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Abstract. Systems engineering is the interdisciplinary engineering field
that focuses on the design of complex physical systems to optimize the
system’s performance over its life-cycle. To support such optimization
efforts a number of computational modeling methods are required: onto-
logical modeling, stochastic modeling, and process simulation modeling.
Despite this need, the field of systems engineering has mainly focused
on the development and discussion of managerial methods. This paper
tries to provide a first starting point for a discussion about a framework
to understand how the above mentioned computational methods can
support system engineers. The paper introduces a first set of important
methods and tries to integrate them in an overall framework for analysing
engineered systems from different points of view. For each of the methods
we also provide a simple illustrative example from our ongoing systems
engineering teaching efforts at the TU Berlin.

1 Introduction

The basic idea behind systems engineering is that a high performing product can
only be designed if each of the product’s components and physical subsystems
work in an integrated way together. An important aspect to allow engineers to
understand the level of integration of a system is the modeling and simulation of
a system to understand how well different design options of the system perform
with respect to a set of previously defined requirements. These aspects of model-
ing and simulation have not yet been widely discussed in the scientific discourse.
The discourse in the field of systems engineering is still mainly focused on the
aspects of requirements engineering, as well as, the abstract modeling of system
components and interfaces.

To start a discussion about the required computational methods to support
systems engineering efforts, this position paper sets out to provide an overview of
three important areas of advanced computing: Product modeling, process model-
ing and data analytics. We argue that a focus on these three areas will allow the
field to move towards the simulation based integrated practice that is at the core
of systems engineering philosophy. Among these areas, product modeling forms
the basis for the other two as it allows to understand the different components
of a complex engineered system together with its characteristics and interfaces.

c© Springer International Publishing AG, part of Springer Nature 2018
I. F. C. Smith and B. Domer (Eds.): EG-ICE 2018, LNCS 10864, pp. 262–275, 2018.
https://doi.org/10.1007/978-3-319-91638-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91638-5_14&domain=pdf


Engineering Informatics to Support Civil Systems Engineering Practice 263

Based on well defined product models different physical and social processes
that influence some or all of a system’s components, such as structural dynam-
ics, thermal behavior, or traffic loads can be simulated. The product models allow
for the integration of different process models and simulations that allows for a
holistic understanding of the behavior of the overall system upon the influence
of the different physical and social processes. At the same time, advanced data
analytics allows us to understand the current and historical behavior of different
system components and their interrelation to each other. Data analytics allows
an alternative to the process modeling and simulation area for predicting a sys-
tem’s behavior in instances where historical data is available about the behavior
of a system or of some of its components.

The paper will briefly introduce these three areas and their computational
underpinnings. To this end, the paper will show how system engineers can apply
these computational methods to gain a better understanding about a system
to support engineering work. The computational methods will be illustrated
using simple class room examples that we use in our teaching modules at the
civil systems engineering department at the TU Berlin. I close the paper by the
introduction of a theoretical framework that combines the three areas and that
can be used to organize system engineering efforts.

2 Systems Thinking in Engineering

Every product engineers design and commission, be it a bridge, road, or building,
is comprised of sub-components that stand in relation to each other. Through
this relation, the different elements form a whole reacting to certain environmen-
tal influences, supporting civil life, from crossing rivers, to driving safely, from
providing shelter to the outside world. In this sense, we can conceptualize each
civil product as a system of elements that stand in relation to each other and
thus form a whole that is more than the individual elements in isolation.

In traditional systems thinking (Luhmann 1984; Ropohl 2012), there are at
least three important concepts of systems that can foster understanding about
the basic composition of civil engineered products. First, systems need to be
understood as functional in relation to their environment. For the concept sys-
tem to make sense a clear distinction between the system and its environment
needs to be present. A system can then be defined as a collection of elements that
receive information or physical stimulus from their environment, internally pro-
cess these information and stimula and provide some type of output or reaction.
This view on systems is often labeled as functional. The functional concept of
systems allows us to understand questions such as “What is this thing” or “What
does this thing do”, while it specifically does not look at the inner composition
of the system (Ropohl 2009).

While the functional concept treats the internal composition of the system as
a black box, the structural concept looks into the system. A system also needs to
be understood as a set of individual elements that stand in relation to each other.
Each of the elements can be connected to each of the other elements in different
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ways. How elements are connected to each other defines the inner structure of
the system. Therefore, this second concept is often called the structural concept
of systems.

Finally, each of the elements of the system can itself be considered as a system
that stands in relation to an environment. At the same time, the environment of
each system can also be conceptualized as a system itself. Any reflection about a
system can hence comprise different levels of super- and sub-systems, something
that is often referred to as systems of systems thinking (Luzeaux et al. 2013).

While the traditional field of systems engineering as a framework to guide
the engineering process of complex technical systems has evolved independent
of systems thinking, the three above concepts of systems can be mapped well
to the different main tasks prescribed by the systems engineering methodology.
Systems engineering has recently evolved as the leading management practice
across all the engineering disciplines and prescribes a set of iterative processes
to be applied for designing, developing, operating, and maintaining complex
engineered products throughout their life-cycle (Kapurch 2010). Systems engi-
neering focuses on optimizing an engineered product as a whole, balancing each
of the required components of the entire product to achieve some given product
requirements.

Models, as abstract representations of reality, of the engineering product
can be seen at the core of the systems engineering approach. As modern engi-
neered products are highly complex, abstract models are required to understand
the behavior of the products and allow for optimizing the product’s design.
Through models complex engineered products are simplified and conceptualized
as systems, consisting of interacting elements, that together have to react to
environmental conditions. The models are then used to define different alterna-
tives for connecting components and then testing these alternatives towards the
requirements during the design process. This allows engineers to theoretically
understand the behavior of their product before developing and operating the
product in the physical world.

The three concepts of systems thinking introduced above are at the core of
understanding how to abstract good models to support the three main processes
of systems engineering: Requirements management, interface management, and
iterative and hierarchical component engineering. For one, each model needs to
allow for understanding whether a engineered product can fulfill specific require-
ments for its functionality. To allow engineers to manage the requirements well,
functional system models are required that can be used to evaluate the behavior
of a system according to different changing environmental conditions.

At the same time, system engineering is concerned with defining the func-
tional structure of the engineered products in terms of the products’ components
and their relations. Models need to support engineers to understand which com-
ponents are required, how the different components need to be related, and how
the related components together can react to different environmental conditions.
Additionally, from a life-cycle perspective, engineers need to already under-
stand in early design phases how components can be exchanged, maintained,
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and recycled at different life-cycle stages of an engineered product. To support
these tasks structural system models of the engineering product are required.

Finally, the systems engineering approach prescribes a highly iterative pro-
cess during which each of the components of a system are split up in their
smaller components. The NASA systems engineering handbook (Kapurch 2010)
for example suggests that every component of a system should be divided in sub-
components until the sub-component can be acquired on the market or ordered
at a third party supplier. These components at the lowest level of the product
hierarchy then should be assembled to sub-components, the sub-components are
then again assembled to higher level components till a final product that fulfills
the requirements is engineered. To support this product engineering approach
hierarchical system models are required.

Without a doubt, the computer has become an indispensable tool to sup-
port all of the above modeling tasks during systems engineering. Despite the
ubiquitous presence of computers in everyday engineering, there is little discus-
sion about computational support within the systems engineering community.
The next section, therefore summarizes three important computational meth-
ods for supporting the above described systems engineering process focusing on
the three areas of ontological modeling, stochastic data analytics, and process
modeling and simulation.

3 Fundamental Informatics to Support Civil Systems
Engineering

3.1 Ontologies and Product Modeling

The computational discipline of ontology engineering is concerned with the for-
mal naming and the definition of entities, their properties, and the relation
between entities within a specific domain of discourse (Noy et al. 2001). In that
sense the engineering of an adequate ontology describing a civil engineered prod-
uct is at the core of any systems engineering effort. Without formally defining
and naming the different elements and environmental influences of a system
together with the different possibilities to relate the elements with each other
and with the environment no computational possibilities to support the engi-
neering effort would be possible. Figure 1 shows an illustrative example of an
ontology that models the different elements of a bridge.

While an ontology is a conceptual formalization of the logic behind the ele-
ments of a system and their relations (Krötzsch et al. 2012), engineering is
also always concerned with the physical embodiment of the system in the real
world. How an engineered product is geometrically configured is an important
step towards the realization of the physical product. The product configuration
is also important during the simulated evaluation of the different alternatives
for the final product. Based on an ontology describing an engineered product
conceptually, geometrical parameters help to link the conceptual description to
the geometrical description of the product. Parameters allow engineers to cap-
ture design knowledge and intent within flexible models that are automatically
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Fig. 1. Example of an ontology that conceptually models the different components of
a bridge.

updated when the defined parameters change (Geyer 2008). Parameters also
allow to define product family and parts that describe sub-elements of the engi-
neered system (Pahl and Beitz 2013). Finally, parameters can be steered by
computational algorithms to quickly generate a large number of possible physi-
cal configurations of a system for the purpose of evaluating the designs (Flager
et al. 2009).

Figure 2 shows an example of a parametric model that can generate different
geometrical configurations of a bridge based on two input parameters - bridge
length and transversal span. This parametric model can be used to generate a
large number of different bridge alternatives varying in length and transversal
spans. This generation can be computationally steered.
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Fig. 2. Parametric model to generate the geometry of a bridge based on two input
parameters. Upper part: The complete parametric model. Lower part: Detail of the
model showing the two input parameters - bridge-length and transversal span

3.2 Data Analytics

Functional system models can only be established if the underlying relation-
ship between the elements of a system are understood well. In cases such an
understanding does not exist, the functional behavior of a system can still be
represented with stochastic models (Matloff 2009).

Given a set of random observations about the stochastic behavior of a sys-
tem or some environmental process that influences the system, statistical models
can help to understand the random functional behavior of the system. Such an
understanding, in turn, allows engineers to estimate the different possible condi-
tions of the system behavior and how likely these conditions are. In particular,
if an engineering effort is concerned with the safety of a system, a statistical
model can help engineers to understand the magnitude of possible extreme con-
ditions a system can be in to design systems that can withstand such conditions.
Computationally engineers can for example use maximum likelihood methods to
estimate the parameters for a given statistical model. To use maximum like-
lihood estimators, an engineer first assumes a possible joint density function
for all observations. A more advanced method to estimate a probability density
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function for a given set of observations is the kernel density estimate. Kernel
density estimation is a non-parametric method so that engineers do not need to
make an a-priori assumption about an initial joint density function.

Next to the estimation of statistical models to estimate the stochastic behav-
ior of a system or of an environmental process influencing the system, statistical
testing methods can be applied to understand interaction effects between differ-
ent elements of a system and different environmental influences of the system.
A wide choice of statistical tests exists, but the two most commonly used tests
are correlation tests and t-tests. Correlation tests allows to understand the con-
nection of two elements based on a set of random observations of the behavior
of the elements. The t-test on the other hand allows to compare two different
groups of elements and can help engineers to understand whether two groups
of systems or one system under two different environmental conditions behave
significantly different.

To illustrate the above introduced basic statistical methods we use a data set
collected for one of our earlier research studies (Ziari et al. 2016) with the aim
to predict the deterioration behavior of roads according to different conditions
based on a large data set of US highways collected by the Federal Highway
Administration of the United States of America. The example is based on a very
simple system model of the road, describing the road’s physical composition as
the thickness of the road’s pavement layer and the thickness of its surface layer.
As main performance measure for the quality of the road the roughness of the
road’s surface is used measured using the international roughness index. The
road system is then influenced by a number of environmental processes related
to the weather (annual average precipitation, annual average temperature, and
annual average freeze index) and to traffic (annual average daily traffic, annual
average daily truck traffic, single equivalent axle load). Observations for each of
these system and environmental elements are collected from the freely available
database of the Federal Highway Administration and the data set is described
in detail in (Ziari et al. 2016).

As a start analyzing the data set, statistical models about the overall dete-
rioration behavior of the road can be established using for example a maximum
likelihood estimator. To understand the shape of the overall distribution the
change in the roughness index of the roads after different years can be ploted as
a histogram. Then suitable joint probabilitity density functions can be choses.
For example, in this case, a gamma distribution seems to be a good choice as
it will allow us to estimate parameters that seem to provide good estimates for
the deterioration of the road across the different time spans. Now a computa-
tional maximum likelihood estimator can be used to define the parameters for
each time span and provide us with joint probability density functions that can
be used to understand the deterioration behavior of the road better. Figure 3
provides a visual summary of the above described example.

Beyond standard mathematical tests, advanced machine learning methods
allow for developing detailed prediction models of the behavior of a functional
system based on a set of observations about the behavior of a system’s elements
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Fig. 3. Example of fitting a probability density function using the maximum likelihood
estimator. Here we fit a gamma function to a data set that describes the deteriora-
tion of different road sections in the USA after one, two, three, and four years. The
fitted function can then be used to sample values for stochastic simulations of road
deteriorations

and its environment. Here the classical linear or non-linear regression methods
require that an engineer defines a mathematical model of a system’s structural
behavior first. The classical regression methods will then estimate the parameters
of the model based on a data set of previous observations. Advanced regression
based methods, including support vector machines or artificial neural networks
completely treat a functional system as a black box providing a mathematical
model of the behavior of the system without any prior knowledge about the
behavior of the system. A downside of these methods is, however, that they do
not provide any new insights about the structural behavior of the system (Lantz
2013).

Bayesian and tree based machine learning methods are less accurate in their
predictions of the functional behavior of a system. As an advantage, they pro-
vide insights into a system’s structural behavior which often provides important
insights for engineers (Lantz 2013). Finally, cluster based methods can provide
categories for different behavioral states of a system grouped by environmental
influences (Lantz 2013).

3.3 Process Modeling, Simulation, and Optimization

The above described statistical methods mainly help to understand the func-
tional and, to a certain extent, the structural behavior of a system based on pre-
viously available observations of the system’s behavior. In practice, often such
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observations are not available and therefore engineers have to rely on theoretical
models that describe the structural behavior of a system. If implemented math-
ematically on a computer these models can be used to simulate the behavior of
a system.

Traditionally, the core to many of these simulation methods are partial differ-
ential equations that model the change of some aspect of a system’s behavior over
time. Differential equations model the transition of a system’s state assuming
some underlying mathematical model involving the components of the system.
Only simple linear partial differential equations can be solved analytical, so that
computational solvers for partial differential equations have quickly become the
norm within engineering practice (Farlow 1993).

Partial differential equations allow for modeling systems whose states are
changing equally with each time step. Using functional programming techniques,
however, also allow for modeling systems that change non-linearly. Such models
are often referred to as discrete event methods and operate using an event queue
that stores events that can be executed at arbitrary time steps. In particular,
such discrete event simulation methods are valuable to model randomly occurring
environmental events to provide a much deeper insight into a system’s behavior
than models that are based on partial differential equations only (Wainer and
Mosterman 2016).

Simulation models based on partial differential equations can then be used
to automate the analysis of the system models using the parametric modeling
methods described earlier. Additionally, of course, variables describing environ-
mental influences on the system can be varied in a similar manner. This allows for
systematically changing the different initial input variables that either describe
the behavior of the elements or the environment of the system. The range of
all possible input variables is then often referred to as the parameter space.
Combinatoric computational methods can be used to systematically analyse a
large number of different alternatives within this parameter space. Such combi-
natoric analyses of the environmental factors modeled allow systems engineers
to understand the behavior of a system under a large range of different outside
factors. At the same time, different configurations of the parameters describing
the system itself can be evaluated helping system engineers to develop optimal
design configurations (Saltelli et al. 2000).

Each simulation result from the combination of different parameters can be
considered as an observation in itself. Therefore, sets of simulation results can
be analysed with the above described statistical methods. Such analysis allows
for understanding relations between different parameters in the simulation mod-
els. This allows engineers to understand the importance of different parameters
on the simulation outcome, a practice often referred to as sensitivity analysis
(Saltelli et al. 2000). Parameters with little influence on the final outcome can
be removed from the initial modeling equations and parameters with linear rela-
tions with each other can be represented as a single input factor (Forrester et al.
2008). Finally, machine learning methods can be used to train statistical pre-
diction models. These prediction models can then be used instead of the partial
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differential based models which often allows to provide results in split seconds
without running the often computationally expensive models (Forrester et al.
2008).

Often the parameter spaces are too large or the process models are too com-
putationally expensive for simulating enough different parameter configurations
so that system engineers can sufficiently understand how a system reacts to dif-
ferent environmental conditions and how a system can be ideally configured to
cope with the different possible reactions. In these cases, computational sam-
pling methods exist that can be applied to systematically search a vast design
space using a well chosen amount of simulation runs (Saltelli et al. 2000). These
sampling methods can be divided into purposeful samples that explore well cho-
sen strata or in random samples that allow for an exploration according to the
likelihood for the status of different environmental or system parameters. The
stratified sampling methods help systems engineers to understand different well
chosen groups of parameter configurations within different areas of the overall
parameter space. This for example allows to include rare events that are of par-
ticular importance during safety engineering tasks. Random sampling methods,
in turn, rather allow to understand system models with respect to their average
and common behavior. To use statistical sampling methods a probabilistic distri-
bution for environmental and system parameters needs to be assumed. This dis-
tribution can either be extracted from past observations using the above describe
statistical methods or, alternatively, be assumed by specialists. Choosing sound
distributions, in turn, allows to understand the general relation between ele-
ments of a system under general environmental conditions. Stratified sampling
and statistical sampling can of course be combined in many different ways.

Finally, from a hierarchical system view, each of the sub-components of a sys-
tem can itself be seen again as a functional system. In case enough observations
about the behavior of such a functional system are available, each of the com-
ponents can, in turn, be modeled using statistical computations techniques, in
particular, using probability density modeling techniques, such as the maximum
likelihood methods or kernel density estimates. Simulation models can than sam-
ple from the resulting probability density functions and the samples can serve
as input for the theoretical structural system models. Environmental conditions
can be modeled in the same manner. As samples from these probability density
functions can provide arbitrary results, it is important to repeat the simulations
multiple times sampling as many possibilities from the density functions as pos-
sible using so called Monte Carlo methods. The different simulation results, in
turn, result in probabilistic distribution.

As an example, the above case of predicting road deterioration can be used
again to illustrate the working of process model simulations in relation to sen-
sitivity analysis and Monte Carlo methods. The example is based on a simple
dynamic simulation model of two bridges that link two cities with each other.
The model assumes that drivers tend to choose the bridge that is least deterio-
rated. At the same time, the more drivers travel over a bridge, the quicker the
bridge deteriorates. We illustratively modeled these two processes for one of our
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Fig. 4. Scatterplot resulting from a sensitivity analysis of a highly non-linear and
stochastic model of road deterioration. The input variables of the initial road condition
of two roads (con.a; con.b), the deterioration of the roads upon crossing of one car
(det.fac), the number of crossing cars per year (cars), and the probability that a road
is renovated in a year (ren.prob) are samples using the latin hypercube method. The
output values road deterioration in 2030 of road a and road b (det.30.a, det.30.b) is
simulated using a Monte Carlo approach. The scatterplot clearly shows that the initial
road condition has little influence on the deterioration of the roads in 2013, while the
deterioration factor and the number of cars have a positive influence, and the renovation
probability a negative influence on the deterioration

teaching modules using two simple partial differential equations. Furthermore,
the simple simulation model used stochastic distributed values the deterioration
factor similar to the earlier introduced road example. To make the model highly
non-linear we also assumed a certain probability that the bridge is renovated
each year significantly reducing the existing road deterioration. We modeled
this influence as a discrete event within the overall simulation model that can
occur with a certain probability. A sensitivity analysis for this highly stochastic
and non-linear model can for example sample the different parameter settings
for each of the input values using a combined stratified and random sampling
method (in this case the latin hypercube method) and based on the sampled
parameter values can conduct a Monte Carlo simulation. A resulting scatter
plot from this exercise is presented in Fig. 4. This scatterplot allows already to
identify certain trends in the influence of the different input parameters on the
bridge deterioration after a number of years.

4 Discussion

Figure 5 summarizes the presented computational methods within the concepts
of the three different analytical views of systems. The behavior of functional
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Fig. 5. Overall system based concepts of the paper

systems can be analyzed using statistical computational methods if there are a
reasonable number of observations available about the input and behavior of a
system. Systems can also be modeled using a functional view, by using partial dif-
ferential equations and other computational simulation methods, such as discrete
event simulations. These methods allow for the theoretical modeling of a system’s
behavior by describing the system’s components and the relations between these
components. The design of such functional simulation models requires an under-
standing of the system’s components that can be gained through ontological
modeling. Functional simulation models allow the evaluation of a large number
of alternatives using parametric modeling methods that allow to systematically
explore the combinatoric design space and the various environmental conditions
a system might be subjected to. Finally, a hierarchical view of the system allows
to combine statistical and theoretical modeling methods by the possibility to
represent the behavior of selected components of a system through a stochastic
functional model. In these cases, a system analysis based on simulation studies
need to be subjected to Monte Carlo methods.

Table 1 summarizes the here presented computational methods that I con-
sider as the basic methods within the overall toolkit of systems engineers. It
is important to realize that these methods are just a suggestion of a set of
basic methods and that I do not claim completeness. Other methods might be
as relevant as the ones that are here presented. Candidates for further explo-
ration would be for example optimization methods that allow to find optimal
solutions within parametric search spaces. As quite some of the presented meth-
ods are computational very expensive methods to computationally parallelizise
algorithms might also be important. Finally, the paper does not discuss any
computational visualization methods. Nevertheless, I hope that this paper can
provide a first starting point for future discussions about which of the methods
are relevant and which are not.

The above summary of methods can provide academics with a good overview
that can be used to design technically and computationally oriented systems
engineering courses. The Bachelor and Master modules that we developed at
the Technical University of Berlin can provide an example of how to integrate
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Table 1. Overview of the introduced methods

Computational area Computational method

Product system modeling Ontology modeling

Parametric modeling

Statistical system modeling Maximum likelihood methods

Kernel density estimates

Correlation analysis

t-Test

Theoretical system modeling Partial differential equation solvers

Discrete event simulation

Sensitivity analysis

Surrogate modeling

Sampling methods

Monte Carlo methods

the methods within a civil engineering curriculum. The summary can also help
practitioners to understand how to support their practical system engineering
efforts better using computational methods. In the end, if nothing more, we hope
that the summary of computational methods together with my attempt to inte-
grate the discussion into a system philosophical framework can help readers to
better grasp the relevance of the introduced computational methods to support
engineering tasks.
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