
13Flexible Modeling Support Environments

The introduction laid out the theme of this book—it is about modeling and simula-
tion to support “virtual build and test” of Systems of Systems (SoS). Constructing a
computer model and testing the design of a configuration of components before im-
plementing it in reality is increasingly the only workable approach to creating a SoS.
The focus of Parts I and II was to elucidate the concepts underlying the approach
to “virtual build and test” based on DEVS methodology in the context of the MS4
Modeling Environment. As we begin Part III, we now take a broader look at DEVS
methodology and support environments from a number of different perspectives.

In this chapter, we discuss a design environment that supports implementation of
a novel architecture for systems of fractionated satellites—these are satellites that
are composed from modular components. Although framed as applying to fraction-
ated satellites, the considerations equally apply to many other types of SoS. The
environment includes a comprehensive user input interface intended to elicit stake-
holder objectives, values, and service requirements and a Modeling and Simulation
Support Environment (MSE). As a core component of this environment, the MSE
should be capable of providing simulations that evaluate spacecraft system archi-
tectures in response to the requirements of diverse stakeholders such as satellite
designers, communications specialists, and space experimenters.

13.1 Supporting Multiple Paths Through Development Process

The goal of responding to the requirements of diverse stakeholders is contrasted with
typical modeling and simulation (M&S) workflows conceptualized in Fig. 13.1. The
workflow in Fig. 13.1(a) is that of a sequential waterfall process like that discussed
in Chap. 3. It has phases such as conceptualization, design, implementation and
testing together with the possibility of iterations that return the flow through earlier
phases of the process. In contrast, the concept illustrated in Fig. 13.1(b) envisions
a flexible system architecture that supports a wide variety of stakeholders who may
be taking different paths through the environment. Depending on diverse interests,
objectives, and values, different modeling, simulation, and analysis services as well

B.P. Zeigler, H.S. Sarjoughian, Guide to Modeling and Simulation of Systems of Systems,
Simulation Foundations, Methods and Applications, DOI 10.1007/978-0-85729-865-2_13,
© Springer-Verlag London 2013

179

http://dx.doi.org/10.1007/978-0-85729-865-2_13


180 13 Flexible Modeling Support Environments

Fig. 13.1 Accommodating
diverse stakeholders in a
flexible MSE

Fig. 13.2 Another
formulation relating to
developing training
simulators

as different pipelines of services may be appropriate. This expanded approach con-
forms better to a theory-based methodology for developing simulation models of
complex systems (Aumann 2007). The key to achieving this flexibility is to provide
an appropriate classification of stakeholders that places users with similar paths in
the same equivalence class.

In the following, we evolve from a structured workflow such as in Fig. 13.1(a) to
flexible environment such as Fig. 13.1(b) in a series a steps that show the advantages
and utility of the latter concept as well as the requirements for control of activities
and flow of information that need to be met to make it work.

Figure 13.2 depicts an example workflow process that starts with a formulation of
requirements for a training system that a simulator is to support, e.g., flying a newly
developed jet airplane, controlling a nuclear power plant, or a team collaboration in
a war game (Kim et al. 2011). Such requirements state the kinds of behaviors that
the training system should display and the kinds of interactions that users (trainees)
can have with it. Analysis of these requirements then results in the kinds of objects
that should be included, their attributes and behaviors, and the types of measure-
ments that can be made of trainee performance. Next, a DEVS model is constructed



13.1 Supporting Multiple Paths Through Development Process 181

Fig. 13.3 Simulator
development process with
reverse verification steps

that contains the objects and attributes as well as realizing the specified behaviors
and measurement indexes. The model is implemented in a DEVS simulator which
typically will be a distributed platform with multiple simulation nodes. Execution
of the simulator by trainees (possibly training as a group in a distributed simulation)
completes the process.

Sequential step-by-step depictions such as those in Fig. 13.2 are good at showing
a normal workflow or idealized progress through M&S development processes.

A workflow depiction is a good starting point but fails to provide a sufficient
basis for understanding how tools and services can support such processes.
• One defect is that the idealized nature of the waterfall sequence fails to portray

how activities in real world development processes proceed where departures
from this pattern are more common than not.

• A second defect is the fact that the arrows signify flow of control without ex-
plicitly showing the information artifacts produced and consumed at each step.

Figure 13.3 addresses the first defect by showing one pattern in which the pro-
cess can return to earlier steps in an iterative manner. We will refer to software
applications or concepts that help you check your work at each step and enable you
to return to this or earlier steps as verification and validation (V&V) tools. These
tools can be contrasted to those that enable you to advance from one step to the next
in the workflow, which we will call progress tools.

Figure 13.4 addresses the second defect by showing process steps as informa-
tion processing modules with input and output data objects. In this diagram, the
information flow follows along the lines of the sequence of processing steps so that
whenever a step (or module) completes its work, the products are shown as outputs
that are sent to the next module as inputs. This kind of information flow diagram
can be enhanced to show data objects being sent forward to modules in the chain
beyond the immediate next step, as well as in the reverse direction.

However, we can get some better insight by taking another perspective, which
focuses on the data and model objects produced and consumed by the progress and
V&V tools. Following the approach of Kim et al. (2011), for M&S simulator de-
velopment, we display in Fig. 13.5, some of the tools they developed. These tools



182 13 Flexible Modeling Support Environments

Fig. 13.4 Simulator
development process showing
information flow

Fig. 13.5 Simulation
development supported by
tools interacting with a
central store

include progress tools such as the concept of employing M&S Objectives to derive
measures of performance and effectiveness from the given system requirements in
the requirements analysis phase (step). Also included is the Object-Attribute-Index
Matrix, which is a relation among objects, attributes, and performance indexes. This
can be viewed as a relational database in which you can enter the performance or ef-
fectiveness indexes that were identified as needed during requirements analysis and
get suggested objects and attributes to support work in the following model devel-
opment phase. Requirements analysis also identifies behaviors of objects needed to
realize the M&S Objectives. These behaviors are then expressed in UML sequence
diagrams that capture the interaction of objects over time in various use cases that
are also products of the requirements analysis. The V&V tools can do things like
generate correct execution sequences that the implemented simulator must display.
Any departures from such sequences signal that you should regress to the model
development phase to redefine some of the DEVS models that may be the source
of the errors. Not shown are also a host of progress and V&V tools that relate to
implementation of the simulator in a distributed simulation environment. See Kim
et al. (2010) for details.

You can see that the more tools that are available and the more that they are ef-
fective and easy to use, the faster progress will be in achieving your objectives and
requirements. A good part of the effectiveness of tools depends on their getting the



13.2 M&S Tools as Services in a Service Oriented Architecture 183

right data produced by other tools. The workflow approach in Fig. 13.4 offers one
way to do this by having tools send their outputs directly to tools that need their
products as inputs. However, it is a rigid approach that can overly constrain devel-
opment work as we shall see later. Figure 13.5 suggests a more flexible approach in
which tools can deposit their output products in a persistent form and draw upon the
products of others as needed from the common data store. This approach is not as
straightforward to implement and brings up a number of interesting issues that we
will address.

13.2 M&S Tools as Services in a Service Oriented Architecture

So far we have talked about formulating the activities of M&S in terms of processes
and carrying out the phases of these processes with the help of tools. A sequential
process such as in Fig. 13.1 provides a “baseline” to formulate the succession of ac-
tivities that must be undertaken for a successful result. Real M&S activities depart
from this baseline but it still serves as way to support the M&S process with what
we have called progress and V&V tools (Fig. 13.3). In such an extended process,
the information exchange in which tools produce and consume data objects can be
supported by peer-to-peer message flow (Fig. 13.4) or by reference to a common
data store (Fig. 13.5). With this as background, we can make the leap to a service
oriented architecture (SOA) environment as a framework for supporting M&S activ-
ities. Tools are encapsulated into web services that are hosted on web servers. Some
instances of such services are shown in Fig. 13.6. The operations of web services
need the right interface descriptions to properly share data, whether directly or as
mediated by the common model and data store. Moreover, service operations must
be orchestrated, i.e., invoked in the proper order to execute the baseline M&S pro-
cess or extended versions of it. Such interfacing and orchestration will be discussed
later.

A SOA environment provides a number of important benefits:
• flexibility to support a diversity of users taking a multitude of different varia-

tions from the baseline process
• discoverability of the data and models developed and stored in the common data

repository
• reusability of discovered data and models in new compositions
• learning over time based on mining the data in the common repository.

13.3 Case Study: Fractionated Satellite Systems

The Frontier design environment is a research product of the DARPA System F6
Program (Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft United by In-
formation Exchange). This program envisions the evolution of spacecraft architec-
tures from the point of view of the future with its potential for radically new satellite
design and launch technologies that can support large numbers of smaller, modular,



184 13 Flexible Modeling Support Environments

Fig. 13.6 Tools as services
to support M&S in a SOA

satellites organized by networks of communication and control. A central feature in
the design of the Frontier MSE, is to address the focus of the F6 program, which is
to assess whether there can be fractionated architectures that can outperform current
monolithic satellite systems. The following text is based on the article published by
Zeigler et al. (2012). Phrased more broadly this question asks whether a proposed
system of system can outperform the current system in operation.

We acknowledge that the term “outperform” will depend on the interests and
objectives of stakeholders—there may not be a one-size-fits-all solution acceptable
to every one. Accordingly, we created a characterization of stakeholder interests
that encapsulates the diversity of such interests within a space spanned by Strate-
gic/Tactical and Supply/Demand dimensions. The Strategic/Tactical axis refers to
the horizon (long versus short) and level (high versus low) of planning. The Sup-
ply/Demand axis refers to the characterization of stakeholders’ requirements for
services provided by the network of satellites (Demand) versus spacecraft assets
and resources available to provide those services (Supply).

We briefly present this characterization and discuss its suitability to the problem.
The interests of stakeholders for evaluations of potential fractionated spacecraft ar-
chitectures available in the future are characterized in the Strategic/Tactical axis as
either:
• Strategic. This reflects an interest in evaluations of how well architectures do

over extended time spans (e.g., 20 years), assessing system architectures for
their ability to adapt, evolve, and survive in the face of changing patterns of de-
mand for services supplied by such architectures. This particularly emphasizes
long term market-oriented financial comparison of monolithic and fractionated
cluster architectures.

or
• Tactical which typically evaluates proposed architectures over relatively short

time spans (e.g., 1 year) with focus on system behavior and physical constraints
(e.g., imposed by orbital mechanics) to address engineering and technological
issues at the system level.



13.3 Case Study: Fractionated Satellite Systems 185

Refining this bipolar axis, we further breakdown stakeholder’s interests into the four
main categories:
• Strategic/Supply focuses on system developers, enabling them to explore the

long term financial performance of their proposed architectures or technologies.
• Strategic/Demand focuses on system user communities, enabling them to ex-

plore the long term financial viability of their proposed profiles of demands e.g.,
the range of experiments of interest to a NASA space exploration community.

• Tactical/Supply focuses on system developers, enabling them to explore the
technical performance of their proposed architectures or technologies (e.g., the
effect of spacing of satellites within a cluster on its ability to meet demands
for services). This category includes engineers and scientists working on the
technical aspects of the F6 program.

• Tactical/Demand focuses on individual system users, enabling them to explore
the technical feasibility of their proposed profiles of demands (e.g., a set of
experiments of interest to a particular mission developer).

Stakeholders are not limited to a single characterization; the same user may adopt
different characterizations to gain insights available from different perspectives—
e.g., switching between Strategic and Tactical to understand both economic
prospects and technical feasibility of a potential solution.

The MSE is built upon a configurable framework that adapts to each of the four
stakeholder types spanned by the above dimensions. Given such a stakeholder type,
the MSE configures a simulation that outputs a set of architectures that are eval-
uated and ranked according to their ability to meet the user’s requirements. The
simulation is based on various levels of abstraction that are designed to support the
stakeholder’s questions and objectives. This allows a given set of architectures to be
evaluated, on traditional attributes (cost, weight, etc.) as well as engineering: “iities”
(adaptability, reliability, etc.).

13.3.1 How the MSE Adapts to Types of Stakeholders

The MSE is built on a set of harmonized components implemented as web services
that can be orchestrated to fit the stakeholder’s requirements. The services are briefly
enumerated and outlined:
• Pre-Simulation Service (PSS): interprets user inputs in the form of documents

that specify demand, and evaluation metrics (for experimental frames) and ar-
chitectures (for models) needed by the downstream simulation.

• Development and Pruning of Alternatives Service (DPAS): is the core compo-
nent that applies input pruning scripts to master characterization architectures
to generate a subset of potential satellite cluster architectures to be explored.

• Simulation Service: includes both the Strategic and Tactical Simulation Ser-
vices and simulates the architectures in response to the generated demands and
supplies results for evaluation and ranking. The simulation is configured to ei-
ther strategic or tactical forms depending on stakeholder interest. The Simulator



186 13 Flexible Modeling Support Environments

Service module takes on two fundamental simulator configurations. The simu-
lator configurations are based on models that embody abstractions of the inves-
tigated system architecture and its environment. These abstractions are tuned
to the stakeholder types: Strategic (Supply or Demand) and Tactical (Supply or
Demand). The simulators also tune the breadth and depth of the solution space
and fidelity of the simulations (low and high) so support the user type.
– The Market Model Simulator (Strategic Level) encapsulates an Experimen-

tal Frame (see Chap. 18) (generating demand inputs and collecting cluster
outputs) that interacts with a Market Model to perform financial evaluation
over a long time span composed of successive Simulation Analysis Inter-
vals (e.g., quarterly).

– The Physical Model Simulator (Tactical Level) encapsulates an Experimen-
tal Frame that interacts with a simulation model of the proposed architec-
ture over a specified interval to evaluate system performance at the physical
behavior level.

• Results Analysis Service (RAS): transforms data generated by the simulation
runs into information that can be presented to the user. The input to the RAS
comes from the MSE and the PSS. The input from the MSE is the data from
individual simulation runs for all value metrics aggregated by Simulation Anal-
ysis Interval (SAI). Among other items, the RAS generates an overall perfor-
mance score for each cluster configuration instance from a weighted average
of all value metrics and an overall operational risk score for each cluster con-
figuration. These outputs provide the basis for ranking cluster configurations
instances by performance score.

• Evaluation Service (ES): provides the user with an interactive tool to perform
decision analysis at increasing levels of detail and sophistication using the data
compiled by the RAS. The functions performed by the ES include aggregating
information from the RAS and generating evaluation scores to support advanced
decision making features, providing information to the user in form of decision
analysis tools, to support advanced interaction and analysis by the user, and
collecting refined user criteria from the GUI to reassess the ranking order and
current results, as well as to support sensitivity analysis of those results.

The MSE, as composed of harmonized web services, is intended to be to meet a mul-
titude of stakeholder requirements by configuring itself to enable each user to pursue
multiple paths through the system. It is convenient, however, to begin with a more
constrained view of user interaction with the system in which there are two main
paths corresponding to the Strategic and Tactical user classification. Such paths can
be viewed as the normal workflows visualized in Fig. 13.7. Both types of users start
entering inputs at the Adaptable User Interface. Such elicited information is mapped
into elements of experimental frames (EF) for later interaction with the models. Af-
ter all available data have been entered, processing proceeds to the PSS and then
the DPAS modules. At this point the paths bifurcate according to the stakeholder
characterization, where either the Market (Strategic) or Physical (Tactical) simula-
tor service is invoked. Simulation results are then feed back to the user interface
through the analysis and evaluation services.



13.3 Case Study: Fractionated Satellite Systems 187

Fig. 13.7 MSE Workflow showing typical service sequencing (purple) and information flow
(grey)

This will typically initiate an iterative process in which the user’s processing
cycles several times through the corresponding work flow until arriving at a satis-
factory outcome.

Although convenient as a first conception, such constrained workflows do not of-
fer the flexibility we seek. Accordingly, we exploit the reconfigurability inherent in
a Service Oriented Architecture with orchestration of the offered services to provide
much greater flexibility. Such flexibility allows users to flow through the processing
steps at will bypassing intervening steps if appropriate. For example, users may it-
erate between the input GUI and the ES in order to try out different weights on their
value attributes. Or a user may alternate between the Strategic and Tactical stances to
gain the perspectives of both views on the feasibility of his/her technology proposal.
In another case, especially after the system has accumulated simulation experience,
the user may bypass simulation and employ estimates of cluster worth offered up
the built-in learning mechanisms. Moreover, such flexibility allows users to interact
intermittently with the system over time, building up individual profiles of work that
provide a basis for starting from accumulated experience rather than from a clean
slate at any time.

13.3.2 System Entity Structure (SES): Key Support for MSE Flexibility

The core component of the MSE necessary for its user-adaptive flexibility is the
Development and Pruning of Alternative Service (DPAS). As indicated earlier, the
DPAS generates instances of clusters that can potentially meet the user’s require-



188 13 Flexible Modeling Support Environments

Fig. 13.8 Overall implementation of MSE

ments. The key enabler of such generation is a Master System Entity Structure (SES)
(Chap. 3, Hagendorf and Pawletta 2010) which is the overall specification of all pos-
sible components and their relationships. In previous chapters, we have discussed
tools to support specification of SES’s in constrained natural language format, to
prune SESs so as to result in well-defined model specifications, and to transform
such pruned entity structures (PES) to executable simulation models. Further, a con-
strained natural language approach to pruning not only allows easy manual pruning
but also enables automated specification through input pruning scripts. This capabil-
ity provides a key element in achieving the flexibility to adapt to user requirements.
In the standard workflow of Fig. 13.7, the PSS outputs a pruning script to the DPAS
which prunes the Master SES to constrain the model’s structure (viz., the cluster
architectures) to be evaluated via simulation. The family of PESs generated by the
DPAS from a single pruning script constitutes the solution space. These PESs are
encoded in XML, and with the help of an XMLToOWL converter, stored in the
Common Data Service (OWL-S 2004). In this form, they are available on demand
to the simulators, whether Strategic or Tactical, as well as to other Frontier services
(such as the RAS).

13.3.3 MSE Implementation: Service Orient Architecture

Figure 13.8 illustrates the implementation of the MSE as a set of web service com-
ponents that can be configured to adapt to stakeholder requirements. In the ini-
tial phase of the Frontier project, we implemented the constrained workflow of
Fig. 13.2, all information exchanges between services are mediated by the com-
mon data service supported by the Web Data Server. This is envisioned within a
Web Services Environment that supports a “Semantic Bus” to be described shortly.



13.3 Case Study: Fractionated Satellite Systems 189

Fig. 13.9 Constrained orchestration of the MSE workflow

In the constrained workflow, an ad hoc function serves as orchestrator to move
the processing steps along the paths illustrated in Fig. 13.9. However, a more flexible
orchestration is required to implement automatic invocation of modeling services in
such a way as to maximize value for the stakeholder. Depending on interests, objec-
tives, and values, the stakeholder is categorized into one of the four basic categories
discussed earlier, and different modeling services and different pipelines of services
may be appropriate. Eventually an intelligent learning system can make such de-
cisions. However, initially the Orchestrator must be seeded with some criteria for
selecting services and invoking them in a particular order, with outputs from some
services passed as input to others.

There are two overall methods for seeding such information.
• Hard coded representation in the orchestrator source code
• Representation in a process (service orchestration) specification.
We want to avoid hard coding such knowledge because it will be difficult to change
as the experience with the system accumulates. There are well-established prece-
dents for representing service orchestration in high-level specification languages,
e.g., the Business Process Execution Language (2012), which is XML-based, and
OWL-S (2004) in the semantic technology world. Because Frontier is a semantics-
based system, an OWL-based representation is most appropriate. This representa-
tion will reside in the Common Data Service and implemented in TripleStore (2012),
thus providing support for orchestrating services.

The next level up in flexibility from a static OWL representation is to provide
intelligence to perform simple matching between the declared capabilities of the
basic MSE services (outlined in Fig. 13.8) and the declared needs (including val-
ues) of the user. We have argued above that the categorization into 4 types of users
(along Strategic/Tactical and Supply/Demand dimensions) provides a good initial



190 13 Flexible Modeling Support Environments

basis for such matching, particularly with respect to choice of model abstraction for
simulation.

Eventually, an intelligent learning system can make better matches, i.e., those
that maximize value for the stakeholder. The easiest and most simple-minded form
of matching will look for explicit matches, i.e., equal values, between correspond-
ing attributes (OWL properties) of the Frontier services and the user requiring the
services. Such matching will, at first, be crude, but it will be more than syntactic sig-
nature matching because the properties represent semantic information about both
the demand and supply side. More advanced matching will involve dynamic orches-
tration decisions, such as examining the results from one service and inferring—at
that point—whether they should be passed to another service, or whether perhaps
the previous inputs should be passed to another service, etc. Whether such learned
rules and/or choices can themselves be represented in OWL or must be kept in a
sub-symbolic neural representation is not yet clear; but in either case, the goal is to
provide the ability to adapt services to stakeholder needs and different notions of
stakeholder value. We can envision that the orchestrator will maintain models for
the users which represent their beliefs, goals, and intentions in relation to using the
tools and executing the steps toward getting the results they expect. The concept of
agents, as represented in DEVS, discussed in Chap. 10, is appropriate here.

13.3.4 MSE Simulation Service

The Simulation Service constitutes another key component in the realization of the
overall objective of the Frontier design environment. Recall that its task is to pro-
vide an environment that caters to the interests of a wide variety of stakeholders in
the construction of a novel architecture of fractionated satellites. Indeed, the MSE
relies on the Simulation Service to provide simulations that evaluate spacecraft sys-
tem architectures in response to diverse stakeholders’ requirements. The Simulation
Service includes both the Strategic and Tactical Simulation Services and simulates
architectural models in response to the generated demands and supplies results for
evaluation and ranking. The simulation is configured to either strategic or tactical
forms depending on stakeholder interest. The Tactical Simulation Service encapsu-
lates a DEVS coupled model containing an Experimental Frame (EF) (see Chap. 18)
that interacts with the Physical Model Simulator (PMS) as seen in Fig. 13.10. The
EF generates space system service requests over a simulation time interval to the
PMS. The parameters of the service request stream are derived from the demand
profile elicited through interactions with the stakeholder. The PMS simulates the
processing of these requests based on a cluster configuration that has been devel-
oped for it by the DPAS. A cluster consists of a networked group of satellites evalu-
ated in the simulation. The cluster may be made up of specific satellites, or satellites
may rotate in and out of the cluster due to line of sight considerations or module
hardware/software failures. The total time encompassed by each simulation is the
same for all instantiations and each run of a specific cluster instantiation results in
a single series of time-ordered events that describe in specific changes in the cluster



13.3 Case Study: Fractionated Satellite Systems 191

Fig. 13.10 Simulation Service with encapsulated Experimental Frame and PMS

as the simulation progresses. During the simulation, outputs of the PMS are con-
tinually sent to the EF as events occur. At the end of the simulation interval the
EF provides the values for performance measures that it has developed by summa-
rization and statistical operations performed on the received data. The performance
metrics originate from the input elicited through interaction with the stakeholder.

The Market Model Simulator (Strategic Level) consists of an Experimental
Frame that interacts with a Market Model (MM) to perform financial evaluation
over a long time span composed of successive Simulation Analysis Intervals (e.g.,
quarterly). The goal of the simulation is to generate time series data that can be used
in the market analysis in the RAS. As for the tactical case, the simulations use in-
stantiations of clusters generated by the DPAS and are designed to output data that
will support the evaluation of the values, goals, and metrics derived from the stake-
holder input by the elicitation process. As shown in Fig. 13.11 the MMSF contains
an Experimental Frame that interacts with the MM. Similarly to the interaction with
the PMS, the EF receives input (via the common data service) from the DPAS in an
XML format. The total time encompassed by each simulation run remains constant
for all simulations of all instantiation for a given cluster. Each simulation run of a
specific cluster instantiation will result in a single series of time-ordered events that
describe in specific changes in the cluster as the simulation progresses.

In contrast to the PMS, in the interaction with the MM, this series of changes
is divided into time periods during which the cluster configuration and atomic ser-
vices do not change. These periods of stable cluster configuration are referred to
as Simulation Time Periods (STPs) and consist of a varying number of Simulation
Analysis Intervals (SAIs). Each STP and the cluster configuration associated with
it define the data that are output to the common data service and stored in Triple-
Store for market evaluation. Because a single series of events generated by s single



192 13 Flexible Modeling Support Environments

Fig. 13.11 Interaction of the Experimental Frame

simulation run cannot be considered an adequate description of the entire range of
possible event strings, multiple simulation runs are conducted with the same cluster
and environment. The data gathered from all the simulations runs are aggregated to
generate probability distributions on the parameters of interest. These distributions
describe the range of possible outcomes for the parameters of interest and provide
the basis for the risk analysis component of the RAS.

13.3.5 Simulation Using Web Services

As illustrated in Fig. 13.8, the implementation of Frontier Simulation Services is
based on the extension of the open source ADEVS (2012) environment to sup-
port simulation using Web Services. This work was comprised of three major steps:
(1) enabling models expressed in ADEVS to be provisioned on server hosts and to
be simulated in a federation employing web technologies, (2) adapting the simula-
tion coordinator in the Main Service to execute in C++ and to exchange simulation
control messages with the simulators, (3) adapting the simulators to exchange DEVS
payload messages in XML format. These steps were accomplished with the help of
the Apache Axis2C and Staff tools for web service development (Apache Axis2C
2012). The resulting environment, called ADEVS/SOA, allows ADEVS coupled
models to be executed on an open-source Tomcat-based SOA platform.

In contrast in the DEVS/SOA (Seo and Zeigler 2012) environment based on DE-
VSJava (Sarjoughian and Zeigler 1998), there are limitations to the ADEVS/SOA
environment that should be noted:
• ADEVS/SOA (C++) does not support dynamic instantiation of ADEVS models.
• ADEVS/SOA (C++) does not support reflection functions for Object classes’

variables.
• ADEVS/SOA does not support dynamic creation of XML DEVS messages

from ADEVS messages.



13.4 MSE in Operation: An Example Thread 193

• ADEVS/SOA does not create ADEVS Simulator Services with uploaded
ADEVS models.

These limitations, stemming from the C++ language, imply that work must be
done in individually tailored, rather than automated, fashion to integrate an ADEVS
model to execute on ADEVS/SOA. In particular, simulation servers must be individ-
ually provisioned with simulator services with pre-assigned atomic models. In con-
trast in the DEVS/SOA environment, atomic models can be downloaded to generic
simulation servers and locally compiled. An ADEVS/SOA Simulation Client takes
a folder containing pruned entity structure (PES) XML files and sends the selected
XML file to an ADEVSMainService hosting simulation services. Such a client op-
erates in the following sequential manner:
1. The client selects the PES XML file from a resident folder at its machine
2. The selected XML file is uploaded to the ADEVSMainService
3. The client invokes the start simulation service of the ADEVSMainService to

coordinate ADEVS Simulator Services.
Once the simulation is over, the aggregated simulation logs from various servers are
forwarded to the client’s machine.

Also as shown in Fig. 13.8, ADEVS/SOA can reach out to external web service
simulations through ADEVS proxy models that can participate in ADEVS coupled
models while invoking remote web services. Due the limitations of C++ libraries
for dynamic invocation of web services, creation of ADEVS proxies is not as con-
venient as in the ingestion process developed for DEVS/Java. However, ADEVS
proxies can be generated with a Java-based program using a similar process in
DevsJava because Staff tools provide libraries for dynamic invocation and XML
handling functions. We conclude that despite its execution performance advantages,
a C++-based environment is not as suitable as a Java-based counterpart for flexibil-
ity and extensibility such as envisioned for the Frontier environment.

13.4 MSE in Operation: An Example Thread

We follow an end-to-end workflow thread in which cluster architecture is compared
against a monolithic satellite for the same input service demand profile. A master
cluster architecture containing satellites that can have different types of sensors and
different communication capabilities is illustrated in the SES partially displayed:

From the sys perspective, GeneralClusterArch is made of
ExperimentalFrame and SatelliteModules!
From the mult perspective, SatelliteModules are made of more
than one SatelliteModule!
SatelliteModule can be id in index!
From the activity perspective, SatelliteModule is made of
Energizing,Propulsing, Communicating, Navigating, Controlling,
and Sensing!
From the subSensSys perspective, Sensing is made of Sensor!
From the subCommSys perspective, Communicating is made of
Communication!
From the subCDHSys perspective, Controlling is made of



194 13 Flexible Modeling Support Environments

Fig. 13.12 Master SES provides a characterization of service demands and potential architectures
to be explored

CommNDataHandling!
Sensor can be Present or NotPresent in presence!
Sensor can be Visual,InfraRed,Radar, or MultiCapability in
EMType!
...

Note the use of the multi-aspect concept for SatelliteModule to allow any number
of modules to be used to make a Satellite system. The top level of satellite decom-
position, called activity aspect, includes functions that any satellite optionally has.
These functions are further broken down at the next level into decompositions with
components that can implement the functions and/relevant specializations. Two such
functions, Communications and Sensing are broken out in the Fig. 13.12.

The Master SES can be pruned to generate different cluster configurations, or
instantiations, which are points in the solution space. Of course, the user’s require-
ments will dictate which points count as solutions for him/her. Cluster instantiations
include dimensions such as:
• Cluster size (number of satellites in the cluster)
• Satellite configuration (e.g., which satellites have which types of sensors)
• Atomic Services (modules) to be included in the cluster
• Functional dependencies
• Communications capabilities(e.g., intersatellite or down to ground)
• Module specific parameters
• Mean times to failure
• Sensor and communication footprints
• Susceptibility to external influences.



13.4 MSE in Operation: An Example Thread 195

The PSS generates scripts that condition the SES to generate a more focused solu-
tion space. Some of the operations available for use are illustrated by the following:
• A pruning operation (e.g., select Radar from EMType for Sensor!) selects

Radar from the EMType specialization for every Sensor—a context specifica-
tion can be added to restrict the selection to only those Sensors in the context.

• An SES restructuring operation (e.g., don’t select Radar under Sensor!) elimi-
nates the selection of Radar from specializations that occur under Sensor every-
where Sensor occurs.

• Statements that check resulting PESs and accept only those that satisfy specified
conditions:
– set count bounds for Visual_Sensor as [0,2]!
– set count bounds for CommUpNDownLink as [1,2]!

The distinction between general clusters and a monolithic baseline is embodied in
different count bounds for the general cluster case (e.g., set count bounds for Satel-
liteModule as [3,6] !), and for the monolithic case e.g., (set count bounds for Satel-
liteModule as [1,1] !).

A particular specialization, presence, has a specific connotation (e.g., select
Present from presence for CommInterSatelliteLink!) results in the presence of
CommInterSatelliteLink in the PES vice (select NotPresent from presence for
CommInterSatelliteLink!) in which CommInterSatelliteLink is eliminated from the
PES. The first selection applies to the general clusters case while the second is ap-
propriate to the monolithic case.

The output of the DPAS is a collection of PESs expressed as XML documents.
In principle, such a PES can be interpreted by any suitable model. However in prac-
tice, models are tuned to the objectives they are built to serve. Reflecting this cir-
cumstance, an SES for Physical Model is less inclusive in scope and more detailed
in physics than the Master SES. The SES for Physical Model is partially displayed:

From the topSys perspective, FrontierPMS is made of ExpFrame and
SatelliteModules!
From the multiSatellite perspective, SatelliteModules are made
of more than one SatelliteModule!
SatelliteModule can be id in index!
SatelliteModule has ID!
The range of SatelliteModule’s ID is int!
SatelliteModule can be ImageSat or RelaySat in moduleType!
From the image perspective, ImageSat is made of
SensorModule,CommModule, and Orbit!
SensorModule has fov, viewRange, and imageBits!
...

As with the GeneralClusterArch SES, the use of the multi-aspect concept for Satel-
liteModule allows any number of modules to be used to make a Satellite system.
However, in this case, SatelliteModule has a specialization in ImageSat or RelaySat
so that there can be any number of image and relay satellites, respectively, as illus-
trated in Fig. 13.13 (also see Chap. 6).

A mapping from GeneralClusterArch (Master) SES to Physical SES relates the
two abstractions as illustrated in Fig. 13.14.



196 13 Flexible Modeling Support Environments

Fig. 13.13 Illustrating the
restructuring of
SatelliteModules into
ImageSats and RelaySats

One main difference between the GeneralClusterArch SES and the Physical
Model SES is that the latter distinguishes satellites as either imaging or relay while
the former treats all satellites uniformly with the distinction arising from the selec-
tion of alternatives in the pruning phase. Thus, as discussed in Chap. 11, the mapping
actually is at the pruned level so that a pruned GeneralClusterArch SES is mapped to
a pruned Physical Model SES. Indeed, the mapping expressed at the XML level con-
structs an XML document configuring a Physical Model from an XML document
representing configured cluster architecture. To illustrate the mapping, consider the
following illustrated in Fig. 13.14:

For each SatelliteModule in the cluster,
if

both an inter-satellite communication link (or any type) and
a Sensor (of any type) are present in the substructure under
the SatelliteModule,

then
add an imageSat to the Physical Model cluster.

A similar rule to create relay satellites requires the presence of inter-Satellite
communications and Up/Down Links to Earth as well as the absence of a Sensor.
This kind of mapping has some very desirable attributes:
• It allows pruning of the Master SES to consistently configure multiple model

abstractions—manual configuration of a single simulator model is difficult let
alone consistent settings across multiple models.

• It allows the simulator to fill in missing information that it knows best (e.g., the
mapping need not determine all choices in the Physical Model SES, only those
that guarantee a compatible structure).

• It provides constraint criteria for improving Master pruning yield (percentage
of pruned SES’s that are desired instantiations). This needs further explanation.
The mapping from master cluster architecture PESs to Physical Model PESs is
actually not defined on the full domain of pruned entity structures, i.e., many
master PESs do not yield a valid Physical Model configuration. For example,
a SatelliteModule with no inter-satellite communications does not correspond
to either imaging or relay assignment. To increase the probability of generating



13.5 Summary 197

Fig. 13.14 Mapping from
Master SES to SES for
Physical Model

a meaningful Physical Model configuration, we should require that an inter-
satellite communication link be present in every Satellite. This can be done by
an appropriate pruning illustrated above. Thus, the yield of the pruning opera-
tion can be identified as the size of the range set of the mapping. This can be
increased by properly constraining the domain of the mapping i.e., judiciously
applied conditioning pruning rules.

• The mapping supports criteria for validation of the source SES. Assuming the
mapping is correct, and then any violation must be laid at the foot of the mater
SES itself.

Mapped clusters are simulated in the PMS and evaluated according to metrics
of interest to the user. When invoked, the simulator service gets the given cluster
instantiation and experimental frame data from the common store and starts exe-
cution. Since the latter data is the same for all candidate clusters, the performance
evaluation of candidate clusters produced by the simulation allows them to be com-
pared on equal footing. A ranking of instantiations may contain several monolithic
architectures mixed in with truly fractionated clusters. If under a wide variety of
conditions, the fractionated clusters dominate the monolithic cluster, the case for
fractionation would be established.

13.5 Summary

In this chapter, we have discussed the Frontier Modeling Support Environment
whose goal is to provide the flexibility to adapt its workflows, tools, and models,
to diverse stakeholders in the DARPA F6 program. We outlined the unique features
of the MSE that support its use by a wide spectrum of potential users and developers
of a system of fractionated spacecraft. These features include:
• identification of user types to enable routing the user through relevant process-

ing stages,
• automated generation of model artifacts adapted to selected pathways,
• conditioning of the solutions space to increase the opportunities to find suitable

fractionated architectures,
• flexible simulation services,



198 13 Flexible Modeling Support Environments

• consistent configuration across multiple abstraction models,
• semantics-based orchestration of service oriented architecture.
Joint MEASURE (Zeigler et al. 1999) is a simulation system that evolved to measure
utility of intelligence collection assets and strategies. The MSE was developed to
abstract and re-implement Joint MEASURE’s features on the SES and DEVS/SOA
platform. Although the MSE is in its initial capability phase of development, the
major features just stated have been demonstrated in a prototype. Much remains to
be done including design and implementation of the semantics-based orchestration
and an automated approach to mappings of the Master SES to incorporated abstrac-
tions. We also need to go beyond to the current pair of models (physical and market)
to populating the environment with services and models to address a full range of
stakeholder’s objectives. As discussed above, the ingestion process for external web
services is key to such extensibility, and may require adoption of Java-based, rather
C++-based, proxies. Beyond the ability to exchange messages and invoke services
enabled by such proxies, the perennial problem of harmonizing the data formats
and operations protocols of external tools must be tackled. An ontologies-based
approach is under-development consistent with the development of the semantics-
based data store discussed above. The advance of Semantic Web technology and the
development of pragmatics-based data engineering (Zeigler and Hammonds 2007)
provide some hope that significant progress can be made, particularly within a re-
stricted domain such as spacecraft architectures.

As is readily apparent, the approach taken in the design and development of
the Frontier MSE is based on fundamental principles that have application much
beyond spacecraft fractionated systems. This generic quality of the MSE concept
suggests the applicability of basic design to virtual build and test of today’s system
of systems.

Acknowledgement This research was supported in part by the DARPA F6 Program.
Technical area 1: Design Tools for Adaptable Systems.

Appendix

A.1 GeneralClusterArchSeS.txt

From the sys perspective, GeneralClusterArch is made of
ExperimentalFrame and SatelliteModules!

From the mult perspective, SatelliteModules are made of more
than one SatelliteModule!

SatelliteModule can be id in index!

From the activity perspective, SatelliteModule is made of
Energizing, Propulsing, Communicating, Navigating, Controlling,



Appendix 199

and Sensing !

From the subSensSys perspective, Sensing is made of Sensor!

From the subCommSys perspective, Communicating is made of
Communication!

From the subCDHSys perspective, Controlling is made of
CommNDataHandling!

Sensor can be Present or NotPresent in presence!

Sensor can be Visual,InfraRed,Radar, or MultiCapability in
EMType!

Sensor can be SingleBand or MultiBand in band!

Sensor can be LowRes, MediumRes, or HiRes in resolution!

Sensor can be LowTolerant or HighTolerant in faultTolerance!

Sensor can be Stereoscopic or Monoscopic in stereo!

Sensor can be StabalizedPointing or NonPointing in
pointingCapability!

Sensor can be DataIntensive or NotDataIntensive in dataHandling!

From the SensoryFunctionA perspective, Sensor is made of
EarthObservation, and RemoteSensing!

EarthObservation can be Present, or NotPresent in presence!

RemoteSensing can be Present, or NotPresent in presence!

From the SensoryFunctionB perspective, Sensor is made of
SpaceObservation, and DataCollecting!

SpaceObservation can be Present, or NotPresent in presence!

DataCollecting can be Present, or NotPresent in presence!

Communication can be Present in presence!

From the Subsystem perspective, Communication is made of
CommUpNDownlink, CommInterSatelliteLink, and
ProcessingPayload!

From the commSys perspective, CommUpNDownlink is made of



200 13 Flexible Modeling Support Environments

CommUplink and CommDownlink!

From the Component perspective, CommUplink is made of ULAntenna,
and Receiver!

CommUpNDownlink can be Present, or NotPresent in presence!

CommInterSatelliteLink can be Present, or NotPresent in presence!

From the Component perspective, CommDownlink is made of
DLAntenna, and Transmitter!

CommInterSatelliteLink can be HighBandwidthLink, or
LowBandwithLink in Option!

HighBandwidthLink can be LaserLink in HBLink!

LowBandwithLink can be RadioLink in LBLink!

From the Component perspective, ProcessingPayload is made of
OnBoardProcessor, SpaceQualifiedRouter, Diplexer, Coupler,
Transciever, Amplifier, Modulator, Filter, Mixer,
Frequency_ClockGenerator, and Multiplexer!

ProcessingPayload can be Present, or NotPresent in presence!

CommNDataHandling can be Present or NotPresent in presence!

From the SubSystem perspective, CommNDataHandling is made
of CDHUplink, CDHDownlink, and TelemetryTracking!

From the component perspective, CDHUplink is made of
ReceiverAntenna, and ReceiverSystem!

From the component perspective, CDHDownlink is made of
TransmitterAntenna, and TransmitterSystem!

From the Subsystem perspective, TelemetryTracking is made of
OnBoardComputer, Processor, and IntersatelliteLink!

Sensor has weight,volume, and cost!
The range of Sensor’s weight is double !

The range of Sensor’s volume is double !

The range of Sensor’s cost is double !

Sensor has fov, viewRange, and imageBits!

if select Present from presence for CommUpNDownlink then
select Present from presence for Communication!



Appendix 201

if select Present from presence for CommInterSatelliteLink then
select Present from presence for Communication!

A.2 Outline of GeneralCusterSeS

A.3 GeneralClusterArchBasicPrune.pes

don’t select Radar under Sendor !
don’t select MultiCapabilty under Sendor!

don’t select LowRes under Sensor !

don’t select Stereoscopic under Sensor !

don’t select MultiBand from band under Sensor !



202 13 Flexible Modeling Support Environments

don’t select StabilizedPointing under Sensor !

don’t select DataIntensive under Sensor !

restructure multiaspects using index !

set multiplicity of index as [6] for SatelliteModule !

set count bounds for SatelliteModule as [3,6] !

select Present from presence for CommInterSatelliteLink !

set count bounds for Visual as [1,2] !

set count bounds for Infrared as [1,2] !

set count bounds for CommUnNDownLink as [1,2] !

set count bounds for ProcessingPayload as [1,2] !

set count bounds for LowTolerant_Visual_Sensor as [0,2] !

set count bounds for HighTolerant_InfraRed_Sensor as [0,1] !

set count bounds for Visual as [0,1] per SatelliteModule !

set count bounds for Infrared as [0,1] per SatelliteModule !

set count bounds for CommInterSatelliteLink as [1,2] per
SatelliteModule!

set count bounds for CommUnNDownLink as [0,1] per
SatelliteModule !

set count bounds for ProcessingPayload as [0,1] per
SatelliteModule !

A.4 GeneralClusterArchMonolithicPrune.pes

don’t select Radar under Sensor !

don’t select MultiCapabilty under Sensor !

don’t select LowRes under Sensor !

don’t select Stereoscopic under Sensor !

don’t select MultiBand from band under Sensor !

don’t select StabilizedPointing under Sensor !



References 203

don’t select DataIntensive under Sensor !

restructure multiaspects using index !

set multiplicity of index as [6] for SatelliteModule !

set count bounds for SatelliteModule as [1,1] !

select NotPresent from presence for CommInterSatelliteLink !

set count bounds for Visual as [1,2] !

set count bounds for Infrared as [1,2] !

set count bounds for CommUnNDownLink as [1,2] !

set count bounds for ProcessingPayload as [1,2] !

set count bounds for LowTolerant_Visual_Sensor as [0,2] !

set count bounds for HighTolerant_InfraRed_Sensor as [0,1] !

References

ADEVS (2012). An open source C++ DEVS simulation engine. http://www.ornl.gov/~1qn/adevs/
index.html.

Apache Axis2C (2012). http://axis.apache.org/axis2/c/core/.
Aumann, G. A. (2007). A methodology for developing simulation models of complex systems.

Ecological Modelling, 202, 385–396.
Business Process Execution Language (2012). http://en.wikipedia.org/wiki/Business_Process_

Execution_Language.
Hagendorf, O., & Pawletta, T. (2010). Framework for simulation-based structure and parameter

optimization of discrete event systems. In G. A. Wainer & P. J. Mosterman (Eds.), Discrete-
event modeling and simulation: theory and applications. Boca Raton: CRC Press.

Kim, T. G., et al. (2010). DEVSim++ toolset for defense modeling and simulation and interopera-
tion. Journal of Defense Modeling and Simulation, 8(3), 129–142.

Kim, T. G., Sung, C. H., Hong, S.-Y., Hong, J. H., Choi, C. B., Kim, J. H., Seo, K. M., & Bae,
J. W. (2011). DEVSim++ toolset for defense modeling and simulation and interoperation. The
Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 8(3),
129–142.

OWL-S (2004). http://www.w3.org/Submission/OWL-S/.
Rubinstein, R., & Kroese, D. (2007). Simulation and the Monte Carlo method. Wiley series in

probability and statistics (2nd ed.). New York: Wiley.
Sarjoughian, H. S., & Zeigler, B. P. (1998). DEVSJAVA: basis for a DEVS-based collaborative

M&S environment. In Proceedings of the SCS international conference on web-based modeling
and simulation, San Diego (Vol. 5, pp. 29–36).

Seo, C., & Zeigler, B. P. (2012). Simulation model standardization through web services: inter-
operation and federation on the DEVS/SOA platform. In DEVS intergrative M&S symposium,
proceedings of the spring simulation conference, Orlando, FL, March 2012.

Service-Oriented Architecture (2012). http://en.wikipedia.org/wiki/Service-oriented_architecture.
Staff (2012) Open source web services framework for C++ based on Axis2/C. http://code.google.

com/p/staff/.

http://www.ornl.gov/~1qn/adevs/index.html
http://www.ornl.gov/~1qn/adevs/index.html
http://axis.apache.org/axis2/c/core/
http://en.wikipedia.org/wiki/Business_Process_Execution_Language
http://en.wikipedia.org/wiki/Business_Process_Execution_Language
http://www.w3.org/Submission/OWL-S/
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://code.google.com/p/staff/
http://code.google.com/p/staff/


204 13 Flexible Modeling Support Environments

TripleStore (2012). http://en.wikipedia.org/wiki/Triplestore.
Zeigler, B. P., & Hammonds, P. (2007). Modeling & simulation-based data engineering: intro-

ducing pragmatics into ontologies for net-centric information exchange. New York: Academic
Press.

Zeigler, B. P., Hall, S. B., & Sarjoughian, H. (1999). Exploiting HLA and DEVS to promote in-
teroperability and reuse in Lockheed’s corporate environment. Simulation Journal, 73(4), 288–
295.

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation (2nd ed.).
New York: Academic Press.

Zeigler, B. P., Nutaro, J., Seo, C., Hall, S., Clark, P., Rilee, M., Bailin, S., Speller, T., & Powell, W.
(2012). Frontier modeling support environment: flexibility to adapt to diverse stakeholders. In
Symposium on theory of modeling & simulation—DEVS integrative M&S symposium. Orlando:
SpringSim.

http://en.wikipedia.org/wiki/Triplestore

	Chapter 13: Flexible Modeling Support Environments
	13.1 Supporting Multiple Paths Through Development Process
	13.2 M&S Tools as Services in a Service Oriented Architecture
	13.3 Case Study: Fractionated Satellite Systems
	13.3.1 How the MSE Adapts to Types of Stakeholders
	13.3.2 System Entity Structure (SES): Key Support for MSE Flexibility
	13.3.3 MSE Implementation: Service Orient Architecture
	13.3.4 MSE Simulation Service
	13.3.5 Simulation Using Web Services

	13.4 MSE in Operation: An Example Thread
	13.5 Summary
	Appendix
	A.1 GeneralClusterArchSeS.txt
	A.2 Outline of GeneralCusterSeS
	A.3 GeneralClusterArchBasicPrune.pes
	A.4 GeneralClusterArchMonolithicPrune.pes

	References


