
2DEVS Integrated Development Environments

This book is divided into three parts. In the first part, we discuss basic DEVS and
SES concepts and tools to support working with these concepts in the context of an
actual modeling and simulation environment, called MS4 Modeling Environment
(MS4 Me). Then in Part II, we discuss more advanced concepts that such tools can
support, and in Part III we discuss some actual applications that throw light on the
kinds of System of Systems problems that can be addressed with such concepts and
tools.

2.1 The MS4 Me Is a Modeling and Simulation (M&S)
Environment

MS4 Me is a modeling and simulation (M&S) environment developed as the first
in a commercial line of DEVS products (ms4systems.com). MS4 Me is aimed at a
variety of users such as managers, modelers, developers, and programmers enabling
them to work at the level for which they are most comfortable and productive. With
this variety in mind, this chapter offers three different introductions aimed at three
different types of users. Let’s call these types of users Drivers, Designers, and Rac-
ing Pros. Drivers want to know what basic things cars can do and how they can make
cars do those things. Drivers are not interested in the car per se—only how well it
gets them to where they want to go. Designers want to know how to make better
cars—so they need to know what things are under the hood and how those things
work together to make a car do what it does. Racing Pros want to exploit the car to
its extreme. They want to get familiar with all its features and how to use them to
the fullest extent. So like a Driver, you might want to know what MS4 Me does as a
tool in your tool box. Let’s call you the M&S User in this case. Or like a Designer,
you might be an M&S Developer and want to open the hood so as to get into MS4
Me’s underlying DEVS concepts and theory. Or like a Racing Pro, you are an M&S
Expert Professional, and want to know MS4 Me’s features in depth as well as the
theory that supports them.

B.P. Zeigler, H.S. Sarjoughian, Guide to Modeling and Simulation of Systems of Systems,
Simulation Foundations, Methods and Applications, DOI 10.1007/978-0-85729-865-2_2,
© Springer-Verlag London 2013

11

http://ms4systems.com
http://dx.doi.org/10.1007/978-0-85729-865-2_2

12 2 DEVS Integrated Development Environments

You can skip to the introduction that best characterizes your needs and roles.
However, since each introduction is written with a different perspective, you might
be better served if you skimmed each one looking for nuggets that might help you
understand your own focus and also how it interacts with others.

2.1.1 Introduction for the M&S User

For the modeling and simulation general user, the MS4 Me modeling environment
offers a restricted English language interface to generate models and then simulate
the behavior graphically in real time. With minimal training, a M&S user such as
a systems engineer or manager can take a need expressed in common English into
a restricted, but clearly stated, set of English statements that are checked and auto-
matically transformed into graphical models on the fly; then these individual models
can be coupled to other models and presented to the stakeholder to ensure that the
need is expressed as intended and that it fits a standardized process.

If the need expressed in the model is deficient or incorrect, the user and the stake-
holder can negotiate immediately where intent and model have diverged iteratively
arriving at a very precise statement that is formal and adheres to a standard process
and language.

MS4 Me is capable of expressing very simple processes, such as workflows, as
well as extremely complex, and precise timing and mathematical functions, includ-
ing complex functions required to coordinate activities of components.

Coordination Example: Jazz Band Leader Much of today’s work is done in
teams and team coordination is becoming ever more required. Coordination can be
very scripted in the way a playwright determines the flow and actions of the actors.
Or it can be very loose as in a Jazz combo where individual players have a large
role in determining the outcome. And as we will see in many examples through the
book, coordination may have to be implemented at many levels of organization of
systems to enable loosely coupled or semi-autonomous components to work toward
common goals.

Let’s consider an example where coordination lies somewhere in between very
scripted and very loose in which a band leader coordinates the sections (rhythm,
woodwind, horns) of a jazz band. We’ll focus on how the leader starts the sections
playing, changes the lead from one section to another, and brings the piece to a close
in which sections fade out in a sequence. Using the sequence diagram interface of
MS4 Me, you can easily lay out this kind of coordinated interaction.

As illustrated in Fig. 2.1, the BandLeader, Rhythm, Horn, and Reed sections are
actors in the diagram, each with its own lifeline descending down the page. Message
transmissions from a sender to a receiver are shown as labeled arrows and presented
in the order in which they occur as time advances down the page. For example,
the BandLeader starts the piece by telling the Rhythm section to provide the beat.
The Rhythm section responds by providing the beat to the BandLeader. (We could
complicate the diagram by also drawing arrows labeled by PlayBeat to the other

2.1 The MS4 Me Is a Modeling and Simulation (M&S) Environment 13

Fig. 2.1 Sequence Diagram
Interface example for the Jazz
Band

Fig. 2.2 The Jazz Band Model generated from the sequence diagram

sections, to indicate that they also hear the beat being played.) From this input, you
can automatically generate a model where you can see the actors interacting and
events occurring as prescribed. This model can be viewed in the Simulation Viewer
as shown in Fig. 2.2.

Watching the flow in the simulation viewer, you can check whether the structure
and behavior are as you would like them to be, and if not, you can change the input
at two levels:
• You can go into the files generated and change some of the times in the actor

models, to change the times at which events occur—corresponding to what we
call a change in behavior.

• You can go back and change the sequence diagram to alter the flow of events.
This is a more radical change in the model—corresponding to what we call a
change in structure.

We’ll show how the model generated by the sequential diagram interface leads to
more advanced uses after presenting the remaining introductions.

14 2 DEVS Integrated Development Environments

Fig. 2.3 Part of MS4 ME
initial user interface

2.1.2 Introduction for the M&S Developer

For the modeling and simulation developer, MS4 Me offers a powerful, adaptable
platform designed to develop DEVS models and simulations quickly. It includes
constrained natural language (NL) interface which greatly speeds the development
of models and their dynamic simulations to near real time. The graphical simulations
can be run immediately upon input of the model. The NL interface and animation
capability lend themselves well to capturing requirements concisely, but rigorously.
The tool is easy to use with only limited training. It is this combination of linguistic
and dynamic graphical display of a need that will allow stakeholders and system
engineers to visualize and negotiate the capabilities and behaviors expressed.

The vision of a DEVS Modeling and Simulation Environment is to provide an
integrated development environment dedicated to the creation of DEVS models and
their simulation. Such an environment makes developers feel they are working with
a complete set of tools that are able to support all the functions needed to create
DEVS models and simulate them within, or externally to, the environment. Such a
vision has become feasible with the advent of the Eclipse open source community
(www.eclipse.org) and its support of extensible language development and other
programming frameworks. One such framework, Xtext, provides a set of domain-
specific languages and tools (parsers, type-safe abstract syntax tree, interpreter, etc.)
to create a programming language and automatically generate its implementation in
the Java Virtual Environment.

MS4 Me employs Xtext, its Extended Bachus-Naur Form (EBNF) grammar
within the Eclipse Modeling Framework on the Rich Client Platform, and the Graph-
ical Modeling Project to provide a full blown IDE specifically tailored to a DEVS
development environment.

Figure 2.3 illustrates how the MS4 Modeling Environment user interface sets the
look and feel for access to tools dedicated to DEVS modeling and simulation. The
Design drop down menu displays items that open files for the three main types of
object: (1) Finite Deterministic DEVS (FDDEVS), that create atomic models, (2)
System Entity Structures, that create families of hierarchical coupled models, and
(3) pruned entity structure scripts that make choices from the available alternatives
to specify a particular hierarchical coupled model. These objects represent and ex-
tend basic system concepts—atomic models, coupled models, and hierarchical (or
nested) coupled models. The environment is concerned with providing tools to con-

http://www.eclipse.org

2.1 The MS4 Me Is a Modeling and Simulation (M&S) Environment 15

Fig. 2.4 Constrained natural
language for creating atomic
models

struct such models, test them for correctness, modify them until satisfactory, and
simulate or animate them.

By using Eclipse’s Xtext EBNF grammar development facility, MS4 Me pro-
vides a constrained natural language to define FDDEVS models. As illustrated in
Fig. 2.4, there are seven basic sentence types with variable slots that together define
a FDDEVS model. These sentence types define such elements as input and out-
put ports, states (including initial state), time advances, internal transitions, external
transitions, and generated outputs. As the modeler writes the text, the editor parses
it and creates an outline shown on the right of the figure that displays the structure
that has been defined. Besides providing instant visualization, and click-access to
source definitions, the captured information is available for model processing, as
discussed earlier.

As text is entered, the parser provides syntax checking and sentence comple-
tion assistance. Such assistance is also content-based in that permissible entries are
shown on request—the example in Fig. 2.4 illustrates that the parser is expecting a
state and suggests states that have been entered earlier as candidates.

Although FDDEVS models have the essential properties of DEVS models, they
form a subclass of all DEVS models (hence of all discrete event systems). Figure 2.5
shows how the MS4 Me provides constructs to enable extending a FDDEVS model
to become a full-fledged DEVS model implemented in Java. The linguistic support
allows modelers to specify the types of DEVS messages accepted by input ports,
and generated by output ports, interpretation of inputs and generation of outputs,
state variables and their types, new types as required, and especially operations on
state variables invoked by internal and external transitions. The grammar recognizes
tagged blocks for internal and external transitions in which Java code that executes
the desired transition can be placed. The modeler can inspect and test the generated
Java model, returning always to the FDDEVS file to make changes. Thus, consis-
tency is always maintained between the high level specification (FDDEVS) and the
implementation (Java). The approach realized by the tagged blocks also maintains
traceability back from the resulting Java code to its block source.

16 2 DEVS Integrated Development Environments

Fig. 2.5 Tagged blocks for
extending FDDEVS models
to full-fledged DEVS models

Fig. 2.6 Constrained natural language for System Entity Structure specification

The natural language interface for constructing System Entity Structures (SES)
is illustrated in Fig. 2.6. The most fundamental statement here is the one in the mod-
eler provides a decomposition of a system in terms of components from a certain
perspective. The couplings associated with this perspective can then be defined and
linked with this perspective. Hierarchical construction is done by recursive decom-
position of a component to the depth desired. Both external and internal couplings
are easily specified. The modeler may adopt any number of perspectives for de-
composing a system or component according to the modeling objective and level of
resolution needed.

The SES formalism supports a powerful extension of hierarchical system con-
cepts that we briefly touch on here (Wymore 1967). For an in-depth survey
of Wymore’s system theory and its relation to model-based system engineering
(Friedenthal et al. 2009), see Ören (1984), Ören and Zeigler (2012). Figure 2.7 il-
lustrates an SES for an unmanned air vehicle testing environment, which illustrates
both decompositions (single line icons) and specializations (double line icons),
where a specialization offers a choice of alternatives to plug in to a component
slot.

For example, SensorPackage can be decomposed, from the experiment perspec-
tive, into various sensor components such as FeedBackSensor, ObservationSensor,
MotionSensor, and WeaponSensor. In addition, TestAgent has a specialization, la-
beled by Scenario, into alternatives such as Baseline, Observational, or Attack—
selection of one will configure the TestAgent appropriately. MS4 Me provides a

2.2 Introduction for the M&S Professional 17

Fig. 2.7 System Entity Structure tree showing decomposition and specialization icons

user interface to support pruning of choices (i.e., pruning of decompositions and
specializations) with the selections recorded in the files for pruned entity structures.
Automatic transformation of such structures into simulation models affords a sys-
tem design environment for investigating a family of possible architectural models
through simulation. Reaccessing such files for subsequent copying and modification
as desired supports reuse and extensibility.

2.2 Introduction for the M&S Professional

Around the time of the emergence of DEVS as the computational basis for systems
simulation, another important trend took hold. Object orientation (OO) was first in-
troduced in simulation and later spread to programming in general. It is fair to say
that OO is at the heart of current information technology, so much so, that its pres-
ence is often taken as a given. For simulation modeling, DEVS and OO formed an
ideal marriage. DEVS brought the formal and conceptual framework of dynamic
systems while OO provided a rapidly evolving wealth of implementation platforms
for DEVS models and simulations—first in languages such as Java and C++, and
later in network and Web infrastructures, and today continuing in the future toward
Cloud information technologies (Wainer and Mosterman 2009). The first implemen-
tation of DEVS in object orientated form was described in Zeigler (1987) and there
are currently numerous such implementations, some of which are listed in DEVS
(2012). In the next section, we discuss how Wymore’s concepts take computational
form in today’s information technology implementations of the DEVS formalism.

18 2 DEVS Integrated Development Environments

Fig. 2.8 MS4 Me’s approach
to specifying structure and
behavior

2.2.1 System Structure and Behavior

As illustrated in Fig. 2.8, MS4 Me employs the essential system concepts of struc-
ture and behavior to generate simulation models. The modeler provides the struc-
tural description, essentially the hierarchical coupled model, by writing the System
Entity Structure in natural language form. The modeler provides the behavioral de-
scription by writing the lowest level component atomic models in natural language
form. After discussing the basics of these concepts and their natural language de-
scriptions, we will return to the sequence diagram input interface (recall the Jazz
Band example) that writes the natural language coupled and atomic specifications
for you.

2.2.2 Finite Deterministic DEVS (FDDEVS)

We begin with a brief introduction to the contained natural language and Finite
Deterministic DEVS (FDDEVS).

States A state can either be a ‘hold state’ or a ‘passive state’. A hold state is
one that the model will stay in for a certain amount of time before automatically
changing to another state (via an internal transition). A passive state is one that the
model will remain in indefinitely (or until it receives a message that triggers an
external transition).

Passive States To define a passive state, use the following syntax:

passivate in STATE_NAME!

Hold States To define a hold state, use the following syntax:

hold in STATE_NAME for time 5.7!

Initial States One state in the model must be designated as the initial state. To
do this, the state description must start with ‘to start’. For example, if we wanted to
make the previous state the initial state, we would use this syntax:

to start passivate in STATE_NAME!

or
to start hold in STATE_NAME for time 5.7!

2.2 Introduction for the M&S Professional 19

Internal Transitions Every hold state in the model must have one and only one
internal transition defined in order to specify the state to which the model should
transition after the specified amount of time. Internal transitions use the following
syntax:
from CURRENT_STATE go to NEXT_STATE!
<add extra line>

Output Any state that has an internal transition can also have one output message
that is generated before that internal transition occurs. The syntax for this is:
after STATE_NAME output OUTPUT_MESSAGE!
<add extra line>

External Transitions Any state can have one or more external transitions defined.
An external transition defines an input message that the model might receive when
in a given state and the state to which the model should transition in reaction to that
input message. The syntax is:
when in STATE_NAME and receive INPUT_MESSAGE go to NEXT_STATE!

2.2.3 System Entity Structure (SES)

Let’s continue with the second concept, the System Entity Structure (SES). One of
the powerful capabilities of the MS4 Me tool is the ability to couple multiple mod-
els into a larger and more complete system. The SES language is used to describe
how a system is decomposed into subsystems when viewed from a certain perspec-
tive, different specializations of a system that might occur, messages sent from one
system to another, and variables that a system might have. A SES is made up of:

Aspects describing subsystems that make up a system when that system is
viewed a certain way.
Example: A car has an engine, a transmission, and a chassis when one considers
the structural components of the car, but it also has a manufacturer, model, and
license plate when one considers the physical description of the car.
Specializations that describe different subsystems that perform the duties of
some system.
Example: Continuing the car example from above, the engine might be an elec-
trical engine, a gasoline engine, or a natural gas engine.
Couplings that describe how systems interact with each other.
Example: The car’s engine can send rotation to the transmission, and the trans-
mission can send motion to the chassis (by actually turning the wheels).
Similarities that can be used to indicate that one system is similar to another in
some way.
Example: When considering the structural components of a truck, it’s easier to
say that a truck is like a car instead of describing the same components.
Variables that a system might have which affect its behavior.

20 2 DEVS Integrated Development Environments

Example: An engine might have a variable called “HoursRun” that keeps track
of the total number of hours that the engine has been operating, and this variable
might affect the performance or reliability of the engine.

The SES and FDDEVS are specified in logical and mathematical form (see Mittal
and Douglass 2011, for background on FDDEVS and Zeigler and Hammonds 2007
for in-depth discussion of the SES). A complete theory of DEVS is given in Zeigler
et al. (2000) with key formal properties of well-definition, closure under coupling,
universality and uniqueness summarized in the Appendix. While the details of the
mathematics are transparent to users, it is important to point out that the tool is based
on a rigorous mathematical specification with more than thirty years of scrutiny
and application. It is this rigor which will provide confidence to stakeholders and
engineers that a need expressed in this format is syntactically and formally correct.
The formal properties summarized in the Appendix give DEVS checks and balances
that allow other models created in the specification to be coupled together correctly.
The tool actually prevents users from making logical and syntactical mistakes that
might otherwise propagate through to requirements.

In the DEVS formalism, atomic DEVS captures the system behavior, while cou-
pled DEVS describes the structure of system. The MS4 ME natural language inter-
face automatically generates the mathematics demonstrated here, freeing the system
engineer to capture needs quickly yet rigorously. The specification forces you to ex-
tract information from the stakeholder in a very efficient manner and distills any
need into its fundamental components. In practically any behavior or function the
elements of the specification are required. A well-defined need of any kind will con-
tain these atomic elements. In essence, to capture a DEVS model forces you to ask
the questions:
• What are the inputs?
• If nothing external happens, what does the system do and when?
• If there is an external input, what does the system do?
• What are the outputs?
In addition, creating a DEVS’ atomic model forces you to ask questions: like:
• What are the possible states?
• In the absence of input, how long does the system stay in each of its states?
• When an input event occurs, how does the system change state?
• After the system finishes its time in a state, what output does it produce and

what state does it go to?
Creating a DEVS’ coupled model forces you to ask questions: like
• What are the components?
• How are the components connected internally?
• How are the components connected externally?
• What are the sub-components?
• What are the interfaces?

2.3 Jazz Band Continued 21

2.3 Jazz Band Continued

The model generated by the Jazz Band sequence diagram of Fig. 2.1 is a coupled
model that has as components the actors appearing in the diagram, namely, the Ban-
dLeader, Rhythm, Horn, and Read sections. The SES that is generated is given in
natural language form:

From the music perspective, JazzBand is made of BandLeader,
RhythmSection, HornSection, and ReedSection!

From the music perspective, BandLeader sends PlayBeat
to RhythmSection!

From the music perspective, RhythmSection sends Beat
to BandLeader!

From the music perspective, BandLeader sends PlayBrass
to HornSection!

From the music perspective, HornSection sends BrassSound
to BandLeader!

From the music perspective, BandLeader sends DontPlay
to HornSection!

From the music perspective, HornSection sends Quiet
to BandLeader!

From the music perspective, BandLeader sends PlayReed
to ReedSection!

From the music perspective, ReedSection sends ReedSound
to BandLeader!

From the music perspective, BandLeader sends PlayTogether
to HornSection!

From the music perspective, BandLeader sends EndInSequence
to RhythmSection!

From the music perspective, BandLeader sends EndInSequence
to HornSection!

From the music perspective, BandLeader sends EndInSequence
to ReedSection!

From the music perspective, ReedSection sends FadeOut
to BandLeader!

From the music perspective, HornSection sends FadeOut
to BandLeader!

From the music perspective, RhythmSection sends FadeOut
to BandLeader!

22 2 DEVS Integrated Development Environments

Note that the first sentence lists the components of the model while the remaining
sentences describe the message flow broken down into a set of coupling specifica-
tions. Each such specification sets up the possibility for a message transmission.
For example, the second sentence sets up a coupling of the output port outBeat of
BandLeader to the input port inBeat of RhythmSection. There is no intrinsic order
to the coupling statements of an SES—any permutation will result in the same set
of coupling s. These couplings are shown as grey lines in the simulation view of
Fig. 2.2. In contrast to the sequence of message transmissions specified by the se-
quence diagram, they describe routing patterns. Indeed, this places the burden on the
component behaviors to enact a sequence of transmission events, Accordingly, each
of the four components, BandLeader, RhythmSection, HornSection, and ReedSec-
tion in the Jazz Band needs an atomic model to provide the behavior in the manner
shown in Fig. 2.2. The FDDEVS natural language forms for these atomic models
are automatically generated. That of the RhythmSection is shown here:

to start,passivate in waitforPlayBeat!

when in waitforPlayBeat and receive PlayBeat go to sendBeat!

hold in sendBeat for time 0!

after sendBeat output Beat!

from sendBeat go to waitforEndInSequence!

passivate in waitforEndInSequence!

when in waitforEndInSequence and receive EndInSequence go to
sendFadeOut!

hold in sendFadeOut for time 0!

after sendFadeOut output FadeOut!

from sendFadeOut go to passive!

passivate in passive!

FDDEVS models expressed in natural language have an alternative description
in the form of state diagrams. The state diagram for RhythmSection is shown in
Fig. 2.9. In this graphical depiction, states are shown as rectangles, each state has a
time advance, and may have external transitions (input arrows with “?”) and internal
transitions with or without outputs (arrows with “!”). The modeler can work in ei-
ther of the natural language and state diagram equivalent representations and switch
between them at will.

The SES is automatically generated as a *.ses file and deposited in the Mod-
els.ses folder while the FDDEVS models are generated as *.dnl files and deposited
in the Models.dnl folder. This makes them available to work with further as you
wish to continue to develop the model. For example, the standard hold time for the

2.4 Summary 23

Fig. 2.9 State Diagram view
of RhythmSection

sendFadeOut state is 0. But we can change the value in the RhythemSection.dnl file
to the duration that the component should hold for while fading out, as in:

hold in sendFadeOut for time 20!

2.4 Summary

In this chapter, we discussed basic DEVS and SES concepts and tools to support
working with these concepts in the context of an actual modeling and simulation
environment, the MS4 Modeling Environment (MS4 Me) (ms4systems.com). To
address the different perspectives that stakeholders bring to the modeling and simu-
lation world, we provided three different introductions aimed at three different types
of users. For the general M&S user, we provided a description of the concepts sup-
ported by MS4 Me through the immediate application of its most basic tools. For
the M&S Developer, we provided a more advanced introduction to MS4 Me’s un-
derlying DEVS concepts and theory and the tools that support them. For the M&S
Expert Professional, we offered a glimpse into MS4 Me’s features in more depth as
well as the theory that supports them.

To summarize, there are two main pillars to the DEVS-based modeling and sim-
ulation for Systems of Systems (SoS), the DEVS formalism itself and the SES that
enables composition of DEVS models as components. For the composition of com-
ponents required in the SoS context, the most relevant pillar to start with is the SES.
Thus, the next chapter will start the exposition of the SES and its features men-
tioned above. We will then return to consider the FDDEVS formalism in its natural
language form and the enhancements that can be made to be incorporated into Java
models in Chap. 4.

Appendix: Key Formal Properties of DEVS

This appendix summarizes some key formal properties of DEVS as given in Zeigler
et al. (2000). These include well-definition, closure under coupling, universality and
uniqueness. The fact that DEVS stands for Discrete Event System Specification
becomes more apparent from examining Fig. 2.10.

http://ms4systems.com

24 2 DEVS Integrated Development Environments

Fig. 2.10 DEVS Atomic Models as system specifications

Here we see an apparent distinction between Atomic DEVS and Dynamic Sys-
tems. The set of all Dynamic Systems is taken as a well defined class in which each
system has a set of input time segments, states, state transitions and output time seg-
ments (Zeigler et al. 2000). Although the class of Dynamic Systems is well defined,
it is too encompassing and mathematical a concept to allow directly constructing a
particular member system. A DEVS atomic model contains the sets (input, states,
output) and functions (transition and output) that take the right form to provide such
a construction. The theory shows how the sets and functions should be interpreted to
specify a dynamic system and establishes the conditions under which such a speci-
fication is well-defined, i.e., where there is one, and only one, dynamic system that
can be constructed from an Atomic model. In Fig. 2.11, the set of Atomic DEVS
Dynamic Systems is the subset of Dynamic Systems that are specified by the set of
Atomic Models.

Indeed the theory shows how DEVS provides a computational framework for
working with Dynamic Systems as computational models of real world Systems
of Systems. This is further clarified in Fig. 2.11 which shows that DEVS coupled
models also define a subclass of Dynamic Systems.

A DEVS Coupled Model constructs a Dynamic System by specifying its compo-
nents and couplings. The theory shows how the components and couplings should
be interpreted to specify a well-defined system. In Fig. 2.11, the set of Coupled
DEVS Dynamic Systems is the subset of Dynamic Systems that are specified by
the set of Coupled Models. Actually, the theory shows that the subset of Coupled
DEVS Systems is contained within the subset of Atomic DEVS Systems. This prop-
erty is called closure under coupling and states that the dynamic system specified
by a coupled model can be represented as (more technically, is behaviorally equiv-
alent to) an Atomic DEVS System. Closure under coupling is important for two

Key Formal Properties of DEVS 25

Fig. 2.11 DEVS Coupled Models as system specifications closed under coupling

Fig. 2.12 DEVS Universality and Uniqueness for Discrete Event Systems

reasons: (1) it provides the basis for the Abstract DEVS Simulator, i.e., a simula-
tor is the computational device that carries out the rules by which the components
carry out state transitions and send messages to each other through the couplings.
(2) It justifies hierarchical composition in which a coupled model (treated as its be-
haviorally equivalent atomic model) can become components themselves in larger
coupled models.

The properties of well-definition and closure under coupling give you confidence
that the models that you construct using a DEVS Modeling Environment are backed
up by a solid mathematical and logical foundation. The properties of universality
and uniqueness, illustrated in Fig. 2.12, support the claim that any discrete event

26 2 DEVS Integrated Development Environments

model you are likely to want to build, can be done in a DEVS Modeling Environ-
ment. First, let’s define a Discrete Event Dynamic System as a Dynamic System
with discrete event input and output segments. The theory shows that DEVS is uni-
versal in the sense that any such Discrete Event Dynamic System is behaviorally
equivalent to a DEVS Dynamic System. Moreover, uniqueness says, that there is a
DEVS equivalent system which has the smallest number of states and is essentially
contained within any other such equivalent. This means that you are not limited in
the range of discrete event models that you build in a DEVS Modeling Environ-
ment. Indeed, you can build any discrete event model you could build in some other
environment. Moreover, if you do not include extraneous and redundant features in
it, then it will be the most efficient representative of all the models that could give
the same behavior.

References

DEVS (2012) DEVS Standardization Group http://cell-devs.sce.carleton.ca/devsgroup/?q=node/8.
Friedenthal, S., Moore, A., & Steiner, R. (2009). A practical guide to SysML: the systems modeling

language (1st ed.). San Mateo: Morgan Kaufmann.
Mittal, S., & Douglass, S. A. (2011). From domain specific languages to DEVS components: ap-

plication to cognitive M&S. SpringSim (TMS-DEVS), pp. 256–265.
Ören, T. I. (1984). GEST—a modelling and simulation language based on system theoretic con-

cepts. In T. I. Ören, B. P. Zeigler, & M. S. Elzas (Eds.), Simulation and model-based method-
ologies: an integrative view (pp. 281–335). Heidelberg: Springer.

Ören, T. I., & Zeigler, B. P. (2012). System theoretic foundations of modeling and simulation: a
historic perspective and the legacy of A. Wayne Wymore. Simulation. June 27, 2012.

Wainer, G. A., & Mosterman, P. J. (2009). Discrete-event modeling and simulation: theory and
applications. London: Taylor & Francis.

Wymore, A. W. (1967). A mathematical theory of systems engineering: the elements. New York:
Wiley.

Zeigler, B. P. (1987). Hierarchical, modular discrete event models in an object oriented environ-
ment. Simulation J., 49(5), 219–230.

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic systems (2nd ed.). Boston: Academic Press.

Zeigler, B. P., & Hammonds, P. (2007). Modeling & simulation-based data engineering: introduc-
ing pragmatics into ontologies for net-centric information exchange. Boston: Academic Press,
448 pages.

http://cell-devs.sce.carleton.ca/devsgroup/?q=node/8

	Chapter 2: DEVS Integrated Development Environments
	2.1 The MS4 Me Is a Modeling and Simulation (M&S) Environment
	2.1.1 Introduction for the M&S User
	Coordination Example: Jazz Band Leader

	2.1.2 Introduction for the M&S Developer

	2.2 Introduction for the M&S Professional
	2.2.1 System Structure and Behavior
	2.2.2 Finite Deterministic DEVS (FDDEVS)
	States
	Passive States
	Hold States
	Initial States
	Internal Transitions
	Output
	External Transitions

	2.2.3 System Entity Structure (SES)

	2.3 Jazz Band Continued
	2.4 Summary
	Appendix: Key Formal Properties of DEVS
	References

