

Jensen, K. 2013. Coloured Petri nets: basic concepts, analysis methods and practical use, Volume 1.
Springer Science & Business Media.

Koomey, J. 2011. “Growth in Data center electricity use 2005 to 2010”. Technical report, Analytics Press,
Oakland, CA.

Mittal, S. 2014. “Model engineering for cyber complex adaptive systems”. In EMSS.

Henares, Zapater, and Risco-Martin

Mittal, S., and J. L. Risco-Martin. 2017. Guide to Simulation-Based Disciplines: Advancing Our Computa-
tional Future, Chapter Simulation-based Complex Adaptive Systems, pp. pp. 127-151.

Pasqua, R., D. Foures, V. Albert, and A. Nketsa. 2012. “From sequence diagrams uml 2. x to fd-devs by
model transformation”. In European Simulation and Modelling Conference, pp. pp—37.

Penas, 1., M. Zapater, J. L. Risco-Martin, and J. L. Ayala. 2017. “SFIDE: A Simulation Infrastructure for
Data Centers”. In Proceedings of the Summer Simulation Multi-Conference, SummerSim ’17, pp. 34:1-
34:12. San Diego, CA, USA, Society for Computer Simulation International.

Risco-Martin, J. L., S. Mittal, J. C. Fabero, M. Zapater, and R. Hermida. 2017. “Reconsidering the perfor-
mance of DEVS modeling and simulation environments using the DEVStone benchmark”. SIMULA-
TION vol. 93 (6), pp. 459-476.

Saadawi, H., and G. Wainer. 2013. “Principles of discrete event system specification model verification”.
Simulation vol. 89 (1), pp. 41-67.

Sargent, R. G. 2011. “Verification and Validation of Simulation Models”. In Proceedings of the Winter
Simulation Conference, WSC 11, pp. 183198, Winter Simulation Conference.

Zapater, M., A. Turk, J. M. Moya, J. L. Ayala, and A. K. Coskun. 2015, Dec. “Dynamic workload and
cooling management in high-efficiency data centers”. In 2015 Sixth International Green and Sustainable
Computing Conference (IGSC), pp. 1-8.

Zeigler, B. P., H. Prachofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. Integrating Discrete
Event and Continuous Complex Dynamic Systems. 2 ed. Academic Press.

AUTHOR BIOGRAPHIES

KEVIN HENARES is a Ph.D. candidate at the Complutense University of Madrid (UCM). His work fo-
cuses on the development of robust modeling and simulation methodologies to study the behavior of com-
plex systems. His email address is khenares @ucm.es.

MARINA ZAPATER is a Post-Doctoral researcher in ESL-EPFL since 2016. She received her Ph.D.
degree in Electronic Engineering from Universidad Politécnica de Madrid, Spain, in 2015, and a M.Sc. in
Telecommunication Engineering and a M.Sc. in Electronic Engineering, both from Universitat Politecnica
de Catalunya (UPC), Spain, in 2010. Her research interests include thermal and power optimization of
heterogeneous servers, and energy efficiency in data centers. Her email address is marina.zapater @epfl.ch.

JOSE L. RISCO-MARTIN received his Ph.D. from Complutense University of Madrid, and currently
is Associate Professor in the Department of Computer Architecture and Automation at Complutense Uni-
versity of Madrid. His research interests include computer aided design, optimization and discrete event
simulation. He can be reached at jlrisco@ucm.es.

mailto://khenares@ucm.es
mailto://marina.zapater@epfl.ch
mailto://jlrisco@ucm.es

	Introduction and related work
	Constraint Modeling and Simulation: Architecture
	Introduction to the DEVS formalism
	Constraint modeling architecture
	Motivational example

	Constraint Modeling and Simulation: Implementation
	Application and Discussion
	Overview of the SFIDE data center simulator
	Experimental setup and scenario
	Results and discussion

	Conclusions and Future Work

