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Foreword

Modeling and simulation (M&S) is finally coming into its own as a discipline, a technology, and an
industry. The need is now evident for a textbook that can serve as an introduction to the field that is
in the process of “becoming.” Such a text has to lay out the foundations of M&S in a clear and con-
cise manner without having to provide the rigor that was needed in the theory as it was developed
because this theory is accessible to readers in the original works. Further, the text should offer a
wide variety of applications that suggest the unique power of M&S to tackle the kinds of complex,
multidisciplinary problems that are increasingly demanding global attention.

The book that you have before you admirably satisfies the preceding criteria. It is divided into
sections on introductory background, applications, and technical exposition. The background sec-
tion first introduces the key concepts in M&S from the point of view of the classic text Theory of
Modeling and Simulation, as well as other foundational texts. It then goes on to present the basic
concepts of discrete event system specification (DEVS) and CD++, the author’s implementation of a
cellular space DEVS simulation environment. The application section is notable for its wide variety
of examples covering physical and life sciences, business, and engineering domains—all developed
within the CD++ framework. The technical exposition covers areas such as simulator construction
and execution, visualization of simulation output, and the like.

As a teacher, you will be well supported by this book. I suggest that you start with the intro-
ductory chapters and then select one application area upon which to base a detailed exposition of
the concepts in a form that students can more easily grasp. The area chosen should depend on the
backgrounds that students bring with them from their academic degrees. After setting this founda-
tion, you can discuss or have students read other examples from the panoply available in the book. I
would be sure to have them start on projects to apply the methodology to areas of interest to them.
Finally, I suggest going on to cover some of the more technical issues to a depth that corresponds to
the students’ interests and backgrounds.

Although the book is primarily intended for graduate students, it can also be used in upper-level
undergraduate courses. The availability of the CD++ software, with its graphical and visualiza-
tion support, is a major advantage enabling students to graduate with the necessary skills to make
creative and productive contributions to the exciting emergence of the modeling and simulation
discipline, technology, and industry.

Bernard P. Zeigler
Tucson, Arizona
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Preface

Scientists, engineers, and practitioners of many professions have long relied on the creation of mod-
els to understand the phenomena they study. Traditional mathematical methods (i.e., differential
equations) have been used for centuries as the main tool for analysis, comprehension, design, and
prediction for complex systems in varied areas. However, these methods appeared unsuitable for
studying the complex human-made systems developed during the twentieth century. In the same
vein, the many models applied to the study of natural systems have brought about scientific knowl-
edge that, in turn, has posed new, complicated questions that could not be answered by analytical
methods.

The emergence of digital computers provided alternative methods of analysis for both natural and
artificial systems. Since the early days of computing, users translated their analytical models into
computer-based simulations (i.e., the execution of those models with particular sets of data using a
computing device). This approach allowed solving problems with a level of complexity unknown in
earlier stages of scientific development. Computer-simulated models also have additional benefits:
they can be executed safely, and experiments can be easily repeated in a cost-effective, risk-free
environment and are thus well suited for training purposes.

Computational methods based on differential equations could not be easily applied in studying
human-made dynamic systems (e.g., traffic controllers, robotic arms, automated factories, produc-
tion plants, computer networks, VLSI circuits). These systems are usually referred to as discrete-
event systems because their states do not change continuously but, rather, because of the occurrence
of events. This makes them asynchronous, inherently concurrent, and highly nonlinear, rendering
their modeling and simulation different from that used in traditional approaches.

In order to improve the model definition for this class of systems, a number of techniques were
introduced, including Petri Nets, Finite State Machines, min-max algebra, Timed Automata, etc. The
classic bibliography of this field (which includes, for instance, references 1-3) and other advanced
literature (for instance, references 4—6) have thoroughly discussed these and related techniques in
detail.

In this book we will mainly focus on one of the existing theories of modeling and simulation
called DEVS (discrete-event system specification) [7,8]. Defined by B. Zeigler in the 1970s, the
DEVS formalism allows the modular description of discrete-event models that can be integrated
using a hierarchical approach.

Although the classic literature on discrete-event systems thoroughly covers theory and methods,
there is a need to bridge theory and practice, allowing practitioners in different domains to create
discrete-event models and simulations easily. Although many domain experts (and newcomers to
the field of modeling and simulation) might know the basics about modeling and simulation theory
(including discrete-event methodologies), they usually lack the skills and expertise to create the
advanced models needed to study interesting problems. Thus, the focus of this book is to bridge this
gap between theory and practice for discrete-event systems.

In order to achieve our goals, we rely on the use of the CD++ modeling and simulation environ-
ment [9], an open-source framework that enables simulation of discrete-event models (with special-
ized support for cellular models). Although we introduce the generics of the underlying theory, we
focus on the creation of a variety of models in different areas of interest while giving details on
how to create advanced simulation engines to execute these models. We also show how to build
independent graphical user interfaces that have been built as open-source (and using varied three-
dimensional rendering technologies). Experts in modeling and simulation can use this book as a

xiii



Xiv Preface

companion to the theoretical literature in the field, and the practitioners can focus on the practical
aspects and the example applications.

The book is organized in four different parts. The “Concepts” part gives a general perspective
on discrete-event modeling and simulation and a brief description of the DEVS and Cell-DEVS
formalisms. Part II, “Building Simulation Models: the CD++ Toolkit,” introduces the definition of
DEVS models using CD++. This part starts by introducing the features of CD++, showing how to
create basic models with the tool. It then concentrates on models of generic discrete-event systems,
followed by a description of how to map different modeling techniques to DEVS (i.e., Petri Nets,
Finite State Machines, Bond Graphs, Modelica, Layered Queuing Networks, and VHDL). We show
several examples of the definition of such techniques in DEVS and discuss how to implement them
in a discrete-event simulator such as CD++. Part III, “Applications,” starts with a chapter on biology
and medicine and then moves to defense and emergency planning, after which it discusses architec-
ture and construction, environmental sciences, physics and chemistry, artificial systems, and urban
traffic. The last part of the book, “Simulation and Visualization,” elaborates on the creation of
simulation software for DEVS models and analyzes the creation of three-dimensional visualization
environments associated with these tools.

A variety of resources has been made available online to be used by the reader. Basic informa-
tion on CD++ can be found at http://cell-devs.sce.carleton.ca, where the reader will find a complete
user manual, installation tools, and the software application. It also includes links to an open-source
version of the software (interested developers are encouraged to participate in the development
of this project). All the examples discussed in the book can be found in a repository of models avail-
able for general use, and we encourage the reader to use such models for learning. Examples in the
book are simplified versions of the actual versions found online. The examples focus on the main
ideas and skip some of the details in order to make them more understandable by the reader; each
model in the repository includes the complete software implementation and extended documenta-
tion for the reader.

We intend for the materials introduced to provide the reader with a wide variety of practical
experiences, ranging from the creation of models, simulators, visualization tools, and theoretical
analysis up to a large number of models for experimentation and open-source tools ready to use
and modify. In order to show the feasibility of this approach, we include many examples developed
by nonexperts. This allows readers to become familiar with the experience of others with a similar
level of expertise, while providing the opportunity to improve and adapt other people’s work to their
own needs and interests.

This book is the result of years of collaboration with many students and colleagues. The list is so
extensive that a separate section of acknowledgments has been included. Nevertheless, I would like
in particular to thank Bernie Zeigler, Norbert Giambiasi, and Claudia Frydman (for their constant
support) and Pieter Mosterman (for giving the initial stimulus). I owe everything to the love of my
family. Carlos and Jacobo Wainer taught me the immense value of books from a very early age.
Noemi and Maria Luisa taught me how to read them even earlier. Diana and Ian (who suffered the
consequences of those teachings) gave me the most incredible lesson about love and patience every
day I spent writing this book.

Gabriel A. Wainer
Ottawa, Canada
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’I Modeling and
Simulation Concepts

1.1 INTRODUCTION

Human beings are resourceful and curious. The need to explore, analyze our surroundings, and
solve problems is in our nature (even from a very young age). There are many different reasons why
we do these things, including improvement of our quality of life (e.g., by creating devices to reduce
efforts or improve our safety), thirst for knowledge (e.g., in learning how plants grow), or even just
for fun.

The first technique humans use to learn about (and maybe change) their environment is experi-
mentation (for instance, if we want to learn how much clay and water must be mixed to do pottery,
we conduct different trials until the desired consistency is obtained). Experimentation was the only
way humans had to learn about their environment for thousands of years, and it is still one of the
principal methods employed in problem solving (and a crucial part of child development). Figure 1.1
shows a basic scheme for experimentation.

There are two objects under consideration: the entity under study and the experimental frame
(EF), which defines the conditions for experimentation. The EF defines not only how we experiment
on the entity but also how we obtain the experimental results. In our pottery example, the entity
is the mix of water and clay (that we can mold and then solidify in an oven), and the EF is the set
of experiments done. Each experiment would be a different trial to mix clay and water (including
different percentages of each material, varied temperatures of the mix, duration of the experiment,
etc.). The experiments’ results would include the consistency and texture expected and obtained for
each different clay mix.

EXAMPLE 1.1

Let us suppose that we want to study the best possible allocation of desks in a classroom, in order
to reduce energy costs. We need to decide where to put the desks and the heating/air condition-
ing sources. An experimentation-based solution would take different groups of students in differ-
ent positions and would use a sensor (i.e., a thermometer) to measure the temperature in different
areas in the classroom. In this example, the entity is a classroom and its temperature under dif-
ferent desk configurations. The EF is defined by the multiple student configurations (experiments)
and the kinds of results expected at the end of each experiment (in this case, temperature of a
room between —20 and +45°C). The results are provided by the thermometers used to measure the
temperature. As we can see, the EF allows us to consider what the objectives of the experiment are
(measure temperature in the room; the number of students or their weight is not of interest) and
any assumptions we have about the experiment (do we use a digital thermometer or an analog
one? One or many? Are we interested in fractions of a degree?).

Unfortunately, the problems we need to tackle are usually much more complex than learning how
to mix the materials for making pottery or measuring the number of students and the temperatures
in a classroom. In many cases, experimentation is not a feasible solution due to ethics, risks (e.g.,
we cannot study spread of an epidemic or fire evacuation in the classroom), or cost (we cannot study
every possible configuration in the classroom because scheduling a study with a large number of
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FIGURE 1.1 Problem solving through experimentation.

individuals for a long time can be costly). In other cases, experimentation is simply not possible (for
instance, we cannot manipulate a star to understand its gravitational field; we cannot experiment
on our classroom if the building still does not exist). However, in many cases, this kind of analysis
is what we need.

Humans have found different ways of dealing with these issues. One of them is to abstract from
the problem itself and then reason about it using a model of the problem. You might have started
using this technique while thinking about Example 1.1, creating a mind picture of the room, stu-
dents, sensing and heating devices, etc. You might even have started thinking about different student
distributions and mechanisms to improve the heating according to their location, window positions,
and building orientation. You might have sketched your ideas on paper, even using a scale model.
Humans are well prepared (and trained from childhood) to create these models in a very natural
way; they help us to think better about the problem we want to study.

Although different modeling techniques have been proposed, during the last 300 years, the dif-
ferential equation formalism proposed by Newton and Leibniz has been the tool of choice for
modeling and problem solving [1]. Differential equations provide a formal mathematical method
(sometimes also called an analytical method) for studying the entity of interest. For instance, in
Example 1.1, we could try to use Fourier’s law [2] to study the temperature on the classroom’s floor.
These equations define the conduction of heat in a one-dimensional steady state isotropic as

aT
x = —k -
g ox
Here,
q, = the heat flux;
k = the thermal conductivity of the material under study (W/m°C);
T = the temperature field in the medium; and

dT/dx = the temperature gradient (the minus sign indicates that the direction of heat flux is
opposite the direction of increasing temperature).

When we try to solve problems through formal modeling (using, for instance, differential equa-
tions), the scheme previously presented in Figure 1.1 must be extended as shown in Figure 1.2. In
this case, we can still do experimentation to obtain data about the entity under study, and we use
such data to create a model of the entity (using differential equations or other analytical techniques).
We use the model’s experimental frame to put a context on the model’s creation, indicating the kinds

Experiment
Bxperimenta
F rame Results T
' ! Equations
v Query R v
Model’s Exp. C Model ) <>
Frame
Results

FIGURE 1.2 Problem solving through analytical modeling.
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of questions we can ask and the assumptions we have made. For instance, in Example 1.1, we cannot
find the average weight of the students (as we have decided to apply Fourier’s equations), and we
have assumed the use of a one-dimensional equation to approximate the temperature in the room.
The model’s EF also tries to mimic the experiments carried out on the original entity to obtain the
desired results. For instance, in Example 1.1, we want to sense temperatures (we are not interested
in social interactions between class students) and the effect of the number of students and their
distribution in the room’s temperatures. The results observed can be used, in turn, to modify the
original entity (in this case, the classroom under study). Using this approach, we might even skip the
initial experimentation step, just theorizing about the system’s behavior through a pure model (even
without any experimental data). In these cases, as soon as experimental data are available, they can
be used to validate or reject the proposed theories.

These problem-solving techniques are analytical in the sense that they are symbolic and based
on reasoning, and they try to provide general solutions to the problems to be solved. The idea is that
we abstract what we learned about the entity into a model that represents the entity under study. This
abstraction implies a loss of information, but it allows us to describe the behavior of the entities,
analyze it, and prove properties of the proposed model (for instance, controllability and stability in
the control system used to keep the room’s temperature). The idea is that, if we are able to solve the
equations, we will know the results of every possible experiment to be carried out on the entity. The
solution is built using inference rules (which should be correct in the paradigm chosen to describe
the model). If we need to obtain particular solutions, we just replace the symbolic values with their
corresponding numerical counterparts. In Example 1.1, the Fourier equation allows us to find the
solution to the problem for every value of x; if we are able to solve the equation, we will know the
exact temperature in every single point (with infinitesimal scale).

Figure 1.2 also introduces an important concept: the behavior of the analytical model should
match the one observed in the original entity. In this case, we say that the results given by the
model are valid. To ensure this, a validation phase is required to check that the results given by
the model match what we see in the original entity. (If no data are available, validation can be
done by trying to match other existing theories or models or by using similar entities in a different
context.)

In many cases, we need to do several simplifications in order to define and solve the equations.
For instance, in Example 1.1:

* We used a single-dimensional model, although we have a three-dimensional classroom.
Adding a second equation to solve the problem in two dimensions results in extra complex-
ity. In this case, we need to add a new equation, ¢, = —k d7/dy, and modify the temperature
field in the medium 7 = T(x, y) to be a function of both x and y. Solving this equation is
more complex, and this is still a simplification of the three-dimensional problem.

* These equations do not consider transient behavior: what happens if students move? What
happens if a window is opened or if we turn the heat on? How is the position of the heating
device going to affect the equation definition?

* The equations do not consider combinations of the different possible transients, the mate-
rials being used in the room’s walls and floors, influence of air flowing in the room, and
many other simplifications.

* We need to be able to solve the equations of interest, which can be infeasible or complex
(moreover, in many cases just finding the equations to describe the entity under study in
detail is impossible).

If we are interested in solving a simple problem like the one in Example 1.1, most of the details in
reality can probably be ignored. Nevertheless, if we wanted to use Fourier’s equations to study the
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heat conductivity of a new material that we want to use for manufacturing, some of the details cannot
be ignored (otherwise, the model will lose precision, and the results of the study will be incorrect).

In order to deal with models with a higher complexity, difference equations and other numeri-
cal methods were introduced [3,4]. The idea of these methods is to approximate the equation by
discretizing their behavior (which, instead of being continuous and thus computable at every point
in time, is now calculated at predefined time steps). The result is not analytical but, rather, numeri-
cal, and it will have less precision than the formal model (we cannot obtain solutions for every pos-
sible combination of the model’s variables). Nevertheless, such methods provide approximate values
that are close enough for the problem under study. For instance, in the case of Fourier’s equations,
we could divide the surface of interest into small elements (assuming a linear temperature distribu-
tion along its unit length and a unit area perpendicular to heat flow direction) and obtain the follow-
ing approximation to the Fourier equation:

nr-+ 507,
Ti=— Li_ (L.1)
h+ K
Li
Here,

K, = the thermal conductivity;
L, = the length of the element;
T., = the fluid temperature;
T, = the temperature inside the material on a node;
h = the heat transfer coefficient; and
T, = the computed surface temperature, which will replace 7}, in the next computation step [2].

The problem-solving activities using these methods can now be described as in Figure 1.3.

The cycle also starts by obtaining experimental data from the entity and then creating equations
to model the observed behavior (within the corresponding experimental frames). Nevertheless, as
in this case, we cannot find a solution for the equations, so we use a numerical approximation. The
computation is based on a recursive method (that will calculate the values of the state variables at
a given time and convert the value as the basis for the next computation). In the past, this task, in
general, was carried out by a human expert. The computation EF in this case is derived from the
model’s EF; within the same frame, the computation model should be able to answer the same que-
ries (with a loss of precision due to the approximation). In Figure 1.3 a new step is introduced, which
means that we need to carry out an extra check in order to verify the correctness of the results. In
this case, we will say that we need to do verification of the results obtained by numerical approxi-
mation. The idea is that the values we compute need to be checked against the experimental data,
while trying to mimic the model’s description as accurately as possible.

This approach for problem solving (which was the main technique employed in the last few centu-
ries) made possible a tremendous advance of science and technology. A consequence of such success
was the evolution of the associated mathematical techniques, which resulted in the ability to attack new
and more complex problems, and new questions to answer (which might require new problem-solving
techniques).

Besides the evolution in our learning about nature, the twentieth century witnessed the cre-
ation of very elaborate human-made devices (e.g., control systems, intelligent manufacturing, traf-
fic monitoring) that made it difficult (or impossible) to continue using “pencil-and-paper” analysis
methods. When we consider such problems (with a few exceptions), they are analytically intractable
and numerically impossible to evaluate (unless we simplify the model, which, in most cases, results
in solutions that are far from reality).

The advent of computers in the 1940s provided scientists and engineers with alternative methods
of analysis. Computers are well suited to deal with approximation techniques, reducing human
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FIGURE 1.3 Problem solving through computation.

computation errors and being able to solve the problems at much higher speed. Thus, since the early
days of computing, traditional numerical models were converted into computer-based solutions (and,
in many cases, they were called computer simulations). The cycle for creating computer simulation
(or simply simulation) studies can be also represented as in Figure 1.3, with the difference that now
the computation model is executed by specialized devices (in the beginning of simulation history,
analog computers were used for numerical approximation [5]; today, we use digital computers). The
computation EF is now a program that generates test cases for the computational approximation
of the model. In this case, the verification activities also need to check the accuracy of the results,
while adding an extra step (as limited precision in computers can create erroneous results that can
diverge from the expected solutions).

Computer simulation enabled scientists and engineers to experiment easily with “virtual”
environments, elevating the analysis of natural and artificial applications to a new level of detail
unknown in earlier stages of scientific development and providing great help in the design and
analysis of complex applications. Simulated models also can be used for training because they
provide cost-effective and risk-free solutions when compared to experimentation. In simulation-
based techniques, we find individual solutions for particular problems (as opposed to the general
solutions found by analytical methods) using a device (in general, a digital computer) for controlled
experimentation and time compression. The constant reduction of the cost of computers (in hand
with graphical interfaces, advanced libraries, languages, and other facilities) allowed simulation
to become an easy-to-use and flexible technique. Nowadays, modeling and simulation provide a
well-developed, well-proven approach to problem solving that advances steadily as more computing
power becomes available at less cost.

The advantages of simulation are multiple:

* Decisions can be checked artificially.

* The same model can be reused multiple times.

* Simulations are easier to create and use than many analytical techniques, and they need
fewer simplifications.

* The rules used to define the model’s behavior can be modified easily.

* During execution of a simulation, we can experiment with varied special cases.

» The user can interact with the simulator, allowing analysis of such interactions.

e Simulation results in shorter design-cycle times and reduced requirements for initial
resource investment.

e Simulation provides economic benefits: Research and Development cycles can be
improved.

» The original entity is not affected by the study, and it can continue to be used.
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In the rest of this chapter, we will discuss some basic ideas about modeling and simulation we
introduce in this book. We will present basic concepts of discrete-event dynamic systems, introduce
and classify different techniques for modeling such systems, and show how a simulation study is
carried out.

1.2 MODELING DISCRETE-EVENT DYNAMIC SYSTEMS

As mentioned in the previous section, computer simulations began by implementing numerical
approximations of the differential equations under study with the goal of solving the computation of
more complex models in a fast and precise way. Unfortunately, these methods could not be adapted to
most of the artificial applications developed during the twentieth century. The Industrial Revolution
brought the need to model the behavior of complex apparatuses built by humans (i.e., telephone
lines, avionics controllers, automated elevators, etc.), which cannot be adequately described by dif-
ferential equations or their numerical approximations.

EXAMPLE 1.2

Figure 1.4 shows the observed behavior of a traffic light. Initially, the light is green for 45 s. Then,
it switches to yellow for 10 s and finally switches to red for 55 s (after which the cycle is repeated).
As we can see, modeling this application with a differential equation is not natural (and it is infea-
sible to solve in the case of complex combinations including hundreds of traffic lights in a city).

EXERCISE 1.1

Write a model of the behavior of the traffic light in Figure 1.4 using ordinary differential equations
[1, 3]

In order to deal with this kind of problem in a better way, new mathematical theories (in particu-
lar, those based on automata theory) were applied in the analysis of these automated devices with
discrete components [6,7]. For instance, we can model the behavior of the traffic light in Figure 1.4
with a simple untimed automaton like the one presented in Figure 1.5(a). Such a model can be used
to think about correctness of the traffic light behavior (in our example, the cycle from green to yel-
low to red; if we see a different order when inspecting the model, we will know the model is wrong).
We could also build a more complex version like the one in Figure 1.5(b), which uses a timed ver-
sion of automaton, in which we include the delays for each of the lights. Using this model, we can
also think about correctness of the timing properties (and, for instance, detect a wrong duration for
a given cycle).

T T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
| | |
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FIGURE 1.4 Observed behavior of a traffic light.
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@ (b)

FIGURE 1.5 Simple untimed and timed automata describing the behavior of the traffic light in Figure 1.4.

time = 0; State = Green;

Repeat Forever {

if (State == Green AND (time mod 110) == 45) State = Yellow;
if (State == Yellow AND (time mod 110) == 55) State = Red;

if (State == Red AND (time mod 110) ==110) State = Green,
time = time + 5;

FIGURE 1.6 An implementation of the traffic light model based on the timed automaton of Figure 1.5.

If we now use this model to create a simulator (for instance, an implementation of the timed
automata in Figure 1.5(b) using a C-like programming language), we obtain a program in the style
of the one introduced in Figure 1.6.

As we can see, we start at time O with a green light. The simulator evolves by checking the cur-
rent state and time and acting according to their values. For instance, after being 45 s in green, the
state changes to yellow; after 10 more units, it changes to red and then finally goes back to green.
Time is incremented on each cycle using time steps of 5 s (which is the greatest common divisor—
g.c.d.—of the three light periods—that is, the minimum value providing enough precision accord-
ing to the data collected in Figure 1.4).

EXERCISE 1.2

Build a simulator based on the one in Figure 1.6 and the model in Figure 1.5(b) using a high-level pro-
gramming language (like Java or C++).

EXERCISE 1.3

Define a composite automaton describing the behavior of two traffic lights interacting, based on the
model in Figure 1.5(a) (in such a way that when one of the automata has a green light, the other is red
and vice versa).

EXERCISE 1.4

Define the behavior of the model introduced in Exercise 1.3 using ordinary differential equations.

EXERCISE 1.5

Build a simulator to execute the models defined in Exercise 1.3 using a high-level programming lan-
guage (like Java or C++).

Automata models were defined using discrete values to represent time and the set of states, which
works well in many applications but not in others. In order to discuss some of the difficulties, let us
consider now a case where the traffic light model introduced in Example 1.2 uses external sensory



10 Discrete-Event Modeling and Simulation

Red

Pedestrian
button v
pressed at
37.32722

kllow

Green Green

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

FIGURE 1.7 Observed behavior of a traffic light with a pedestrian button.

information to determine the length of the traffic cycle. We also want to model a button for pedes-
trians crossing. Figure 1.7 shows an example of the experimental data for such a traffic light.

Here, during the green cycle (which is 45 s long), a pedestrian arrives and presses the pedestrian
crossing button, causing a change in the cycle. Such a simple action introduces several problems:

* How do we model the external sensory information in the automaton of Figure 1.57 We
want to have cycles that adjust dynamically, so the resulting automaton is much more com-
plex, and it has a larger number of states (if Exercise 1.4 was solved, try now to build the
extended automaton for this new adaptation). If we now want to integrate this model for a
complex crossing, the number of states might grow exponentially.

» If we need to combine this traffic light with others, how is the variable-timing behavior
going to affect the combined automaton?

* When we create a simulator for this model, which would be the right time step to be used?
Because neither the arrival time of pedestrians nor traffic flow can be predicted, we cannot
find the g.c.d. of every possible cycle (which can be potentially very small or very large).
If our requirement is to identify traffic flow changes with high precision, we might use, for
instance, a timescale of 0.1 s. Nevertheless, in this case, for every simulation (including
those with few or no pedestrians and those with steady traffic), our simple simulator will
execute 1,200 cycles (instead of the 22 we used in Figure 1.4). If, instead, we choose a time
step of 5 s as before (i.e., to improve the execution performance of the simulator), we can-
not accurately model the arrival of vehicles (and in Figure 1.7, we would miss representing
the pedestrian button pressed at 37.32722).

* Although this problem does not exist in differential equations (where time is continuous),
they are not adequate to represent these kinds of problems (as you could experience if you
tried to solve the trivial examples introduced in Exercises 1.1 and 1.3). Instead, automata
are easier to understand and better represent these kinds of phenomena.

As we can see, we need different methods to model these human-made applications, in which
entities change due to the occurrence of particular events and the model’s evolution depends on the
interactions of such events and their arrival times. For instance, in a computer network, the arrival
of a packet is an event of interest, and its arrival time or duration can be of any variable length,
depending on the current state of the system and the kind of packet. These kinds of entities, which
can be represented with discrete variables and continuous time, are called discrete-event dynamic
systems (DEDS). In DEDS, the states are described by piecewise constant trajectories (such as the
ones in Figure 1.7). DEDS are naturally concurrent and highly nonlinear; because no transformation
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FIGURE 1.8 Building a simulator using a simulation language.

method is available, it is also difficult to find general analytical solutions [8]. The different methods
for modeling and simulation (M&S) of DEDS are called discrete event modeling and simulation.

Discrete-event M&S assumes that, although time is continuous, only a finite number of events
can occur in a given period. Therefore, a discrete-event simulator can be very efficient because we
only need to represent the state changes upon occurrence of events. For instance, in order to simu-
late the traffic light model presented in Figure 1.7, we would only need to execute four cycles (one
per color change and one for the button pressed, compared to the 22 or 1,200 previously discussed),
while obtaining the maximum precision available to model this traffic light adequately.

Many of the techniques for modeling DEDS only focus on the arrival order of the events, ignor-
ing their timing. They are called logical DEDS models and they are used to solve problems as the
untimed automata presented in Figure 1.5. Conversely, if timing is a factor, we need timed DEDS
models.

In order to convert the simulator presented in Figure 1.6 into a discrete-event one, we first need
a discrete set of state variables and a clock indicating the current simulation time. Then we use a
scheduler to keep a chronological list of events (in general, stored as messages) that represent the
state changes. The time in which this will happen, #i € R, is a continuous variable. At every time,
the simulator will pick the first event in the list, process it, change the value of the state variables,
and cycle to the next event. As we can see, the complexity of the simulation algorithm is higher, and
the management of the event list is very important.

In the 1960s, techniques for discrete-event simulation (based on the ideas just discussed) became
very popular. In many cases, this resulted in the definition of advanced simulation languages like
SLAM, Arena, Simula, or SimScript [9-11]. Although simulation languages can address complex
problems, their use lacks the formality of previously existing modeling methods. Using a simulation
language helps with problem solving and experimentation, but in most cases their foundation is not
rigorous, making the resulting simulation software difficult to test, maintain, and verify. Likewise,
changes in the language can produce serious effects in existing models because their semantics are
usually not formally defined. Simulation languages do not provide a method abstract enough to think
about the problems to solve or to prove properties of the entities under study, which could improve
the final quality of the analysis while reducing end costs. Another problem faced by simulation lan-
guage—based solutions is more subtle and complex to address. The source of many of these problems
can be experienced by solving Exercise 1.2 or 1.5, and it is summarized in Figure 1.8: as most simula-
tion languages were not derived from a formal modeling framework, the modeling phase, actually
skipped. We start by collecting data from experiments, and we build a piece of software (the simula-
tor), trying to mimic the problem under study (skipping the intermediate modeling phase). Although
this method is still useful in many cases, the result is a single-use program approach, which can have
several problems (we will use Example 1.2 to discuss some of these problems):

*  What happens if we need to reuse the simulation in a different context (e.g., we want to
reuse the traffic light controller simulation for a railway controller simulation)?
* How can we reuse the experiments done to test the original model on a different one?
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* How do we deal with changes? If we decide to add a blinking green light for left turns (or a blink-
ing red light for a failing controller), we need to modify the software application completely.

* Where is the abstract model we can use to organize our ideas? How do we organize the
creation of a new version of the simulator in which we need to study the intersection of six
streets with two-way traffic?

* How do we validate the results? What do we do if we find errors in the simulation?

It is difficult to address these issues using the same simulation languages because the model is
usually mixed with the experiment and the simulation software. For instance, in Example 1.2, the
traffic light controller would be mixed with the generation of pedestrians arriving at the corner and
the simulation routines that make time advance and decide what to do next. Even with a simple
example like this one, reuse is complex—how can we reuse the control algorithm for the traffic
light? Any changes would result in going through the code for the simulation and the experiment
because there is no model to use in the verification process. Building a program from the experi-
mental data, as in Figure 1.8, would result in having the original software discarded and a new
simulator built from scratch for the next simulation project.

Instead, using a model to organize our ideas can help to create a better product at a reduced cost.
Although nonformal models (sometimes called conceptual models) can be of help in this task, a
formal model like the automata in Figure 1.5 provides much better facilities for verification, reuse,
modification and testing. It also provides the basis to define a process that would allow repetition
of successful previous experiences, enable reuse, and introduce well-known software engineering
practices in the creation of the simulation software.

With these goals in mind, different groups investigated the creation of formal discrete-event
modeling techniques. Such formalisms provide a communication convention written in a mathemat-
ical language, which we can use as a guide to provide a nonambiguous specification of the system’s
semantics [12,13]. Formalisms can be used to represent the entities under study formally, creating an
abstract model and providing means for manipulating such abstraction, while being able to translate
them into executable models. A formal model (i.e., one built using a formalism) provides a sound
mechanism to specify the entity under study that can be formally verified. This improves error
detection and reduces the development and verification time of the simulation software, enhancing
the security and reducing the development costs of the simulation. Going back to Figure 1.3, if we
can prove properties of the model before creating its computational version, we can improve the
final product at a lower final cost. Simultaneously, a formal mechanism can disambiguate commu-
nication, enhancing teamwork by providing a sound notation for the model being constructed.

The rest of this book is focused on one of these discrete-event M&S formalisms, called DEVS
(discrete event system specification), a sound M&S theory that has evolved in the last 30 years
[12,14-20]. In order to understand the basics of this methodology, we will first discuss some general
ideas and we will provide a few general definitions.

1.3 CLASSIFICATIONS OF MODELING TECHNIQUES

Defining taxonomies and classifying methods can help us to have a better understanding of a field
under study. Fishwick [13] proposed the following classification, which is based on the types of
techniques used (we will use Example 1.1 to show the differences of each of the techniques):

1. Conceptual modeling: this technique is based on the creation of an informal conceptual
model that communicates the basic nature of the process. It provides a vocabulary for the
application (which can be ambiguous) and a general description of the entity to be mod-
eled. Example 1.3 shows a simple version of a conceptual model for Example 1.1.
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FIGURE 1.9 Classroom organization.

EXAMPLE 1.3: CONCEPTUAL MODEL FOR EXAMPLE 1.1

We are interested in studying temperatures in a classroom throughout the day. The orientation of
the building is north (N)/south (S), and there are large glass windows to the east (E). The classroom
is 15 x 20 x 3 m. There is a total of 72 movable desks in the room, which are set up (by default)
in eight rows of nine desks each. There is also one desk in the front and 15 extra chairs available
(without a desk). The classroom has one projector, a whiteboard on the front (which is heading to
the S), and a blackboard on the west (W) wall.

There are three teaching seasons (no lectures in summer). Once every hour, an alarm will
sound to indicate the end of the lectures. Once every minute, the room’s temperature is sensed,
and the heating/air conditioning (AC) is activated as needed. In fall and winter, if the temperature
goes below 22°C, the heating is turned on, and if gets above 25°C, it is turned off. In spring, if the
temperature goes above 24°C, the AC is turned on, and it is turned off when the temperature gets
to 23°C (Figure 1.9).

The influence of the temperature outside and in the rest of the building will be neglected.
There is a heating/AC source in the middle of the room (on the ceiling) and a door at the back.
After extensive experimentation, we know that every time a person arrives in the classroom, the
temperature increases 0.05°C after 5 min. Likewise, 5 min after someone leaves, the temperature
decreases 0.05°C.

Parameters are room size (15 x 20 x 3 m), desks (72), chairs (87), and board positions (W, S).

State variables are number of students, activity (lecture/no lecture), desk positions (default,
circle, semicircle), heating temperature, air conditioning temperature, and season (summer, fall,
winter).

EXERCISE 1.6

Find ambiguities and missing information in this conceptual model. Which of these problems are
derived from the expression in natural language? How would you solve these problems?

2. Declarative modeling: these techniques are focused on the evolution of the model repre-
sented as states (which describe the behavior of the entities under study) and the transitions
between them. According to the particular focus of the technique, we can have state-based
or event-based declarative models. State-based declarative models, for instance, can be
represented as a graph where the vertices represent the entities and the arcs represent the
state changes (transitions).
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FIGURE 1.10 State-based declarative model of the classroom example.

EXAMPLE 1.4

Figure 1.10 shows a state-based declarative model representing a portion of the system'’s
specification, in which students arrive at or leave the classroom. At a certain point, we have
27 students in the lecture room and a temperature of 25°C. If a new student arrives, we will
have a total of 28 students and 25.05°C (this is an untimed model, so timing information is
not included). If a student leaves, we return to the previous state; if another student arrives,
we have 29 students and temperature will go up (25.1°C). We also show a state represent-
ing that the heating has been turned off, which will reduce temperature in the classroom
accordingly.

In event-based declarative models, we use a graph-based notation with nodes representing events
(i.e., the state changes that occur when there is a particular kind of event detected) and links repre-
senting the relations between those events. The state changes are associated with each event, and the
links can have logical relations associated (defining the relations between events).

EXAMPLE 1.5

Figure 1.11 shows an event-based declarative model for the classroom that represents the
same phenomena analyzed in Figure 1.10. If we schedule the arrival of a new student,
we will have one more student in the room and temperature will increase. The model
can receive more students while there is room available (g < 85). At any moment, we can
schedule a student to leave (in this case, we will decrease temperature and the number of

t>25

Heat Off

t=t-3

FIGURE 1.11 Event-based declarative model of the classroom example.
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FIGURE 1.12 Functional model of the classroom example.

students in the room). We need at least one student to schedule a student departure (g > 1).
If we schedule the heat off event, temperature goes down 3°C.

3. Functional modeling: in this case, the model is defined as a “black box” and the input is a
signal defined over time. The output depends on an internal function, and the model can
use discrete or continuous functions.

EXAMPLE 1.6

Figure 1.12 shows a black box representing the same portion of the system’s specification
presented in the previous two examples. The function f will receive information about stu-
dents arriving or leaving the classroom. According to the current number of students and
level of AC/heat, it will generate the room’s temperature (temp).

4. Spatial modeling: in these techniques, space notions are included (i.e., the relationship
between time and space is included in the model).

EXAMPLE 1.7

Figure 1.13 shows a spatial model for the classroom system. At time ¢, the students were
distributed in the classroom as in the left part of the figure; at time t + 1, we see that a new
student has arrived and is now seated in the back row. The number of students will influ-
ence the temperature in the classroom.

A different categorization classifies the different modeling techniques according how we repre-
sent the state variables and time in the model. Figure 1.14 shows such classification, organizing the
various techniques mentioned earlier in this chapter according to their time base and state variables’
representations.

As we can see, two criteria are used for the classification:

(@) According to the time base, there are continuous time paradigms, where time evolves
continuously (time is represented a real number), and discrete time techniques, where time
evolves by advancing in discrete portions (time is an integer number).

(b) According to the values of the state variables, there are continuous models, where the
variables take their values from a continuous set represented as a real number, and discrete

t+1

FIGURE 1.13  Spatial model of the classroom example.
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FIGURE 1.14 Classification according the representation of time bases/state variables.

models, where the variables are discrete and can be represented as a finite set of integer
numbers.

Figure 1.15 classifies some of the existing modeling techniques according to these criteria.

According to Zeigler, Prachofer, and Kim [17], entities with a behavior like the one depicted
in part {1} of Figure 1.14 (which are usually called continuous variable dynamic systems) can be
defined as differential equation systems specifications (DESS). If we consider the room’s tempera-
ture in Example 1.1, we can represent it as a DESS (i.e., temperature in the room can be described
as in Figure 1.14{1}). We could use continuous modeling techniques like Bond Graphs, Modelica,
and other techniques in Figure 1.15{1} to represent this kind of entity.

Behavior like the one in Figure 1.14{2} (usually called discrete-time dynamic systems) can be
defined using a discrete time system specification (DTSS). For instance, the temperature sensor used
in Example 1.1 (which measures temperatures at fixed periods) can be represented by difference
equations (and other techniques in Figure 1.15{2}).

Figure 1.14{3} shows the behavior of discrete-event dynamic systems, which can be described
using any of the discrete event systems specification (DEVS) techniques in Figure 1.15{3} (e.g., the
arrival and departure of students in the classroom). Example 1.1 can be modeled with timed FSM,
event graphs, etc. as discussed earlier.

Finally, Figure 1.14{4} represents the so-called discrete dynamic systems, which can be repre-
sented as a specialization of DEVS models in which the events occur at a fixed time. In our class-
room, the hourly alarm can be modeled with FSMs, Petri nets (PNs), and other techniques included
in Figure 1.15{3}.

Vars./Time | Continuous Discrete

Continuous | {1} DESS {2} DTSS
Partial Differential Equations Difference Equations
Ordinary Differential Equations | Finite Element Method
Bond Graphs Finite Differences
Modelica Numerical Methods (Runge-Kutta, Euler, DASSL, and
Electrical Circuit Diagrams others)

Discrete {3} DEVS {4} Automata
DEVS Formalism Finite State Machines
Timed Petri Nets Finite State Automata
Timed Finite State Machines Petri Nets
Event Graphs Boolean Logic

Markov Chains

FIGURE 1.15 Classification of modeling techniques according the representation of time bases/state variables.
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FIGURE 1.16 A simple automaton: a{b*{cab*}*}*.

1.4 DISCRETE-EVENT MODELING AND SIMULATION METHODOLOGIES

Modeling techniques for DEDS are relatively recent (especially if we compare them with those used
for modeling CVDS). In this section, we present a noncomprehensive list of some of the formal
modeling techniques created for modeling DEDS (readers interested should consult the references
included here).

An automaton is defined as a graph representing system states and the transitions between them.
The automaton receives a string of symbols as input, and it recognizes/rejects the inputs by advanc-
ing through the transitions. The input is read one symbol at a time; depending on the ending state,
the automaton will accept or reject the input [6,7].

The automation in Figure 1.16 has an initial state 1 (represented by the arrow) and an ending
state 2 (represented by the double circle). If the input a is received, the automaton transitions from
state 1 to state 2. Once in state 2, it can remain there while receiving the input b, it can return to
state 1 if it receives input ¢, or it can terminate. Thus, this automaton recognizes the strings {a, ab,
abb, abbb, abbbbb, ..., aca, acab, acabb, acabbb, ..., abca, abbca, abbbca...}. This can be repre-
sented as a{b*{cab*}*}*, where * means 0 or more repetitions and {} are used to group strings.

Automata can be deterministic (like the automaton in Figure 1.16), but there are several exten-
sions to the original method, including the nondeterministic automata (in which the transitions can
be probabilistic), input/output (in which the automaton can trigger a transition when an input is
received and can generate outputs, automata noted on the state), etc.

Timed automata, in particular, use clocks to describe the model’s timing behavior [21]. The
automaton is defined as a graph of states associated with clocks that determine the passage of time
since the occurrence of an event. Every link is associated with a timing constraint that will define
when the transition can be triggered. Whenever a transition executes, the associated clocks are reset.
Timing constraints can also be associated with the model states, defining the duration of each of
the states.

Figure 1.17 shows the definition of the traffic light model using a timed automaton. The initial
state of the model is green, and it will be kept for 45 s. When this time arrives, it changes to yellow,
producing an output (the {yellow} light). If, before 43 s have passed, a pedestrian presses the cross-
ing button, we switch to yellow (this change will take 2 s). The transitions to red and to green also
follow our previous definitions.

Finite state machines (FSMs) can be represented as a graph in which the system’s behavior is
defined as a finite set of nodes (the model’s states) and links between them (transitions between
states). A given state reflects the evolution of the model, and transitions are associated with a given
logical condition to enable the execution of the transition. When entering a state, an entry action can
be executed (and an exit action can be executed when leaving it). Likewise, an input action can be
triggered based on the current state and an input [6,7]. An FSM is formally defined as

FSM = (S, X, Y, f, g) 1.2)

where
X = finite input set
Y = finite output set
S = finite state set
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FIGURE 1.17 A timed automaton for traffic light.
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Every FSM is supposed to have an initial state, a next-state function that defines how to obtain
the next state in the system, and an output function that uses current state and inputs to generate out-
puts. According to the relationship between the input sets and output functions, two kinds of FSMs
can be defined: Moore machines, in which outputs are independent from the inputs, and Mealy
machines, in which, besides the current state variables, the current inputs are analyzed to decide the
current output value. These two types are depicted in Figure 1.18.

Timed versions of FSMs associate time with the places or the transitions. Further details about
untimed and timed FSMs can be found in Cassandras [6] and Papadimitriou [22].

A Markov chain [23] is a discrete-time stochastic model
described using a graph (Figure 1.19). Models’ states are

defined as nodes in the graph, and transitions between states Py, Py,
are represented by links. One important property of Markov

chains is that they are memoryless; thus, no state has a a ’
cause—effect relationship with the previous state. Therefore,

knowledge of previous states is irrelevant for predicting the
probability of the future states. FIGURE 1.19 A simple Markov chain.
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In Figure 1.19, we have a binary Markov chain, in which the probability to go from O to 1 is
Py, the probability to go back from 1 to 0 is P, and the probability of remaining in state 1 is P, ;.
Markov chains can use discrete time or continuous time, and states can take a discrete value (i.e.,
values from a finite or a countable infinite set). On a discrete-time chain, we compute the probabil-
ity to change from one state to the next, and this will happen in discrete time. In continuous-time
chains, transitions can occur at any time; thus the transition probabilities must be defined for every
instant.

A Generalized Semi-Markovian Process (GSMP) is a stochastic process (i.e., a collection of ran-
dom variables over a probability space indexed by time). A GSMP is based on the notion of a state
that makes a transition when an event associated with the current state occurs, and the state space
is generated by a stochastic timed automaton [24]. Several possible events can compete to trigger
the next transition, and each of these events has its own probabilistic distribution for determining
the next state.

The GSMP is defined as a set of locations, a finite set of events, a function that assigns a set
of active events to each of the locations, a firing time distribution associated with each event, and
a transition function, which takes an active event for a given source locations and returns a set of
events and a probability measure. At each transition, new events may be scheduled.

For each event, we set a clock indicating the time when the event is scheduled. It is assumed that
the set of scheduled events is uniquely determined by the current state and that there is a unique
triggering event for each state transition. A run of a
GSMP is a sequence of alternating timed and dis-
crete transitions. The run starts at the initial configu- Bl po  E) o Bl
ration s, = (g, €,), Where ¢, is the initial location %o —» So—> 51— 51> H—»SH—p .
for the GSMP and e, is the initial valuation of the
events scheduled according to the corresponding fi- ~ FIGURE 1.20 Execution of a GSMP.
ing time distributions (Figure 1.20).

Petri nets [25] define the structure of concurrent systems using a bipartite graph. One type of the
graph’s nodes, the places, represents the system states, and the second kind, the transitions, repre-
sents the net evolution. The PN example in Figure 1.21 represents a producer/consumer system (the
producer is on the left and the consumer on the right of the figure). Here, LI-L5 are the PN places
and t/-t4 the PN transitions. L/ represents the producer ready, L2 a producer that has generated an
element to be consumed, L3 a buffer between the producer and the consumer, L4 a consumer that
is ready, and L5 a consumer active.

Because a PN is a digraph (i.e., only connections between places to transitions or vice versa are
legal), the PN defines a static view of the system’s structure (as we can see in Figure 1.21). If we are
interested in studying the dynamics of the system, the PN needs to execute. This is done by placing
a special mark (called a token) on the places (in this case, we have one token on each of places L/

t3
tl
L3
L1 L2
L5
t2
L4
t4

FIGURE 1.21 A producer/consumer Petri net.
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and L4, representing that the producer and consumer are ready to start). The number of tokens per
place is unlimited, and the number of tokens in the whole net defines the net’s marking. The PN
evolves by executing the transitions, which is done by taking one token per input place (i.e., those
with a link from a place to the executing transition—for instance, LI — ¢I) and placing one token
on every output place (i.e., those with a link from the executing transition, i.e., t/ — L2, L3). Each
execution of a transition is called firing the transition. We can only fire a transition that is enabled
(i.e., one having at least one token on each input place). The execution of a transition is atomic, and
if more than one transition is enabled, they execute in nondeterministic fashion.

Figure 1.22 shows the execution of the PN in Figure 1.21, using a reachability tree, which con-
tains one node per marking and one link per firing. For instance, the initial marking in Figure 1.21
can be represented as the configuration: (1,0,0,1,0). With this marking, only #/ is enabled (it is the
only transition with a sufficient number of tokens in the input places). If we fire ¢/, we obtain the
marking (0,1,1,1,0), which enables 2 and 3. Any of them can be fired (and which one is fired is
decided in nondeterministic fashion). For instance, if we fire 2, we obtain (1,0,1,1,0), which is a
similar marking to the root of the tree but with an extra token in L3. At this point, if we repeat the
firing sequence ¢t/ — 12, we will obtain the same marking, with one extra token in L3. Thus, instead
of expanding this branch of the tree indefinitely, we put an asterisk in the corresponding position
for L3 (meaning that the number of tokens in this place can grow indefinitely) and stop expanding
this branch of the tree.

If, instead, we fire ¢3, we obtain (0,1,0,0,1). At this point, we can fire 2 or 4, etc. When we cannot
fire further transitions or we obtain a marking repeated in the tree, we stop expanding the tree. For
instance, after firing ¢/ we obtain (0,1,0,0,1), which is repeated in the tree; thus, we stop expanding
this branch.

By studying the tree, we can study concurrency problems, deadlocks (i.e., a PN that does not
evolve and have resources in a cycle), unbounded buffering problems, starvation (transitions that
can never execute), etc.

EXERCISE 1.7

Study the reachability tree in Figure 1.22 and discuss the meaning of each of the states.

EXERCISE 1.8

Add two extra tokens in L/ and rebuild the reachability tree.

EXERCISE 1.9

Using the reachability tree in Figure 1.22, carefully check whether the occurrence of concurrent states
is correct. Find cases of deadlock, starvation, or any other problems (if there are any). Repeat the exer-
cise for the tree obtained in Exercise 1.8.

(1,0,0,1,0)
ja
(0,1,1,1,0)
e e
(1,0,%1,0) 1,0,0,1
L OL001
(1,0,0,0,1) (0,1,0,1,0)
t4
o [ S | 2
(0,1,0,0,1) (1,0,0,1,0)

FIGURE 1.22 Reachability tree for Figure 1.21.
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EXERCISE 1.10

Delete the token in L4, move it to L3, and repeat Exercises 1.8 and 1.9.

Queuing networks are based on a customer—server paradigm, in which customers make ser-
vice requests to the servers and these requests are queued at the server until they can be serviced.
The arrival time for customers and the service time at a server are described as stochastic models.
By defining the number of servers and the buffering capacity on each of them, we can determine
performance metrics (including the number of customers in line, throughput—number of custom-
ers serviced per time unit, turnaround times, etc.). Different policies can be used (priorities; pre-
emption; first in, first out [FIFO]; etc.). Traditional queuing networks model only a single layer of
customer—server relationships. Layered queuing networks (LQNs) allow for an arbitrary number
of client—server levels [26,27]. LQNs can model intermediate software servers, and they can be
used to detect software deadlocks and software as well as hardware performance bottlenecks. The
layered aspect of LQNs makes them very suitable for evaluating the performance of distributed
systems [28].

The formal language of calculus of communicating systems (CCS) provides primitives for con-
currency and parallelism, based on synchronous communications between exactly two components.
The language expressions are interpreted as a labeled transition system, and bisimulation can be
used to prove equivalence of models [29].

Temporal logic is a system of rules and symbols used for representing propositions that can
include the timing properties of the system [30]. It consists of a logic set of propositions that view
time as a sequence of states and that can be true or false according to their state and their time of
occurrence. Temporal logic has been used to verify formally timed automata. The idea is to check
predictability of certain conditions according to the time that they occur, conditions that might
eventually arise, or others that are guaranteed not to occur.

Communicating sequential processes (CSP) is a formal language based on process algebra that
has been widely used to model concurrent systems [31]. Models are described using independent
processes that interact with each other through message-passing representing the occurrence of
events. The processes’ primitive elements include:

* Prefixing (—) connects an event with a process. For instance, if we write x — P, that means
that the process P will wait for the event x, after which P will execute.

* Inputs (?) represent the reception of inputs for the process. For instance, when we write
Mx:X — P(x), this represents a process P that, upon reception of x (which belongs to the set
of inputs X), executes P(x).

* Choice: the external choice permits us to select one of several actions. For instance, P =
x — P10y — P2 can execute either of the two processes, depending on the event received
(x will trigger P/ and y will trigger P2; if both occur, the choice is nondeterministic). The
internal choice picks one of them in a nondeterministic fashion. For instance, P = x —
P1 *y — P2 can choose either of the two processes, independently from their inputs. Other
operators include a choice with conditionals, Boolean operators, etc.

* Recursion is defined by having the identifier of the process at both ends of the equation—for
instance, Clock = tick — tack — Clock, which will repeat the events {tick, tack} forever.

* Parallel: if we have PI X||Y P2, PI and P2 execute in parallel and they synchronize using
the intersection of X and Y.

State transition diagrams usually suffer from a “state explosion,” in which the number of states
and transitions becomes unmanageable. State charts [32] introduce hierarchy into the model, allow-
ing definition of varied behavior at different levels, as seen in Figure 1.23. A state is represented as
a rectangle with round corners, which can be subdivided into a list of internal transitions (which are
performed while the element is in the state). The start state is represented as a circle and the final
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state as a double circle. The transitions between elements are represented with arrows. Numerous
other constructors are available (concurrent separators, complex transitions, event messages, etc.).

In Figure 1.23, we have two states: a lecture and an end of lecture (where students leave the
room). As we can see, we can hierarchically subdivide the lecture state into substates that will rep-
resent the start of the lecture, arrival and departure of students, and the end of the lecture.

State charts are also used in the UML dynamic model to show the behavior of a single class [33].
State charts introduce the concept of modeling of concurrent machines and superstates (i.e., a state
that contains other states), thus making it possible to have two or more concurrent states (as opposed
to classic state machines, which can only be in one state at a time). States and superstates can be
nested, each with its own initial and final states.

Specification and Description Language (SDL) was created to specify in a nonambiguous way
the behavior of real-time applications. It was originally focused on communication systems, by
providing a graphical and textual representation with equivalent semantics. A system is defined as
a set of extended FSMs that can be interconnected [34].

Event graphs are oriented graphs that represent the organization of the events of a discrete event
system [35]. As seen earlier in Figure 1.11, events constitute nodes of the graph; that is, the vertices
represent the state transition functions, and the links between nodes capture the scheduling of such
events. Each link starts at the node performing the scheduling operation (which represents an event),
and it ends at the node representing the event to be scheduled. Each scheduling relationship has
an associated delay and condition (a Boolean function of the state), and an event is scheduled only
when the condition is true.

Systems-theoretical approaches derive from systems theory [36]. Systems theory represents
every entity under study using the concept of system, which is seen as a collection of objects and
their interactions. In systems theory, the system’s global behavior is seen as a composition of the
individual behavior of the components, and we can find emergent behavior that is not explicitly
defined in the parts of the system. Systems theory is based on the idea that every phenomenon can
be viewed as a mathematical relationship among a set of entities in the system. The theory is generic
and tries to find common behavior and properties in different fields of study (for instance, hydraulics,
economy, biology, or social sciences), thus providing a unified view of science and engineering.

Systems theory distinguishes the structure (internal constitution) of a system and its behavior
(external manifestation). Each component is seen as having inputs, outputs, and internal structure
that dictates how inputs and states are transformed into outputs. If the model only allows observ-
ing the external manifestation, we call it a black box (or behavioral) model; when we analyze it,
we only consider the input/output trajectories observed. These models contain a representation of
observable and unobservable variables, and the system’s behavior is described as a set of input/
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output data that we can observe about the system of interest. When the model represents the internal
constitution of the system, we call it a white box (or structural) model. Structural models introduce
concepts of decomposition and coupling, and they refer to the component elements in the model
(as opposed to the behavior they generate). Decomposition focuses on how to divide a system into
components, and coupling focuses on how to combine the components to reconstruct it. Using these
concepts, we must explicitly define the components of the real system, using decomposition and
coupling concepts (Figure 1.24).

In the case of Example 1.1, we can build a behavioral model of the temperature of the whole room
by defining a transition function that will be activated every time a student arrives/leaves, updating
the temperature and number of students in the room (szates). On the other hand, a structural model
would consider the different heat/cold sources, the student’s seating area, and the connection to the
rest of the building. In this case, we are not interested in the behavior but, rather, in the decomposi-
tion of the model into subcomponents and their interrelation.

Systems theory also focuses on different views of the same system. For a given system, we can
have many models, which will be valid with respect to the objective for which it was created (that
is, it is going to be able to answer to queries according to the objective and the experimental frame
under which it was created). The bottom line is that a complete model never exists because there
is an indefinite number of models that can be created for the same system. Simultaneously, every
model can have many different implementations (simulations), and a variety of experiments can be
carried out. In Example 1.1, we can use the source system and create an experimental frame to study
the temperature (as described in the different examples we have discussed). The same source system
could also be used for studying weight of the student population, its gender, distribution of students
in classrooms, scheduling of lectures, construction of the building based on occupancy, evacuation
under emergency, etc.

Discrete-Event Systems Specifications (DESS) formalism [12,15-17,18] is a mathematical mod-
eling technique derived from systems theorythat allows the construction of hierarchical and modu-
lar models, providing a well-defined coupling of components. Given its hierarchical nature, DEVS
allows the coupling of existing models modularly, allowing us to build complex systems from sim-
ple ones. DEVS theory provides a rigorous methodology for representing models, and it presents an
abstract way of thinking about the world independently of the simulation mechanisms.

The formalism is based on general system theory, and it allows us to represent all the systems
whose input/output behavior can be described by sequences of events. The generality of DEVS is
derived from the fact that it permits the modeling of systems with a set of infinite possible states
where the new state after an event arrival may depend on the (continuous) time elapsed in the previ-
ous state.

EXERCISE I.11

Classify each of the previous techniques according to Fishwick’s taxonomy.
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1.5 SOME DEFINITIONS

Having discussed the basic ideas we will cover in the rest of the book, we are now ready to introduce
some definitions.

According to systems theory, a system is a natural or artificial entity, real or abstract, that is a part
of a given reality constrained by an environment. It can be seen as an ordered set of related objects
that evolve through different activities, interacting to achieve a goal. It is also called the real system
(or the system of interest), and it is seen as a source of observational data, which is viewed through
an experimental frame (EF) of interest to the modeler [17]. The system’s observational data are used
to define the model’s behavior, which is defined as a specific form of data observable in a system
over time within an experimental frame.

A model is an understandable representation (abstract and consistent) of a given system that we
use to understand it better. Models can be built in a variety of ways, and they have different mean-
ings according to the individual doing the modeling. For architects, a model can be the drawing of
a floor map or a maquette; for a biochemist, a model can be a three-dimensional representation of
a molecule; etc. In this book, we are not interested in such static models. Instead, we are interested
in models that have dynamic behavior (i.e., models that exhibit time-varying changes), we want to
study how the model organizes itself over time in response to imposed conditions and stimuli. The
objective is to predict how the system will react to external inputs or structural changes. The model’s
behavior is generated using specific rules, equations, or a modeling formalism with the goal of
generating behavior that should be indistinguishable from the one of the system within one or more
models’ EFs. The EF defines the conditions under which a system or a model is observed or experi-
mented with; thus, problem solving is related to the EF within which the model is analyzed [17].

The process of thinking and reasoning about a system in order to abstract the description of the
model from reality is called systems modeling. We will use the term paradigm to refer to the con-
cepts, laws, and mechanisms that are used to define a set of models. It is important to keep a clear
separation between the systems of interest and the models that we use to think about them. (A model
is an abstract representation of the system rather than the system itself, although it is easy to confuse
them because we are used to thinking about models for reasoning about real systems.)

Discrete-event modeling is based on the notion of event, which is defined as a change in the
state of the model. An event occurs at a given instant (called the event time) and causes the model
to activate in order to produce a state change (e.g., at least one attribute in the model will change).
Finally, a model’s state is the set of values of all the attributes of the model at a given instant. The
model’s attributes are usually stored in variables; state variables are those that will influence the
evolution of the model’s behavior [37].

A model is an abstract representation of the system of interest because the model is an aggre-
gated elaboration of the information provided by the system (with a format based on rules, equa-
tions, and relations between components). In modeling, we define abstraction as the basic process
used to extract a set of entities and relations from a complex reality [17]. During this abstraction pro-
cess, information is lost; however, a higher level of abstraction allows us to better define the model’s
behavior and to prove properties of the system by manipulating the abstract model definition while
addressing the problem at the right level of complexity. Figure 1.25 shows an example of a variety
of abstraction levels in a real system.

In Figure 1.25, we start with a continuous signal in the plant that is read by sensors. In order to
model the behavior at this level of abstraction, we need to use a continuous system methodology
(for instance, bond graphs). If we want to feed information from the plant to a digital computer,
we sample the input data (and in order to model this sampled data we need to use a discrete time
technique). The sampled data information from the plant is stored in an image of the plant, and we
use intelligent agents within a supervisory control system to process the inputs and react accord-
ingly (for instance, to activate alarms under emergency). The intelligent agents need to identify
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meaningful events to react to; thus, a discrete-event model, detecting important events to be pro-
cessed by the supervisory system, would be the best choice. As is clear in this process, we lose
information at each step, but we are able to make decisions that are more precise at each level by
using the right level of abstraction. Current systems of interest usually include components defined
with multiple techniques (also referred to as multimodeling). Likewise, each of these models might
have different levels of resolution according to the needs. (For instance, under emergency, we might
downgrade the sampling rate to better utilize the computer resources in dealing with the emergency,
thus reducing the quality of the input data while the emergency lasts.) These multiresolution models
are needed more and more frequently as they provide multiple versions of a model that can be easily
adapted and reused.

We can now define simulation as the reproduction of the dynamic behavior of a system of interest
with the goal of obtaining conclusions that can be applied to the system.

A simulation study refers to a set of simulation-based experiments. Typically, the model associ-
ated with a simulation study is implemented as a computer program (also called a simulation model
or a simulator). The simulation experimental frame contains information about the experimental
conditions, parameter values, and behavior generation mechanisms. A simulator may interface with
real-world entities (e.g., a moving platform for a driving simulator) or with humans (e.g., a driver in
the simulator). We call the first a simulator with hardware in the loop and the second a simulator
with human in the loop.

In order to be able to create a model and a simulator that represent the system with precision, we
need to carry out verification and validation (V&V) activities. We use the term validation to refer to
the relationship of the model, the system of interest, and the EF. A model’s validation answers the
question of whether it is impossible to distinguish the behavior of the model and the system within
the EF. Verification is the process of verifying that a simulator of a model correctly generates the
desired behavior [17].
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EXAMPLE 1.8

Let us use Example 1.1 to explain some of the definitions just presented. The experimental frame
consists of different classroom configurations for the study (students entering/leaving and varied
heating/cooling levels). We created different models: a spatial one in Figure 1.13 and a declarative
one (finite state machine) in Figure 1.10. A student arriving in the classroom is an event of inter-
est for this model. Two state variables will change upon occurrence of such event: the number of
students in the room and the room’s temperature (the composite change of these two attributes
is the room’s state change). This event will occur at the instant when the student enters the room
(represented by a real number). The FSM and the spatial models introduced in previous figures are
abstract representations of the actual system (for instance, the FSM in Figure 1.10 does not contain
any information about the student’s age or gender, which are attributes of the real system that we
are not interested in modeling within our EF). A simulator for this model would implement the FSM
in software, and a simulator’s EF would generate a variety of independent tests to run the program.
A different simulator would implement a software version of the spatial model in Figure 1.13. In
order to verify the simulator, we need to check that the trajectories generated in runtime coincide
with those defined by the model (for instance, if a new student arrival is simulated, we see the
number of students increasing, and the temperature increasing, as described in the model). Finally,
validation activities should ensure that what we see in the model and in the simulation results coin-
cides with reality. (For instance, if we see temperatures decreasing when a new student arrives, we
know that this simulated behavior is not valid; we have first to check the model and, if its specifica-
tion is erroneous, we need to fix it. Otherwise, we need to modify the model’s simulator.)

Once the study has been finished and the results are obtained, we might need to use them on the
original system of interest. According to the objectives for the study and the decisions to be taken on
the system of interest once it has finished, we can consider the following kinds of simulation models:

* Exploration models are models that are used to understand the operation of the system
better.

* Prediction models are models that are used to predict the future behavior of the system.

* Improvement models are models that are used to optimize the performance of the system
through the analysis of different alternatives.

* Conception models are models that are used when the system does not exist yet, and the
model is used to test different options prior to construction.

* Engineering design models are models that are used to design devices in engineering
applications (ranging from bridges to electron devices). Simulation permits exploring dif-
ferent design options and helps to choose the best.

* Rapid prototyping models are models that permit obtaining quickly a working model that
can be used to test ideas and get early feedback from stakeholders.

* Planning models are models that provide a risk-free mechanism for thinking about the
future in different fields of application (ranging from manufacturing to governance).

* Acquisition models are models that involve choosing proper equipment. Very large pieces
of equipment (e.g., helicopters, airplanes, submarines) are extremely expensive. M&S can
help us to decide during the purchasing process, enabling the customer to explore different
alternatives without the need of constructing the equipment prior to taking the decision.

* Proof of concept models are models that can be used to test ideas and put them to work
before creating the actual application.

* Training can be used to provide controlled experiments to enhance decision-making abili-
ties and teach fundamental concepts for defense applications (also called constructive sim-
ulation). Other training examples include business gaming and virtual simulators (which
are usually human-in-the-loop simulators to learn and enhance motor skills when operat-
ing complex vehicles).
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* Education models are models that can be used in different sciences to provide insight into
the nature of dynamic phenomena as well as the underlying mechanisms.

* Entertainment models are models that involve games and animation, the two most popular
applications of simulation.

1.6 PHASES IN A SIMULATION STUDY

There have been different kinds of life cycles proposed for studies in modeling and simulation
[17,38—41]. In this section, we summarize the basic steps that should be considered in doing a simu-
lation study. The life cycle does not have to be interpreted as strictly sequential; it is iterative by
nature, and sometimes transitions in opposite directions can appear. Likewise, some of the steps can
be skipped, according to the complexity of the application. It is highly recommended to use a spiral
cycle with incremental development for steps 2—8, which can cause a revision to earlier phases. Each
phase in the spiral cycle should end with a working prototype including more functionality than the
previous cycle:

1. Problem formulation: the simulation process begins with a practical problem that requires
solving or understanding. It might be the case of a cargo company trying to develop a
new strategy for truck dispatching or an astronomer trying to understand how a nebula is
formed. At this stage, we must understand the behavior of the system of interest (which
can be a natural or artificial system, existing or not), organizing the system’s operation as
objects and activities within the experimental framework of interest. Then we need to ana-
lyze different alternatives of solutions by investigating other previously existing results for
similar problems. The most acceptable solution should be chosen (omitting this stage could
cause the selection of an expensive or wrong solution). We also must identify the input/
output variables and classify them into decision variables (controllable) or parameters
(noncontrollable). If the problem involves performance analysis, this is the point at which
we can also define performance metrics (based on the output variables) and an objective
function (i.e., a combination of some of the metrics). At this stage, we can also do risk
analysis and decide whether to follow or discard the project.

2. The conceptual model must be defined. This step consists of building a high-level descrip-
tion of the structure and behavior of the system and identifying all the objects with their
attributes and interfaces. We also must define what the state variables are, how they are
related, and which ones are important for the study. In this step, key aspects of the require-
ments are expressed (if possible, using a formalism, which introduces a higher degree of
precision). During the definition of the conceptual model, we need to reveal features that
are of critical significance (e.g., possibility of instability, deadlock, or starvation). We must
also document nonfunctional information—for instance, possible future changes, non-
intuitive (or nonformal) behavior, and the relation with the environment.

3. In the collection and analysis of input/output data phase, we must study the system to
obtain input/output data. To do so, we must observe and collect the attributes chosen in
the previous phase. When the system entities are studied, we try to associate them with a
timing value. Another important issue during this phase is the selection of a sample size
that is statistically valid and a data format that can be processed with a computer. Finally,
we must decide which attributes are stochastic and which are deterministic. In some cases,
there are no data sources to collect (for instance, for nonexisting systems). In those cases,
we need to try to obtain data sets from similar systems (if available). Another option is to
use a stochastic approach to provide the data needed through random number generation.

4. In the modeling phase, we must build a detailed representation of the system based on
the conceptual model and the I/0O data collected. The model is built by defining objects,
attributes, and methods using a chosen paradigm. At this point, a specification model is
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created, including the set of equations defining its behavior and structure. After finishing
this definition, we must try to build a preliminary structure of the model (possibly relating
the system variables and performance metrics), carefully describing any assumptions and
simplifications and collecting them into the model’s EF.

5. During the simulation stage, we must choose a mechanism to implement the model (in
most cases using a computer and adequate programming languages and tools), and a simu-
lation model is constructed. During this step, it might be necessary to define simulation
algorithms and to translate them into a computer program. In this phase, we also must
build a model of the EF for the simulation.

6. V&V: During the previous steps, three different models are built: the conceptual model
(specification), the system’s model (design), and the simulation model (executable pro-
gram). We need to verify and validate these models. Verification is related to the internal
consistency among the three models (is the model correctly implemented?). Validation is
focused on the correspondence between model and reality: are the simulation results con-
sistent with the system being analyzed? Did we build the right model? Based on the results
obtained during this phase, the model and its implementation might need refinement. As
we will discuss in the next section, the V&V process does not constitute a particular phase
of the life cycle, but it is an integral part of it. This process must be formal and must be
documented correctly because later versions of the model will require another round of
V&V, which is, in fact, one of the most expensive phases in the cycle.

7. Experimentation: We must execute the simulation model, following the goals stated in
the conceptual model. During this phase, we must evaluate the outputs of the simulator,
using statistical correlation to determine a precision level for the performance metrics.
This phase starts with the design of the experiments, using different techniques. Some of
these techniques include sensitivity analysis, optimization, variance reduction (to optimize
the results from a statistical point of view), and ranking and selection (comparison with
alternative systems).

8. In the output analysis phase, the simulation outputs are analyzed in order to understand
the system behavior. These outputs are used to obtain responses about the behavior of the
original system. At this stage, visualization tools can be used to help with the process. The
goal of visualization is to provide a deeper understanding of the real systems being investi-
gated and to help in exploring the large set of numerical data produced by the simulation.

The rest of this book will concentrate mostly on phases 4, 5, and 6, using the DEVS formalism
as the chosen paradigm. We will explain how to do advanced visualization for phase 8, and we will
show how to conduct some experiments (phase 8). The focus here is on the practitioner’s point of
view, and those interested in understanding the details of the underlying theories should consult
references 12, 17, 38, 39, and 41. Input/output analysis is exhaustively covered in references 6, 39,
42-44, and others. Likewise, we will not cover random number generation because it is covered
in the previous references. We will focus on how to create an advanced simulation toolkit based
on DEVS modeling and simulation methodology, concentrating on how to reduce the development
costs of a simulation (by merging phases 2 and 4 and reducing phase 5) while providing good facili-
ties for incremental development, V&V, experimentation, and maintenance.

1.7 VERIFICATION AND VALIDATION (V&V)

The credibility of the results of the simulation depends not only on the correctness of the model,
but also on how accurate the formulation of the problem is expected to be [45]. Thus, we must use
various V&V techniques throughout the life cycle of the simulation study. As discussed earlier, we
call validation the process of determining that a model is a correct representation of the real world
and that its behavior corresponds to the requirements of the model (i.e., validation is related to the
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correct formulation of the model). We say a model is valid when it is impossible to distinguish sys-
tem and model within the experimental frame. We can recognize different types of validity [17]:

* Replicative validity: For every possible experiment within the experimental frame, trajec-
tories of model and system agree within acceptable tolerance.

* Predictive validity: Within an experimental frame, it is possible to initialize the model
to a state such that, for the same input trajectory, model output trajectory predicts system
output trajectory within acceptable tolerance.

* Structural validity: The model is able to replicate the data observed from the system but
also mimics step by step and component by component the way in which the system does
its transitions.

Verification, on the other hand, is the process of checking that a simulator of a model correctly
generates its behavior according to the model’s specification. A correct simulation faithfully gener-
ates model behavior in every simulation run.

In large organizations (mostly related to M&S in the defense industry), an accreditation phase
can be required. This is the official process of gaining approval for model use, which certifies that
the model satisfies the specifications. Specific accreditation includes the model and its environment
(input data, aptitude of the personnel, performance of the simulator, etc.).

The result of the activities of V&V must not be considered in absolute form (e.g., right/wrong). A
simulation model is constructed with certain objectives described in the conceptual model and the
experimental frame. As in any software project, it is recommended that V&V should be executed
by an independent team to prevent biased decisions [45]. Likewise, the software cannot be tested
completely, and standard testing techniques should be used, trying to cover the largest percentage
of cases within the domain [46]. The objective is to increase confidence in the model, based on the
study of the objectives. Likewise, the satisfactory test of each submodel (unit test) does not imply
the correctness of the whole (integration test).

Following the life cycle described in Figure 1.26, we need to carry out the following activities:

1. Verification of the conceptual model and of the problem under analysis: We must determine
that the problem we are solving corresponds to the real system. It is essential to understand
the requirements of the system of interest, justifying all the assumptions made during the
definition of the conceptual model. We have to check that such assumptions are appropriate
and that the conceptual model represents the real system based on the proposed objectives.

2. Verification of the design: The purpose of design verification is to ensure that the specifica-
tions reflect the conceptual model accurately.

3. Validation of the system’s model: We must verify that the model corresponds to the system
of interest within the EF. We must also verify that the model is represented with a sufficient
degree of accuracy. As part of this process, we must ensure the quality of the data used in
the different phases of the model.

4. Verification of the simulator: We must ensure that the software implementation of the
model reflects its specification. The model’s behavior must be tested to cover the maximum
percentage of cases possible.

5. Validation of the experimental results: The credibility of the model is the result of hav-
ing completed each of the different activities of V&V mentioned earlier satisfactorily
and ensuring that the results given by the simulator are compatible with those of the real
system.

A variety of V&V techniques can be employed (discussed in detail in references 40, 43, and
45-47), which can be categorized as the following:
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FIGURE 1.26 Steps in M&S studies.

* Informal techniques lack mathematical foundations and are based mainly on human rea-
soning. These are the most common techniques, including inspections, Turing test (i.e.,
making an expert interact with the simulator, trying to make sure the expert cannot recog-
nize the differences between the simulator and the real system), and animation (in which
the behavior of the model can be represented using animated graphics). Other informal
techniques are the comparison with other models (i.e., the experimental results are com-
pared with the results from other existing models) or the opinions of experts.

» Static techniques are used to validate the design of the model and the source code (they do
not execute the model). These techniques include the analysis of data flow, analysis based
on graphics, and syntactic and semantic analyses.

* Dynamic techniques require the execution of the model and validation of its behavior.
Some of the techniques include the symbolic execution of the model, cause—effect graphs,
regression tests, and stress testing. Other techniques include reachability analysis, degen-
erative testing (inaccurate or limited input data are used to test the model), and sensitiv-
ity analysis (which consists of changing the values of the input as well as those of some
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internal parameters in order to observe the reaction of the model to these variations). Varied
statistical techniques (including histograms, confidence intervals, or hypothesis tests) are
commonly used.

* Formal techniques try to prove the correctness of the model using mathematical tech-
niques. They present a high degree of difficulty and serve as a base for other techniques of
V&V. This can include induction techniques, inference models, deduction logic, predictive
calculus, correction proofs, bisimulation, and model checking.

1.8 SUMMARY

In this chapter, we have given basic ideas and concepts on modeling and simulation. We have pre-
sented a brief historical perspective in the field, showing different techniques used for problem
solving. We clearly showed the concepts of a system (a formalization of entities under study), the
separation between them, and the models we use to reason about the system itself. We briefly intro-
duced different methods to define simulators that will drive the execution of the models (in algorith-
mic fashion or using specialized devices, including digital computers).

We introduced the concept of the experimental framework, which gives an environment for
defining the model, conducting experiments, collecting data, and executing the simulation analysis.
The clear separation between the system of interest, the model that represents it, the simulator that
executes it, and the experimental frames to conduct tests will make the creation, modification, and
use of the simulation tools much easier.

Finally, we introduced varied discrete-event modeling techniques and discussed different classi-
fications, focusing on discrete-event modeling and simulation methodologies (the main focus of this
book). We then introduced some term definitions, presented a life cycle proposal for M&S studies,
and gave a brief introduction to ideas on verification and validation activities.
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