
SoftwareX 13 (2021) 100625

c
c
o
e
n
e
M
f
t
s
p

s

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Aweb-based simulation of discrete-event system of systemwith the
mobile application DEVSimPy-mob
L. Capocchi ∗, J.F. Santucci
SPE UMR CNRS 6134 Lab., University of Corsica, 20250 Corte, France

a r t i c l e i n f o

Article history:
Received 28 February 2020
Received in revised form 31 August 2020
Accepted 6 November 2020

Keywords:
Discrete-event
Mobile application
Modeling
Simulation
Python
Web service

a b s t r a c t

The paper proposes an original architecture to execute discrete-event simulations using mobile devices
(in particular smartphones) and cloud. The originality of the proposed approach is highlighted by
the way the connection between modeling and simulation environment, cloud and smartphones
is performed via a solid web services oriented architecture. This approach has led to a software
implementation based on the discrete-event system specification formalism which allows an explicit
separation between the modeling aspect and the simulation features. Thanks to this explicit sepa-
ration, the discrete-event models defined and validated by simulation are remotely accessible from
smartphones via web services. With this new approach, a smartphone is part of the simulation model
and it can be used for real data acquisition or to control the model during the simulation.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_63
Legal Code License GPL v2.0
Code versioning system used git
Software code languages, tools, and services used python 2.x, Apache Cordova, JQuery-mobile, Ratchet, FusionCharts,

Joint.js, Ionic, SoapUI, Ionic View, Mongo
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual
Support email for questions capocchi@univ-corse.fr

1. Introduction

Modeling and simulation (M&S) as a service (MSaaS) [1] is a
oncept based on the as-a-service model of cloud computing that
ombines web services and M&S applications. MSaaS frameworks
ffer effective simulation environments that can be deployed and
xecuted on-demand by the modelers. The modelers discover
ew opportunities for working together and enhance their op-
rational effectiveness, saving costs and efforts in the process of
&S. In a typical MSaaS platform, modeler can access to M&S

unctionalities as services by using browser or smart client. All
he M&S services are stored in cloud and are accessible using
mart clients that can embed web applications. The approach
roposed in this paper is the same as any other typical MSaaS

∗ Corresponding author.
E-mail addresses: capocchi@univ-corse.fr (L. Capocchi),

antucci@univ-corse.fr (J.F. Santucci).

platform claims in terms of web services access. However, while
the number of MSaaS tools is growing [1–6], they need to propose
some important features in the field of dynamic simulations
realization (add/remove models that change the model structure
during the simulation) and the real data acquisition from sensors
embedded to system of system (SoS) (like ubiquitous systems)
involved in simulations.

On the other hand, M&S of SoS is a discipline dedicated to
the field of engineering and research that tends to be exploited
more and more by modelers, end-users and developers of mobile
applications (or mobile apps) [3,7]. Initially, models and simula-
tors were dependent on a specific application domain and they
were developed by a team of engineers/researchers specialized
in a given field of application (faults simulation in digital circuits,
forest fires simulation, healthcare simulation, etc.). The analysis
and development of a model and its simulator were therefore car-
ried out by specialists whose working environment was confined
to the workstation of a company or a research laboratory. The
ttps://doi.org/10.1016/j.softx.2020.100625
352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100625
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100625&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_63
mailto:capocchi@univ-corse.fr
mailto:capocchi@univ-corse.fr
mailto:santucci@univ-corse.fr
https://doi.org/10.1016/j.softx.2020.100625
http://creativecommons.org/licenses/by/4.0/


L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625

r
d
i
o
m
t

f
o
p
b
a
m
i
s
p
a
u
a
c

l
e
u
a
m
D
t
l
M
r
s

2

t
s

s
e
s
e

s
T
d
m
t
s
l
f
v
m
t
i
t

e
i

esulting computer programs were run locally using local input
ata (e.g. from a test bench). This unconnected mode of operation
s no longer relevant with the advent of M&S involving new type
f ubiquitous SoS that need to be accessible on-line [8]. Further-
ore, this approach does not allow to provide simulation models

hat can be used to a large scale of non-specialist end-users.
The motivation behind this work is twofold: (i) to offer an ef-

ective environment for researchers in order to build and validate
ff-line discrete-event simulation models and automatically de-
loy these models on a on-line server which is remotely accessi-
le from a mobile terminal (mobile application or responsive web
pplication) for simulation (ii) to control and monitor simulation
odels from a mobile terminal which is used firstly to remotely

nteract with them (change model structure, start/stop/suspend
imulation, modify parameters, etc.) via web services in a real
hysical dynamic environment and secondly to perform real data
cquisition from both sensors embedded to SoS involved in sim-
lation models or from the mobile terminal itself (considered
s sensor) in order to collect real data like GPS position, image
apture, etc.
This paper presents the DEVSimPy-mob mobile app that al-

ows the web-based discrete-event simulation of ubiquitous SoS
asily accessible by end-users. This mobile app improves the
se of simulation models and makes them more available to
large scale of non-specialist users. The deployment plan of a
odel, from creation to use, is simplified by using the DEVSimPy/
EVSimPy-mob suite (the tool chain) as a generic collabora-
ive framework to export simulation models that can be simu-
ated from web. This tool chain cannot be categorized as a full
SaaS platform but it offers attractive MSaaS services related to

eal data acquisition and dynamic structure modification during
imulation.

. Problems and background

The proposed approach deals with a set of research ques-
ions involved by the connection between simulation, cloud and
martphones:

• How to interface simulation software with mobile applica-
tion programming interfaces (APIs)?

• How to combine discrete-event simulation, cloud storage
(with web services interfaces) and mobile terminals?

• How to use a generic approach to deal with these problems?

To address the three previous questions, a new web-based
imulation approach including a collaborative discrete-event M&S
nvironment associated with a mobile app in order to remotely
imulate discrete-event models libraries via web services can be
nvisioned.
A possible approach can be defined from the domain of the de-

ign of SoS [9,10] based on web based discrete-event simulation.
he generic proposed approach (Fig. 1) allows to automatically
eploy a simulation model built by a team of engineers on a
obile terminal via web services (smartphone, tablet, etc.). When

he system is modeled and validated (by simulation) in a M&S
oftware, it can be proposed to the end-users to remotely simu-
ate the resulting model of the studied system with data acquired
rom mobile terminal sensors immersed in a real physical en-
ironment. The benefit of the approach and its motivation are
ainly highlighted through the ability (i) to perform data acquisi-

ion from mobile terminal sensors in order to simulate a system
n a real physical environment (ii) to interact dynamically with
he model from the mobile app during simulation.

The introduction of two previous capabilities needs a discrete-
vent framework based on an explicit separation between model-
ng and simulation parts. The DEVS formalism was introduced by

Zeigler in the seventies [11] for modeling discrete-event systems
in a hierarchical and modular way. DEVS formalizes what a model
is, what it must contain, and what it does not contain (experimen-
tation and simulation control parameters are not contained in
the model). Moreover, DEVS is universal and unique for discrete-
event system models. Any system that accepts events as inputs
over time and generates events as outputs over time is equivalent
to a DEVS model. With DEVS, a model of a large system can
be decomposed into smaller component models with couplings
between them. DEVS formalism defines two kinds of models: (i)
atomic models that represent the basic models providing speci-
fications for the dynamics of a sub-system using state transition
functions (ii) coupled models that describe how to couple several
component models (which can be atomic or coupled models)
together to form a new model.

An atomic DEVS model can be considered as an automaton
with a set of states and transition functions allowing the state
change when an event occur or not. When no events occurs,
the state of the atomic model can be changed by an internal
transition function noted δint . When an external event occurs, the
atomic model can intercept it and change its state by applying
an external transition function noted δext . The life time of a
state is determined by a time advance function called ta. Each
state change can produce output message via an output function
called λ. A simulator is automatically associated with the DEVS
formalism in order to exercise instructions of coupled models to
actually generate its behavior.

DEVSimPy (Python Simulator for DEVS) [12,13] is a user-
friendly interface for collaborative M&S of DEVS systems imple-
mented in the Python language [14]. DEVSimPy has been set
up to facilitate both the coupling and the re-usability of the
DEVS models. Moreover, the DEVSimPy architecture is based on a
MVC (Model-View-Controller) pattern coupled with the oriented
aspect programming concept which renders the user interface
and the simulation kernel independent. With DEVSimPy, DEVS
models can be stored in a library in order to be reused and
shared. A set of DEVS models constitutes a shared library due
to the fact that all models can be loaded or updated from an
external location such as from a file server which could be also
considered as a kind of ‘‘on-line model store’’. The DEVSimPy
M&S environment is used as a graphical environment dedicated
to collaborative development and simulation of SoS using DEVS
formalism [15].

We introduce DEVSimPy-mob [16] to give users the option of
executing DEVSimPy models on-line from mobile terminals. The
purpose of the DEVSimPy-mob mobile app is also to give users
of the DEVSimPy environment the ability to simulate the models
already defined onto DEVSimPy. The mobile then becomes a data
source for the simulation models. Indeed, for example, consider-
ing a model that depends on some GPS system the user can select
a model according to its position.

3. Software framework

3.1. Software architecture

According to Fig. 1, engineers use the DEVSimPy environment
to implement DEVSimPy simulation models (in .yaml format)
that they will store on the libraries file server (on the left part
of Fig. 2)). These simulation models, which may depend on DEVS
model libraries and plugins, can be simulated via the web using
a command line version of DEVSimPy (DEVSimPy-nogui) soft-
ware which is accessible through the REST (Representational
State Transfer) [17,18] interface of a DEVSimPy-Rest server1 (see

1 https://github.com/capocchi/DEVSimPy_rest.
2

https://github.com/capocchi/DEVSimPy_rest


L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625

a
w
l
a
t
U

t
t
u
d
w
1
s
c
t
a
w
p
t
s
w

Fig. 1. Proposed generic approach allowing to interface and automatically combine M&S environment with cross-platform mobile app.

Fig. 2. Implementation of bi-directional communication between the DEVSimPy-Rest server and DEVSimPy-mob mobile app client: (p, 1, 2, 3) Simulation process
initialization request using web services. (4, 5, 6) Simulation response to mobile app via Pusher services (6, 7). Simulation data results accessible for visualization.
(8) Simulation data storing process in database (Mongo).

2 in Fig. 2). This interface is implemented in the mobile app
DEVSimPy-mob and is accessible to all users (not necessarily
experts of the M&S) wishing to exploit the simulation models.

From a technical point of view, the DEVSimPy-mob mobile app
llows first of all to interact with web services provided by a REST
eb server. We note that DEVSimPy-mob does not have an off-

ine mode of operation. An Internet connection and a web server
re essential for its use. The user of the DEVSimPy-mob app must
herefore have such a web server which will be invoked with the
RL when starting the application.
The interaction between the DEVSimPy-mob mobile app and

he simulation process – modification of parameters in the ‘‘user
o simulation’’ direction and visualization of results in the ‘‘sim-
lation to user’’ direction – requires the establishment of a bi-
irectional communication between the mobile app and the REST
eb server (Fig. 2). In order to ensure the communication (see p,
, 2, 3 in Fig. 2), the web service which receives a request for
imulation creation, will create a process encapsulating the task
orresponding to the simulation process and a task on receiving
he messages (see p in Fig. 2). At the same time, it will create
UNIX socket to communicate with this receiving task. Thus,
hen the DEVSimPy-mob sends a request from an atomic model
arameter interface for example (see 1 in Fig. 2), this request is
ransmitted by the web service to the reception task via the UNIX
ocket (see 2 in Fig. 2), and the receiving task in turn interacts
ith the simulation task via a shared memory embedded in a

command line version of DEVSimPy (DEVSimPy-no-gui) (see 3 in
Fig. 2).

Regarding the bi-directional communication, the Pusher [19]
service has been used and allows to involve servers that do
not support web-sockets. In fact, the simulation sends its data
via HTTP requests to the Pusher server (see 4 in Fig. 2), which
is responsible for re-transmitting them via web-sockets to sub-
scribers (see 5 in Fig. 2). A first use of this communication is
to send the progress of the simulation. Another use is to send
the simulation results while simulation running. For this purpose,
two new models have been created. The first directly transmits
the results to DEVSimPy-mob via Pusher and the mobile app is
then responsible for making these data accessible. The second
uses a web service for the scientific representation of data: the
Plotly [20] service. This collector sends to the Plotly server not
only the data but also their representation mode (line, bars, 2D,
3D, etc.) and the server provides in return a URL where the
data are accessible for visualization (see 6, 7 in Fig. 2). This URL,
received at the collector level, is transmitted to the mobile app
via Pusher. When a simulation is created, an identifier (ID) is
associated and stored in a database (see 8 in Fig. 2). This ID is
then used in the URLs that make it possible to carry out actions
relating to this simulation.
3



L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625
Fig. 3. Login and list of DEVSimPy models in the DEVSimPy-mob app: (a) The login interface (b) The list of DEVSimPy models (c) A diagram representing a selected
DEVSimPy model ‘‘Arroseur’’.

Fig. 4. Setting model parameters: (d) The atomic DEVS models included in the DEVSimPy model ‘‘Arroseur’’ (e) Setting of the atomic DEVS model ‘‘Arroseur’’ (f) GPS
information from the sensor of the smartphone.

3.2. Software functionalities

The DEVSimPy-mob user interface is presented in Figs. 3–5.
The URL of the REST web server is requested before the com-
munication in the first login page (Fig. 3(a)). Then, a first level
of tabs gives access to: the list of DEVSimPy simulation models
(Models tab in Fig. 3(b)); the list of past and current simulations
(Simulations tab in Fig. 3(b)); the server configuration (Settings
tab in Fig. 3(b)).

A click on a specific model or on a past simulation (associated
with a model) gives access to a second level of tabs:

1. The diagram of the yaml selected simulation model
(Fig. 3(c)).

2. The list of atomic DEVS models included in the selected
simulation model (Fig. 4(d)).

3. The list of past and current simulations of the selected
model.

4. The state of the current simulation (not started, in progress,
paused or finished). If the simulation is not started, we
can choose the duration and the simulation can be started
by clicking on the START button (Fig. 5(g)). When the
simulation is in progress/pause, one will be able to sus-
pend/resume the execution (Fig. 5(h)). When the simula-
tion is finished, the execution report is displayed.
4



L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625

t
a
c
t
G
m
I
w
a
t
d

u
i
a
s
N
o
t
o
T
l

o
(
f

Fig. 5. Simulation settings and results for the model ‘‘Arroseur’’: (g) Starting interface of the simulation (h) Simulation progress (i) Simulation results stored in the
model ‘‘Collector’’.

5. The visualization of the simulation results (Fig. 5(i)).

A mobile device can participate in a simulation through data
acquisition using a click on an atomic DEVS model (from the list
displayed as in Fig. 4(d)) which allows to reach a third level where
are published the parameters of this atomic model (Fig. 4(e)). A
click on the parameter makes it possible to define a new value or
to access the sensor values of the mobile terminal (Fig. 4(f)) or to
access the sensors (camera, GPS, etc.).

4. Implementation and empirical results

The DEVSimPy-mob mobile app is a hybrid application devel-
oped using the Apache Cordova© [21] technology that allows you
o write a cross-platform application based on JavaScript, HTML5
nd CSS [22] languages, and automatically generate the versions
orresponding to the desired platforms (Android or IOS). In order
o facilitate the evolution of the application, we chose to use
oogle’s Angular framework which optimizes the structure and
odularity of the code. We realized the development with the

onic [23,24] platform which facilitates the integration of Angular
ith Cordova [25] that produces a browser version in addition to
mobile version. It provides basic graphical interface elements

hat are adaptable and compliant with the graphic charters of the
ifferent platforms.
The mobile app has been designed, modeled and implemented

sing the Ionic v2 framework and the architecture of the code
s given in Fig. 6(a). The Ionic v2 framework integrates Angular
nd Cordova but it redefines also a new syntax and additional
ervices: in particular the Page, Tabs and Tab components and the
avController service to facilitate navigation (managed as a stack
f pages). Likewise, Ionic, via the ionic-native library, facilitates
he integration of Cordova plugins. We can point out that Ionic
ffers a useful feature for sharing an application in development.
he user-testers install the IonicView [24] app and access the
atest version of the application uploaded by the developers.

The browser version of the DEVSimPy-mob (used in the devel-
pment phase) can be obtained with the command ’ionic serve’
Fig. 6(b)). The www directory which contains the index.html
ile is completed by a www/build directory which contains the

compiled code (all .ts files and 1 app.bundle.js file) and the html
files. Then the command ’ionic run android’ allows to create the
version for Android that can be installed on the mobile terminal.
Finally, the ’ionic upload’ command can be used to upload the
DEVSimPy-mob app to the Ionic platform and thus makes it
available to users of the IonicView app.

The web services provided by the DEVSimPy-Rest server has
been developed in Python language thanks to the Bottle [26]
framework and respects the principles of REST architecture [27].
If, for example, the URL of the service DEVSimPy-Rest is http:
//ticproject.univ-corse.fr on port 8080, then:

• The GET request:
http://ticproject.univ-corse.fr:8080/models returns a JSON
stream [28] containing the list of available DEVSimPy mod-
els.

• The GET request:
http://ticproject.univ-corse.fr:8080/models/model_id
returns a JSON stream containing the description of the
model identified by model_id.

• The POST request:
http://ticproject.univ-corse.fr:8080/simulations loads the
data in the format JSON (’model_name’: my_model_id, ‘sim-
ulated_duration’: 100) makes it possible to create the rela-
tive simulation to the model my_model_id for a 100 DEVS
simulation cycles.

Specifically, when creating a simulation, the web service cre-
ates a process from a command-line call to the DEVSimPy-nogui
simulator with a selected model and a simulation duration. The
web service records the data associated with a simulation (model
name, date, duration, process identifier, etc.) in a Mongo [29]
database. The unique identifier assigned to the simulation by the
database server is embedded in the POST request. This identifier
allows to access to the simulation simu_id by using the web ser-
vice (http://ticproject.univ-corse.fr:8080/simulations/simu_id).
All of the API resources are listed in Appendix and are avail-
able to external client including the DEVSimPy-mob mobile app.
SoapUI [30] has been used to test them and the test suite is fully
described by a single xml file available from https://github.com/

CelineBateauKessler/DEVSimPy_rest/tree/master/test.

5

http://ticproject.univ-corse.fr
http://ticproject.univ-corse.fr
http://ticproject.univ-corse.fr
http://ticproject.univ-corse.fr:8080/models
http://ticproject.univ-corse.fr:8080/models/model_id
http://ticproject.univ-corse.fr:8080/simulations
http://ticproject.univ-corse.fr:8080/simulations/simu_id
https://github.com/CelineBateauKessler/DEVSimPy_rest/tree/master/test
https://github.com/CelineBateauKessler/DEVSimPy_rest/tree/master/test
https://github.com/CelineBateauKessler/DEVSimPy_rest/tree/master/test


L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625

(
t

n
u
t
a
t
t
u
s
i
l
p
t
p
b
(
s

5

v
s
w
s
w
r
o

t
V
a
a
f
m
D

Fig. 6. (a) DEVSimPy-mob Ionic code architecture: (1) Model and simulation types definition (2) Ionic pages (3) Each page is composed of a template (.html), a style
.scss) and a controller (.ts) (4) Services (5) Each service has an associated .ts file (6) app.ts allows to define services that will be included in the pages and to define
he first page of the mobile app. (b) Code structure after a build from Ionic serve command.

The advantage of using simulation tools via web services is not
ew [31–33]. In [33] the authors question the potential impact of
sing these services with respect to the modeling methodology
hat is used. They conclude by noting that the combination of web
nd simulation surely lead to change the traditional approaches
o the modeling of SoS in the future. On the other hand, in [34]
he authors emphasize the importance of simulation based on the
se of web services but also the arrival of ubiquitous systems
uch as smartphones, tablets, etc. Of course this introduces issues
nvolved in real time interaction of simulation tools at the user
evel. Nowadays, it is obvious that tools and approaches are
roposed in order to model and simulate ubiquitous systems
hrough the intermediary of web services. These tools and ap-
roaches allow to integrate the simulation as a service accessible
y mobile terminal (smartphones) or to integrate mobile terminal
or components embedding sensors) as a source of data for the
imulation [35].

. Illustrative examples

The DEVSimPy/DEVSimPy-mob suite has been used to design,
alidate and interact with an ubiquitous system which is a smart
prinkler. This system is intended to optimize the amount of
ater consumed by watering using several input data such as
oil humidity and weather forecasts. It uses a solenoid valve to
atering. The user can view the evolution of the soil humidity
ate, the activity of the solenoid valve and can force the start/stop
f the watering using the DEVSimPy-mob mobile app.
The first step of the modeling process consists in describing

he sprinkler component as an atomic DEVS model in the DE-
SimPy environment. The state set is: active/inactive watering
nd on/off/auto mode. The input set is the soil humidity rate
nd the weather forecast. The output set is the on/off command
or watering. In order to validate the decision algorithms, we
ust model the experimental frame of the sprinkler model with

valve model (Electrovale in Fig. 7), a weather web service model
(WeatherWebService in Fig. 7) and a rain model (Rain in Fig. 7).

The Ground model takes water flows at the input and produces
soil humidity rate information considering a certain evaporation.
The Electrovalve is a binary model: if it receives the command
‘on’, it produces a flow D; if it receives the command ‘off’, it
produces a zero flow. Both Ground and Electrovalve models are
combined in a coupled model called SensorActuator. The Rain and
WeatherWebService models are generators that run scenarios
described in a file (in date/message form). A test scenario consists
in simulating a drought period with forecast rain (2 input files for
Rain and WeatherWebService models).

Once the decision algorithms have been validated using sim-
ulation data, the next step is to integrate the real data and the
interaction (command) with the simulation model via DEVSimPy-
mob. To do this, each model of the experimental framework
is replaced by its interface model — the Phidgets© SBC that
embeds humidity and solenoid valve sensors (Single Board Com-
puter) [36] for the SensorActuator model and a weather web
service for the ‘‘WeatherWebService’’ which have been already
implemented in libraries.

The Phidgets is an embedded system with a Linux OS of Debian
type and a connection interface that can accept sensors. It is
part of the family of components like ©,2 Raspberry©3 or Gad-
geteer©4 allowing to build communicating object systems. The
Phidgets embeds a DHC (Dynamic Host Configuration Protocol)
client, a web services server, an SSH server and can be accessible
in ‘‘Remote’’ mode thanks to its ip address and a port which is by
default port 5001. It is also possible to make it a wifi access point.
There is an API in Python language which allows among other
things to access the Phidgets in ‘‘Remote’’ mode and therefore to
the sensors/actuators connected to it. It is this API which is used
in the yaml models simulated by DEVSimPy-mob.

2 https://www.arduino.cc.
3 https://www.raspberrypi.org.
4 http://www.netmf.com/gadgeteer.
EVSimPy by using a ground model (Ground in Fig. 7), a solenoid

6

https://www.arduino.cc
https://www.raspberrypi.org
http://www.netmf.com/gadgeteer


L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625

o
f
D
s
D
m
w
m

6

a
m
c
t
a

t
a
b
d
w
s
i

Fig. 7. DEVSimPy simulation model of the smart sprinkler system with the Sen-
sorActuator coupled model composed of the Ground and Electrovale (solenoid
valve) atomic DEVS models.

In addition, we goes into real time simulation mode instead
f simulated time and the simulation model works as an in-
inite simulation loop. The integration of the interaction with
EVSimPy-mob is automatic: once ported to the DEVSimPy-Rest
erver, the model is accessible to the user in bi-directional mode.
EVSimPy-mob allows you to view the activity of the sprinkler
odel using the collector (Fig. 5(i)) and allows the user to force
atering by modifying the mode parameter of the ‘‘Arroseur’’
odel during the simulation (Fig. 5(e)).

. Discussion

M&S is a discipline first of all oriented towards engineering
nd research, but it tends since the very last years to be used
ore and more by users and developers of mobile apps through
loud storage and web services [3,7]. Recent developments in
he cloud computing field and service-oriented architectures offer
dvances to better utilize M&S capabilities.
The proposed approach in this paper can be compared to

he MATLAB © Web Apps one [37] that are web apps designed
nd compiled into the MATLAB software suite in order to propose
rowser-based web apps to end-users which are not MATLAB
evelopers. MATLAB Compiler lets you share MATLAB Web apps
ith end-users who do not have MATLAB software. The Fig. 8
hows the workflow proposed by the MATLAB software suite ded-
cated to create a MATLAB web app. First off all, the MATLAB App

Designer is used to implement the web app interface. Then, the
code is compiled with a MATLAB compiler in order to deployed
the complied package in a MATLAB Web App Server. The web
app is available through an url and it can be shared via a classic
browser. This approach needs to install previously the web app
server.

The proposed approach differs from MATLAB by the possibility
to inject real data to the simulation model settings using mobile
terminal sensors. This is not possible with the MATLAB Web App
solution which is browser-based. Concerning the development
software development aspect, MATLAB needs to compile the Web
App design in order to build an archive compatible with the
MATLAB Web Server. With the proposed approach, there is no
compilation phase, the model is automatically exported with-
out transformation (compilation) into the Web server. The only
thing that is required is to import all dependencies with the
libraries of models. This task is achieved only once. Also when
the Web App is developed, one need to have in mind some
user features such as ability to change parameter values during
running, etc. These difficulties in making changes are proposed
by MATLAB but they do not depend on the real data coming
from sensors as proposed by our approach. Moreover, displaying
graphics in MATLAB App Designer requires a different workflow
which can be included only in the MATLAB command line. With
the proposed approach, the user can implement a large kind of
observers (collector, QuickScope, etc.) in order to visualize its
specific simulation results.

The DEVSimPy-mob proposed approach improves the use of
simulation models and makes them more available to a large
scale of non-specialist users. The deployment plan of a model,
from creation to use, is simplified by using the DEVSimPy/
DEVSimPy-mob suite (the tool chain) as a generic collaborative
framework to export simulation models that can be simulated
from web. This tool chain cannot be categorized as a full MSaaS
platform but it offers attractive MSaaS services related to real
data acquisition and dynamic structure modification during sim-
ulation. Accordingly, based on the literature consulted, no com-
prehensive tool exists that would allow a remote simulation of
discrete-events models from mobile terminal with the addition
of the possibility to inject real data in the simulation and to
interact with the behavior and the structure of the simulation
model always from mobile terminal during a simulation.

The mobile terminal becomes a source of input data for sim-
ulated models and allows the user to feed its simulations with
real data. For example, initially the user can select a model
depending on its position or the context in which it is located
(mobility). So the selected model is dependent on real data that
may be used by the simulation. Connected objects and mobile
devices (smartphone) can communicate in a bi-directionally way
with the simulation models. The possibilities offered by this new
connectivity may be, for example, the validation of models from
real simulation data. Conceptually, the proposed approach opens
an interesting way around the methodology of M&S ubiquitous
systems. Indeed, from the DEVS formalism point of view, the
experimental framework is now real in the sense that the data
of the simulation can be contextualized thanks to the use of the
sensors embedded in the mobile devices or more generally in the
connected objects.

Fig. 8. Web apps with MATLAB Compiler workflow. App designers compile their design in order to deploy a MATLAB web apps stored in a dedicated MATLAB web
server.
7



L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625

w
w
t
l
t
d
a
T
e
p
a
a
p
c
M
e
t
b
b
i
t
t
o
n

Table A.1
Request methods, URL ressource paths and expected results for the DEVSimPy-REST API.
CRUD action — Resource path Results

GET - /models Get the list of available models including their name, label, size and
date creation

POST - /models Model creation from attached file (YAML)

DELETE - /models/<model_name> Model removing from its model_name

GET - /models/<model_name> Get a JSON flow of the model_name model for representation and
composition

GET - /models/<model_name>/atomics Get the list of DEVS atomic model included in the model_name
model

GET - /models/<model_name>/atomics/<atomic_name>/params Get the JSON flow of all parameters as key/value for the
atomics_name model included into the model_name model

PUT - /models/<model_name>/atomics/<atomic_name>/params Update of parameters for the atomic_name DEVS atomic model of
the model_name model using new values specified by
{’param_name’:param_value}

GET - /simulations Get the list of simulations (running, suspended and finished)

POST - /simulations Simulation process creation by given a new model_name and a new
simulated_duration

GET - /simulation/<simulation_name> Get JSON flow of the simulation status (RUNNING/PAUSED/FINISHED
or UNKNOWN) from the simulation_name

PUT - /simulation/<simulation_name>/pause Suspend the simulation specified by the simulation_name

PUT - /simulation/<simulation_name>/resume Resume the simulation specified by the simulation_name

PUT /simulation/<simulation_name>/kill Kill the simulation specified by the simulation_name

PUT - /simulation/<simulation_name>/atomics/<atomic_name>/params Update of parameters for the atomic_name DEVS atomic model of
the simulation_name simulation using new values specified by
{’param_name’:param_newvalue}

GET - /simulation/<simulation_name>/results/<result_filename> Get the JSON flow for the visualization of simulation results as
time/value

POST - /codeblocks Model creation from code file (.py, .amd or .cmd)

POST - /blocks/<block_name> Update of the code for the existing model block_name using the
new specified input code file

DELETE /blocks/<block_name> Code model removing from its block_name

7. Conclusion

This paper presents DEVSimPy-mob mobile app associated
ith the M&S DEVSimPy environment as a software suite for
eb-based discrete-event simulation from mobile app. Thanks to
his approach, the DEVS models defined and validated by simu-
ation using the DEVSimPy framework are remotely accessible by
he DEVSimPy-mob mobile app. DEVSimPy-mob is based on bi-
irectional communication based on the use of web services that
llow a user to control models before and during their simulation.
his mobile app simulates DEVSimPy models – defined in a DEVS
xperimental framework – from real data that can come from
latforms embedding sensors. Actually, the DEVSimPy-mob is
vailable from GitHub [13]. It has been used to design, validate
nd interact with the ubiquitous system which is presented in the
aper. Furthermore, the DEVSimPy-mob has also been used in the
ontext of the problematic raised in the framework of Ballistic
issile Defence System in the United States [38]. We plan to
volve the DEVSimPy-Rest server by replacing the REST API with
he new open source GraphQL [39] universal language in order to
uild a back-end and integrate it into the front-end more easily
ut also to make quick changes with less risk of crash. GraphQL
s based on a simple idea: to move the assembly of a query from
he server to the client. The interest is that DEVSimPy-mob sees
he whole strongly typed graph of services instead of a multitude
f REST services and builds the required request according to its
eeds.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors received no specific funding for this work.

Appendix. DEVSimPy-Rest API specification

See Table A.1.

References

[1] Procházka D, Hodický J. Modelling and simulation as a service and concept
development and experimentation. In: Proc. of international conference on
military technologies. 2017, p. 721–7. http://dx.doi.org/10.1109/MILTECHS.
2017.7988851.

[2] Cayirci E. Modeling and simulation as a cloud service: A survey. In: Proc.
of winter simulations conference. 2013, p. 389–400. http://dx.doi.org/10.
1109/WSC.2013.6721436.

[3] St-Aubin B, Yammine E, Nayef M, Wainer G. Analytics and visualization
of spatial models as a service. In: Proc. of the 2019 summer simulation
conference. SummerSim’19, San Diego, CA, USA: Society for Computer
Simulation International; 2019, p. 39:1–39:12.
8

https://github.com/capocchi/DEVSimPy_mob
http://dx.doi.org/10.1109/MILTECHS.2017.7988851
http://dx.doi.org/10.1109/MILTECHS.2017.7988851
http://dx.doi.org/10.1109/MILTECHS.2017.7988851
http://dx.doi.org/10.1109/WSC.2013.6721436
http://dx.doi.org/10.1109/WSC.2013.6721436
http://dx.doi.org/10.1109/WSC.2013.6721436
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb3


L. Capocchi and J.F. Santucci SoftwareX 13 (2021) 100625
[4] Zehe D, Knoll A, Cai W, Aydt H. Semsim cloud service: Large-scale urban
systems simulation in the cloud. Simul Model Pract Theory 2015;58:157–
71. http://dx.doi.org/10.1016/j.simpat.2015.05.005, Special issue on Cloud
Simulation.

[5] Cayirci E, Karapinar H, Ozcakir L. Joint military space operations simulation
as a service. In: Proc. of 2017 winter simulation conference. 2017, p.
4129–40. http://dx.doi.org/10.1109/WSC.2017.8248121.

[6] Bocciarelli P, D’Ambrogio A, Giglio A, Paglia E. Model transformation
services for msaas platforms. In: Proc. of the model-driven approaches
for simulation engineering symposium. Mod4Sim ’18, San Diego, CA, USA:
Society for Computer Simulation International; 2018, p. 12:1–12:12.

[7] Wang S, Wainer G. Modeling and simulation as a service architecture for
deploying resources in the cloud. Int J Model Simul Sci Comput 2016;7(1).
http://dx.doi.org/10.1142/S1793962316410026.

[8] Barbosa JLV. Ubiquitous computing: Applications and research oppor-
tunities. In: Proc. of IEEE international conference on computational
intelligence and computing research. 2015, p. 1–8. http://dx.doi.org/10.
1109/ICCIC.2015.7435625.

[9] Khaitan SK, McCalley JD. Design techniques and applications of cyberphys-
ical systems: A survey. IEEE Syst J 2015;9(2):350–65. http://dx.doi.org/10.
1109/JSYST.2014.2322503.

[10] Nielsen CB, Larsen PG, Fitzgerald J, Woodcock J, Peleska J. Systems of
systems engineering: Basic concepts, model-based techniques, and re-
search directions. ACM Comput Surv 2015;48(2):18:1–41. http://dx.doi.org/
10.1145/2794381.

[11] Zeigler BP. Theory of modeling and simulation. Academic Press; 1976.
[12] Capocchi L, Santucci JF, Poggi B, Nicolai C. DEVSimpy: A collaborative

python software for modeling and simulation of DEVS systems. In: Proc.
of 20th IEEE international workshops on enabling technologies. 2011, p.
170–5. http://dx.doi.org/10.1109/WETICE.2011.31.

[13] Capocchi L. DEVSimPy, https://github.com/capocchi/DEVSimPy, Online;
[Accessed 10 October 2019].

[14] Nagpal A, Gabrani G. Python for data analytics, scientific and techni-
cal applications. In: Proc. of amity international conference on artificial
intelligence. 2019, p. 140–5. http://dx.doi.org/10.1109/AICAI.2019.8701341.

[15] Zeigler BP, Muzy A, Kofman E. Theory of modeling and simulation. third
ed. Academic Press; 2019, http://dx.doi.org/10.1016/B978-0-12-813370-
5.00003-1.

[16] Capocchi L. DEVSimPy-mob, https://github.com/capocchi/DEVSimPy_mob,
Online; [Accessed 10 October 2019].

[17] Belkhir A, Abdellatif M, Tighilt R, Moha N, Guéhéneuc Y, Beaudry E. An
observational study on the state of REST API uses in android mobile
applications. In: Proc. of IEEE/ACM 6th international conference on mobile
software engineering and systems. 2019, p. 66–75. http://dx.doi.org/10.
1109/MOBILESoft.2019.00020.

[18] Segura S, Parejo JA, Troya J, Ruiz-Cortés A. Metamorphic testing of RESTful
web APIs. In: Proc. of IEEE/ACM 40th international conference on software
engineering. 2018, p. 882. http://dx.doi.org/10.1145/3180155.3182528.

[19] pusher group. Pusher, https://github.com/pusher, Online; [Accessed 10
October 2019].

[20] plotly group. Plotly, https://github.com/plotly/plotly.py, Online; [Accessed
10 October 2019].

[21] Camden RK. Apache cordova in action. first ed. Greenwich, CT, USA:
Manning Publications Co.; 2015.

[22] Huang G, Liu X, Ma Y, Lu X, Zhang Y, Xiong Y. Programming situational
mobile web applications with cloud-mobile convergence: An internetware-
oriented approach. IEEE Trans Serv Comput 2019;12(1):6–19. http://dx.doi.
org/10.1109/TSC.2016.2587260.

[23] ionic group. Ionic, https://github.com/ionic-team/ionic, Online; [Accessed
10 October 2019].

[24] Justin J, Jude J. Learn ionic 2: Develop multi-platform mobile apps. first
ed. USA: Apress; 2017.

[25] Yang Y, Zhang Y, Xia P, Li B, Ren Z. Mobile terminal development plan
of cross-platform mobile application service platform based on ionic and
cordova. In: Proc. of international conference on industrial informatics
- computing technology, intelligent technology, industrial information
integration. 2017, p. 100–3. http://dx.doi.org/10.1109/ICIICII.2017.28.

[26] Framework BMW. Bottle. 2015, https://github.com/bottlepy/bottle.
[27] Sletten B. Resource-oriented architecture patterns for webs of data. In:

Resource-oriented architecture patterns for webs of data. Morgan &
Claypool; 2013.

[28] Martins JA, Mazayev A, Correia N. Hypermedia APIs for the web of
things. IEEE Access 2017;5:20058–67. http://dx.doi.org/10.1109/ACCESS.
2017.2755259.

[29] Chodorow K. MongoDB: The definitive guide. O’Reilly Media, Inc.; 2013.
[30] Nandan P. Mastering soapUI. Packt Publishing; 2016.
[31] Alfonseca M, de Lara J, Vangheluwe H. Web-based simulation of systems

described by partial differential equations. In: Proc. of the winter simu-
lation conference, vol. 1. 2001, p. 629–36. http://dx.doi.org/10.1109/WSC.
2001.977348.

[32] Al-Zoubi K, Wainer G. Using REST web-services architecture for distributed
simulation. In: Proc. of ACM/IEEE/SCS 23rd workshop on principles of
advanced and distributed simulation. 2009, p. 114–21. http://dx.doi.org/
10.1109/PADS.2009.16.

[33] Page EH, Buss A, Fishwick PA, Healy KJ, Nance RE, Paul RJ. Web-based
simulation: Revolution or evolution?. ACM Trans Model Comput Simul
2000;10(1):3–17. http://dx.doi.org/10.1145/353735.353736.

[34] Taylor SJE, Khan A, Morse KL, Tolk A, Yilmaz L, Zander J. Grand challenges
on the theory of modeling and simulation. In: Proc. of the symposium on
theory of modeling & simulation - DEVS integrative M&S symposium. DEVS
13, San Diego, CA, USA: Society for Computer Simulation International;
2013, p. 34:1–8.

[35] Campillo-Sanchez P, Serrano E, Botía JA. Testing context-aware services
based on smartphones by agent based social simulation. J Ambient Intell
Smart Environ 2013;5(3):311–30.

[36] Greenberg S, Fitchett C. Phidgets: Easy development of physical interfaces
through physical widgets. In: Proc. of the 14th annual ACM symposium
on user interface software and technology. UIST ’01, New York, NY, USA:
ACM; 2001, p. 209–18. http://dx.doi.org/10.1145/502348.502388.

[37] Uran S, Jezernik K. MATLAB Web server and M-file application. In: 12th
international power electronics and motion control conference. 2006, p.
2088–92. http://dx.doi.org/10.1109/EPEPEMC.2006.4778715.

[38] Kessler C, Capocchi L, Zeigler BP, Santucci J. Generic architecture for
interactive mobile simulation of parallel DEVS models: A missile defense
application. In: Proc. of winter simulation conference. 2017, p. 1515–26.
http://dx.doi.org/10.1109/WSC.2017.8247893.

[39] graphql group. Graphql, https://github.com/graphql, Online; [Accessed 10
October 2019].
9

http://dx.doi.org/10.1016/j.simpat.2015.05.005
http://dx.doi.org/10.1109/WSC.2017.8248121
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb6
http://dx.doi.org/10.1142/S1793962316410026
http://dx.doi.org/10.1109/ICCIC.2015.7435625
http://dx.doi.org/10.1109/ICCIC.2015.7435625
http://dx.doi.org/10.1109/ICCIC.2015.7435625
http://dx.doi.org/10.1109/JSYST.2014.2322503
http://dx.doi.org/10.1109/JSYST.2014.2322503
http://dx.doi.org/10.1109/JSYST.2014.2322503
http://dx.doi.org/10.1145/2794381
http://dx.doi.org/10.1145/2794381
http://dx.doi.org/10.1145/2794381
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb11
http://dx.doi.org/10.1109/WETICE.2011.31
https://github.com/capocchi/DEVSimPy
http://dx.doi.org/10.1109/AICAI.2019.8701341
http://dx.doi.org/10.1016/B978-0-12-813370-5.00003-1
http://dx.doi.org/10.1016/B978-0-12-813370-5.00003-1
http://dx.doi.org/10.1016/B978-0-12-813370-5.00003-1
https://github.com/capocchi/DEVSimPy_mob
http://dx.doi.org/10.1109/MOBILESoft.2019.00020
http://dx.doi.org/10.1109/MOBILESoft.2019.00020
http://dx.doi.org/10.1109/MOBILESoft.2019.00020
http://dx.doi.org/10.1145/3180155.3182528
https://github.com/pusher
https://github.com/plotly/plotly.py
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb21
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb21
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb21
http://dx.doi.org/10.1109/TSC.2016.2587260
http://dx.doi.org/10.1109/TSC.2016.2587260
http://dx.doi.org/10.1109/TSC.2016.2587260
https://github.com/ionic-team/ionic
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb24
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb24
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb24
http://dx.doi.org/10.1109/ICIICII.2017.28
https://github.com/bottlepy/bottle
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb27
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb27
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb27
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb27
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb27
http://dx.doi.org/10.1109/ACCESS.2017.2755259
http://dx.doi.org/10.1109/ACCESS.2017.2755259
http://dx.doi.org/10.1109/ACCESS.2017.2755259
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb29
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb30
http://dx.doi.org/10.1109/WSC.2001.977348
http://dx.doi.org/10.1109/WSC.2001.977348
http://dx.doi.org/10.1109/WSC.2001.977348
http://dx.doi.org/10.1109/PADS.2009.16
http://dx.doi.org/10.1109/PADS.2009.16
http://dx.doi.org/10.1109/PADS.2009.16
http://dx.doi.org/10.1145/353735.353736
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb34
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb35
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb35
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb35
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb35
http://refhub.elsevier.com/S2352-7110(20)30338-1/sb35
http://dx.doi.org/10.1145/502348.502388
http://dx.doi.org/10.1109/EPEPEMC.2006.4778715
http://dx.doi.org/10.1109/WSC.2017.8247893
https://github.com/graphql

	A web-based simulation of discrete-event system of system with the mobile application DEVSimPy-mob
	Introduction
	Problems and background
	Software framework
	Software architecture
	Software functionalities

	Implementation and empirical results
	Illustrative examples
	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix. DEVSimPy-Rest API Specification
	References


