
A multi-product and multi-period
aggregate production plan:

a case of automobile component
manufacturing firm
Vishwas Dohale and Priya Ambilkar

Industrial Engineering and Manufacturing Systems (IEMS),
National Institute of Industrial Engineering, Mumbai, India

Angappa Gunasekaran
School of Business Administration, Penn State Harrisburg,

Middletown, Pennsylvania, USA, and

Vijay Bilolikar
Fr. Conceicao Rodrigues College of Engineering, Mumbai, India

Abstract

Purpose – The study attempts to develop a multi-product multi-period (MPMP) aggregate production plan
(APP) to fulfill the customers’ demand in terms of throughput and lead time for achieving market competence.
Design/methodology/approach –This research proposes an integrated Fuzzy analytical hierarchy process
(FAHP),multi-objective linear programming (MOLP), and simulation approach. Initially, FAHP is used to select
the essential objectives a firm desires to achieve. Adopting the MOLP, an APP is formulated for the firm under
study. Later, the simulation model of a firm is created in a discrete-event simulation (DES) software Arena© to
evaluate the applicability of the proposed APP. A comparative analysis of the manufacturing performance
levels (namely throughput, lead time, and resource utilization) achieved through the implication of an existing
production plan and proposed APP is conducted further.
Findings –The findings from the study depict that the proposedMOLP-basedAPP can satisfy the customers’
requirement (namely throughput and lead time) and improve the level of resource utilization comparedwith the
firm’s existing production plan.
Research limitations/implications – The proposed research facilitates researchers and practitioners to
understand the process of developing MOLP-based MPMP APP and analyzing its applicability through
simulation technique to be utilized for developing APP at their firm.
Originality/value – An integrated FAHP-MOLP-simulation framework is the novel contribution to the
literature on production planning. It can be extended to solve strategic, tactical, and operational problems in
different domains like service, healthcare, supply chain, logistics, and project management.

Keywords Aggregate production planning, Fuzzy AHP, Multi-objective linear programming, Simulation,

Manufacturing performance

Paper type Research paper

1. Introduction
Production planning synergically arranges the manufacturing processes and resources to
align them with the market needs. The rapid internationalization and the fierce competition
within the manufacturing sector in the global market pose the incremental importance of
production planning and control (Hassan Zadeh et al., 2014). As a consequential response to
the competition, a firm has to optimize its production activities to minimize the unproductive
use of resources, such as space, machines material, and time. The optimal utilization of
resources, minimal inventory levels for workflow balance, efficient production schedule for
customer service levels, efficient supply chain network for low-cost production are essential
ingredients of an accurately formulated production plan (Lohmer and Lasch, 2021;
Miltenburg, 2005). However, the benefits of production planning may not be realized
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unless it is not done with systems level perspective. Thus, every firm tries to plan its
manufacturing activities at different aggregation levels and operates with an intention to
maximize profit and productivity by cutting down the overall cost of production and idle
situations in a production system (Cheraghalikhani et al., 2019; Miltenburg, 2008; Pan and
Kleiner, 1995).

Aggregate production planning (APP) serves as the best solution to meet the forecasted
demand with minimum production cost by balancing the existing capacity of the production
system over a medium time horizon of 3–18 months (Brachmann and Kolisch, 2021; Buxey,
2005; Cheraghalikhani et al., 2019; Pan and Kleiner, 1995; Pereira et al., 2020). APP facilitates
production planners to develop an effective production plan by utilizing the organization’s
resources, which helps to satisfy the expected demand of customers. A decision related to
output rates, employment levels, back-orders and sub-contracting can be taken by planners
using an aggregate production plan (Brachmann and Kolisch, 2021; Djordjevic et al., 2019;
Pan and Kleiner, 1995). APP considers one product or a family of similar products for
formulating the planning model from an aggregated viewpoint (Brachmann and Kolisch,
2021; Cheraghalikhani et al., 2019; Jamalnia and Soukhakian, 2009). Figure 1 demonstrates
the conceptual model of APP. It highlights the different aspects, namely – characteristics,
strategies adopted, decision options and objectives considered in APP formulation.

APP typically involves eight different types of objectives. The objectives are (1) Maximize
customer service, (2) Minimize total production cost, (3) Minimize inventory investment,
(4) Minimize changes in workforce levels, (5) Minimize changes in production rates,
(6) Minimize total lead time, (7) Minimize subcontracting and (8) Maximize utilization of plant
and equipment (Cheraghalikhani et al., 2019; Pan and Kleiner, 1995). Selecting the most
suitable objective functions plays a vital role while formulating an APP to gain production
competence (Brachmann and Kolisch, 2021; Buxey, 1995; Cheraghalikhani et al., 2019).
Recently, Cheraghalikhani et al. (2019) contextualized that the implication of APP should be
evaluated and validated to know whether the required manufacturing performance level is
achieved or not? These theoretical arguments impose a strong need for developing a

Figure 1.
The conceptual
diagram of AP
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framework that can facilitate selecting a suitable objective function for an APP, formulating
an APP for a firm, and validating the implication of an APP for a firm. However, the present
literature is sparse in fulfilling these needs.

Through the review of the extent literature (see section 2), critical research gaps are
identified. Mostly scholars have made successful attempts to develop and formulate APP
using various techniques (see Table 1). To the best of the authors’ knowledge, minimal
efforts are taken to develop a framework that aids in determining the critical objective
functions while formulating an APP for a firm. The research on APP validation by
analyzing its impact onmanufacturing performances is scant (Cheraghalikhani et al., 2019).
Also, existing studies lack to determine and investigate the effectiveness of the proposed
APP strategies. Further, there is a gap in literature considering the methodological lens.
Mathematical optimization techniques are widely used in APP studies (see Table 1). In
contrast, multi-criteria decision-making (MCDM) techniques are rarely adopted
(Cheraghalikhani et al., 2019). The present research work attempts to bridge these
research gaps. The aim of this study builds a strong foundation for considering the
following research questions (RQs):

RQ1. How to decide the essential objective functions the firm desires to achieve for APP?

RQ2. How to formulate and validate a multi-objective APP and analyze its impact on
manufacturing performances?

To answer the RQs mentioned above, this study has formulated and validated an APPmodel
using an integrated FuzzyAHP – “Multi-objective linear programming (MOLP)” – Simulation
method. Initially, using FAHP, the objectives most appropriate for a firm to achieve are
selected. MOLP based mathematical model is formulated for solving the APP decision
problem with forecasted demand, operating costs, and capacity as input variables.
Furthermore, a simulation model of a real case is created to validate the applicability of LP
formulation. The impact of the proposed APP on the manufacturing performances (namely
throughput, lead time, and resource utilization) is evaluated through Simulation by
comparing it with the firm’s existing production plan for determining the effectiveness of the
proposed APP.

The proposed FAHP-MOLP-Simulation framework not only assists managers in
determining the suitable objective function for APP but also helps in formulating the APP
and further evaluating its impact onmanufacturing performances. This unique abilitymakes
the present study different than the past studies presented in Table 1. The present study
offers promising contributions to academia in the form of a novel integrated framework for
formulating APP. At the same time, practitioners can get insights into the process of
formulating APP in their firm to achieve the desired level of manufacturing performance
effectively.

The remainder of the paper is organized as follows. The existing literature on APP is
reviewed in Section 2. Section 3 illustrates the proposed integrated FAHP-MOLP-Simulation

Technique Studies

Linear programming Wang and Fang (2001), Liang (2007), Hanczar and Jakubiak (2011), Hahn and
Brandenburg (2018), Rasmi et al. (2019)

Linear decision rule Holt et al. (1955), Bushuev (2014)
Simulation Tian et al. (2010), Jamalnia and Feili (2013), Mendoza et al. (2014)
Heuristic techniques Liu et al. (2011), Mehdizadeh et al. (2018), Jones (1967), Jang and Chung (2020)
Goal programming Jamalnia and Soukhakian (2009), Sadeghi et al. (2013), Leung et al. (2003)

Table 1.
Techniques applied for

formulating
APP model

Multi-product
multi-period
aggregate
planning



method for conducting the study. An industrial case is presented in Section 4 to demonstrate
the application of the proposed framework for formulating APP at the firm under study. The
results and findings of the proposedmethod are discussed in Section 5. Research implications
of the current study are highlighted in Section 6. The concluding remarks drawn from the
current research and the direction for conducting future studies are presented in Section 7.

2. Literature review
Recently, Dohale et al. (2021a) highlighted that a rightly configured and properly planned
production function provides production competence to the firm, resulting in business
success. Hence, production planning is considered as one of the critical infrastructural
decisions inmanufacturing (Dohale et al., 2021b).Mula et al. (2006) categorized seven essential
production planning decisions: material requirement planning, manufacturing resource
planning, aggregate planning, inventory management, capacity planning, hierarchical
production planning, and supply chain planning. APP is considered the critical production
planning approach at the tactical level that strengthens the production systems by improving
the production competence through manufacturing performance improvement (Pereira et al.,
2020). Thus, APP has attracted extensive attention from researchers and practitioners,
resulting in considerable research since its inception in the 1950s (Buxey, 2005;
Cheraghalikhani et al., 2019). An appropriately formulated APP attempts to establish
optimal production levels, lead times, resource utilization levels, and inventory and
employment levels over a finite planning horizon to meet the total demand of the products
comprising the same limited resources (Cheraghalikhani et al., 2019). So, APP formulation has
given the utmost importance in the literature (Cheraghalikhani et al., 2019).

Nam and Logendran (1992) reviewed 140 journal articles and 14 books and enlisted
different methods to develop the APP model. Some of the popular methods for developing
APP are Linear Programming (LP), Goal Programming (GP), Linear Decision Rule (LDR),
Simulation, Heuristics techniques, Management Coefficients Approach, and Simulation
Search Procedures, etc. Table 1 enlisted the studies on the development of an APP using
different techniques.

Pan and Kleiner (1995) explained the concept of Aggregate Production Planning and
described the characteristics, decisions, strategies and techniques considered for developing
an APPmodel. Buxey (1995) explored the discrepancy between theory and practicality in the
application of APPusing an empirical study by considering the examples of 30 firms.Masuds
and Hwang (1980) have formulated a multi-product, multi-period aggregate production
planning problem using multiple objective decision-making methods. In their study, authors
have considered four objective functions: Maximization of contribution to profit and
overhead while minimizing capital investment, back-orders, and changes in the workforce
level. The constraints taken are related to three factors: labor balance, product balance, and
production capacity balance. Mahdavi et al. (2012) established a mathematical model using a
mixed-integer linear programming technique to formulate a multi-period multi-product
(MPMP) production planning problem. The objective function considered by authors is to
minimize total production cost, including production, storage, shortage, subcontracting costs,
and costs associated with constraints like machine center capacities, material balance,
inventory space, workforce, and linearization.

Jamalnia and Feili (2013) implemented a hybrid methodology using discrete event
simulation (DES) and system dynamics (SD) techniques to simulate an APP problem. Hahn
and Brandenburg (2018) developed an APP considering sustainable criteria for a chemical
manufacturing firm using a multi-level deterministic linear programming model. Djordjevic
et al. (2019) used a fuzzy linear programming model to develop an APP for automobile
manufacturers. Cheraghalikhani et al. (2019) reviewed APP literature and identified the
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research gaps. Most of the studies are observed with the single-objective formulation. The
literature on APP lacks integrating MCDM, machine learning, and simulation methods.
Pereira et al. (2020) elaborated the essence of APP to fulfill the strategic plans of the business.
Thus, the main objective of this study is to determine and investigate the effectiveness of the
proposed APP strategies considering the total profit criterion. To this purpose, the present
study developed an integrated FAHP-MOLP-simulation-based framework for formulating
APP in multi-product multi-period (MPMP) conditions.

3. The method
The objective of the study is addressed using an integrated FAHP-MOLP-Simulation
approach. The multi-objective linear programming technique is used to mathematically
formulate the APP model with objective functions as – minimization of overall cost of
production and lead time. Further, a simulationmodel of a firm is created to evaluate the impact
of APP on manufacturing performance for determining the effectiveness of the APP model.
The detailed research method is shown in Figure 2. The methodology comprises four stages:

Stage 1: Selecting the most suitable objective functions for formulating an APP using
FAHP.

Stage 2: Formulating an APP problem using the MOLP model

Stage 3: Developing a simulation model of a case study under consideration for
demonstrating the effectiveness of the LP model

Stage 4: Conducting a comparative analysis between the existing production plan and the
proposed APP to evaluate the impact of APP on manufacturing performances

3.1 Stage 1: Objective function selection for APP using FAHP
AHP was conceived by renowned physicist Prof. Thomas L. Saaty in 1980 (Mardani et al.,
2015; Saaty, 1980). AHP is a most utilized multi-criteria decision-making (MCDM) technique.
MCDM techniques are most suitable when the study aims to determine the appropriate
alternatives (Dohale et al., 2021c). MCDM based AHP conducts the pairwise comparison of
decision criteria and develops priority weights using the popular integer-valued 1–9 AHP
scale (Mardani et al., 2015). The AHPmodel represents the problem in a hierarchy and divides
it into sub-problems comprising criteria and sub-criteria (Bouzon et al., 2016; Dohale et al.,
2021c). Although AHP received the general acceptability, decision-makers (DMs) may face
difficulty in processing ambiguous information and results in subjective judgment due to the
integer-valued crisp scale (Jakhar et al., 2020; Liu et al., 2020). Therefore, FAHPwas developed
to help DMs resemble reasoning and resolve uncertainty and vagueness (Dohale et al., 2021g;
Kannan et al., 2013; Yadav and Sharma, 2015). These reasons lay a strong foundation for
selecting the FAHP method in solving the real-world for making decisions. Various
procedures are developed by the researchers for conducting the FAHP (Liu et al., 2020). This
paper applied Chang’s extent analysis based FAHP method. This approach is simple and
involves less computational time (Kumar and Garg, 2017; Salehi Heidari et al., 2018). Thus,
Chang’s Extant analysis based FAHP is used to decide the most suitable objective functions
for the APP in this research.

This study follows a five steps procedure of FAHP are described as:

(1) Identify the objectives for which pairwise comparison has to be done through
literature review and validate them using experts’ opinions

(2) Conduct a pairwise comparison of criteria considering decision-makers’ perception
and expertise individually using an AHP scale (1–9) shown in Table 2.

Multi-product
multi-period
aggregate
planning



(3) Calculate the consistency ratio (CR) of each pairwise comparison matrix using the
guidelines given by Saaty (2008) to get surety of the appropriateness of the ratings
given by DMs. If the CR value <0.1, the judgments are considered to be valid for
weighing the criteria

(4) Transform the integer values in the pairwise comparison matrix to fuzzy numbers
given in Table 2 and integrate all the DMs judgments using the geometric mean
method (Hummel et al., 2014; Kannan et al., 2013)

Figure 2.
Research method
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P ¼ ða; b; cÞ
K ¼ 1; 2; . . . ; K ðP : triangular fuzzy number; K : number of DMsÞ;

where; a ¼ ða1 3 a2 3 ::3 akÞ
1
=k; b ¼ ðb1 3 b2 3 ::3 bkÞ

1
=k; c ¼ ðc1 3 c2 3 ::3 ckÞ

1
=k:

(5) Evaluate the priority weight of each criterion using the procedure proposed by Chang
(1996) as given below.

The FAHP is presented as follows for determining the triangular fuzzy number weights.

(1) Consider the objective set X ¼ fx1; x2; x3; . . . ; xng, goal set G ¼ fg1; g2; g3;
. . . ; gng; and P1

gi; P2
gi; . . . ; Pm

gi
be p extent analysis value for every object, where

i ¼ 1; 2; . . . ; n: The triangular fuzzy numbers are P1
gj; P2

gj; . . . ; Pj
gj
, where

j ¼ 1; 2; . . .m. Then the extent analysis for each goal is conducted.

The fuzzy synthetic extent value of ith object for p goal is:

Si ¼
Xp
j¼1

Pj
gi ⊗

"Xn
i¼1

Xm
j¼1

Pj
gi

#−1
(1)

to acquire
Pp

j¼1P
j
gj
the fuzzy addition operation of p extent analysis value is performed for a

particular matrix
Pp

j¼1P
j
gi: Xp

j¼1

Pj
gi ¼

 Xn
j¼1

lj;
Xn
j¼1

mj;
Xn
j¼1

uj

!
(2)

Then the fuzzy addition operator- Pj
gi values are obtained to achieve ½Pn

i¼1

Pm
j¼1P

j
gi�

−1
as:

Xn
j¼1

Xm
j¼1

Pj
gi ¼

 Xn
j¼1

li;
Xn
j¼1

mi;
Xn
j¼1

ui

!
(3)

The inverse of the vector is:"Xn
i¼1

Xm
j¼1

Pj
gi

#−1
¼
�

1Pn

i¼1ui
;

1Pn

i¼1mi

;
1Pn

i¼1li

�
(4)

Linguistic variable Integer values Fuzzy representation

Extremely strong 9 (9, 9, 9)
Intermediate 8 (7, 8, 9)
Very strong 7 (6, 7, 8)
Intermediate 6 (5, 6, 7)
Strong 5 (4, 5, 6)
Intermediate 4 (3, 4, 5)
Moderately strong 3 (2, 3, 4)
Intermediate 2 (1, 2, 3)
Equally strong 1 (1, 1, 1)

Table 2.
AHP 1–9 scale

Multi-product
multi-period
aggregate
planning



(2) After identifying Si value, the degree of possibility of P2 ¼ ðl2;m2; u2Þ≥
P1 ¼ ðl1;m1; u1Þ is calculated as:

V ðP2 ≥P1Þ ¼ supy≥x
�
min
�
μP1ðxÞ; μP2ðyÞ

�
(5)

Representing equation (5) as

VðP2 ≥P1Þ ¼ hgtðP1\P2Þ ¼
�
λP2ðdÞ ¼

8>>>><
>>>>:

1 ifm2 ≥m1;

0 if l1 ≥ u2;

ðl1 � u2Þ
ðm2 � u2Þ � ðm1 � l1Þ otherwise

(6)

where, ordinate of the highest intersection point D between μP1 and μP2 is d.
Figure 3 shows the intersection between P1 and P2.

(3) The degree of possibility for a convex fuzzy number to be greater than k convex fuzzy
numbers Piði ¼ 1; 2; . . . ; kÞ can be defined by

V ðP ≥P1; P2; . . . ; PkÞ ¼ V ½ðP ≥P1Þ and3 ðP ≥P1Þ . . . and ðP ≥PkÞ�
¼ min VðP ≥PkiÞ i ¼ 1; 2; 3; . . . ; k

(7)

The assumption considered in calculating the weight vector is:

d0ðMiÞ ¼ min fV ðSi ≥ SkÞg (8)

For k ¼ 1; 2; 3; :::; n; k≠ i; the weight vector is

W 0 ¼ d0ðM1Þ; d0ðM2Þ; . . . ; d0ðMnÞ T
on

(9)

where Mi ¼ ði ¼ 1; 2; 3; . . . ; ; nÞ are n elements:

Figure 3.
Membership function
(between P1 and P2)
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(4) After doing normalization, the normalized weight is determined using the following
equation:

W ¼ dðM1Þ; dðM2Þ; . . . ; dðMnÞ T
on

(10)

whereW is a non-fuzzy number. The above steps are carried out for all judgment matrices to
compute the priority weights developed on the normalized vector.

3.2 Stage 2: APP problem formulation using multi-objective linear programming
Linear programming (LP) is an optimization technique coined in 1947 during Second World
War by Prof. George Dantzig for decision-making concerning the least cost adequate diet
(Dantzig, 1998; Lewis, 2008; O’Connor and Robertson, 2003). Linear programming is a
mathematical optimization technique comprising an objective function (Z) of either
maximization or minimization type, subjected to linear constraints (Charnes and Cooper,
1961; Dantzig, 1998). The LP model, in general, can be expressed by Eq. (11) as:

Z ¼ a1x1 þ a2x2 þ . . .þ anxn

Subjected to;
b11x1 þ b12x2 þ . . .þ b1nx3 ≤C1

b21x1 þ b22x2 þ . . .þ b2nx3 ≤C2

bm1x1 þ bm2x2 þ . . .þ bmnx3 ≤Cm

9>>>>=
>>>>;

(11)

Linear programming (LP) is one of the most popular optimization techniques for determining
the exact solution (Jacobs and Chase, 2018; Taha, 2017) for the given problem. The rationale
behind selecting LP for formulating the APP in this study is due to its substantial
advantages: (1) Linear programming enhances the quality of decisions and makes decision-
making more objective for the user; (2) Linear programming aids in generating the best
optimal solution for the problem under study; (3) Linear programming effectively formulates
multi-objective andmulti-dimensional problems to provide practical solutions (Dantzig, 1998;
Gass, 2010; Jacobs and Chase, 2018; Lewis, 2008).

Linear programming method has received immense attention from researchers and
practitioners. This, in turn, leads to amassive body of literature on applying the LP technique in
the domains, such as – manufacturing, service, agriculture, supply chain, and project
management, etc. Some of the applications of LP are discussed here. Coman and Ronen (2000)
formulated a production outsourcing problem through LP to decide the products to outsource.
Spitter et al. (2005) established a supply chain model for the supply chain operations planning
problem considering the production dynamics. Kabak and €Ulengin (2011) applied LP to solve a
strategic resource planning decision ofmaximizing a firm’s total profit bydeveloping an optimal
supply chain network design. LP and its extensions, namely, MILP, Fuzzy LP are widely used
methodologies for modeling the supply chain risk mitigation and sustainable supply chain
design andmanagement problems (Ansari andKant, 2017; Rajagopal et al., 2017). In recent, Wu
et al. (2020) adopted stochastics LP for addressing managerial accounting problems with
business budgeting and planning to maximize total profit. Further, to get a detailed
understanding of the LP method and its application in different domains, Gass (2010) is
encouraged to refer.

An APP problem considered in this study is formulated using a multi-objective linear
programming method. The objective functions taken are related to the minimization of the
overall cost and lead time of production. Whereas the constraints applied to the problem are
related to regular production hours, overtime production hours, subcontracting production
hours, periodic demand, capacity of satisfying the maximum demand, and the limitation on
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the fluctuation of demand. The assumption, notations, and the complete model are explained
as follows.

The basic assumptions considered while developing the model are: (1) the demand for i
parts has already been forecasted for theT periods; (2) rawmaterial availability is considered;
(3) breakdowns are not considered in this model; (4) limited over-time is considered; (5)
workers’ absenteeism is not considered.

3.2.1 Notations used. The notations used in the formulation of the MOLP model are
illustrated in Table 3.

3.2.2 Objective functions. Here in this study, based on the priority weights obtained
through FAHP explained in section 4.2, the objective functions selected are related to
minimization of the total production cost and the lead time for formulating an APP model.

The total cost is the sum of the different variable production costs incurred over the
planning horizon T. Hence, the objective function related to the total cost minimization is
given as:

f1 – Minimization of Total Cost of Production

Min: f1 ¼
XT
t¼1

XP
p¼1

�
Rpi
c R

pi
t þ Epi

c E
pi
t þ Hpi

c H
pi
t þ Kpi

c K
pi
t þ I pic I

pi
t

�
(12)

The total cost of production includes five components, as follows:PT
t¼1

PP
p¼1

ðRpi
c R

pi

t Þ are the total regular time production costs for parts i,

Notation Description

Rpi
c The regular time production cost per labor-hour of ith part

Epi
c The overtime production cost per labor-hour of ith part

Hpi
c The subcontractor production cost per labor-hour of ith part

Kpi
c The inventory holding cost per month of one labor-hour of work of ith part

I pic The idle time cost per labor-hour of ith part

Dpi
c The penalty cost for delay per unit production hour of ith part

R
pi
t

The regular time production hours scheduled in month t of ith part in period t

Epi
t

The overtime time production hours scheduled in month t of ith part in period t

Hpi
t

The subcontractor time production hours scheduled in month t of ith part in period t

K
pi
t

The number of working hours stored in inventory at the end of month t of ith part in period t

I pit The number of idle time during regular production hours for ith part in period t

Wpi
t

The expected demand in month t (hours of production) of ith part in period t

M
pi
t

The highest demand the company should be able to satisfy in period t (hours of production) of ith
part

MRPi
t

The maximum number of regular time hours in month t of ith part

MEpi
t

The maximum number of overtime hours allotted in month t of ith part

MHpi
t

The maximum number of subcontractor hours allotted in month t of ith part

a
pi
t

The reduction in the number of production hours scheduled in month t compared to the number of
production hours scheduled in month t – 1 of ith part

bpit The increase in the number of production hours scheduled in month t compared to the number of
production hours scheduled in month t–1 of ith part

K0 Initial inventory
T The total number of months in the planning horizon
P The total number of parts under consideration
pi ith part (i 5 1, . . ., P)

Table 3.
Notations used in
MOLP model

BIJ



PT
t¼1

PP
p¼1

ðEpi
c E

pi

t Þ are the total overtime production costs for parts i,

PT
t¼1

PP
p¼1

ðH pi
c H

pi

t Þ are the total subcontracting time costs for parts i,

PT
t¼1

PP
p¼1

ðKpi
c K

pi

t Þ are the total inventory carrying costs for parts i,

PT
t¼1

PP
p¼1

ðI pi
c I

pi

t Þ are the total idle time costs for parts i.

The second objective comprises theminimization of the lead time. The lead time ismajorly
driven by the regular production hours provided in a stipulated time. Thus, the lead time is
taken as the function of the regular production hours. So, the objective function related to the
minimization of lead time is given as:

f2 – Minimization of Total Lead Time

Min: f2 ¼
XT
t¼1

XP
p¼1

�
Rpi
t

	
(13)

3.2.3 Constraints. The model comprises four groups of constraints, namely, demand
constraint, regular time constraint, overtime constraint, and subcontracting constraint.

(1) Demand Constraint:

K
pi
t−1 þ R

pi
t þ H

pi
t þ E

pi
t � K

pi
t ¼ W

pi
t (14)

K
pi
t−1 þ R

pi
t þ H

pi
t þ E

pi
t ≥M

pi
t (15)

where Wpi
t denotes the imprecise expected demand of ith part in period t. The expected

demand Wpi
t cannot be exactly obtained in a dynamic market of real-world APP

problems. The sum of regular time and overtime production hours, subcontractor time
production hours, and the number of working hours stored in inventory should be equal to
the market demand, as in Eq. (14). While Eq. (15) represents the limit of the highest
demand of period t.

(2) Regular Time Constraint:

R
pi
t þ I

pi
t ¼ MRpi

t for t ¼ 1; . . . ; T (16)

where MRpi
t denotes the imprecise maximum number of regular time hours of period t.

(3) Overtime production hours

XT
t¼1

XP
p¼1

�
E

pi
t

�
≥ ME

pi
t for t ¼ 1; . . . ; T (17)

where MEpi

t represents the imprecise maximum number of overtime hours of period t.

(4) Subcontractor production hours

XT
t¼1

XP
p¼1

�
H

pi
t

�
≥MH

pi
t for t ¼ 1; . . . ; T (18)
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where MH pi

t denotes the imprecisemaximumnumber of subcontractor hours of period t.

Rpi

t þH pi

t þ Epi

t þ a
pi
t � bpi

t ¼ R
pi

t−1 þH
pi

t−1 þ E
pi

t−1 for t ¼ 2; . . . ; T (19)

K
pi

0 ¼ K
pi

1 ¼ 0 ; a1 ¼ 0 ; b1 ¼ 0 (20)

The initial inventory for Period-1 is taken as zero.

(5) An upper limit on Regular Time, overtime, and subcontracting production hours

0≤Rpi

t ≤MRpi
t ; 0≤Epi

t ≤MEpi
t ; 0≤H pi

t ≤MH pi
t for t ¼ 1; . . . ; T (21)

(6) Non-negativity constraints

a1 ≥ 0 ; b1 ≥ 0 ; It ≥ 0 for t ¼ 1; . . . ; T (22)

pi 5 1, . . ., P ∀ equations.

3.3 Stage 3: Developing a simulation model of a case study
The third stage comprises the application of a simulation method. Simulation typically
involves creating a virtual model of the existing process, service, or system (Banks et al., 2005;
Law and Kelton, 1991). Simulation is considered a reliable operations research tool for
decision-making in the production and operations management domain concerning cost
minimization, customer satisfaction, and retaining profits to maintain a firm’s
competitiveness (Junior et al., 2019). An insightful prescriptive “what-if” analysis can be
virtually conducted without disturbing the actual system using a simulation method (Banks
et al., 2005; Gabriel, 2017). Simulation also aids in validating the suggested solutions for the
problem under study (Curry and Feldman, 2011). Due to these significant reasons, simulation
is deployed in this study to determine the impact of the proposed APP strategy on
manufacturing performances.

Simulation technique is extensively applied to solve the problems of the manufacturing
and production systems, supply chain and logistics, construction and project management,
business process modeling, healthcare, sustainability, and environment management, etc.
(Banks et al., 2005). This led to enormous literature on simulation, including the review
articles highlighting the success stories of simulation applications (Jahangirian et al., 2010;
Junior et al., 2019; Mourtzis et al., 2014; Negahban and Smith, 2014; Oliveira et al., 2019).
Deshpande et al. (2007) benchmarked the performance measures of terminal operations of
less-than-truckload (LTL) freight carriers using discrete event simulation. Jaipuria and
Mahapatra (2015) used a system dynamics simulation method to analyze the impact of
uncertainties in the lower to upper stream of the supply chain on the behavior of a make-to-
stock manufacturing system. Simulation has been used along with other optimization
techniques as well. For example, Dev et al. (2014) coupled the interpretive structural modeling
(ISM) technique with discrete event simulation for reconfiguring the supply chain network to
improve the performance. Prakash and Mohanty (2017) combined the data envelopment
analysis (DEA) with the Monte Carlo simulation for aiding the selection of green cars.
Linn�eusson et al. (2020) utilize a hybrid simulation approach comprising system dynamics
and discrete event simulation to support strategic maintenance decisions to enhance
production performance.

A discrete event simulation (DES) is used in the present research to create an as-ismodel of
a manufacturing firm under study. Banks et al. (2005) defined a DES as “the modeling of a
system in which the state variable changes only at a discrete set of points in time.” DES
optimization consists of a set of commonly used tools and techniques by researchers and
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practitioners from industrial engineering domains for evaluating different solution settings
to determine the optimal one that improves key performance indicators, such as –
throughput, delivery lead time, service level, etc. (Gansterer et al., 2014; Junior et al., 2019).
Numerous DES softwares are available recently to create a simulation model of a system
under study. Amongst them, Arena© by Rockwell Simulation, due to its noteworthy benefits,
is the most widely used DES software to create a replica of the existing system (Dias and
Oliveira, 2016). Arena can model almost all kinds of problems, namely, stochastics,
deterministic, discrete, and continuous. Arena offers “flexibility and ease” to create the model
and re-edit it (Shawki et al., 2015). Arena permits evaluating the existing system by creating
an as-is model to conduct a comparative analysis between the different scenarios involving
various system changes. Users can performwhat-if analysis throughArena.What-if analysis
aids in understanding the systems’ behavior after incorporating critical modifications in the
system (Dias and Oliveira, 2016; Dohale et al., 2021f). Hence, the present study utilizes Arena©

software to create a simulation model of a firm under study.
In this study, an integrated FAHP-MOLP-Simulation methodology is implemented in a

real case to demonstrate its applicability. The case study is chosen as one of the methods in
this research to explore an in-depth understanding and effectiveness of the proposed FAHP-
MOLP-Simulation methodology on the manufacturing performance of a firm. A case study is
a preferred approach when the objective is to answer “how” and “why” the events are
occurring (Yin, 2018). Case studies are suitable in all kinds of research, namely, descriptive,
exploratory, or explanatory. The present study being exploratory and inductive in nature, the
use of a single case is preferred (Yin, 2018). Thus, firstly the objectives for formulating an
APP are determined and selected using FAHP. Thereafter, an APPmodel is developed using
the MOLP formulation using equations (12) to (22). Further, simulation experiments are
conducted on the virtual model to test the APP given by MOLP for its effectiveness. The
effectiveness of the LP-based APP is analyzed by evaluating its impact on manufacturing
performances. Viswanadham and Narahari (1992) suggested different manufacturing
performances, namely. Lead time, Work-In-Process, resource utilization, throughput,
capacity, flexibility, and quality. However, in the present study, the impact of the proposed
LP-based APP is evaluated on the manufacturing throughput, lead time, and resource
utilization.

Further, a comparison between the manufacturing performances achieved through the
firm’s existing production plan and the proposed APP is carried out in a simulation
environment. This is achieved by creating two different scenarios in the Arena simulation
software. The first scenario highlights the level of manufacturing performances attained
through the existing production plan of a firm. In the second scenario, the proposed APP is
analyzed to evaluate the manufacturing performances gained through its implication. This,
in turn, helps the production planner in decision-making related to the choice of the
production plan for the firm under study.

4. The case
4.1 Case description
The practicality of the proposed hybrid LP-Simulation methodology is illustrated using a
case example of ABC company. A pseudonym ABC is given to hide the identity of the firm
under study. ABC is a Korean manufacturing firm located in Pune, India. The annual
turnover of ABC firm is reported as ₹ 553 Million in 2018–2019. ABC manufactures the
manifold assembly for ACs in cars. Thesemanifolds help to transfer the conditioned air in the
car. ABC produces the parts via a batch process. As the firms’ business proliferates rapidly
and thereby increasingmarket needs day by day, the firm faces difficulty meeting the quoted
customer demand at a stated time. Thus, the firm faces a problem of delayed deliveries
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resulting in customer dissatisfaction. The initial discussion with the expert nominated by the
management team, i.e. production manager of ABC firm, provided detailed insights into the
problem and discussed the issues associated with improper production planning. This led to
the development of a new production plan at an aggregate level.

The decision problem for ABC firm exemplified here aims to develop a FAHP-MOLP-
Simulation based multi-product multi-period APP for minimizing total costs and lead time.
The planning horizon of 6 months is taken here (i.e. Month 1, 2, . . ., 6). Themodel is applied to
four different parts (Part 1, 2, 3, and 4). The preliminary data of the forecasted demand,
inventory level, operating cost, andmaximum labor andmachine hours are collected from the
industry expert. As the unit of analysis for the LP model is time (hours), the forecasted
demand in terms of the number of units to be produced is converted to hours to produce them.
The conversion of the units is demonstrated in Annexure. The forecasted demand for parts
1–4 for months 1–6 is given in Table 4.

The cost-related data provided by a firm (in monetary units) is:

Rpi

c ¼ 30:00; Epi

c ¼ 45:00; H pi

c ¼ 50:00; Kpi

c ¼ 10:00; I pi

c ¼ 15:00 for i ¼ 1; 2; 3; and 4

As per experts’ suggestions, the highest demand the firm can satisfy, i.e.M
pi

t , is taken to be
50% more than the forecasted demand for all parts. The industry expert advised having the
4maximum total production cost per part type (i.e. part 1, part2, part 3, and part 4) no more
than 40,000 monetary units and the lead time no more than 175 h.

4.2 FAHP for selecting objective functions to formulate APP
Using the five-stage procedure mentioned in Section 3.1, the FAHP procedure is conducted in
this study. Initially, the most relevant objective functions considered in the APP are
determined through a literature survey. It resulted in the identification of eight objective
functions, namely, (1)Maximize customer service (Z1), (2) Minimize total production Cost (Z2),
(3) Minimize inventory investment (Z3), (4) Minimize changes in workforce levels (Z4), (5)
Minimize changes in production rates (Z5), (6) Minimize total lead time (Z6), (7) Minimize
subcontracting (Z7), and (8) Maximize utilization of plant and equipment (Z8)
(Cheraghalikhani et al., 2019; Pan and Kleiner, 1995). Further, a pairwise comparison
between the identified objective function is conducted using the integer value (1–9) scale of
AHP utilizing a group decision-making procedure. The number of decision-makers (DMs)
required for conducting a group decision making in AHP typically varies between 3 and 11
(Ahsan andRahman, 2016). Thus, in this study, judgments of the three DMs nominated by the
firm and having expertise in the domain of study are gathered. The consistency ratio (CR) of
each pairwise comparisonmatrix is calculated. A sample pairwise comparisonmatrix of DM1
is shown in Table 5.

Using the guidelines given in Table 2, integer values in all the three pairwise comparison
matrices are replaced with fuzzy numbers. In Table 6, a sample fuzzy pairwise comparison

Parts

Month-1 Month-2 Month-3 Month-4 Month-5 Month-6
No. of
Parts hrs

No. of
Parts hrs

No. of
Parts hrs

No. of
Parts hrs

No. of
Parts hrs

No. of
Parts hrs

Part 1 23,000 190 16,000 132 15,000 125 16,000 132 15,000 125 13,000 110
Part 2 23,000 202 16,000 140 15,000 132 16,000 140 15,000 132 13,000 115
Part 3 11,000 130 8,000 95 8,000 95 9,000 105 8,500 100 8,500 100
Part 4 11,000 115 8,000 85 8,000 85 9,000 95 8,500 90 8,500 90

Table 4.
Forecasted demand
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matrix for DM1 is shown. The pairwise comparison and fuzzy pairwise comparison matrices
by DM2 and DM3 are provided in Appendixes 1 and 2.

The fuzzy judgments of all three DMs are amalgamated using a geometric mean method
(Hummel et al., 2014; Kannan et al., 2013). Further, using the extant analysis procedure for
FAHP proposed by Chang (1996) given in equation (1) to (10), the final relative weights of all
objectives are computed. The aggregated fuzzy pairwise comparison matrix, along with the
calculated final relative weights, is shown in Appendix 3. Minimization of total production
cost (Z2) and the minimization of lead time (Z6) received the highest weights of 0.3487 and
0.2603, respectively. Thus, these two objectives are considered for formulating the APP
model for ABC firm, as outlined in Section 3.2. These two objective functions are then solved
using the multi-objective linear programming formulation given in Section 3.2.2.

4.3 Solving procedure for the LP model
The detailed procedure for solving the APP problem for ABC firm using the proposed MOLP
approach is discussed as follows.

Step 1:Formulate theMOLPmodel for anAPP decision problemusing Equations (12) to (22).

Step 2: Solve the objective functions associatedwith the constraints for each part using the
solver of Lingo©18.0. Lingo is one of themost powerful and concise packages developed to
solve mathematical optimization problems (ASAD_I and DARAB_I, 2015; Men and Yin,
2018). Lingo comprises an easy and complete guide that makes its user familiar with this
software to a great extent. The models built by Lingo software are significantly easier to
understand and maintain. Lingo can handle a large volume of data and briefly formulates
and solves complex problems (Men and Yin, 2018). Further, Lingo can effectively solve
linear, nonlinear, integer programming, and branch and bound problems (Amiri-Aref
et al., 2016; ASAD_I and DARAB_I, 2015). Due to these advantages, we utilized Lingo to
solve the problem under study.

Step 3: The optimal solutions for the objective function are determined for each part and
provided in Table 7. It is observed that the total production cost for each part type (Part 1,
2, 3, and 4) is in the allowable range (i.e. lesser than 40,000 monetary units). Whereas the
lead time ðRPi

t Þ for each part in each period is lesser than 175 h.

Step 4: Further, the validation of the solutions obtained from the LP model is carried out
through a simulation model to evaluate the impact of the new APP on manufacturing
performance.

Objectives Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Z1 1 1/9 1/5 1/7 1/6 1/8 1/2 1/2
Z2 9 1 7 4 5 2 8 6
Z3 5 1/7 1 1/3 2 1/4 2 4
Z4 7 1/4 3 1 4 1/3 6 7
Z5 6 1/5 1/2 1/4 1 1/6 3 5
Z6 8 1/2 4 3 6 1 7 5
Z7 2 1/8 1/2 1/6 1/3 1/7 1 3
Z8 2 1/6 1/4 1/7 1/5 1/5 1/3 1

CR 0.078

Table 5.
AHP Pairwise

comparison by DM1
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4.4 Simulation model
A simulation model for ABC firm is created in ARENA© simulation software using real-
time data related to the processing time of a resource required for producing each part, the
number of parts to produce, and total run length, i.e. the time for running simulation. The
sample data of processing time for Part-3 is provided in Table 8. The processing time (PT)
data is collected using a stop-watch time study by observing the process. Ten readings of
PT at a different time interval, in various shifts, have been taken to reduce the biases in the
data (Kanawaty, 1992). Further, the average PT is calculated and taken as the input for the
simulation model. The data related to the number of parts to be produced in a firm is
retrieved from the solution obtained through the APP model solved in Section 3.2. The

Months

Production Hours Part 1 Total Cost of
Production (in
Monetary Units)Rp1

t Ep1
t Hp1

t Kp1
t Kp1

t−1 I p1t Rp1
t−1 Ep1

t−1 Hp1
t−1 ap1t bp1t

Part 1 Month 1 175 0 100 85 0 0 0 0 275 0 0 34,870
Month 2 114 0 1 68 85 46 175 0 100 160 0
Month 3 122 0 0 65 68 53 114 0 1 0 7
Month 4 135 0 0 68 65 35 122 0 0 0 13
Month 5 122 0 0 65 68 53 135 0 0 13 0
Month 6 105 0 0 60 65 65 122 0 0 17 0

Months

Production Hours Part 2 Total Cost of
Production (in
Monetary Units)Rp2

t Ep2
t Hp2

t Kp2
t Kp2

t−1 I p2t Rp2
t−1 Ep2

t−1 Hp2
t−1 ap2t bp2t

Part 2 Month 1 175 50 75 98 0 0 0 0 300 0 0 36,789
Month 2 112 0 0 70 98 48 175 50 75 188 0
Month 3 130 0 0 68 70 45 112 0 0 0 18
Month 4 142 0 0 70 68 28 130 0 0 0 12
Month 5 130 0 0 68 70 45 142 0 0 12 0
Month 6 102 0 0 55 68 68 130 0 0 28 0

Months

Production Hours Part 3 Total Cost of
Production (in
Monetary Units)Rp3

t Ep3
t Hp3

t Kp3
t Kp3

t−1 I 3t Rp3
t−1 Ep3

t−1 Hp3
t−1 ap3t bp3t

Part 3 Month 1 160 0 0 30 0 15 0 0 160 0 0 24,500
Month 2 85 0 0 20 30 75 160 0 0 75 0
Month 3 95 0 0 20 20 80 85 0 0 0 10
Month 4 110 0 0 25 20 60 95 0 0 0 15
Month 5 95 0 0 20 25 80 110 0 0 15 0
Month 6 100 0 0 20 20 70 95 0 0 0 5

Months

Production Hours Part 4 Total Cost of
Production (in
Monetary Units)Rp4

t Ep4
t Hp4

t Kp4
t Kp4

t−1 I p4t Rp4
t−1 Ep4

t−1 Hp4
t−1 ap4t bp4t

Part 4 Month 1 170 0 0 55 0 5 0 0 170 0 0 25,280
Month 2 80 0 0 50 55 80 170 0 0 90 0
Month 3 88 0 0 53 50 87 80 0 0 0 8
Month 4 87 0 0 45 53 83 88 0 0 1 0
Month 5 90 0 0 45 45 85 87 0 0 0 3
Month 6 90 0 0 45 45 80 90 0 0 0 0

Table 7.
MOLP results
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regular production time hours are equivalent to the production time of the firm for
producing the products in the firm. Hence, the regular production time hours are converted
to a number of parts, as shown in Table 9. The conversion of time to a unit of parts is
described in Annexure. The data shown in Table 9 is then fed to simulation model. Figure 3
shows the simulation model for the ABC firm.

The aforementioned data is utilized to create the simulationmodel of ABC firm. Themodel
shown in Figure 4 comprises three sections. The first section depicts part creation. In this
section, all parts are created in arena simulation using the “part creation” tools. The
information related to the parts, namely, part number, part name, sequence of operations, etc.,
is initialized in this section. The second section shows the shop-floor area of the ABC firm. All
the processes required for producing the parts and inspection of the parts are created in this
section. The last section is the dispatch section. All the parts that assure the quality got
dispatched for packaging in this section.

After feeding the data, a test run of the simulation model is carried out. In the test run,
the simulation model is verified and validated for determining whether the model
replicates the behavior of the actual system or not? This helps to remove the discrepancies
between the model and the actual system (Banks et al., 2005). After a series of iterations
and modifications, the simulation model created in this study fits well with the actual
system.

The model is simulated for Month-1 comprising 25 days (excluding holidays) with one
shift of 7 h each day. So, the total run length of Simulation is taken as 175 h. The total
throughput demanded in Month-1 is 71,235, as shown in Table 9. A comparative analysis is
carried out between the existing production plan and the proposed APP. Thus, two
simulation scenarios are created to demonstrate the effectiveness of a new APP over the
firm’s existing production plan. The sample simulation result for Month-1 is shown in Tables
10 and 11. Table 10 consists of the results related to a number of parts that can be produced,
i.e. throughput and the actual time required to produce the parts, i.e. lead time. The result

Sr. No. Process Resource name
Processing Time (in Seconds) Avg. PT

1 2 3 4 5 6 7 8 9 10

1 Process 1 Resource 13 22 38 28 24 21 21 35 20 23 21 25.3
2 Process 2 Resource 14 18 17 18 19 18 20 20 18 18 19 18.5
3 Process 3 Resource 15 13 13 13 14 16 13 14 13 13 15 13.7
4 Process 4 Resource 16 13 13 16 13 13 16 14 17 13 13 14.1
5 Process 5 Resource 17 27 27 24 29 28 29 26 26 29 25 27
6 Process 6 Resource 18 7 7 6 6 6 6 8 6 7 6 6.5
7 Process 7 Resource 19 23 21 21 26 19 20 23 19 18 19 20.9

Months

Part 1 Part 2 Part 3 Part 4
Total number of
parts to produceRp1

t

No. of
Parts

No. of
Parts Rp3

t

No. of
Parts Rp4

t

No. of
Parts

Month 1 175 21,250 175 20,000 160 13,714 170 16,271 71,235
Month 2 114 13,843 112 12,800 85 7,286 80 7,657 50,200
Month 3 122 14,814 130 14,857 95 8,143 88 8,423 46,255
Month 4 135 16,393 142 16,229 110 9,429 87 8,327 50,378
Month 5 122 14,814 130 14,857 95 8,143 90 8,614 46,428
Month 6 105 12,750 102 11,657 100 8,571 90 8,614 41,592

Table 8.
Sample processing
time data for Part-3

Table 9.
Number of parts to
produce month-wise
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related to resource utilization is provided in Table 11. The results from the simulationmethod
are discussed in section 5.

5. Discussion
This section provides a brief interpretation and discussion about the results retrieved from a
hybrid LP-Simulation methodology.

5.1 MOLP
The MOLP-based APP is developed to optimize the total production cost of a firm. The firm
has set the level of the production cost to be lesser than 40,000monetary units and lead time to
be lesser than 175 h per part type. Figure 5 illustrates the comparative analysis of the results

Sr.
No. Scenarios

Scheduled
run length

(hrs.)

Actual
time to
produce
the pats
(Lead
Time-
Hrs)

Parts Produced

Part 1 Part 2 Part 3 Part 4

Total parts
produced

(Throughput)

Total
parts

demand

1 Scenario 1 175 175 13,734 12,905 12,401 14,735 53,775 71,235
2 Scenario 2 175 161 21,306 20,090 13,740 16,330 71,466 71,235

Figure 4.
Simulation model of

ABC firm

Table 10.
Simulation results for

Month-1
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achieved by deploying the firms’ existing production plan and the proposed APP. It is seen
from Figure 5 that the proposed APP helps to produce the forecasted demand at a lesser cost.
Also, the production cost from the proposed APP is within the acceptable range of the firm.

5.2 Simulation
A sample simulation is provided in this study for Month-1. The lead time of 175 h and the
required demand of each part shown in Table 9 are fed as an input in the model. The two
simulation scenarios are created in this study. The first scenario shows the results of
manufacturing performances achieved from the production plan over which the firm is
currently working. Whereas scenario 2 illustrates the impact of proposed APP model on the
manufacturing performances, namely, throughput, lead time, and resource utilization.

Resource Scenario 1 Scenario 2 Resource Scenario 1 Scenario 2

Resource 1 0.6625 0.7024 Resource 14 0.7884 0.512
Resource 2 0.4421 0.7052 Resource 15 0.1325 0.5029
Resource 3 0.6569 0.7955 Resource 16 0.5805 0.5092
Resource 4 0.5207 0.7024 Resource 17 0.4488 0.5102
Resource 5 0.9998 0.5778 Resource 18 0.1533 0.5079
Resource 6 0.7196 0.7094 Resource 19 0.1214 0.6754
Resource 7 0.7721 0.6492 Resource 20 0.4065 0.6082
Resource 8 0.4826 0.7004 Resource 21 0.5105 0.6888
Resource 9 0.6113 0.7044 Resource 22 0.6493 0.6065
Resource 10 0.6327 0.7113 Resource 23 0.6857 0.6013
Resource 11 0.3538 0.6989 Resource 24 0.6879 0.6051
Resource 12 0.1135 0.6301 Resource 25 0.5192 0.5983
Resource 13 0.5368 0.5123 Resource 26 0.9997 0.689
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5.2.1 Scenario 1.This scenario illustrates the results generated from the simulation model
after applying the traditional production plan the firmwas using. It is seen fromTable 10 that
the required level of total parts demanded (71,235) inmonth-1 cannot be achieved through the
existing production plan. The firm can only produce 53,775 quantities of parts. So, the
customer’s demand cannot be satisfied through the current production plan developed by
using the firm’s traditional planning technique. Further, analyzing the utilization of
resources, it varies from 10% to 99.99% in scenario one, as shown in Table 11. However, the
industry expert suggested that resource utilization should range between 40% and 85% for a
smooth production flow based on his experience. Due to the uneven resource utilization, the
presence of bottlenecks is observed. This further led to an increase in lead time.

5.2.2 Scenario 2. This scenario provides the results generated from the simulation model
after applying the proposed APP. It is seen that for Month-1: 21,306 quantities of part 1,
20,090 quantities of part 2, 13,740 quantities of part 3, and 16,330 quantities of part 4 can be
produced, thus satisfying the customers’ demand for Month 1. Further, the total throughput
needed, i.e. (71,235), can be achieved through the proposed APP. The resource utilization is
improved in this scenario and ranges from 50% to 80%, as shown in Table 11. The results
also depict that the actual lead time required for producing the demanded throughput is 161 h
≤ 175 h (the firm’s threshold value for lead time). This signifies that by adopting the proposed
APP, the firm can provide the required level of customers’ demand within the stated time and
thereby become delivery competent (Miltenburg, 2005; Ward et al., 1998).

6. Research implications
The proposed research work provides significant implications to the theory on production
planning and practical dimensions, as discussed below.

6.1 Theoretical contributions
Aggregate production planning involves a tactical planning process that combines all the
strategic business plans, namely, profit improvement, inventory cut down, business scaling,
etc., into a single mid-level plan. The APP plan manages the balance between demand and
supply capabilities within production, finance, distribution, and procurement (Pereira et al.,
2020). APP effectively achieves manufacturing performances. Achieving manufacturing
performances at the specified levels leads to fulfilling a firm’s strategic manufacturing
decisions and business goals (Dohale et al., 2020, 2021b, d). Hence, a properly formulated APP
guarantees a fit with the business goals at a strategic level (Cheraghalikhani et al., 2019;
Pereira et al., 2020). Thus, it is essential to formulate a mathematical model for APP and
validate it by determining the impact of the proposed APP on manufacturing performances.

This study helps to develop the optimal aggregate production plan using the proposed
methodology to achieve the lowest-cost plan. This study provides a threefold theoretical
contribution. At first, the present research work has identified and provided the list of
objective functions considered for an APP model formulation. The integrated framework of
FAHP-MOLP-Simulation is the novel contribution to the body of knowledge to form an APP
model. FAHP is utilized to select the objective functions most desired by a firm to achieve.
The MOLP model is adopted to develop an APP, while the simulation helps to validate its
applicability through a real-life case. Thus, unlike other existing studies enlisted in Table 1,
the current research bridges the gap of the validation of the APPmodel through simulation to
evaluate its effectiveness.

6.2 Managerial implications
The current research has demonstrated the applicability of the integrated framework
through a real-life case study of ABC firm. Thus, the current study provides notable
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implications for practitioners and policymakers. The proposed research provides three
significant implications to the practitioners and policymakers. Firstly, policymakers or
practitioners can adopt the proposed FAHP-MOLP-simulation formulation to develop the
APP model in a wide range of industries. Secondly, the practitioners and policymakers can
evaluate their existing production plan by deciding the most suitable objective functions
using the proposed framework. Thirdly, simulation can be used to evaluate waiting time,
work-in-process, resource utilization, and the status of inventory over time. The uncertainty
within the production planning has gained enormous attention from the practitioners during
the havocking conditions due to disruptive events (Dohale et al., 2021e; Paul and Chowdhury,
2020). Thus, manufacturing managers and practitioners can utilize the proposed framework
to decide appropriate objectives and develop a production plan for their firm. In the recent,
Ambilkar et al. (2021) mentioned the complexity associated with the production planning of
the product returns. Thus, the proposed three-stage approach can be used to develop a
production plan for the returned products. Further, the proposed combinatorial FAHP-
MOLP-Simulation framework is versatile and can be extended for decision making at the
strategic, tactical, and operational levels to address the manufacturing and service operation
problems.

7. Conclusion
Aggregate production planning aims to develop an efficient production plan to meet
fluctuating future demand optimally using the organization’s resources. An efficient APP
reduces the total production costs by increasing resource utilization, leading to increased
firms’ competitiveness in the marketplace. Thus, the present study attempts to create a novel
framework for developing the optimal aggregate production plan using an integrated
approach of fuzzy AHP, multi-objective linear programming, and the simulation technique.

In this study, concerning RQ1, the FAHP is used to decide the objective functions a firm
desires to achieve by quantifying the relative priority weights of objectives using a group
decision-making technique. Three decision-makers have provided their judgments to conduct
the pairwise comparison between the objective functions. Minimization of Total Cost (Z2) and
Minimization of Lead Time (Z6) received the highest weights, 0.3487 and 0.2603, respectively.
So, these are selected as the objective functions for the APP formulation. To answer RQ2, a
MOLP model is formulated to develop an aggregate production plan. Further, a simulation
method is adopted to validate the proposed APP model. The Simulation model helps to
evaluate the applicability of the proposed APP formulated using MOLP without disrupting
the firm’s manufacturing setup. The impact of the existing production plan and the proposed
APP on manufacturing performances like resource utilization, throughput, and lead-time are
tested and evaluated in the analysis. To demonstrate the results, the model is simulated for
Month-1. The proposed MOLP-based APP is observed to reduce the firm’s total production
cost and improve its throughput and lead time. These improvements will provide higher
profit margins and a competitive advantage to a firm. Further, resource utilization is
enhanced using the APP and lies within the range of 50%–80%. The feasible range for
resource utilization suggested by the industry expert is 40%–85%. Thus, the proposed APP
helps to maintain the utilization of resources in the acceptable range.

Recently, manufacturing firms across the world are facing unprecedented disruption due
to COVID-19. The demand pattern of most of the products is collapsed (Dohale et al., 2021e).
Thus, it has been essential to have a formal framework to guide practitioners and
policymakers in developing appropriate production planning at different aggregation levels.
The proposed integrated framework can be a suitable solution for this issue. The proposed
framework can assist the practitioners and policymakers in selecting the appropriate
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objective function, developing a production plan, and further evaluating the effectiveness of
the new production plan by measuring its impact on manufacturing performances.

Like other optimization studies, the present research possesses certain limitations. The
first limitation is related to the assumptions made while developing a MOLP formulation.
The second limitation can be a selection of objective functions using experts’ judgment. The
involvement of experts may lead to subjectivity and biasness. The sample size of experts
(three DMs) can further be increased to overcome this issue. As manufacturing consists of
dynamism, multiple objectives can be considered to cope with the dynamic nature of the
manufacturing, namely, minimization of inventory carrying cost, minimization of total labor
cost, minimization of back-order cost, etc. Thus, future studies are encouraged to address
these limitations.
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Annexure

The conversion of the number of parts into the number of production hours needed to produce them is
carried out as follows:

The forecasted demand for Part 1 in month 1 is 23,000 quantities. Using the data collected from the shop
floor, it is observed that 850 quantities of part 1 are produced in 7 h. Thus, 23,000 quantities will be
produced nearly in 190 h. �

23;0003 7

850
¼ 189:47hrs:≈ 190hrs:

�

At the same time, 800 quantities of part 2 are produced in 7 h, thus the calculated production hours for
producing 23,000 quantities of part 2 are 202 h.�

23;0003 7

800
¼ 201:25hrs:≈ 202hrs:

�

In this manner, the calculation for other parts is carried out.
(The same procedure is used for reconversion of the production hours to the number of parts.)

Appendix 1

Objectives Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Decision-Maker 2
Z1 1 1/8 1/4 1/6 1/5 1/7 1/3 1/2
Z2 8 1 7 4 6 2 8 9
Z3 4 1/7 1 1/3 2 1/6 4 5
Z4 6 1/4 3 1 5 1/4 5 7
Z5 5 1/6 1/2 1/5 1 1/6 4 5
Z6 7 1/2 6 4 6 1 8 6
Z7 3 1/8 1/4 1/5 1/4 1/8 1 3
Z8 2 1/9 1/5 1/7 1/5 1/6 1/3 1

CR 0.097

Decision-Maker 3
Z1 1 1/9 1/7 1/6 1/5 1/9 1/3 1/2
Z2 9 1 7 4 6 3 8 5
Z3 7 1/7 1 1/4 2 1/5 3 3
Z4 6 1/4 4 1 4 1/3 5 6
Z5 5 1/6 1/2 1/4 1 1/7 2 4
Z6 9 1/3 5 3 7 1 7 4
Z7 3 1/8 1/3 1/5 1/2 1/7 1 2
Z8 2 1/5 1/3 1/6 1/4 1/4 1/2 1

CR 0.086

Table A1.
Pairwise comparison
matrix by DM2
and DM3
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Appendix 2
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