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One of the hallmarks of DEVS modeling and simulation is its fundamental sepa-
ration of models from the simulation engines that execute them. The alternative,
which is more common in today’s practice, is not to enforce such a clear separation
and to indiscriminately mix constructs that relate to the model with those that relate
to how it is being executed.

The separation between model and simulator leads to a layered architecture of
services as illustrated in Fig. 9.1. Modeling services enable a modeler to specify
a DEVS model, which is a description of a dynamic system. The simulation layer
provides the ability to execute a model to get the results of simulation.

A DEVS modeler can write a DEVS model in any DEVS environment, say MS4
Me, and expect that it will be correctly simulated by a DEVS Simulator provided by
that environment. Furthermore, in principle, the modeler can provide the model, as
expressed in the DEVS formalism, to a friend who implements it in another environ-
ment, say ADEVS (Nutaro 2010). Now if both environments implement the DEVS
Abstract Simulator correctly, the friends are entitled to expect that the simulation
results will be the same.

At this point, you have already become familiar with the Abstract DEVS Simu-
lator, in the sense that, you have worked with the methods in MS4 Me Java. As dis-
cussed in Chap. 4, these methods are in one-to-one correspondence with the DEVS
characteristic functions of time advance, internal transition, external transition, con-
fluent function, output function, and the associated sets of states, inputs, and outputs.
To help grasp the concepts behind the Abstract DEVS Simulator, let’s consider an
analogy with a calculation by a hand-held calculator, or an equivalent application
on your cell phone. The calculator program realizes an algorithm that specifies how
it is to add, subtract, multiply, and divide—operations that are defined rigorously
by arithmetic, the mathematical theory of numerical manipulations. There are many
hand calculators in existence and they are all assumed, indeed required, to correctly
implement the mathematically specified operations. In the context of computing,
these are abstractly specified because they don’t refer to any program or computer.
Nevertheless, because you were taught arithmetic, you know what to expect when
you enter 2 4 2 into the calculator and would be disdainful of a device that gave 3
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as an answer. In the same way that you enter an expression like 2 + 2 to a calcula-
tor and always expect 4 as the answer, you can provide a DEVS model to a DEVS
simulation engine—and you should expect to get the same output no matter which
engine you choose.

9.1 DEVS Simulation Protocol

As illustrated in Fig. 9.1, the tie that binds DEVS modeling and DEVS simulation
services is the DEVS Simulation Protocol which is an extension of the DEVS Ab-
stract Simulator in the context of networked environments. Figure 9.2 shows that
the DEVS protocol involves three types of objects, a coordinator, one or more sim-
ulators, each with an associated model (for simplicity, only one simulator and its
model are shown). The coordinator has a coupled model associated with it. The
DEVS Simulation Protocol specifies (1) the interface that the model must present to
the simulator and (2) the interface that the simulator must present to the coordinator
to execute a valid DEVS simulation.

The interface presented by the model to the simulator is determined by the Ab-
stract DEVS Simulator.

interface AbstractSimulator ({
public double TimeAdvanceFn() ;
public message OutputFn() ;

public void ExternalTransitionFn (message m,double
elapsedTime) ;

public void InternalTransitionFn() ;

public void ConfluentTransitionFn (message m,double
elapsedTime) ;

}

During an iterative cycle to be described, a simulator has to respond to operations
requested by a coordinator and specified in the following interface:
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as described in the text

interface DevsProtocol {
public double OperationGetTN() ;
public message OperationGetOutput (double t);
public void OperationStoreInput (message m) ;

public void OperationDoDelta() ;

The iterative cycle is a repetition (until some condition dictates termination) of
the following steps in which the coordinator issues the operation requests in the
protocol and the simulator responds by interacting with its model using the Abstract
DEVS Simulator:

Step (1)  OperationGetTN() requests the time of the simulator’s next event—the
simulator invokes its model’s time advance function and adds the result to the
time of last event to answer the coordinator’s request.

Step (2) OperationGetOutput(t) provides the current simulation time to the sim-
ulator and requests its output for that time, if any, in the form of a DEVS
message—the simulator determines if the model is imminent (its time of next
event equals the current time) and if so, invokes the model’s output function to
get its output message.

Step (3)  OperationStoreInput(m) provides the input message, m, to the simula-
tor, where m is a DEVS message which is a composite of messages sent to this
simulator by other simulators. The coordinator gathered these messages in the
previous step 2 and applied the coupling specification to determine which ones
to package in this composite message.

Step (4) OperationDoDelta() tells the simulator to cause its model’s state transi-
tion—since the simulator knows the current time from step 2, as well as any input
that it has received from step 3, it can determine whether the model is to undergo
an internal, external, or confluent (both external and internal) transition. This is
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Fig. 9.3 MS4 Me simulation view of Coordinator and Simulator

shown as DeltaFn(m,e) in Fig. 9.2, where m is the input message, and e is the
elapsed time which is the difference between the current time and the model’s
time of last event.
It is important to note that there are many ways in which this basic protocol can be
implemented. Particularly, we do not require the strict adherence to the sequential
control and message exchanges that the above rendering may appear to require—
so long as the resulting behavior is what the protocol specifies. We discuss some
important cases later.

9.2 MS4 Me Exposition of the DEVS Simulation Protocol

The DEVS formalism has an associated well-defined concept of simulation engine
to execute models and generate their behavior. A coupled model in DEVS consists
of component models and a coupling specification that tells how outputs of compo-
nents are routed as inputs to other components.

The basic simulation paradigm is illustrated in Fig. 9.3. It consists of a coordina-
tor that has access to the coupled model specification as well as simulators for each
of the model components, only one of which is shown for illustration.

We will use MS4 Me itself to explain the DEVS simulation protocol and the how
the protocol works to correctly simulate DEVS models. The SES that gives rise to
Fig. 9.3 is:

From the protocol perspective, CoordinatorAndSimulator is made
of Simulator and Coordinator!

From the protocol perspective, Coordinator sends GetTN to
Simulator!

From the protocol perspective, Coordinator sends GetOutput to
Simulator!
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From the protocol perspective, Coordinator sends StoreInput
to Simulator!

From the protocol perspective, Coordinator sends DoDelta to
Simulator!

From the protocol perspective, Simulator sends MyTN to
Coordinator!

From the protocol perspective, Simulator sends MyOutput to
Coordinator!

Note that the interface between Coordinator and Simulator follows that given by the
DEVSProtocol interface above. The coordinator performs time management and
controls the message exchange among simulators in accordance with the coupled
model specification. The simulators respond to commands and queries from the co-
ordinator by referencing the specifications of their assigned models. The simulation
protocol works for any model expressed in the DEVS formalism. It is an algorithm
that has different realizations that allow models to be executed on a single host and
on networked computers where the coordinator and component simulators are dis-
tributed among hosts.

In the following, we represent the Abstract DEVS Simulator within MS4 Me
with its interfaces to both the Coordinator and its model. Note that the classes that
appear are those employed in MS4 Me and may differ from the names employed in
the general discussion above, e.g., MS4 Me employs MessageBag to represent the
general concept of DEVS message.

9.2.1 Interface Objects

The objects exchanged between coordinator and simulators carry the relevant event
times and the DEVS messages to be exchanged among them. They are defined as
follows:

A DoubleEnt has value!
The range of DoubleEnt’s value is double!

A NamedMessage has myName and myMessage!
The range of NamedMessage'’s myName is String!
The range of NamedMessage'’s myMessage is MessageBag!

9.2.2 Input and Output Ports

These objects are placed on the input and output ports by the operations invoked by
the DEVS simulation protocol. In other words, the ports and types are defined to
correspond to the operations in the interface of the DEVS Protocol.

For the Simulator, the port definitions are:
accepts input on GetTN!

accepts input on GetOutput with type DoubleEnt!
accepts input on StoreInput with type MessageBag!
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accepts input on DoDelta!
generates output on MyTN with type DoubleEnt!
generates output on MyOutput with type NamedMessage!

These input and output ports are shown in Fig. 9.4.
For the Coordinator, the port definitions are:

accepts input on MyTN with type DoubleEnt!

accepts input on MyOutput with type NamedMessage!
generates output on GetTN!

generates output on GetOutput with type DoubleEnt!
generates output on StoreInput with type MessageBag!
generates output on DoDelta!

These input and output ports are shown in Fig. 9.5.
Note that the input and output ports of the simulator and coordinator match each
other so that they can exchange data in a manner consistent with Fig. 9.3.

9.2.3 FDDEVS Specifications

The interaction between coordinator and simulator that carries out the iterative cycle
described earlier can be outlined in the FDDEVS natural language in the following
texts:

For the Coordinator the FDDEVS specification is:

to start hold in sendGetTN for time 0!
after sendGetTN output GetTN!

output event for sendGetTN

from sendGetTN go to waitForAllTN!

passivate in waitForAllTN!
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when in waitForAllTN and receive MyTN go to sendGetOutput!

hold in sendGetOutput for time 0!
after sendGetOutput output GetOutput!

from sendGetOutput go to waitForAllOutput!

passivate in waitForAllOutput!
when in waitForAllOutput and receive MyOutput go to
sendStoreInput!

hold in sendStoreInput for time 1!
after sendStorelInput output StorelInput!

from sendStoreInput go to sendDoDelta!

hold in sendDoDelta for time 1!
after sendDoDelta output DoDelta!
from sendDoDelta go to sendGetTN!

The state diagram generated from this text is shownin Fig. 9.6.

For the Simulator the FDDEVS specification is:

to start passivate in waitForGetTN!
when in waitForGetTN and receive
GetTN go to sendMyTN!

hold in sendMyTN for time 0!
after sendMyTN output MyTN!
from sendMyTN go to waitForGetOutput!

passivate in waitForGetOutput!
when in waitForGetOutput and receive GetOutput go to
sendMyOutput!
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Fig.9.7 Simulator’s state diagram

hold in sendMyOutput for time 0!
after sendMyOutput output MyOutput!
from sendMyOutput go to waitForStoreInput!

passivate in waitForStoreInput!
when in waitForStoreInput and receive StoreInput go to
waitForMyDoDelta!

passivate in waitForMyDoDelta!
when in waitForMyDoDelta and receive DoDelta go to
waitForGetTN!

The state diagram generated from this text is shown in Fig. 9.7.
To create the simulation models, these specifications are filled in with tagged
blocks as illustrated in Appendices A and B.

Exercise

Use the sequence design interface tool to develop a sequence diagram that de-
scribes the DEVS Simulation Protocol and generates SES and FDDEVS descrip-
tions similar to those shown above.

9.3 Distributed Simulation Implementations of the DEVS
Protocol

The DEVS Simulation Protocol is an abstract specification of how a distributed sim-
ulation should proceed to correctly generate the behavior of a DEVS coupled model.
As emphasized before, this means that there can be many different implementations
of the same specification. In the following discussion, we discuss three such imple-
mentations and illustrate them with formulations using MS4 Me. As before, in each
implementation, the components of the coupled model are assigned to simulators in
one-to-one fashion and the coupled model is assigned to the coordinator. However,
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the implementations differ in the degree to which the coordinator is involved in the
routing of messages and management of time.
The implementations considered are:

1. Standard DEVS Protocol—the basic formulation in which the coordinator
uses the coupling information supplied by its coupled model to distribute mes-
sages to the simulators.

2. Peer Message Exchanging Implementation—modifies the basic formulation
by partitioning the coupled model coupling information according to its com-
ponents and distributing these segments to the respective simulators. This al-
lows the simulators to each exchange DEVS messages without intervention of
the coordinator. There is an extensive literature on parallel and distributed sim-
ulation that extends this basic implementation (see, for example, Zeigler et al.
2000 and Nutaro 2010.)

3. Real-Time Message Exchanging Implementation—takes the peer message
exchanging implementation one step further by letting the simulators decide
on when to execute their next events. This can work when the simulation pro-
ceeds in real time. This obviates the further coordination that is required when
executed in logical time (see Gholami and Sarjoughian 2012 for an in-depth
discussion of DEVS real-time simulation).

9.3.1 Standard DEVS Protocol

As expected, the coordinator and simulator definitions in Sect. 9.2 are employed in
the standard formulation. Furthermore, we capture the centrality of the coordinator
in controlling the simulators by plugging the coordinator and simulator into a larger
SES using a suitable multi-aspect as follows:

From the protocol perspective, DEVSDistributedSim is made of
Coordinator and Simulators!

From the multiSim perspective, Simulators are made of more
than one Simulator!

Simulator can be id in index!

From the protocol perspective, Coordinator sends GetTN to all
Simulator!

From the protocol perspective, Coordinator sends GetOutput to
all Simulator!

From the protocol perspective, Coordinator sends StoreInput to
all Simulator!

From the protocol perspective, Coordinator sends DoDelta to
all Simulator!

From the protocol perspective, all Simulator sends MyTN to
Coordinator!

From the protocol perspective, all Simulator sends MyOutput to
Coordinator!

Note the use of all-to-one and one-to-all coupling specification as discussed in
Chap. 6. Such coupling is illustrated in Fig. 9.8.
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Fig. 9.8 Standard DEVS Protocol with multi-aspect coupling

9.3.2 Peer Message Exchanging Implementation

As described above, the Peer Message Exchanging DEVS Protocol modifies the ba-
sic formulation by distributing relevant segments of coupled model coupling to the
respective simulators. The following FDDEVS specifications of the Coordinator-
Peer and SimulatorPeer models illustrate how this allows the simulators to exchange
DEVS messages without intervention of the coordinator.

CoordinatorPeer

to start hold in sendGetTN for time 0!
after sendGetTN output GetTN!
from sendGetTN go to waitForAllTN!

passivate in waitForAllTN!
when in waitForAllTN and receive MyTN go to sendSendOutput!

hold in sendSendOutput for time 0!
after sendSendOutput output SendOutput!
from sendSendOutput go to waitForAllDone!

passivate in waitForAllDone!
when in waitForAllDone and receive MyDone go to sendDoDelta!

hold in sendDoDelta for time 1!
after sendDoDelta output DoDelta!
from sendDoDelta go to sendGetTN!

SimulatorPeer

to start passivate in waitForGetTN!
when in waitForGetTN and receive GetTN go to sendMyTN!

hold in sendMyTN for time 0!
after sendMyTN output MyTN!
from sendMyTN go to waitForGetSendOutput!
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passivate in waitForGetSendOutput!
when in waitForGetSendOutput and receive SendOutput go to
sendMyOutput!

hold in sendMyOutput for time 0!
after sendMyOutput output MyOutput!
from sendMyOutput go to waitForStorelInput!

passivate in waitForStoreInput!
when in waitForStoreInput and receive StoreInput go to
sendMyDone!

hold in sendMyDone for time 0!
after sendMyDone output MyDone!
from sendMyDone go to waitForMyDoDelta!

passivate in waitForMyDoDelta!
when in waitForMyDoDelta and receive DoDelta go to
waitForGetTN!

A multi-aspect SES to couple the coordinator with simulators is and given by:

From the protocolPeer perspective, DEVSPeerDistributedSim is made
of CoordinatorPeer and SimulatorPeers!

From the sims perspective, SimulatorPeers are made of more

than one SimulatorPeer!

SimulatorPeer can be id in index!

From the protocolPeer perspective, CoordinatorPeer sends GetTN
to all SimulatorPeer!

From the protocolPeer perspective, CoordinatorPeer sends
SendOutput to all SimulatorPeer!

From the protocolPeer perspective, CoordinatorPeer sends
DoDelta to all SimulatorPeer!

From the protocolPeer perspective, all SimulatorPeer sends
MyTN to CoordinatorPeer!

From the protocolPeer perspective, all SimulatorPeer sends
MyDone to CoordinatorPeer!

From the protocolPeer perspective, all SimulatorPeer sends
outMyOutput to all SimulatorPeer as inStoreInput!

A pruning for three Simulators is illustrated in Fig. 9.7.
Note that in Fig. 9.9 the simulators exchange DEVS messages with each other
directly without going through the coordinator.

Exercise

Prune the SES to select each of the alternative decompositions representing ex-
ample implementations of the DEVS Protocol. Run the resulting models in the
Simulation Viewer.
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Fig. 9.9 Peer Message Exchanging Implementation with multi-aspect coupling

Exercise

Use the sequence design interface tool to develop a sequence diagram that de-
scribes the Peer Message Exchange implementation of DEVS Simulation Proto-
col and generates SES and FDDEVS descriptions similar to those shown above.

Exercise

Provide tagged blocks for the SimulatorPeer and CoordinatorPeer FDDEVS
specifications to implement the Peer Message Exchanging Implementation of
the DEVS Simulation Protocol.

9.3.3 Real-Time Message Exchanging Implementation

As described earlier, the Real-Time Message Exchanging Implementation takes the
peer message exchanging implementation one step further by letting the simulators
decide on when to execute their next events to occur in real time. The following
FDDEVS specifications of the CoordinatorRTPeer and SimulatorRTPeer models
illustrate how this allows the simulators to determine their own time of next event
in addition to exchanging DEVS messages without intervention of the coordinator.

CoordinatorRTPeer
to start hold in sendStart for time 0!

after sendStart output StartUp!
from sendStart go to sendStop!

hold in sendStop for time 100!
after sendStop output Stop!
from sendStop go to passive!
passivate in passive!
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Fig.9.10 Peer Message Exchanging Implementation with multi-aspect coupling

SimulatorRTPeer

to start passivate in waitForStart!

when in waitForStart and receive StartUp go to sendMyOutput!
hold in sendMyOutput for time "modelTimeAdvance"!

after sendMyOutput output MyOutput!

from sendMyOutput to to sendMyOutput!

when in sendMyOutput and receive Stop go to waitForStart!

when in sendMyOutput and receive StoreInput go to sendMyOutput!

A multi-aspect SES to couple the coordinator with simulators is given by:

From the realTimePeer perspective, DEVSDistributedSim is made
of CoordinatorRTPeer and SimulatorRTPeers!

From the rtsims perspective, SimulatorRTPeers are made of more
than one SimulatorRTPeer!

SimulatorRTPeer can be id in index!

From the realTimePeer perspective, CoordinatorRTPeer sends
Start to all SimulatorRTPeer!

From the realTimePeer perspective, CoordinatorRTPeer sends
Stop to all SimulatorRTPeer!

From the realTimePeer perspective, all SimulatorRTPeer sends
outMyOutput to all SimulatorRTPeer as inStoreInput!

Pruning for three Simulators is illustrated in Fig. 9.10.

Note that in Fig. 9.10 the simulators schedule their own next outputs and ex-
change DEVS messages with each other directly without going through the coor-
dinator. A simulator invokes its model’s time advance function to set the time at
which to output a message (which can be infinity) and does this immediately after
an internal, external, or confluent event. The role of the coordinator is reduced to
stopping and starting a simulation run.



118 9 DEVS Simulation Protocol

Exercise

Use the sequence design interface tool to develop a sequence diagram that de-
scribes the Real-Time Peer Message Exchange implementation of the DEVS
Simulation Protocol and generates SES and FDDEVS descriptions similar to
those shown above.

Exercise

Provide tagged blocks for the SimulatorPeer and CoordinatorPeer FDDEVS
specifications to implement the Real-time Peer Message Exchanging Implemen-
tation of the DEVS Simulation Protocol.

2.4 DEVS Protocol as a Standard for Simulation
Interoperability

This book focuses on the DEVS modeling environment more than on the relation
of DEVS to the wider world of simulation. However, one important question is
the extent to which DEVS plays together with other simulation approaches. In the
following we study a typical event scheduling simulator to understand how DEVS
and non-DEVS simulators can be federated within the same distributed simulation.

9.4.1 DEVS Protocol with Event-Scheduling Simulator

An event-Scheduling simulator typically can be described as follows:

e it maintains an event list ordered by time of next event

e it has an operation, GetTimeOfImminentEvent () which returns the time of the
event at the top of the list, i.e., the smallest of all times of next event (call it tN)

e it has an operation, GetNRemovelmminentEvent(t) which stores the time, t as
the current time; then if the current time equals tN, it also executes the code of
the event at the top of the list (the imminent event) and as an effect of this code
it may generate output and new events, as well as cancelling already scheduled
events; the output is returned as a result of the operation, and the events are
inserted into the right places in the event list (these times of next event cannot
be earlier than the current time)

e it has an operation, AddEvent(m,t) which treats the message, m as an external
input arriving at current time whose code is executed and may result in new
events inserted into the right places in the event list.

We are interested in how to interoperate such an Event-Scheduling simulator with

other models (DEVS and non-DEVS). To do so, we assign a DEVS Simulator to

the event simulator which interacts with it and a DEVS Coordinator as illustrated in

Fig. 9.11. In the following, we assume that the Event-Scheduling simulator accepts

input and produces output in the form of DEVS messages. If it doesn’t do this, then

the DEVS Simulator has to be enhanced to make this translation. We return to this
issue later.
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As shown in Fig. 9.11, the DEVS Simulator translates the DEVS Protocol opera-

tions sent to it by the DEVS Coordinator into operations that it invokes on the Event-
Scheduling simulator. The operations GetTN, GetOutput, and Storelnput are trans-
lated into GetTimeOfImminentEvent, GetNRemovelmminentEvent, and AddEvent,
respectively. The DoDelta operation is not passed on to the Event-Scheduling sim-
ulator since the latter has already executed its event code earlier.

Exercise

Develop a DEVS atomic model to implement an Event-Scheduling simulator.
Use the approach of first developing an FDDEVS model and then enhance it
using the process supported by MS4 Me. Hint: First define an event pair that
pairs an event name with a time, e.g.,

An EventPair has myName and myTime!

The range of EventPair’s myName is

String!

The range of EventPair’s myTime is DoubleEnt!

Then use a list to store and manage the event pairs appropriately. To represent
how events cause outputs and schedule/cancel other events, define a method

that interprets strings as instructions for generating outputs and manipulating the
event list.

9.4.2 Lessons for Simulation Interoperability

From the operation of the Event Scheduling Simulator within the DEVS Protocol,
we learn that there are two facets to interoperation of distributed simulators in gen-
eral:

1.

Data exchange compatibility—federates in a distributed simulation need to un-
derstand each other’s messages. In the example, we assumed that the Event
Scheduling Simulator understood DEVS messages and allowed that, more gen-
erally, the DEVS Simulator would have to translate between DEVS messages
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and a non-DEVS format. The general problem involves syntactic, semantic,
and pragmatic agreements as explained in other publications (see Zeigler and
Hammonds 2007; Himmelspach and Uhrmacher 2007; Kim et al. 2006; Seo
and Zeigler 2012).

2. Time management compatibility—a correct simulation requires that all feder-
ates adhere to the same global time and their transitions and message exchanges
are timed accordingly. One major feature of a DEVS-based approach is that the
DEVS Simulation Protocol provides a means to enforce these timing require-
ments that is based on the DEVS framework, a sound theory of simulation
(see Nutaro 2010 and Al-Zoubi and Wainer 2009 for a comparison with other
approaches).

Developing models, simulations, and systems using MS4 Me enables you to work
within a firm foundation of theory and concepts. DEVS’s well-defined message and
transition structures, with their well-defined semantics, give you assurance that your
artifacts will stand their own ground when interfaced with non-DEVS artifacts. In
subsequent chapters, we discuss how the DEVS Simulation Protocol is implemented
in Data Distribution and Service-Oriented Computing middleware.

9.5 Summary

This chapter discussed the fundamental separation of models from the simulation
engines that execute them intrinsic to the DEVS framework. This leads to a layered
architecture of modeling and simulation services that provides the basis for simulat-
ing DEVS coupled models that are created in a DEVS modeling environment such
as MS4 Me. We used MS4 Me itself to describe the operation of the DEVS Sim-
ulation Protocol in terms of its interface requirements. These require DEVS-based
agreements between a component model and its simulator, and between the simula-
tor and the coordinator that handles the time advance and message exchange within
the coupled model. We showed how different implementations can satisfy the pro-
tocol using multi-aspects and uniform coupling patterns, which also illustrated the
application of modeling concepts introduced earlier in the book. In addition, there
was a discussion of how a typical event-based simulator can be simulated with the
DEVS protocol and cast light on the requirements for interoperability among DEVS
and non-DEVS simulators.

A Extracts from Simulator.dnl

use tN with type double!

use tL with type double!

use t with type double!

use myInput with type MessageBag!

use myModel with type AtomicModelImpl!

a DoubleEnt has value!
the range of DoubleEnt’s value is double!
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a NamedMessage has myName and myMessage!
the range of NamedMessage’s myName is String!
the range of NamedMessage’'s myMessage is MessageBag!

accepts input on GetTN!

accepts input on GetOutput with type DoubleEnt!
accepts input on StoreInput with type MessageBag!
accepts input on DoDelta!

generates output on MyTN with type DoubleEnt!
generates output on MyOutput with type NamedMessage!

Initialize variables

<%

myModel = new AtomicModelImpl ("MyModel") ;
myModel.initialize();

tL = 0;

tN = tL + myModel.getTimeAdvance();
t = 0;

%> !

to start passivate in waitForGetTN!
when in waitForGetTN and receive GetTN go to sendMyTN!

external event for waitForGetTN with GetTN

<%

//no processing needed, just make the transition to send the
time of next event, tN

g>!

hold in sendMyTN for time 0!
after sendMyTN output MyTN!
output event for sendMyTN

<%

//send tN out on port outMyTN
output.add (outMyTN, new DoubleEnt (tN) ) ;
%>

from sendMyTN go to waitForGetOutput!
passivate in waitForGetOutput!

when in waitForGetOutput and receive
GetOutput go to

sendMyOutput!

external event for waitForGetOutput with GetOutput
<%
//get the value of the current time from the input port

GetOutput
St = messageList.get (0) .getData() .getValue();$
%>

hold in sendMyOutput for time 0!
after sendMyOutput output MyOutput!
output event for sendMyOutput
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<%

//1f myModel is imminent (has its tN equal to t), get
myModel’s output and

//send it out on port MyOutput along with myName to identify
the source

NamedMessage sm = new NamedMessage (getName (), computeOutput (t));
output.add(outMyOutput, sm) ;

g>1

from sendMyOutput go to waitForStoreInput!

passivate in waitForStoreInput!

when in waitForStoreInput and receive StorelInput go to
waitForMyDoDelta!

external event for waitForStoreInput with StoreInput

<%

//look through all messages in the incoming Bag

//1f there is a message for me

//store the input message on port StorelInput in myInput
MessageBag bag = messageList.get (0).getData();

myInput = getMyMessage (bag) ;

%>

passivate in waitForMyDoDelta!
when in waitForMyDoDelta and receive DoDelta go to
waitForGetTN!

external event for waitForMyDoDelta with DoDelta

<%

//execute myModel'’s transition: check whether this is a
confluent, internal, //or external event and apply the
designated transition function

doDelta () ;
g>1
B Extracts from Coordinator.dnl

use tN with type double!

use tL with type double!

//use t with type double!

use simulatorOutput with type HashSet!
use simulatorInput with type MessageBag!
use myModel with type CoupledModelImpl!

accepts input on MyTN with type DoubleEnt!

accepts input on MyOutput with type NamedMessage!
generates output on GetTN !

generates output on GetOutput with type DoubleEnt!
generates output on StoreInput with type MessageBag!
generates output on DoDelta!
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Initialize variables

<3

myModel = new CoupledModelImpl ("MyCoupledModel") ;
myModel.initialize();

tL = 0;

tN =0;

//t = 0;

%> !

to start hold in sendGetTN for time 0!
after sendGetTN output GetTN!

output event for sendGetTN

<%

//none needed

g>1

from sendGetTN go to waitForAllTN!

passivate in waitForAllTN!
when in waitForAllTN and receive MyTN go to sendGetOutput!

external event for waitForAllTN with MyTN

<%

tN = Double.MAX_ VALUE;
// get the time of next event from each Simulator
// assume they all come in together

// ensembleBag times =

x.valuesOnPort ("inMyOutput") ;

for (int i = 0;i<messageList.size();i++){

double t = messageList.get(i).getData().getValue();

// get their minimum

if (t < tN)

tN = t;

}

g>1

hold in sendGetOutput for time 0!
after sendGetOutput output GetOutput!

output event for sendGetOutput

<%

//send the time of next event on port outGetOutput
//to enable simulator to check if it is imminent
//and respond with its output if it is

output.add (outGetOutput, new DoubleEnt (tN) ) ;

g>1

from sendGetOutput go to waitForAllOutput!
passivate in waitForAllOutput!

when in waitForAllOutput and receive MyOutput go to
sendStoreInput!

external event for waitForAllOutput with MyOutput
<%
//get the output from each Simulator
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//assume they all come in together
for (int i = 0;i<messageList.size();i++){
NamedMessage simout = messageList.get (i) .getData();
//store each message with the simulator
simulatorOutput.add(simout) ;
}
//then apply the coupling to get the messages to be sent to
each simulator
simulatorInput =
ApplyCoupling (simulatorOutput) ;

g>1
hold in sendStoreInput for time 1!
after sendStorelInput output StorelInput!

output event for sendStoreInput

<%

//send each simulator the collected inputs
output.add(outStoreInput, simulatorInput);
g>1

from sendStoreInput go to sendDoDelta!

hold in sendDoDelta for time 1!
after sendDoDelta output DoDelta!
from sendDoDelta go to sendGetTN!
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