
AIP Advances 10, 035113 (2020); https://doi.org/10.1063/1.5140466 10, 035113

© 2020 Author(s).

System-level co-simulation for embedded
systems
Cite as: AIP Advances 10, 035113 (2020); https://doi.org/10.1063/1.5140466
Submitted: 29 November 2019 . Accepted: 28 February 2020 . Published Online: 12 March 2020

Mossaad Ben Ayed , Ayman Massaoudi , Shaya A. Alshaya , and Mohamed Abid

https://images.scitation.org/redirect.spark?MID=176720&plid=1088041&setID=378289&channelID=0&CID=358802&banID=519828673&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=8c3152439ccf9853562257878df8f964af11bc63&location=
https://doi.org/10.1063/1.5140466
https://doi.org/10.1063/1.5140466
https://aip.scitation.org/author/Ben+Ayed%2C+Mossaad
http://orcid.org/0000-0002-0350-2765
https://aip.scitation.org/author/Massaoudi%2C+Ayman
http://orcid.org/0000-0003-4175-731X
https://aip.scitation.org/author/Alshaya%2C+Shaya+A
http://orcid.org/0000-0002-9169-1673
https://aip.scitation.org/author/Abid%2C+Mohamed
https://doi.org/10.1063/1.5140466
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5140466
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5140466&domain=aip.scitation.org&date_stamp=2020-03-12


AIP Advances ARTICLE scitation.org/journal/adv

System-level co-simulation for embedded
systems

Cite as: AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466
Submitted: 29 November 2019 • Accepted: 28 February 2020 •
Published Online: 12 March 2020

Mossaad Ben Ayed,1,2,a) Ayman Massaoudi,3,4,b) Shaya A. Alshaya,1,c) and Mohamed Abid5,d)

AFFILIATIONS
1Department of Computer Science, College of Sciences and Humanities at alGhat, Majmaah University,
Majmaah 11952, Saudi Arabia

2Department of Computer Science, Computer and Embedded System Laboratory, Sfax University, Sfax 3029, Tunisia
3Department of Computer Science, Jouf University, Al Jouf 74331, Saudi Arabia
4Department of Computer Science, MEDIATRON Lab., Sup’Com, Carthage University, Tunis 1054, Tunisia
5Department of Computer Science, Sfax University, Sfax 3029, Tunisia

a)Author to whom correspondence should be addressed: mossaad_benayed@yahoo.fr and mm.ayed@mu.edu.sa.
Tel.: +216-50606360
b)Electronic addresses: ahmassaaoudi@ju.edu.sa and aymen.massaoudi@supcom.tn
c)shaya@mu.edu.sa
d)mohamed.abid@enis.rnu.tn

ABSTRACT
The technological revolution affects the growth of systems in terms of functionality and complexity. Industries of embedded systems become
increasingly an area of interest for researchers to develop Computer-Aided Design (CAD) environments to support at the same time the
complexity in terms of different components and functionalities in terms of application programming interface and libraries. Mainly, CAD
tools based on multi-level co-simulation are challenged by the time-to-market constraint. As known, the behavior description at a higher
level provides a speedy simulation, but it suffers from bad accuracy. Therefore, describing a customized model for a system behavior with
sufficient functional details at an earlier stage of modeling is a great challenge to researchers. As an attempt to overcome the last challenge,
this paper presents a co-simulation model based on a synchronization methodology to ensure the verification between the conceptual level
and the functional level. The proposed system-level co-simulation model is implemented to interfaces to provide the switch context in the
case of the Arena and the Simulink/Matlab environments. The evaluation was performed by using two case studies with different domains to
prove the effectiveness of the proposed system-level co-simulation interfaces.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5140466., s

I. INTRODUCTION

Simulation modeling is widely used by developers in several
fields such as embedded systems,1 healthcare,2 security systems,3

and traffic systems.4 The main goal of the simulation is to provide
an abstraction of the real world with the most flexibility needed in
the modeling phase.5,6

Indeed, there is an increasing need for customized sys-
tems. Customization has many advantages, e.g., software has given
products improved capabilities. For example, controlling a conveyor

belt can be programmed in diverse ways, such as starting, stopping
at different intervals, and advancing a certain distance. In addition,
the software can be used to gain design flexibility. The software can
be designed with several parameters, which can be assigned different
values and thereby be used for customization.

A queuing system7 can be defined as a system designed at
the conceptual level and it is based on processes and data flow.
The queuing theory considered essentially the arrival process time,
the service time, and the average waiting time or queue size.8 Its
design plays a crucial role in the challenges, especially in supporting

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-1

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1063/1.5140466
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5140466
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5140466&domain=pdf&date_stamp=2020-March-12
https://doi.org/10.1063/1.5140466
https://orcid.org/0000-0002-0350-2765
https://orcid.org/0000-0003-4175-731X
https://orcid.org/0000-0002-9169-1673
mailto:mossaad_benayed@yahoo.fr
mailto:mm.ayed@mu.edu.sa
mailto:ahmassaaoudi@ju.edu.sa
mailto:aymen.massaoudi@supcom.tn
mailto:shaya@mu.edu.sa
mailto:mohamed.abid@enis.rnu.tn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5140466


AIP Advances ARTICLE scitation.org/journal/adv

the complexity management and the integration of engineering
domains to attain the desired results. A model of an embedded sys-
tem can be represented as a queuing system when designed at the
conceptual level. In this case, the functionality was not the purpose,
but the time advance of each process.

The design and simulation of the queuing system became a real
challenge for two reasons. The first, due to the hard competition
between constructors, the reduction in the time-to-market became
more important. The second factor was the choice of the adequate
language/tool. This choice was tied to (1) models of computation
used to model abstractions of systems (discrete, event discrete, con-
tinuous, heterogeneous, etc.), (2) the application field (mechani-
cal, embedded, electronic, chemical, etc.), and (3) the design of the
abstraction level.

Queuing system simulation has several limits: (1) the simu-
lation modeling did not support the continuous model,9 (2) the
description in higher level tolerated many details, and (3) the ser-
vice time of a process was assumed as a probabilistic function, which
was not the real case. Therefore, the simulation could not perform a
precise result and the error could be big for long execution time.

At certain stages of modeling, it is essential to check the
functional conformity of the system under design. The modeling-
simulation approach,10 called the V Model, represents the life cycle
process. This modeling level approach is verified by simulation.
Figure 1 describes the V model in terms of system design and system
verification. The system design is moved from system requirements
to a component implementation. The verification system is moved
from the acceptance test to the component test. Each level corre-
sponds to a level of verification. System design steps begin from
high-level descriptions (functional system design). A verification

step is applied to this step. If the simulation results are accepted,
the designer should be moved down to describe the system at a
lower-level design, also some rectifications must be done for system
requirements. This process is repeated for every system design level.
The V model approach decreases the time-to-market in comparison
with traditional approach modeling based on verification only at the
implementation stage.

Nevertheless, the embedded system required much time to
reach the implementation stage. In many cases, errors related to lack
or insufficiency of resources are detected in the component imple-
mentation step as discussed in Refs. 11–14. Predicting these kinds of
problems at a high level of simulation represents a great challenge.

Most designers begin their design from the functional level. In
this stage, many details need to be known to perform the whole
model of the System Under Design (SUD). However, the model in
itself could not support the simulation of the system at the con-
ceptual level based on the queuing approach. Related works in
Refs. 15, 13, and 11 prove that some bugs and hardware conflicts
are detected when the designer moves from the functional level
to the physical level due to insufficient memory size or lack of
memory.

In the light of this brief review, this study proposes to replace
the functional system design by the aggregation of conceptual and
functional levels based on co-simulation interfaces (as mentioned in
red color in Fig. 1).

The paper will be organized as follows:
Section II defines general concepts related to the abstraction

levels. Section III describes the literature review. Section IV presents
the synchronization model for the proposed co-simulation envi-
ronment. Section V introduces the case study used to evaluate the

FIG. 1. V model approach.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-2

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

attempted proposition. Section VI exhibits the experimental results
and accuracy analysis. Finally, Sec. VII concludes the paper.

II. GENERAL CONCEPT: ABSTRACTION LEVELS
System’s simulation is defined according to a model. This

model represents the behavior of the system in terms of specifica-
tion. Many classifications and criteria are discussed in the literature
to provide levels of modeling.

A. Gajski’s approach
In 1991, Gajski et al.16 proposed a modeling approach based

on the complexity of the system in terms of detail. This model-
ing approach describes the levels of abstraction that a circuit can
be presented during its development in terms of representation.
These levels represent the description of a circuit according to the
level of detail moving from a high-level description with a mini-
mum of details to the low-level description with more details. Gajski
et al. defined the five levels of abstraction based on the system’s
specification. These levels are

● System level: this level presents the system at the specifica-
tion level and gives the essential components of the system
(processor, memory, I/O, etc.).

● Algorithmic level: This level describes the system in an algo-
rithmic form based on Intellectual Properties (IPs). This
description uses high-level languages.

● Register Transfer Level (RTL): This level describes the sys-
tem as a registry level description. This description uses the
Hardware Description Language (HDL).

● Logic level: this level describes the system by logic gates.
This description uses the hardware language at the compo-
nent level.

● Circuit level: this level describes the system by differential
equations. This representation is based on interconnections
between transistors.

B. Cassandras approach
Cassandras et al.17 propose three levels of abstraction for mod-

eling and simulation: non-temporal language, temporal language,
and stochastic temporal language.

● The non-temporal language model represents the set of all
possible orders of events that could occur in the given sys-
tem. The model thus ignores the temporal information that
corresponds to the moments of the occurrences of events.

● The time-domain model is characterized by distribution
functions associated with events. Stochastic time modeling
contains information about events and the exact/estimated
times of the event.

● The stochastic time-language model is the most detailed
model. It provides aside from time-domain model, statistical
information about successive occurrences of events.

C. Bombieri approach
Bombieri et al.18 present another classification of the abstrac-

tion level. The main criteria defining the abstraction level are tempo-
ral granularity, state space granularity, interconnection model, and

data aggregation. Temporal granularity represents an important fac-
tor in a heterogeneous environment. This can be a discrete-event or
continuous model. The interconnection of the model describes com-
munication and synchronization between components and transac-
tion flowcharts. The state space granularity represents the systems
behavior according to symbolic variables defined by the corre-
spondent differential equations. Finally, data aggregation indicates
whether a component is modeled by considering the minimum
(black box) or the maximum (clear box) number of state space
variables. Given these factors, it is possible to identify five main
abstraction levels:

● Transactional level: the simulation is strictly event-driven
and the inter-component communication is done via trans-
actions. The state of the system is modeled with variables.

● Functional level: the simulation is event based, but the com-
munication is based on an interconnection flow diagram.

● Structural level has two main approaches depending on
the temporal granularity. The continuous time evolution is
modeled with differential equations. The discrete time can
adopt both an event based diagram or a synchronization
flowchart, and the finite set variables are adopted.

● Component level: the simulation can be both continuous
or discrete. In this level, all variables must be explicitly
modeled, whereas at the structural level only the necessary
variables are explicitly modeled.

FIG. 2. Principle levels for system description.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-3

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

● Physical level adopts the continuous synchronization with
the preservation of the interconnect style. The state space
is described with continuous time based on differential
equations and all variables are modeled in a clear box
approach.

D. The proposed classification of the abstraction level
The proposed classification is based on the depth of details

related to the process: few details, medium details, deep details. As
mentioned in Fig. 2, a system could be modeled at three principal
levels.

The conceptual level, the process has the minimum details, only
time details. In the functional level, the process defines the function-
ality using either the algorithm, structure, or register. Physical level
merges logic and circuit levels defined by Gajski.

● The conceptual/contextual level is designed to describe the
behavior of the system as a set of interconnected processes.
Each one is defined essentially by a probabilistic function,
which corresponds to the estimated service time. Therefore,
the simulation could perform an unclear result and the error
could be large for a long simulation time.

● The functional level involves more details about the behavior
of the system. It aims to define the nature of the function
used to perform the desired process.

● The physical level describes the system at the lowest level
of abstraction using elementary components (logic gates or
transistors).

III. LITERATURE REVIEW
As will be shown below, the choice of the description level

presents a great challenge for designers. According to the proposed
classification of the abstraction level, it is important to define the
system level as the set of the conceptual and the function level. So
far, most embedded systems were described at a unique level, at a
particular functional level.

At an earlier stage of description, designers need an appro-
priate tool to describe the whole system in the conceptual layer.
There are several description languages/tools in the literature as:
Product Lifecycle Management (PLM),19 SolidWorks,20 Arena,21

SysML,22 PRISMSYS,23 PLCOpenXML,24 etc. Some of them ensure
the description only on the conceptual level as Arena and SysML, but
other tools try to describe briefly the controller part in the functional
level as PLM and PRISMSYS.

The design at a higher level ensures the verification and the fea-
sibility of the whole system at an earlier stage of development. It
could estimate: (1) the transfer of data flow between processes, (2)
queuing information related to each process, and (3) expected data.

Nevertheless, the description at the conceptual level based on
probability estimations led to approximate results. The estimated
service time constitutes the source of the problems met at this level.
Doing on the real-time of the processes avoid misunderstanding of
the simulation results.

This approximation on service time depends directly on the
resource (puissance, frequency) and the spherical wave Software
(SW) application used. In fact, the conceptual level suffers from the
lack of simulation accuracy of the whole system.

Most languages/tools in the conceptual level do not support the
functional level and others offer a limited functional block that is
insufficient to rely on simulation results.25,26

To overcome these shortcomings, many co-simulation frame-
works are proposed in the literature to design the system at the
conceptual and functional levels simultaneously.

In Ref. 27, Liang et al., described a queuing system using Arena
tool for the discrete-event model and Matlab for the continuous
model. In this case, the event discrete model described by Arena
integrated the continuous model described by Matlab. The context
switch is defined by a simple activation monitored through Arena by
Visual Basic for Applications (VBA) and ActiveX technologies. The
activation is ensured by an easier transaction between the two envi-
ronments. The used co-simulation technique based on VBA requests
a lot of time in the simulation due to the large overhead caused by
VBA and Excel. Unfortunately, this work did not support the multi-
level case of a discrete-event system that requires more complicated
co-simulation interfaces in terms of exchanged data and time stamp.
Our proposition attempts to support this feature.

In Ref. 28, Sanz et al. combined the Arena/Siman and Modelica
libraries to model a heterogeneous system based on the continuous
and the discrete-event model. Since Arena/Siman tool supports only
the discrete-event model, the authors propose to integrate Model-
ica libraries to provide continuous packages as proposed by Liang
et al.27 but replacing Matlab by Modelica for the continuous model.
The authors create an ExtrenalProcess module based on an Exter-
nalAssign block to ensure the context switch between environments
with service time feedback from the continuous model. Our attempt
manages a multi-level event-discrete model, which requires many
parameters to be exchanged between the levels. In contrast, the
Sanz’s model only needs the activation of the context switch between
environments and returns the service time.

Süß et al.29 studied the behavior simulation of a manufactur-
ing system associated with the mechatronic components at the con-
ceptual level. The PLCOpenXML framework describes the event-
discrete model and the continuous model is designed using Mod-
elica/Matlab. This work also did not support the multi-level of an
event-discrete system in the case of an embedded system.

Barbieri et al.30 combined the SysML environment based on the
process and Matlab environment based on Hardware in the Loop
(HIL) Simulation for the mechatronics system. Authors attempt
to integrate Matlab into SysML diagrams at the conceptual level.
The presented case study, robot system, is described by three main
models: (1) discrete-event for the simulation of lines and plants
using the FlexSim31 tool; (2) virtual commissioning for the simu-
lation of the physical status using SysML and IndustrialPhysics32

tools, and (3) dynamics model for the simulation of the control unit
using the hardware in the loop techniques (Matlab) performed by
the PLC controller. The studied co-simulation ensures the verifi-
cation of a heterogeneous system without taking consideration of
the data exchanged status between processes. This problem has not
appeared because the case study is composed only of three pro-
cesses, and the continuous model, which requests much simulation
time manages the system. This research work follows the same pre-
vious approaches24–26 based on the activation of the context switch
between models. In addition, the use of many tools results in a speed
down of the simulation caused by the accumulated overhead delay
between tools.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-4

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

Chabibi et al.33 attempted to generate the Simulink model from
a conceptual level described by SysML based on model transforma-
tions and metamodeling. This method did not support the simula-
tion of a multi-level model like in our case. Besides, a coffee machine
with a little and easiest functionality, as a case study, is performed.
This idea seems to be not feasible for complex systems such as an
embedded system.

Dehghanimohammadabadi et al.9 integrated Matlab in the
SIMIO34 environment. Matlab is used as a computational tool
for the continuous model and the SIMIO describes the discrete-
event model. The communication layer is performed according to
a database to store the history of the context switch. However,
this method causes a decrease in the simulation time. The authors
attempt to add a new dimension to the queuing simulation by
integrating optimization. It is ensured by the invoke of Matlab to
perform an intelligent algorithm for the manufacturing system.

Lora et al.35 described a meet-in-the-middle approach to rep-
resent a heterogeneous system at the system-level description. This
approach benefits from the advantages related to the design flows
of both top-down and bottom-up approaches. The authors attempt
to integrate heterogeneous components into a homogeneous virtual
platform. Through their findings, developers can model the sys-
tem using components described at different levels of abstractions.
Therefore, the authors perform mechanisms based on translation,
abstraction, and integration of existing tools to ensure synchroniza-
tion between heterogeneous components. Unfortunately, this great
study is limited at the functional level (the description is done by
a custom C/C++ language) and did not focus on the conceptual
level.

Edward et al.36 provided CyPhySim tool as an open-source
environment for the verification of cyber-physical systems. It is
based on the Ptolemy II simulator to ensure the heterogeneity of the
model. The CyPhySim belongs to the commune approach in which
the simulator supports the verification of both discrete and contin-
uous models. It provides the modeling of a system composed of
differential equations, discrete-event models, hybrid models, func-
tional mockup interface models, algebraic loop solvers, and discrete-
time models. This tool provides a flexible and accurate environment
for developers, but it is limited also in modeling at the functional
level.

Ben Ayed et al.37 presented the CODIS+ environment as
an extension of the CODIS tool. The CODIS+ provides the co-
simulation of both discrete-event and continuous models. The
synchronization between the SystemC for the discrete event, the
Matlab/Simulink for the continuous model, and a hardware accel-
erator is described. Like the previous work, the CODIS+ supports
the verification only at the functional level.

Törngren et al.38 outlined challenges met in Computer-Aided
Engineering (CAE) domains, especially in the modeling and ver-
ification of a complex system. The authors propose to integrate
heterogeneous physical, cyber, cyber-physical system components,
aspects, and systems. This integration is ensured by interfaces
and interrelations. The main goal of this study is to provide an
accurate CAE environment that permits to model according to
different components (mechanical, electrical, chemical, informa-
tional, etc.). This attempt provides the modeling and simulation
at the functional level based on the synchronization of different
simulators.

Wehmeister et al.39 attempted to reduce the cost related to the
correction of errors during the design of embedded and real-time
systems. The authors propose an automatic verification approach
to expect errors at high-level specifications, particularly at Unified
Modeling Language (UML) models. The proposed design by the
authors starts from the algorithm level, which requests many essen-
tial details. In addition, the authors conclude that their proposed ver-
ification framework suffers from a low-speed. Therefore, this study
does not support the modeling at the conceptual level.

All the previous attempts propose to simulate a heterogeneous
system that needs only to move from an environment to another
with the minimum parameters to exchange. Most of the studies did
not provide an improvement for the V model by supporting the ver-
ification at the conceptual level in which the system is described
only by their processes associated with their service time. How-
ever, in our case, we propose co-simulation interfaces for only a
discrete-event model, which requires a well-studied synchronization
scheme between simulators to support the data exchange and hard-
ware interrupts with respect to the specificity of each simulator. The
proposed co-simulation at the system level (conceptual/functional)
represents a real need to predict problems of hardware conflict as
soon as possible. As a result, the number of feedbacks from the
physical level to the functional level will be reduced.

As a resume of the cited works, Table I classifies research works
based on the following criteria: (1) kind of model, (2) environment
used, (3) target application, and (4) the technique used for concep-
tual/functional design. In our study, the co-simulation technique
is defined as the cooperation between fair simulators to produce
simulation results. Otherwise, the integration technique is based on
one simulator that directs the simulation and the second simulator
becomes a sub-simulator that can be lunched or not according to the
requests.

In light of this brief review, the necessity of a multi-level co-
simulation environment is proved. As will be shown in the recent
studies below, researchers had faced too many challenges:

∙ Most of the tools in the conceptual level are unable to simulate
or define an intelligent entity.

∙ The resource of a process is assigned only to estimate time ser-
vice. Therefore, the architecture of the resource is not possible.

∙ In queuing systems, designers still use an estimation time for
the arrival time of entities and the service time. This estimation
is based on probabilistic equations. Practitioners used the his-
torical data collected from the real system to estimate the corre-
spondent equation of the system behavior. In fact, the proposed
model presents an estimate solution and the most shortcoming
appears for the inexistent system.40

This paper is as an attempt to attain the following goals:

∙ Allow the multi-level design between the conceptual level and
the functional level using the co-simulation technique in the
case of embedded systems based on the discrete-event model.

∙ Obtain reliable simulation results of the system outputs by
calculating the real-time service from the functional level.

For these reasons, the purpose of this study was to propose
a co-simulation technique allowing the synchronization between
the Arena simulator for the conceptual level and Matlab/Simulink

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-5

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

TABLE I. Comparison between different attempts to simulate conceptual/functional design.

Kind of model Environments Target application Technique

Dehghanimohammadabadi et al.,9 Discrete-event/continuous SIMIO/Matlab Manufacturing systems Integration
Liang et al.,27 Discrete-event/continuous Arena/Matlab Manufacturing systems Integration
Sanz et al.,28 Discrete-event/continuous Arena/Siman and Modelica Queuing systems Integration

Süß et al.,29 Discrete-event/continuous PLCOpenXML, Modelica, Manufacturing systems Co-simulationand Matlab

Barbieri et al.,30 Discrete-event/continuous Matlab, FlexSim, SysML, Mechatronics system Co-simulationIndustrialPhysics, and PLC

Chabibi et al.,33 Discrete-event/continuous Simulink/SysML Queuing system Integration
Lora et al.,35 Discrete-event Custom C/C++ Embedded system Integration
Edward et al.,36 Discrete-event/continuous CyPhySim/Ptolemy II Cyber-physical system Commune

Ben Ayed et al.,37 Discrete-event/continuous SystemC/Matlab/ Mechatronics system Co-simulationHW accelerator

Törngren et al.,38 Discrete-event/continuous . . . Cyber-physical system Co-simulation

simulator for the functional level in the case of the discrete-event
model.

IV. TECHNOLOGIES USED
At present, lot of powerful software, such as the MATLAB41

and the Arena,8 has been used in literature to model systems. In
this section, a brief introduction of Arena and Matlab is emphasized.
The Arena framework is used to describe the embedded system as a
queuing system and Matlab/Simulink to describe the system at the
functional level.

When describing the behavior of an embedded system, sev-
eral languages could be used. Most of them are designed for the
functional or the physical level. Nevertheless, the description of
the embedded system in the conceptual level is requested because
many systems are verified only for short time simulation. In this
case, limits and errors in the size of buffer and frame accumula-
tion in the whole system could be expensive and destructive. There-
fore, the verification at an earlier stage at the conceptual level is
important.

A. Arena environment for conceptual level
The Arena is a simulation software based on the discrete-

event theory.42 It has both great modeling power and friendly
interfaces for users. Arena provides a visual integrated simulation
environment.

Systems are described using Arena from the point of view of the
entities that flow through them using the available resources. Arena
models are structured in a hierarchical and modular way.

The simulation results are usually presented in the form of
statistical indicators that are calculated during the simulation. The
main purpose of the simulation results is the time advance during
the system execution.

The Arena is based on the SIMAN simulation language. Arena
modules are high-level constructs whose functionality is equivalent

to sets of SIMAN blocks and elements. Arena predefined mod-
ules are internally built using SIMAN blocks and elements, which
represent lower-level actions.

Arena uses the probabilistic time equation defined in the model
to identify the time of the next event. The Arena simulator advances
the time and then executes the event, as shown in Fig. 3. At first, the
simulator calls time advance subroutine to find the imminent event
and advance the internal clock to the imminent event time. Then, it
calls an event subroutine to execute the event, updates system state,
and puts in the top the next event in the future event list.

The Arena is challenged by several languages/tools,43 espe-
cially the SimEvents library produced by Matlab/Simulink.37 A brief
comparison is presented in Table II. SimEvent library supports
more statistics distribution than the Arena tool. However, Arena
offers developers an easier graphics user interface than SimEvent.
Arena generates a detailed simulation report, which is filled with
several simulation results. Dias et al.44 presented a comparison at
the conceptual level between Arena and other tools as FlexSim,
Simio, and Quest. The Arena is the best tool as a result of the last
comparison.

As will be shown, the Arena environment seems to be more
suitable for the conceptual level design.

FIG. 3. Arena simulator principle.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-6

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

TABLE II. A theoretical comparison between Arena and SimEvent library.

SimEvent library Arena

Statistics distribution ∙ Does not support only Erlang ∙ Does not support the following distribution: Bernoulli,
and Johnson distributions binomial, geometric, log-logistic, and arbitrary discrete.

Graphics ∙ Complicate ∙ Easy to define
Simulation report ∙ Should be added to the model to be performed ∙ There is a standard report that is performed.

∙ They let the developer add a specific statistical accumulator.

B. Matlab/Simulink environment for the functional
level

Simulink37 simulator resolves system equations and updates
states and outputs of blocks once per integration step, which can
be fixed or variable. The order in which the blocks are updated
is critical for results validity. The rule of data dependence is used,
during the initialization phase, to determine statically the order of
blocks activation. In fact, if the block outputs are a function of its
inputs, the block must be updated after the blocks that drive its
inputs.

Simulating a discrete system requires that the simulator take a
simulation step at every sample time hit, that is, at integer multiples
of the system’s shortest sample time. Otherwise, the simulator might
miss key transitions in the system’s states. Simulink avoids this by
choosing a simulation step size to ensure that steps coincide with
sample time hits. The simulator performs the time advance using
either a fixed-step or a variable-step discrete solver to solve a discrete
system.45

V. THE PROPOSED CO-SIMULATION TECHNIQUE
FOR CONCEPTUAL AND FUNCTIONAL LEVELS

This section presents an attempt to synchronize between the
Arena simulator for the conceptual level and the Matlab simulator
for the functional level in the case of an event discrete system. The
proposed attempt is based on the simulator’s strategies presented in
Sec. IV. The co-simulation technique is ensured by communication
and synchronization layers.

FIG. 4. Communication layer.

A. Communication layer
The communication layer presents an essential phase for syn-

chronization. It provides a mechanism to ensure a safe and accurate
method to exchange data between simulators. It ensures not only the
data transfer between simulators, but also the context switch. There
are several methods to ensure the data transfer as shared memory,
file, etc. Communication-based on shared memory is used to keep
track of the exchanged data between simulators and to ensure less
time in the communication layer.

Using both ActiveX Automation, VBA technology, and excel
link set up the communication between the Arena and the Mat-
lab. ActiveX automation enables applications to control and man-
age each other and themselves through an application programming
interface (API). The VBA allows the user to write code that auto-
mates other applications without installing a separate programming
language. A Visual Basic programming environment is received in
the Arena; it is accessible through the tools/show the Visual Basic
Editor menu option.

FIG. 5. Synchronization scheme between conceptual and functional simulators.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-7

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 6. The system transition model.

This framework environment was adapted for the co-
simulation platform and it was enhanced to ensure the interaction
between both high-level simulators. The synchronization and the
communication are assured by an application programming inter-
face. Figure 4 shows the communication layer between the Arena
and the Matlab.

In the Arena environment, the processing time is resolved
according to the probability related to the service time. Nevertheless,
in the proposed co-simulation environment, the processing time is
determined through the time recorded by the model at the func-
tional level. Therefore, the simulation of the model will be more
accurate and closely correspond to the real system performance.

The communication layer needs to replace the logic model to
the data in an excel file. Therefore, when an entity at the conceptual
level enters the “ReadWrite” block, it reads the next value of the pro-
cessing time returned by the functional level from the excel file and
assigns this value to the “Call In” entity attribute. After the entity

reads the value from the data file, it moves to the “Delay” module to
delay according to the time data in the excel file.

B. Synchronization layer
The proposed synchronization scheme is based on a conceptual

simulator and functional simulator mechanism independent of the
used tool. The Conceptual simulator is defined as the master because
it generates the dataflow. Figure 5 shows the synchronization scheme
and the context switch possible between simulators.

The conceptual simulator begins the simulation. When a con-
text switch is required, the simulator sends an activation packet
to the functional simulator. The used packet contains the number
of subroutines that should be started. Once the process execution
is ended, the functional simulator uses an interrupt packet based
on service time parameters to perform the context switch. At that
moment, the functional simulator changes status to idle and exe-
cutes an intermediate task. Then, the conceptual simulator moves
from the waiting status to the ready status and advances the time
according to the received service time. The exception is shown when
an interruption has occurred as mentioned in process 3 (arrow 8),
for example. In this case, the interruption mechanism is launched.
Process 3 saves status parameters and changes its status to stop.
This mechanism is ensured by calling the ISR function, which is
responsible for context switch between process 3 and the inter-
rupt function. When the interrupt is ended, process 3 is continued
(arrow 9).

C. The system transition model
The system transition model describes the state of processes

according to the proposed synchronization scheme. The process
changes states as shown in Fig. 6.

The system moves into seven states

∙ Created: In the created state, the process waits to be selected by
the simulator to start the execution.

∙ Ready: The process moves to the ready state if it is loaded and
it is pending to a context switch to start the running step.

FIG. 7. Models using the Arena environment. (a) Motion detection model. (b) Surveillance system based on the suspicious behavior model.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-8

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 8. System model using the Matlab/Simulink environment. (a) Motion detection model and (b) surveillance system based on the suspicious behavior model.

∙ Running: Once the process is selected by the simulator, the
process begins with the running phase. The process, at this
state, can move to blocked, waiting, or terminated states. Only
one process can be selected at the running state at the same
time.

∙ Waiting/Idle: When a context switch occurs, the running pro-
cess moves to the waiting/idle state. In the waiting state, the
simulator advances the time, but in the idle state, the time is
fixed.

∙ Blocked: When a running process receives an interrupt from
the functional simulator, it moves to the blocked state. It returns
to the running state when the interrupt is ended.

∙ Terminated: When the process finishes its execution, the
process moves from the running state to the terminated
state.

VI. EXPERIMENTATIONS
This section presents the evaluation step of the proposed co-

simulation environment. A motion detection system and a suspi-
cious behavior recognition system are used as applications to per-
form the experiment results. This section is divided into five parts.

The first describes systems. The second presents models of systems
at the conceptual level based on the Arena environment. The third
describes systems at the functional level using the Matlab/Simulink
environment. The fourth performs systems at the conceptual
and functional level using the proposed co-simulation interface.
In addition, the fifth discusses the benefits and limits of the system’s
model at the conceptual/functional level.

A. System description
Motion detection and suspicious behavior recognition are pop-

ular systems used in the surveillance field.

FIG. 9. Synchronization interface in the side of Arena.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-9

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 10. Motion detection model based on system-level co-simulation. (a) Arena model side and (b) Matalb/Simulink model side.

FIG. 11. Suspicious behavior recognition system based on system-level co-simulation. (a) Arena model side and (b) Matlab/Simulink model side.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-10

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

Motion detection detects any movement in video streaming.
The functionality of this system is implemented in three steps: color
space conversion, median filter, and sum of absolute differences
(SAD).46

The SAD method is a popular technique for motion detection
in video processing.

The suspicious behavior system recognizes threatened actions.
This system is composed of three steps: object detection, tracking,
and behavior exploration.11

These systems are chosen especially for two reasons:

∙ The motion detection is implemented as an embedded system.
∙ The system manages a flow of data (frames).

B. Modeling and simulation at the conceptual level
In this section, Arena models are proposed. As mentioned in

Fig. 7, models are composed of: one Create module, three Process
modules, and one Dispose module. All processes use the same pro-
cessor as a resource. The Arena’s model for the two systems was stan-
dard because the model presents the time estimation of each mod-
ule independent of the chosen algorithm. If the algorithm changed,
only the service time parameter will be changed in each process
module.

C. Modeling and simulation at the functional level
Matlab/Simulink provides a standard model of the motion

detection system and the suspicious behavior recognition system,
as shown in Fig. 8. These models represent the functional level of
systems. Therefore, models could be modified by changing the used
algorithm. For example, we could replace the median filter by the
Gabor filter and the sum of absolute difference by the matrix com-
parison algorithm in the case of motion detection. This level pro-
vides more details about the system and the choice of algorithms is
critical.

D. Modeling and simulation at the system level
The co-simulation is ensured by interfaces. The purpose of the

interface is to perform the communication layer and the synchro-
nization layer described in Sec. V.

Previous works, cited in the literature section, use the VBA
package and Excel link provided by Arena to perform the com-
munication. This communication technique opens the environment
target and builds it. Therefore, the communication time increases
rapidly and reached bottlenecks for a long time of execution.

We propose a communication layer based on Write/Read pack-
age without using the VBA package. A Write package is used to
make the context switch from Arena to Matlab/Simulink. Then, a
loop structure is performed to verify if a data (service time issued
by Matlab/Simulink) was written in the input file, as mentioned in
Fig. 9.

This interface uses two “ReadWrite” modules and a “Decide”
module tied as a loop structure. It is performed as a synchronization
interface in the Arena side, as shown in Figs. 10(a) and 11(a).

In the Matlab/Simulink side, Figs. 10(b) and 11(b), the syn-
chronization is ensured by the “synchro” interface. This interface is
based on an s-function module written in C language, as shown in
Algorithm 1.

ALGORITHM 1. Synchro.

int ∗Synchro (int A[x])

{

int mem_id;

void∗ ptr_shared_memory

. . .. . .

while (ptr_shared_memory == true

if (ptr_shared_memory != NULL)

{

Process_ID (time_stamp)

If (Interrupt == true)

{

t=time_stamp

Call(ISR)

}

time_stamp = t – tic

}

∗ ptr_shared_memory = time_stamp

return ptr_shared_memory;

}

Figures 10 and 11 show systems modeled using the Arena envi-
ronment at the conceptual level and the Matlab/Simulink environ-
ment at the functional level.

Figure 12 presents the category overview report. These reports
describe results associated with the entities’ waiting time and the
waiting entities’ number. For an embedded system, such informa-
tion is very useful to understand deeply the interchange the pro-
cess and to build intermediary memory. Based on results in Ref.
36, the simulation in the functional level verifies the functional-
ity of each step of the system without highlighting constraints of
the inter-exchange data between steps. In return, results shown by
the Arena environment express some problems. For the motion
detection system, the average waiting time for each entity (frame)
related to processes is about 0.8 ms and the maximum number
of waiting entities (frames in our case) in the queue is about
280 [see Fig. 12(a)].

For the suspicious behavior recognition system, the average
waiting time of the behavior exploration process is about 1500 s and
the maximum number of waiting entities (frames in our case) in the
queue is about 3028 [see Fig. 12(b)]. The number of waiting frames
related to the object detection process and the tracking process is
limited and did not request a large memory. In contrast, the number
of waiting frames in the behavior exploration queue was bigger and
should be the cause of memory insufficiency.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-11

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 12. Category overview report. (a)
Simulation results for the motion detec-
tion system and (b) simulation results for
suspicious behavior recognition.

It is necessary to mention that in the real case, frames would
be removed from the memory due to the lack of space. However,
in the simulation case, especially at the conceptual level, hardware
mechanisms are ignored.

The simulation results prove the necessity to add buffers with
each process to avoid the loss of frames and request a hardware
description to increase the execution speed. Likewise, results high-
light the importance of simulation at the conceptual level and
functional level.

E. Discussion and comparison
This section presents the results of the experiment stage for

5000 s simulation time. Simulations were conducted on a Win-
dows 8 computer with a 2.2 GHz Intel Core i5-5200U CPU.
Table III presents the recorded simulation results in Arena,
Matlab/Simulink, and co-simulation environment. The time is

monitored under the same condition during the replication (REP)
execution.

The experiment results of simulation time prove that the pro-
posed co-simulation Arena/Simulink is decreased in comparison
with Arena about 17%. This rate is important especially when the
simulation time is bigger. This result is well explained because the
service time at the conceptual level is an estimation although the
synchronization time is added to the whole simulation time.

It is necessary to mention that the simulation time of systems
at the functional level is calculated for every replication, and the
context switch is made also for all frames. We suppose that the
motion detection system and suspicious behavior recognition sys-
tem are based on a different camera. For these reasons, the frame
size and quality are different and the context switch should be
performed every replication. As dealt below, the main goal of the
co-simulation conceptual/functional is to use the real service time
calculated by the functional level and not the estimated service time.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-12

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

TABLE III. Performance results using different simulation environments.

Motion detection Suspicious behavior

REP Time (s) REP Time (s)

Arena 20 56.472 20 83.964
Matlab/Simulink 1 8.12 1 45.86
Proposed co-simulation Arena/Simulink 20 48.257 20 70.024

In fact, the service time was known for the first frame and used
identically for the other frames. That is why the simulation time
for the co-simulation environment is a little higher than the Arena
simulation.

Based on the results shown in Fig. 12, the number of entities
in the queue of the SAD process (motion detection system) and the
behavior exploration process (Suspicious behavior recognition sys-
tem) seems to be big and unstable. Simulations are run for a different
duration to verify if the number will be stable. Figure 13 presents the
evolution of entities in queues for a different duration. The shape
of the curve demonstrates that the number of waiting entities is still
increased over time. The curves have an increasing appearance. Con-
sequently, queues related to the discussed processes are overloaded
and this bottleneck will lead to conflicts on memory management.
Therefore, the size of the intermediary memory is not fixed. Know-
ing that in the absence of an intermediary memory between pro-
cesses, the loss of frames will occur when the average processing time
of a frame exceeds the length of the frame. Even if the designer seizes
an intermediary memory for storage to avoid the loss of the frame in
the surpassed case, the problem occurs because the requested size of
the memory is still increasing.

Functional level designers could detect this problem when com-
puting the average processing time of a frame. However, they did not
know if adding or seizing memory represents a solution to this prob-
lem. Then at the physical level, this problem occurs under the form
of hardware conflicts.

Therefore, only in conceptual level simulation, designers could
approve if adding or seizing a memory will solve this problem or not.
The accuracy of the achieved simulation results at this level is condi-
tioned by the accuracy of the service time of the process. For that,
the proposed system-level co-simulation is not only the strongest
method to predict the problem of lack or insufficiency of memory
at the first stage of modeling, but also provides more details about
memory usage.

As a conclusion, the motion detection system and suspicious
behavior recognition system could not be implemented in stan-
dard architecture as PIC board, Arduino, or Raspberry. This sys-
tem should be implemented using the co-design approach [Hard-
ware (HW) and SW description], Graphics Processing Unit (GPU)
accelerator, or multi-processor design.

Considering this discussion, Table IV resumes the benefits and
the limits of each simulation environment.

FIG. 13. Progress of entities in the SAD
queue and behavior exploration queue.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-13

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

TABLE IV. Benefit and limit review of the simulation tool.

Benefits Limits

Conceptual level ∙ Easy to model. The service time is estimated using
(Arena environment) ∙ Pursuit the entity during the simulation. probabilistic functions.

∙ Support the queuing system theory.
∙ The generated default report is rich The model uses only the event’s time independently with

with statistical values. adequate function. In the case of an embedded system,
there are some details that are required to obtain an
acceptable simulation result.

Customization is not supported.

Function level ∙ The execution time (service time terminology Do not considerate the queue size between
(Matlab/Simulink) in conceptual level) is calculated based on the different components.

used function. It is not a prediction.
∙ The model is easily customized. The advance of global simulation time during a long time

is not the purpose of the design at the functional level.

The model could be designed when the system detail
is well known.

Proposed system-level ∙ The service time presents the exact time Do not support the continuous models.
co-simulation (Arena/Simulink) based on functional level results.

∙ Customization/optimization is supported.
∙ The model is designed with favorite details

(fewer details or more details).
∙ Buffer size is assigned to queue status.
∙ Simulation time is decreased by 17%

compared with the Arena simulation time.

VII. CONCLUSION
It is still difficult to simulate the system behavior with suf-

ficient details at the conceptual level. This paper proposed a
new co-simulation interface between the conceptual model imple-
mented in the case of the Arena and the functional model imple-
mented in the case of Matlab/Simulink. A system based on motion
detection was modeled to prove the efficiency of the proposed
contribution.

The main conclusions are that the co-simulation interface
allows developers to benefit from the advantages of the concep-
tual level and the functional level at the same time, especially the
reduction in the time-to-market and the support of the functional
model. The improvement proposed to the V model at the system
level reduces the feedback times requested to correct/improve the
design. The simulation time is slightly larger than the Arena sim-
ulation time due to the added time of the context switch between
simulators. We believe this advancement adds a new dimension
to the simulation modeling approaches. This would allow devel-
opers to customize and optimize their models at the first steps of
modeling.

In the light of this deep study, the proposed system-
level co-simulation technique requests to be extended to sup-
port cooperation at the physical level. This future work propo-
sition will let engineering to model/simulate a heterogeneous
model.

ACKNOWLEDGMENTS
The authors would like to thank the Deanship of Scientific

Research at Majmaah University for funding this Project under No.
1439-33.

The authors declare that there is no conflict of interest regard-
ing the publication of this paper.

DATA AVAILABILITY

The data that support the findings of this study are available
on request from the corresponding author. The data are not publicly
available due to their containing information that could compromise
the privacy of research participants.

REFERENCES
1D. Niyonkuru and G. A. Wainer, “Discrete-event modeling and simulation for
embedded systems,” Comput. Sci. Eng. 17(5), 52–63 (2015) (in English).
2T. Y. Zhu, L. Wang, J. Meng, and IEEE, “The exploitation and discussion of new
mobile healthcare system model based on smart phone,” in 2013 10th IEEE Inter-
national Conference on Networking, Sensing and Control (IEEE, New York, 2013),
pp. 497–502.
3M. Ben Ayed and S. Elkosantini, “An accelerated architecture based on GPU
and multi-processor design for fingerprint recognition,” Int. J. Adv. Comput. Sci.
Appl. 7(3), 337–348 (2016) (in English).

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-14

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1109/mcse.2015.89
https://doi.org/10.14569/ijacsa.2016.070348
https://doi.org/10.14569/ijacsa.2016.070348


AIP Advances ARTICLE scitation.org/journal/adv

4S. Elkosantini, “Toward a new generic behavior model for human centered
system simulation,” Simul. Modell. Pract. Theory 52, 108–122 (2015) (in English).
5F. Fummi, M. Loghi, M. Poncino, and G. Pravadelli, “A cosimulation method-
ology for HW/SW validation and performance estimation,” ACM Trans. Des.
Autom. Electron. Syst. 14(2), 1–32 (2009) (in English).
6T. Ma, S. Ali, and T. Yue, “Modeling foundations for executable model-based
testing of self-healing cyber-physical systems,” Software Syst. Model. 18(5), 2843–
2873 (2019) (in English).
7Y. Tang and N. W. Bergmann, “A hardware scheduler based on task queues for
FPGA-based embedded real-time systems,” IEEE Trans. Comput. 64(5), 1254–
1267 (2015) (in English).
8J. G. Shanthikumar, S. W. Ding, and M. T. Zhang, “Queueing theory for semi-
conductor manufacturing systems: A survey and open problems,” IEEE Trans.
Autom. Sci. Eng. 4(4), 513–522 (2007) (in English).
9M. Dehghanimohammadabadi and T. K. Keyser, “Intelligent simulation: Inte-
gration of SIMIO and MATLAB to deploy decision support systems to simulation
environment,” Simul. Modell. Pract. Theory 71, 45–60 (2017) (in English).
10M. S. Durmus, I. Ustoglu, R. Y. Tsarev, and J. Borcsok, “Enhanced V-model,”
Inf.-J. Comput. Inf. 42(4), 577–585 (2018) (in English).
11M. Ben Ayed, S. Elkosantini, and M. Abid, “An automated surveillance system
based on multi-processor and GPU architecture,” Eng. Technol. Appl. Sci. Res.
7(6), 2319–2323 (2017) (in English).
12M. B. Ayed, F. Bouchhima, L. Zouari, and M. Abid, “An accelerated hardware
software in the loop technique for control units,” Int. J. Mech. Mechatronics Eng.
14(3), 10–21 (2014).
13L. Zouari, M. Ben Ayed, M. Abid, and IEEE, “Embedded control of robot arm
driven by brushless DC motor on FPGA,” in 2014 Second World Conference on
Complex Systems (IEEE, New York, 2014), pp. 722–727.
14L. Zouari, M. Ben Ayed, M. Abid, and IEEE, “Improved performance of a brush-
less DC motor using hardware in the loop control technique,” in 2015 IEEE 12th
International Multi-Conference on Systems, Signals & Devices (IEEE, New York,
2015).
15T. Habib, “System design of mechatronic products models and methods to
utilize mass customization,” thesis report (2014).
16D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of
Embedded Systems (Prentice-Hall, 1994).
17C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems
(Springer Science & Business Media, 2009).
18N. Bombieri, M. Poncino, and G. Pravadelli, Smart Systems Integration and
Simulation (Springer, 2016).
19Siemens Team, “Keiper speeds up product development with Tecnomatix,
Siemens PLM Software’s digital manufacturing technology,” Assem. Autom. News
Item 29(2), 187 (2009) (in English).
20A. D. Smith, “SolidWorks 96 is a solid bet,” Comput. Graph. World 19(11), 91–
101 (1996).
21J. A. Modi, Simulation Modeling and Analysis with ARENA (JSTOR, 2008).
22S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The
Systems Modeling Language (Morgan Kaufmann, 2014).
23A. Khecharem, C. Gomez, J. DeAntoni, F. Mallet, and R. de Simone, “Execu-
tion of heterogeneous models for thermal analysis with a multi-view approach,”
in Proceedings of the 2014 Forum on Specification & Design Languages (IEEE, New
York, 2014).
24M. Bergert and J. Kiefer, “Mechatronic data models in production engineering,”
IFAC Proc. Vol. 43(4), 60–65 (2010).
25C. Meng, S. S. Nageshwaraniyer, A. Maghsoudi, Y.-J. Son, and S. Dessureault,
“Data-driven modeling and simulation framework for material handling systems
in coal mines,” Comput. Ind. Eng. 64(3), 766–779 (2013).
26M. B. Ayed, Y. B. Salah, and M. Abid, “Conceptual/functional Co-simulation
technique for embedded systems,” in 2019 International Conference on Computer
and Information Sciences (ICCIS) (IEEE, 2019), pp. 1–5.

27S. A. Liang and X. F. Yao, “Multi-level modeling for hybrid manufacturing sys-
tems using arena and MATLAB,” in 2008 International Workshop on Modelling,
Simulation and Optimization, WMSO (IEEE Computer Society, Los Alamitos,
2009), pp. 155–159.
28V. Sanz, A. Urquia, F. E. Cellier, and S. Dormido, “Hybrid system modeling
using the SIMANLib and ARENALib modelica libraries,” Simul. Modell. Pract.
Theory 37, 1–17 (2013) (in English).
29S. Suss, A. Strahilov, C. Diedrich, and IEEE, “Behaviour simulation for vir-
tual commissioning using Co-simulation,” in Proceedings of 2015 IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation-ETFA (IEEE,
New York, 2015).
30G. Barbieri, G. Goldoni, R. Borsari, and C. Fantuzzi, “Modelling and simulation
for the integrated design of mechatronic systems,” IFAC-PapersOnLine 48(10),
75–80 (2015).
31W. B. Nordgren, “Flexsim simulation environment,” in Proceedings of the
2003 Winter Simulation Conference (IEEE, New York, 2003), Vols. 1 and 2,
pp. 197–200.
32K. Hitomi, Manufacturing Systems Engineering: A Unified Approach to Manu-
facturing Technology, Production Management and Industrial Economics (Rout-
ledge, 2017).
33B. Chabibi, A. Douche, A. Anwar, and M. Nassar, “Integrating SysML with sim-
ulation environments (Simulink) by model transformation approach,” in 2016
IEEE 25th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE) (IEEE, 2016), pp. 148–150.
34C. D. Pegden and IEEE, “Simio: A new simulation system based on intelligent
objects,” in Proceedings of the 2007 Winter Simulation Conference (IEEE, New
York, 2007), Vols. 1-5, pp. 2272–2279.
35M. Lora, S. Vinco, and F. Fummi, “Translation, abstraction and integration for
effective smart system design,” IEEE Trans. Comput. 68(10), 1525–1538 (2019)
(in English).
36E. A. Lee, M. Niknami, T. S. Nouidui, M. Wetter, and IEEE, “Modeling and
simulating Cyber-physical systems using CyPhySim,” in 2015 Proceedings of
the International Conference on Embedded Software (IEEE, New York, 2015),
pp. 115–124.
37M. Ben Ayed, F. Bouchhima, and M. Abid, “CODIS plus: Co-simulation envi-
ronment for heterogeneous systems,” Control Eng. Appl. Inf. 20(1), 98–107 (2018)
(in English).
38M. Törngren and U. Sellgren, “Complexity challenges in development of cyber-
physical systems,” in Principles of Modeling (Springer, 2018), pp. 478–503.
39M. A. Wehrmeister, J. G. Packer, and L. M. Ceron, “Support for early verification
of embedded real-time systems through UML models simulation,” ACM SIGOPS
Oper. Syst. Rev. 46(1), 73–81 (2012).
40N. Sadeghi, A. R. Fayek, and N. G. Seresht, “A fuzzy discrete event
simulation framework for construction applications: Improving the simula-
tion time advancement,” J. Constr. Eng. Manage. 142(12), 04016071 (2016)
(in English).
41E. A. Catchpole, “MATLAB: An environment for analyzing ring-recovery and
recapture data,” J. Appl. Stat. 22(5-6), 801–816 (1995) (in English).
42T. Altiok and B. Melamed, Simulation Modeling and Analysis with Arena
(Elsevier, 2010).
43L. S. Dias and S. Luís, “Automatic interactive modelling of simulation,” Ph.D.
thesis, written in Portuguese-Modelação Automática Interactiva de Simulação,
2005.
44L. Dias, G. Pereira, and G. Rodrigues, “A shortlist of the most popular discrete
simulation tools,” Simul. News Eur. 17(1), 33–36 (2007).
45F. Bouchhima, G. Nicolescu, E. M. Aboulhamid, and M. Abid, “Generic
discrete–continuous simulation model for accurate validation in heterogeneous
systems design,” Microelectron. J. 38(6-7), 805–815 (2007).
46S. Chandana, “Real time video surveillance system using motion detection,” in
2011 Annual IEEE India Conference (IEEE, 2011), pp. 1–6.

AIP Advances 10, 035113 (2020); doi: 10.1063/1.5140466 10, 035113-15

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1016/j.simpat.2014.12.007
https://doi.org/10.1145/1497561.1497566
https://doi.org/10.1145/1497561.1497566
https://doi.org/10.1007/s10270-018-00703-y
https://doi.org/10.1109/tc.2014.2315637
https://doi.org/10.1109/tase.2007.906348
https://doi.org/10.1109/tase.2007.906348
https://doi.org/10.1016/j.simpat.2016.08.007
https://doi.org/10.31449/inf.v42i4.2027
https://doi.org/10.1108/aa.2009.03329bab.004
https://doi.org/10.1108/aa.2009.03329bab.004
https://doi.org/10.3182/20100701-2-pt-4011.00012
https://doi.org/10.1016/j.cie.2012.12.017
https://doi.org/10.1016/j.simpat.2013.05.005
https://doi.org/10.1016/j.simpat.2013.05.005
https://doi.org/10.1016/j.ifacol.2015.08.111
https://doi.org/10.1109/tc.2019.2909209
https://doi.org/10.1145/2146382.2146396
https://doi.org/10.1145/2146382.2146396
https://doi.org/10.1061/(asce)co.1943-7862.0001195
https://doi.org/10.1080/02664769524630
https://doi.org/10.1016/j.mejo.2007.04.001

