
Modeling & Simulation as a Service with the Massive
Multi-Agent System MARS

Christian Hüning
Dept. of Computer Science

University of Applied Sciences
Hamburg

Berliner Tor 7, 20099,
Hamburg, Germany

christian.huening@haw-
hamburg.de

Mitja Adebahr
Dept. of Computer Science

University of Applied Sciences
Hamburg

Berliner Tor 7, 20099,
Hamburg, Germany
mitja.adebahr@haw-

hamburg.de

Thomas Thiel-Clemen
Dept. of Computer Science

University of Applied Sciences
Hamburg

Berliner Tor 7, 20099,
Hamburg, Germany

thomas.thiel-clemen@haw-
hamburg.de

ABSTRACT
There is an increasing demand for very large-scale agent-
based models. High numbers of individual entities and com-
plex interactions between them require new ways of model-
ing and simulation. The creation of a distributed simulation
model imposes a major challenge in the fields of network
communication and coordination to the developer. Integrat-
ing multi-scale GIS and time-series data into such a model is
another challenge altogether.

We introduce the massive Multi-Agent Research and Simu-
lation system (MARS). It is designed to provide a Modeling
and Simulation as a Service (MSaaS) solution to end users.
MARS allows domain experts to integrate their data and mod-
els through a user-friendly web interface. The complexity of
distributed and scalable simulation is handled in the back-
ground by a mechanism we call Agent Shadowing. Finally a
layer-based segmentation of the model is proposed. It allows
domain specialists to focus on one aspect at a time while de-
veloping their simulation model.

A large-scale model from the ecological modeling domain
is showcased. The model integrates various GIS data for-
mats with collected time-series datasets and simulates a scal-
able amount of agents. Results from this simulation demon-
strate the capabilities of MARS to support the workflow as
required by the development of large-scale agent-based sim-
ulation models.

Author Keywords
MSaaS; Multi-Agent System; distributed simulation; cloud
computing;

ACM Classification Keywords
I.6 Computing Methodologies: Simulation and Modeling;
I.6.0 Simulation and Modeling: General; I.6.4 Simulation and
Modeling: Model Development; I.6.6 Simulation and Model-
ing: Simulation Output Analysis; I.6.8 Simulation and Mod-
eling: Types of Simulation—Distributed, Parallel

SpringSim-TMSDEVS 2016 April 3-6 Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

1. INTRODUCTION
Among the most demanded features in the field of multi-
agent systems are the requirement to run simulations in
the cloud as web accessible services [16, 14, 13] and to
allow efficient simulation and analysis of massive-scale
models [19, 8, 6, 9, 4, 17]. Especially the definition of
MSaaS (Modeling and Simulation as a Service) [2] and first
follow-up papers [7] express the interest in and necessity
of cloud-based simulation. MSaaS systems are expected to
deliver scalable simulation execution by means of a simple
enough user interface suitable for non-technical domain
experts.

The MARS simulation framework [5] developed by the
MARS research group at Hamburg University of Applied
Sciences, is very well aligned with the trend to move
massive-scale simulations into the cloud. It offers a con-
venient web interface for modelers and features a chain
of processes, which is designed alongside the modeling
workflow.

In this paper we discuss an overview of related work
and ideas (section 2), briefly present the simulation model
used to showcase the MARS system (section 3), introduce
our MARS workflow, role model and modeling paradigm
(section 4) and outline the technological background of our
cloud-based simulation execution (section 5). Finally the
resulting workflow from experiments with our simulation
model are shown (section 6) and a conclusion is drawn.

2. RELATED WORK
Research in the MARS Group has been focused on large scale
models, scalability and MSaaS from the very beginning. Re-
cent publications have shown that there is a growing interest
on these topics by other researchers. We therefore provide a
brief overview of related work in the domains of both MSaaS
and high-performance computing.

2.1 MSaaS
The first system we like to address is mJADES [10]. It is
a SaaS framework which as a cloud application allows the
user to run multiple simulations in parallel. The name of



mJADES and its technology is based on the cloud middle-
ware mOSAIC and the simulation library JADES. JADES
is implemented in the Java programming language. While
MARS is a multi-agent system mJADES uses Discrete Event
Simulation as simulation technique.

C2SuMo (Cloud-based, Collaborative, and Scaled-up
Modeling and Simulation Framework for STEM Education)
[1] is a SaaS framework for traffic simulations. It uses
SUMO, an open source road traffic simulation package, and
enables scalability by employing multiple SUMO simulators
in the cloud. Like its name says, C2SuMo is developed
to support education. Therefore it simplifies the SUMO
interface to provide a more intuitive way for high school
students creating traffic simulations.

There is another SaaS traffic simulation service called
SEMSim Cloud Service[20]. It is agent-based, web-based,
uses cloud computing to execute multiple simulations at the
same time, enables multi-core usage and provides a real-time
visualization for running simulations. Based on these
attributes SEMSim CS exhibits great similarity to MARS.
But a main difference consists in the supported simulation
domains. SEMSim CS is made for traffic simulations while
MARS makes no assumptions regarding the model domain.

2.2 High Performance Computing
Collier et al. [3] present Repast HPC as the distributable
version of RepastJ or Repast Symphony. The motivation
behind Repast HPC to build a large scale MAS is very similar
to that of the MARS Groups’. That is to allow large-scale
model simulation instead of optimizing a smaller-scale model
by running many parallel simulations of the same model.

Repast HPC translates models into working simulations
through a concept of agents, contexts and projections. A
context is a set of agents, whereas the term set corresponds
to its mathematical definition. Projections at last use contexts
to model the environment. This structure allows multiple
agents taking part in multiple environments and reusing
projections. To distribute a simulation, Repast HPC uses a
concept called Shared Projections. The environment created
by a projection basically is a 2D grid due to the usage of
the Logo language. This grid is sliced and then distributed
across several processes. The buffer holds non-local agent
stub objects from the neighboring slices and thus allows for
changes / interactions to be made locally at first. The system
then distributes the changes to the corresponding home
objects in the other processes and takes care of synchro-
nization matters. The communication and synchronization
mechanism requires the user to provide specific pieces of
code for each class that should take part in it.

RepastHPC provides a very scalable solution, which
also allows for model re-usability through its projections
and contexts. Test runs conducted with Repast HPC were
run on high-end super computing hardware namely the IBM
BlueGene cluster with up to 65.536 cores and Infiniband
network.

3. SIMULATION MODEL
This section introduces a savanna ecosystem model, which
is developed within the scope of the ARS AfricaE project
(www.ars-africae.org) and is used as example model for
this paper. ARS AfricaE is a joint project between German
and South African research facilities that deals with the
adaptive resilience of savanna ecosystems.

Savanna vegetation structure is usually characterized by
large, solitary trees and shrubs scattered in a grassland
matrix. It is assumed that savanna biomes are controlled
by fire and herbivores, e.g. elephants [12]. The relevance
of savanna ecosystems results in their ability to absorb
large amounts of CO2 and their distribution. Svannas cover
approximately 20% of the earth’s surface [11]. This turns
them into an important stakeholder in the global carbon cycle
system [18].

The savanna ecosystem model is under development
within the ARS AfricaE project. It will help to achieve a
better understanding of the population dynamics of woody
species, particularly under the disturbance regime of global
change.

To reduce the model complexity for the aim of this pa-
per we are going to focus on a single species of trees and the
interaction with elephants. The Marula tree species (Sclero-
carya birrea) was selected because of its representative role
for tree-elephant-interaction. Thus, our experimental design
comprises agents with fixed spatial locations (trees) as well
as mobile ones (elephants). Both agent types interact with
each other and with their environment.

We simulate the whole area of the Kruger National Park
- almost 20.000 square kilometres - with 22.000 elephant
agents and 10 million tree agents.

4. CONCEPT & WORKFLOW
The MARS system is conceptualized as a Modeling & Sim-
ulation as a Service system. This is an important difference
to other simulation frameworks. Every phase of the mod-
eling lifecycle can be realized without installing additional
software packages on the computer of the domain expert. In-
stead she or he accesses all functionality of MARS through a
user friendly web interface. MARS is hosted and maintained
by the MARS Group at the University of Applied Sciences in
Hamburg.

4.1 Roles in the MARS Framework
Users of systems like MARS are mainly domain experts.
They want to utilize the capabilities of multi-agent simula-
tions to gain a better understanding of the complex systems
they consider in their research. Since creating, using and
analyzing a simulation model is rarely done by a single
individual, we propose to accommodate each domain expert
or group of experts with at least one tandem partner to deal
with the more technical aspects of model implementation
and simulation execution.

www.ars-africae.org


Therefore, within the MARS system we define and support a
number of user roles.

Modeler A domain expert who creates the model to be used
in the simulation.

Model Developer A computer scientist developing the code
for the model utilizing MARS APIs and libraries.

GIS & Data Scientist An expert in the field of data integra-
tion and GIS operations, who prepares datasets to be used
by the simulation model and manages these datasets within
MARS.

Of course one person may be assigned to more than a single
role.

4.2 MARS Workflow
MARS follows a modeling and simulation workflow as
shown in figure 1. This workflow is designed to be executed
in a number of iterations, which include continuous refine-
ment, simulation and validation of the model. In the final
stage the results of the model are ready to be used in publica-
tions or further research.

Usually the modeler starts by creating the conceptual model
according to the research question [15]. It might be useful
to consult a computer scientist, when translating a conceptual
model to a technical MARS model for the first time.

Figure 1. MARS Modeling Workflow

Once the modeler decides if her or his model is complete
enough to try a first simulation run, the model should be
discussed with a computer scientist to discover possible
pitfalls, which might occur throughout implementation or
simulation. Sometimes the model code needs additional
information, which was not obvious during the more abstract
modeling stage. Also this discussion should be used to clarify
certain aspects, since there might be ambiguities to the model
developer when simply reading the model description and
not having deep knowledge about the domain. It should
be mentioned that a modeler might write the model code
himself, if she or he is trained in programming with the C#
language.

With the first implementation done, the model can be
uploaded to the MARS Websuite. GIS data and time-series
data may be mapped to the simulation’s layers and agent
attributes. The data used in this step should have either
been prepared (e.g. normalized) by a data scientist or the
modeler himself. This task should be done in parallel with
the modeling process and the data scientist should also
partake in the discussion with the MARS developer.

The modeler can now trigger one or more simulation
runs from the Websuite’s interface and examine the results as
a 3D visualization. A visual analytics page offers fundamen-
tal diagram types. Additionally, MARS offers the capability
to export the results as a CSV file for further analytics with
R or other solutions. These results may be accessed as soon
as the first chunks of data are available from the simulation,
thus a modeler does not have to wait for the simulation to
finish. Validation of the results is the next step as designed
by the MARS workflow. If fundamental errors are found
in the results, the source of these errors will have to be
searched either in the source code or the conceptual model
itself. Usually modelers will work hand in hand with their
tandem partner to fix these. In case the results are technically
acceptable, it must be decided whether the model needs
further refinement. If so, the next iteration starts. As soon
as the modeler is satisfied, the results can be used in further
work and the MARS cycle ends. The result files, model
code, uploaded data and configurations will persist inside the
MARS system for later usage.

4.3 MARS Modeling Paradigm: Layers & Agents
The basic concept in MARS are agents and layers. That
allows a unified way of developing MARS simulation
models. This concept is essential and it must be used in every
model. This section outlines the basic idea and showcases
the application of layers and agents in our example model
from section 3.

The layer concept is inspired by the way GIS data is
composed. These files are structured in layers, where each
layer represents a specific aspect. This aspect may be an
agent type as well as a part of the environment.

We translate this idea to a general approach for mod-
eling the implementation of our simulation system. A
domain-specific model is transformed into working code by
writing a layer for every aspect of the conceptual model. An
aspect should be a considerable sized, self-contained but yet
manageable piece of the original model. The layers represent
the environment into which the agents are placed.

Figure 2 shows a layer model of the ARS AfricaE simulation
model used in this paper. The bottom level keeps the digital
elevation map (DEM). Internally it is represented by a GIS
shapefile, in a resolution of 90 meters. Waterpoints, trees
and elephants are represented as agents, which are placed on
their corresponding layers. Finally we define a number of
time-series layers, which are a special type of layer used to
handle multi-scale time-series data from a database located
in the MARS cloud.



Figure 2. MARS Layer concept example from ARS AfricaE model

This approach applies best-practice techniques from software
engineering, e.g. separation-of-concerns. Hence layers
could be seen as components with interfaces to each other.
Each layer may expose well-defined operations to other
layers through its interface. Agents may use the exported
interfaces to access offered properties and services. MARS
libraries provide capabilities to define sensors for agents,
e.g. discover their surrounding environment. Thus, like in
a service oriented architecture each layer is self-describing
to external users and enables and agile way to compose and
reuse agent and layer components.

4.4 Types of Layers
MARS currently provides three different base types of layers:

Basic Layer A blank layer, which has to be implemented by
the user. Agents and environment are defined here.

GIS Layer A pre-implemented GIS layer. MARS is capable
of filling this layer with a provided GIS file either in SHP or
ASC format. Refer to section 6.1 for further information on
how to map data to such a layer. The layer allows to query
for data based on a position or a geometry, which includes
polygons, multi-points and lines.

TimeSeries Layer A pre-implemented layer to access time
series previously stored in the MARS ecosystem. The layer
allows to query for data based on time and position.

5. MARS SYSTEM & AGENT SHADOWING

5.1 Overview
MARS is deployed in two major parts. The first and most vis-
ible part is the MARS Websuite. It hosts the website which
modelers and model developers use to manage their data, con-
figure their simulations, start simulation runs and analyze the
results. The second part of MARS is the simulation system.
It is instantiated and configured specifically for each simula-
tion run which is started through the Websuite. All output and
results from the simulation system are transferred back to the
Websuite to be evaluated by the users.

The actual simulation component in the overall MARS archi-
tecture [5] is called LIFE. It consists of two main processes
which make up the distributed simulation system. The Sim-
ulationManager is the centralized controlling application for
the simulation. It manages the model, calculates the distribu-
tion and scheduling pattern, takes care of the distributed ini-
tialization and finally controls the simulation run. The Lay-
erContainer houses layers and agents, which are the two pri-
mary logical components MARS simulations are made of. A
LIFE system may be composed of any number of LayerCon-
tainers among which layers and agents are distributed. Lay-
ers are treated like plugins by LIFE and thus are loaded on
demand when initializing a new simulation. This approach
allows for automatic dependency injection, when one layer
depends on another.

5.2 Implementation and Deployment
LIFE is completely implemented in the C# language. It
can be run via the .NET runtime system on Windows
and via the Mono project on Linux and OS X. By that it
resembles the same platform independence as Java. However
during development and deployment into production the
MARS team chose to solely use Linux Docker containers
(www.docker.io) for running the MARS Cloud infrastructure
services and the actual simulation runs. Hence we rely on the
Mono runtime for C# (www.mono-project.com).

To host MARS we make use of the well known Infras-
tructure and Platform as a Service (IaaS & PaaS) paradigms.
To provide IaaS we rely on Linux KVM as our virtual-
ization technology and OpenNebula as our management
tool to operate virtual machines on top of our hardware.
Linux KVM (www.linux-kvm.org) and OpenNebula
(www.opennebula.org) both are open source projects and
run on a wide range of hardware, which helps a great deal
in achieving a cost-effective cloud environment. While
hardware virtualization is provided by KVM, we use Docker
to virtualize our applications. Docker allows to use the same
environment during development and production, which
enables a very fluent deployment process.

5.3 Agent Shadowing
Distribution and thus communication are two key aspects
of scalability. In a very early version of the MARS system,
layers were only distributable as a whole, so each LayerCon-
tainer needed to take care of one or more complete layers.
However one layer may be too complex for a single computer
or there may be some rather slow compute nodes involved.
So MARS also allows to distribute each layer across several
LayerContainers, which resembles true horizontal scalability.
Since distributing layers has direct influence on the agents
living on them, the approach for layer distribution is tightly
coupled with the distribution of agents and is meant to make
the overall system scalable. The approach is called Agent
Shadowing.

Agent Shadowing is the depiction of an agent living on
layer instance A having its shadow cast onto layer instance
B, where it is not actually instantiated, but instead is rep-
resented by a stub-like object as in remote communication

www.docker.io
www.mono-project.com
www.linux-kvm.org
www.opennebula.org


concepts like RPC/RMI (see figure 3 ).

In RPC/RMI each agent’s methods and properties are
callable by third parties through its stub object. Usually a
stub just provides the capabilities to establish an interface-
bound communication with the remote object. If the remote
reference changes, in classic RPC/RMI the stub simply
becomes useless, since its reference is not updated. The
protocol then has to notice the broken link and re-establish
a new one. MARS however prevents this problem by
addressing each agent through a unique ID and a multicast
address, which is calculated based on the agent type. Each
message send to any agent thus is send via multicast to only
those nodes, which house agents of the specific type. Each
of the receiving nodes can then quickly decide whether it is
responsible for the specified agent by looking up the ID in its
local dictionary. If the ID is found, the message is translated
into a method call and executed on the real agent object,
otherwise the message simply is discarded. MARS LIFE

Figure 3. Agent Shadowing Concept - Logical View.

creates shadow agent stubs (SAS) by making use of C#’s
RealProxy class. This class consumes an interface and trans-
lates calls to that interface’s methods into network messages.
A SAS is extended by the ability to hold cached attributes
like its environmental position or any other attribute. The real
agent object then pushes new values to the SAS whenever
its attributes are altered either internally or by an external
influence. Managing state updates like this, minimizes the
amount of messages needed throughout the whole system.
Also these updates are delivered via multicast when in LAN
to further reduce the amount of traffic.

Calling or referencing another layer, works by the same
pattern of either having a local instance of that layer to
address directly or a stub to communicate with a remote
reference. Environmentally it does not matter which remote
reference to a layer is provided, since each layer instance
locally has a full view of its state, even if distributed.

All implementations regarding AgentShadowing are en-
capsulated within the AgentShadowingService, which itself
is exposed to model developers by means of the AgentMan-
ager. This architecture allows the provision of a meaningful
interface to developers, while hiding a lot of the technical
implementation inside.

6. RESULTS
This section uses the ARS AfricaE model from section 3 to
showcase the workflow with MARS. Screenshots are taken

from actual running software. We don’t see MARS as a
prototypical implementation, but instead aim for a production
ready solution, which can and should be used by as many
modelers as possible.

At this point it is worth highlighting that Modeling as a
Service is not yet achieved with MARS, since neither the
conceptual model nor the implementation code can be
created through the Websuite. However these features were
planned during the initial design phase of MARS and are
currently under development. They will be subject of future
updates and research.

6.1 Simulation Model Preparation
After the conceptual model has been created and trans-
formed into a MARS model (see figure 2), it needs to be
implemented by a computer scientist. This step has to be
accomplished in external development tools (e.g. Visual
Studio or Xamarin Studio). The LIFE API is a direct match
of the layer-based MARS model and together with additional
supporting libraries (e.g. for agent creation) streamlines this
process. However an in-depth discussion of how models are
implemented would exceed the scope of this paper.

Once the model is implemented and uploaded, the do-
main experts may start working with the Websuite. We start
out by creating a project and a scenario inside of that project.
Projects are the largest organizational unit in MARS, while
scenarios are more specific setups in a project. A scenario
defines wall-clock simulation timespan, temporal and spatial
step size and an optional spatial boundary. Figure 4 shows
the corresponding form.

Figure 4. Scenario creation in Websuite

For the ARS AfricaE model several datasets are needed. We
use a 90 meter resolution elevation map for the Kruger Na-
tional Park, a shapefile containing tree positions, another
shapefile with elephant herd positions and size as well as sev-
eral time series in CSV format for temperature and precipi-
tation data. All these datasets can be uploaded through the



Import Data dialogue. Depending on the type of data dif-
ferent information has to be provided, i.e. where and when
the dataset has been collected, who is the owner of the data
etc. Datasets usually are available to all users of MARS, but
can be flagged as being private to address data confidentiality
concerns.

After uploading the datasets, the user has to define which
compilation of data shall be used in the selected simulation
scenario. With MARS DEIMOS we offer a tool to review the
data and perform a validation against the scenario definition
in terms of temporal and spatial scale and data availability.
Once satisfied with the selection the tool will create a spe-
cially prepared compilation to be used in the next step. Note
that MARS never alters the original data. Everything is ei-
ther stored as meta-data or as copies of the original files, e.g.
when a transformation in another format is needed

The next and penultimate step is to map the selected
datasets to the simulation model implementation uploaded
by the computer scientist. This is achieved with a tool we
call SHUTTLE. SHUTTLE will only show parameters of
agent constructors, attributed with ”[PublishInShuttle]” in the
model code, and further only those parameters which are
mappable from the outside. This excludes other agents or
layers for instance, since they will be injected automatically
by MARS LIFE (see chapter 5). SHUTTLE provides a split-
pane view featuring the extracted layers and agents from the
model on the left hand side and the provided datasets on the
right. Users can now use the data mapping buttons to dynam-
ically create the domain specific language expressions in the
middle pane, and thus map each needed agent parameter to a
column from the datasets.
Furthermore SHUTTLE exposes all GIS and TimeSeries lay-
ers and asks the user to map GIS and table datasets respec-
tively to them. Figure 5 shows this process. The result of

Figure 5. Data Mapping with SHUTTLE

SHUTTLE’s mapping process is a SimConfig file, which will
be used in the simulation run to automatically initialize the
simulation model with the data uploaded into the websuite.

6.2 Simulation Model Execution
The final step is about creating a SimulationPlan which
will then be used to start one or more SimulationRuns. The

user creates a SimulationPlan by selecting a SimConfig, a
NodeConfig and providing a name. The NodeConfig controls
on how many nodes and resources the SimulationPlan will
be executed. The SimulationPlan may then be started via the
web user interface, which results in a SimulationRun being
created. Figure 6 shows the corresponding page used in the
process. Basic real-time usage statistics for CPU, memory
and network load for the current run are shown, when the
SimulationRun tab is expanded.

Figure 6. Starting a SimulationPlan from the Websuite.

When starting a model for the first time a Docker con-
tainer image containing all relevant files is created. This
image includes the needed C# runtime, model code, GIS
files and the SimConfig description. Once the image has
been created, it is stored and can be reused. This results
in subsequent runs starting almost immediately. After
the model container has been started, MARS LIFE will
automatically begin the model initialization by creating all
layers in the order of their dependencies and by using the
mapped GIS and time-series files. When the layers have
been put together, LIFE instantiates all agents according to
the mapping created in the SHUTTLE tool. The duration of
this initialization phase may differ greatly depending on the
model and dataset size. The ARS AfricaE model for instance
takes around 7 minutes to initialize when executed in a single
LayerContainer.

When run in a distributed manner with more than a single
LayerContainer, LIFE automatically takes care of remotely
initializing all layers and agents. Dependencies for layers are
resolved by means of a LayerRegistry service.

6.3 Simulation Model Analyses
Once the model is running, first results are being sent to the
Websuite and may be analyzed in any of three ways.

3D Visualization
First a 3D visualization can be displayed. This allows users
to quickly check whether their simulation is performing in the
way they envisioned. It is a particular good way to check for
movement patterns, areal distribution of agents and if over-
all areal boundaries are done right. However a significant
performance impact has to be expected when using this fea-
ture, since all information needs to be send to the visualiza-
tion observer for every tick even though MARS optimizes this
by only sending the information currently inside the viewing



cone of the virtual camera. Figure 7 shows a sample visual-
ization of our ARS AfricaE model.

Figure 7. 3D visualization displaying data from the ARS AfricaE model.

Visual Analytics
A visual analytics page featuring basic graph types and maps
like heat maps, may be used to create a dashboard for a Simu-
lationPlan. The visualized data is updated in real-time as new
data arrives and is very useful to check a model’s indicator
values as soon as they become available. This allows to users
to stop and readjust long-running simulations in case some-
thing is off right from the start. Also modelers can leverage
the dashboard while optimizing their models, without ever
leaving the Websuite or having to download large data blocks
for offline analyses. Figure 8 displays the dashboard used for
the ARS AfricaE model.

Figure 8. A visual analytics dashboard for the ARS AfricaE model featuring
age distribution charts and a biomass choropleth map.

CSV Export
The third option is to download result datasets as CSV files.
This is necessary when the data will be used in further re-
search or when the capabilities of the visual analytics page
are exceeded and more sophisticated statistical or visual pro-
cedures need to be performed (e.g. in R).

Finally, we want to highlight, that all result datasets are pre-
served until the corresponding SimulationPlans and Simula-
tionRuns are deleted by a user with extended rights.

7. DISCUSSION & OUTLOOK
In this paper we introduced MARS as a MSaaS system to
be a useful tool for global work groups that are considering
multi-agent modeling and simulation to be used throughout
their research. MARS provides a complete tool chain from
data import to result visualization and analysis, which allows
for large-scale model development in a web environment and
execution in a high-performance cloud.

The current state of development includes an advanced Sim-
ulation as a Service approach, that enables users to start mul-
tiple simulation models in various configurations from their
web browsers. Modeling as a Service however is in a work in
progress state, but first prototypes of a visual modeling tool
combined with a simplified modeling language are currently
under development and look very promising.

Concerning 3D visualization and analysis we are planning to
move to a more flexible approach of being able to review a
complete simulation run and to allow fast-forward and fast-
backward features. Based on the same data backend, another
work is in preparation to provide a contextual search feature
to efficiently browse through the results. For future updates
and more information visit www.mars-group.org.

ADDITIONAL AUTHORS
1. Jan Dalski, Department of Computer Science, University

of Applied Sciences Hamburg, Berliner Tor 7, 20099,
Hamburg, Germany, E-Mail: jan.dalski@haw-hamburg.de

2. Ulfia Lenfers, Department of Computer Science, Uni-
versity of Applied Sciences Hamburg, Berliner Tor 7,
20099, Hamburg, Germany, E-Mail: ulfia.lenfers@haw-
hamburg.de

3. Janus Dybulla, Department of Computer Science, Uni-
versity of Applied Sciences Hamburg, Berliner Tor 7,
20099, Hamburg, Germany, E-Mail: janus.dybulla@haw-
hamburg.de

4. Lukas Grundmann, Department of Computer Sci-
ence, University of Applied Sciences Hamburg,
Berliner Tor 7, 20099, Hamburg, Germany, E-Mail:
lukas.grundmann@haw-hamburg.de

5. Gregory A. Kiker, Associate Professor, Agricultural and
Biological Engineering Dept., University of Florida,
P.O. Box 110570, Gainesville, FL 32611-0570, E-Mail:
gkiker@ufl.edu

REFERENCES
1. Caglar, F., Shekhar, S., Gokhale, A., Basu, S., Rafi, T.,

Kinnebrew, J., and Biswas, G. Simulation Modelling
Practice and Theory Cloud-hosted
simulation-as-a-service for high school STEM
education. Simulation Modelling Practice and Theory
58 (2015), 255–273.

2. Cayirci, E. Modeling and simulation as a cloud service:
A survey. Proceedings of the 2013 Winter Simulation
Conference - Simulation: Making Decisions in a
Complex World, WSC 2013 (2013), 389–400.

www.mars-group.org


3. Collier, N., and North, M. Parallel agent-based
simulation with Repast for High Performance
Computing. Simulation 89, 10 (2012), 1215–1235.

4. Craenen, B., Murgatroyd, P., Theodoropoulos, G.,
Gaffney, V., and Suryanarayanan, V. MWGrid: A
System for Distributed Agent-Based Simulation in the
Digital Humanities. 2012 IEEE/ACM 16th International
Symposium on Distributed Simulation and Real Time
Applications (2012), 124–131.

5. Hüning, C., Wilmans, J., Feyerabend, N., and
Thiel-Clemen, T. MARS - A next-gen multi-agent
simulation framework. Simulation in Umwelt- und
Geowissenschaften, Workshop Osnabrück 2014 (2014),
1–14.

6. Kiran, M., Richmond, P., and Holcombe, M. FLAME:
simulating large populations of agents on parallel
hardware architectures. Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS
2010) (2010), 1633–1636.

7. Padilla, J. Cloud-Based Simulators: Making Simulations
Accessible To Non-Experts and Experts Alike.
Proceedings - Winter Simulation Conference 2014
(2014), 3630–3639.

8. Parker, J. A flexible, large-scale, distributed agent based
epidemic model. Proceedings - Winter Simulation
Conference (2007), 1543–1547.

9. Parker, J., and Epstein, J. M. A Distributed Platform for
Global-Scale Agent-Based Models of Disease
Transmission. ACM Transactions on Modeling and
Computer Simulation 22, 1 (2011), 1–25.

10. Rak, M., Cuomo, A., and Villano, U. mJADES:
Concurrent Simulation in the Cloud. 2012 Sixth
International Conference on Complex, Intelligent, and
Software Intensive Systems (2012), 853–860.

11. Scholes, R. J., and Walker, B. H. An African Savanna -
Synthesis of the Nylsvley study. Cambridge University
Press, 1993.

12. Shannon, G., Thaker, M., Vanak, A. T., Page, B. R.,
Grant, R., and Slotow, R. Relative Impacts of Elephant
and Fire on Large Trees in a Savanna Ecosystem.
Ecosystems, 14 (2011), 1372–1381.

13. Taylor, S. J., Khan, A., Morse, K., Tolk, A., Yilmaz, L.,
and Zander, J. Grand Challenges on the Theory of
Modeling and Simulation. Proceedings of the 2013 ACM
SIGSIM conference on Principles of advanced discrete
simulation. (2013).

14. Taylor, S. J. E., Fujimoto, R., Page, E. H., Fishwick,
P. a., Uhrmacher, A. M., and Wainer, G. Panel on grand
challenges for modeling and simulation. Proceedings -
Winter Simulation Conference (2012), 1–15.

15. Thiel-Clemen, T. Designing good individual-based
models in ecology. In Simulation in Umwelt- und
Geowissenschaften, Workshop Leipzig, J. Wittmann and
M. Müller, Eds., GI, Shaker (2013), 97–106.

16. Tolk, A., and Mittal, S. A necessary paradigm change to
enable composable cloud-based M&S services.
Proceedings of the 2014 Winter Simulation Conference
(2014), 356–366.

17. Vigueras, G., Orduña, J. M., Lozano, M., and Jégou, Y.
A scalable multiagent system architecture for interactive
applications. Science of Computer Programming 78, 6
(2013), 715–724.

18. Williams, C. A., Hanan, N. P., Neff, J. C., Scholes, R. J.,
Berry, J. A., Denning, A. S., and Baker, D. F. Africa and
the global carbon cycle. Carbon balance and
management 2, 3 (2007), 1–13.

19. Yamamoto, G., Tai, H., and Mizuta, H. A platform for
massive agent-based simulation and its evaluation.
Massively Multi-Agent Technology (2008), 1–12.

20. Zehe, D., Knoll, A., Cai, W., and Aydt, H. SEMSim
Cloud Service: Large-scale urban systems simulation in
the cloud. Simulation Modelling Practice and Theory 58
(2015), 157–171.


	1 Introduction
	2 Related Work
	2.1 MSaaS
	2.2 High Performance Computing

	3 Simulation Model
	4 Concept & Workflow
	4.1 Roles in the MARS Framework
	4.2 MARS Workflow
	4.3 MARS Modeling Paradigm: Layers & Agents
	4.4 Types of Layers

	5 MARS SYSTEM & AGENT SHADOWING
	5.1 Overview
	5.2 Implementation and Deployment
	5.3 Agent Shadowing

	6 Results
	6.1 Simulation Model Preparation
	6.2 Simulation Model Execution
	6.3 Simulation Model Analyses
	 3D Visualization
	 Visual Analytics
	 CSV Export


	7 Discussion & Outlook

