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autonomous helicopter using hybrid enhanced artificial bee 

colony algorithm 

 

Abstract 

Unmanned autonomous helicopter (UAH) path planning problem is an important component of the UAH mission planning system. 

Aiming to reduce the influence of non-complete ground threat information on UAH path planning, a ground threat prediction-based 

path planning method is proposed based on artificial bee colony (ABC) algorithm by collaborative thinking strategy. Firstly, a dynamic 

threat distribution probability model is developed based on the characteristics of typical ground threats. The dynamic no-fly zone of the 

UAH is simulated and established by calculating the distribution probability of ground threats in real time. Then, a dynamic path 

planning method for UAH is designed in complex environment based on the real-time prediction of ground threats. By adding the 

collision warning mechanism to the path planning model, the flight path could be dynamically adjusted according to changing no-fly 

zones. Furthermore, a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy. The proposed algorithm 

applies the leader-member thinking mechanism to guide the direction of population evolution, and reduces the negative impact of local 

optimal solutions caused by collaborative learning update strategy, which makes the optimization performance of ABC algorithm more 

controllable and efficient. Finally, simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path 

planning method. 

Keywords: UAH; ABC; Path planning; Ground threat prediction; Hybrid enhanced 

 

1. Introduction 

In recent years, it has been demonstrated that unmanned autonomous helicopter (UAH) represents one of 

the most challenging and high-potential equipments in aeronautics [1-3]. Meanwhile, the path planning mission 

is becoming one of the key technologies of UAHs and has been widely investigated by scholars around the world 

[4]. The main objective of UAH path planning is to design a flight path to reach the target point with minimal 

comprehensive costs, i.e., minimal probability of being destroyed while meeting the UAH performance 

requirements. The current solution is to plan and generate flight paths offline based on available global and local 

information, and subsequently adjust the pre-planned paths based on changes in environment, and mission, etc 

[5]. However, how to combine all possible constraints to generate flight paths efficiently and stably is still an open 

problem [6]. 

In general, the path planning problems of UAH can be divided into global flight path planning and local 

dynamic flight path planning [7]. Before the UAH takes off, the ground command system pre-plans a flight path for 

UAH on the mission based on the current information available about the mission. So far, many achievements 

have been made in the research of static path planning in known environment, such as artificial potential field 
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(APF) [8], rapidly-exploring random tree (RRT) [9], A* algorithm [10], voronoi diagram [11] and probabilistic 

roadmaps (PRM) [12]. In addition, with the advancement of technology, a large number of computational 

intelligence (CI) methods have emerged one after another [13,14]. In Ref. [15], a new algorithm named spherical 

vector-based particle swarm optimization (SPSO) was developed to deal with the problem of path planning for 

unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple threats. In [16], an improved 

fireworks algorithm (FWA) and particle swarm optimization (PSO) cooperation algorithm were designed to deal 

with the UAV global path planning problem. In Ref. [17], a path planning method was proposed based on the 

multi-strategy evolutionary learning artificial bee colony (MSEL-ABC) algorithm for producing the UAH path 

planning problem. The results of numerous studies have shown that the above algorithms and their 

improvements can indeed solve the global path planning problem [18]. 

However, the modern air combat environment is so varied that the ideal path planning environment does 

not exist. In order to ensure that UAH can survive in a dynamic environment, its flight path must be dynamically 

adjusted according to the actual situation, i.e., local dynamic planning [19]. The common planning methods 

include dynamic path planning method [20], artificial neural network method [21], fuzzy logic method [22], 

velocity obstacle method [23] and so on. In Ref. [24], a dynamic path planning approach based on neural 

networks was proposed to evacuation planning in large public buildings. In Ref. [25], the hybrid technology of the 

dynamic window approach (DWA) and the teaching learning-based optimization (TLBO) was designed for the NAO 

humanoid robot navigation. In Ref. [26], a hazardous flight region prediction system for small UAVs operated in 

urban areas was developed using a deep neural network (DNN) to support a risk assessment and safe trajectory 

planning. Unlike offline global path planning, online dynamic planning depends more on the performance of 

on-board sensors and computers. Real-world experience shows that for unexpected unknown threats, frequent 

dynamic planning will inevitably reduce the stability and reliability of the planning system. In fact, the occurrence 

of this situation is caused by the inadequacy of the global planning system to grasp the battlefield threat 

information. 

Obviously, battlefield information is an important guarantee to support the UAH path planning system. 

Information about enemy threats is obtained through pre-war intelligence collection and analysis on the one 

hand [27]. On the other hand, it relies on real-time detection by UAH's own sensor equipment during mission 

execution. However, pre-war information gathering and dynamic threat detection exacerbate the strain on the 

path planning system. More reliable ground threat information will directly affect the effectiveness of the UAH 

path planning system [28]. In other words, the global path planning system with more threat information 

reference can reduce the number of local dynamic planning, and the whole flight process of UAH can be safer and 

more stable. Therefore, it is necessary and important to intelligently and efficiently process and predict 

non-complete ground threat information based on the available information and compensate for the adverse 

effects caused by ground threats in global path planning. 
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In this paper, we focus on the path planning problem for UAH based on ground threat prediction. The 

designed dynamic ground threat prediction algorithm and hybrid enhanced ABC algorithm are able to provide a 

safe flight path for UAH. The main innovations and contributions of this work are summarized as follows: 

(1) A ground threat prediction method based on probability density distribution is proposed. The distribution 

probabilities of ground threats are calculated and updated in real time based on their instantaneous orientation, 

velocity, intent and other non-complete information. 

(2) A probabilistic diffusion-based dynamic no-fly zones modelling approach is designed to support path 

planning for UAH with the ground threat prediction. The boundaries of the dynamic no-fly zone are determined 

and updated in real time by extracting the edge of the probability spread area. 

(3) To process the UAH path planning efficiently based on ground threat prediction, a hybrid enhanced ABC 

algorithm based on collaborative thinking strategy is proposed. Through the leader-member thinking mechanism 

and collaborative learning strategy, the negative impact of the local optimal solution is weakened, which 

effectively improves the quality of the UAH flight path. 

The rest of this paper is arranged as follows. Section 2 demonstrates the problem formulation. Section 3 

investigates the ground threat prediction-based path planning. Section 4 investigates the hybrid enhanced ABC 

algorithm based on collaborative thinking strategy. Section 5 provides the feasibility and effectiveness of the 

proposed method by simulation experiment. Finally, a brief summary is given in Section 6. 

 

2. Problem formulation 

 

Fig.1. Schematic diagram of path planning classification. 

As shown in Fig. 1, the path planning problems can be divided into global planning and local planning [29]. 

The globally planned flight paths provide the relevant reference confidence for the dynamic adjustment of local 

planning. In practice, global path planning faces the problem of difficulty in obtaining accurate threat information. 

In addition, local planning poses a huge challenge to the performance and reliability of the computer and sensors. 
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Therefore, in order to reduce the frequency of UAH local dynamic planning and improve the stability of the path 

planning system, it is particularly important to accurately predict dynamic ground threats in global planning. 

 

Fig. 2. Framework of ground threat prediction-based UAH path planning. 

To solve the above problems, a path planning method based on ground threat prediction is proposed in this 

paper. As shown in Fig. 2, the proposed path planning method of the UAH can be divided into the following three 

modules. 

➢ Ground threat prediction module 

In this module, the probability of dynamic threat distribution is calculated based on non-complete threat 

information. The range of possible the ground threat is simulated and predicted, thus the UAH dynamic no-fly 

zone can be established. 

➢ Path planning module 

The module solves the UAH flight path by a hybrid enhanced ABC algorithm based on the collaborative 

thinking strategy. By embedding the collision warning mechanism into the loop of the optimization algorithm, it 

improves the efficiency of dynamic path planning. 

➢ Algorithm enhancement module 

In this module, the traditional ABC algorithm can be enhanced by introducing human intelligence. The 

optimization performance of ABC algorithm can be upgraded by introducing leader-member thinking mechanism 

and collaborative learning update strategy. 

 

3. Dynamic ground threat prediction-based path planning 
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3.1. Modeling of UAH environment 

As shown in Fig. 3, Path planning is an important part of UAH mission planning for finding an optimal flight 

path that meets constraints in urban, battlefield, and other environments. 

First of all, the coordinate of S and T are set as ( , , )
ps ps ps

x y z  and ( , , )
pt pt pt

x y z . The x-axis range has been 

divided into n+1 equal portions according to the S and T. The perpendicular planes 1 2( ), , , ..., ,s n TP P P P P of the 

x-axis are established according to the corresponding split points.  

 

Fig. 3. Schematic of UAH battlefield model. 

Put a discrete point in each vertical plane, and generate a collection of discrete points 

1 1 1 2 2 21 2( , , ), ( , , ), ..., ( , , ),{ , }
p p p p p p pn pn pnw p nC x y z x y z x y z TS p p p= [29]. In order to simplify the solution to the 

optimization problem, the optimization variable E is defined as 

 1 2 1 2
, ,..., , , ...,

n n
E y y y z z z=

                                                               (1) 

In this way, the path planning problem is transformed to 2n dimensional optimization problem. 

3.2. Modeling of dynamic ground threats 

In this section, a dynamic threat distribution probability model is designed based on non-complete 

information about the ground threat. Moreover, the dynamic ground threat distribution is used to build and 

update the dynamic no-fly zone of the UAH in real time. 

3.2.1. Calculation of dynamic ground threat distribution probability 

Direction is particularly important for dynamic ground threats movement decisions under non-complete 

information conditions [30]. Assume that the heading angle of the dynamic ground threat is chosen in the range 

[0,2π] and there is a constraint on the maximum turning angle of the ground threat. To simplify the calculation, 

the possible chosen heading angles of the dynamic ground threat at moment t+1 can be discretized as 

0 1 1 2 2
, , , ,

az az az az az
d d d d d

− − . 

As shown in Fig. 4,
0

az
d represents the same maneuvering direction as the dynamic ground threat at the 

previous moment. , ( 2, 1,1,1)
i

i = − − denote the angles between direction
i

az
d and 0

a z
d . Assume that the 

probability of the threat manoeuvre direction at the current moment is the same as at the previous moment is p, 

that is, 0 ( 1)azd t
P p

+
= . Since 2 2 1 12 2   − −= = = , the probability of

1 1 2 2, , ,az az az azd d d d− −
being selected at 

moment t+1 can be obtained by normalization. 
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Fig. 4. Diagram of movement direction selection. 
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                                                 (2) 

The main factors affecting the ground threat direction prediction include the previous moment's movement 

speed, maneuver intention, and current terrain. The direction selection probability of the ground threat at each 

moment can be expressed as 

ty ty ty

i v tp =                                                                           (3) 

where,
ty

i is the intention impact factor,
ty

v is the speed impact factor and ty

t is the topographic impact factor. 

The detailed definitions of
ty

i ,
ty

v and ty

t are shown as follows: 

(1) Intention impact factor: 
ty

i  

As shown in Fig. 5, we summarize the maneuvering intentions of the dynamic ground threat into the 

following two categories. 

 

Fig. 5. Schematic of ground threat driving intentions. 

➢ Intention 1: Manoeuvres towards a specific destination 

Mobile air defence units choose to travel along roads or flat terrain when the dynamic ground threat has a 

clear driving target point. 

➢ Intention 2: Evade reconnaissance or strikes 

When the mobile air defense unit is evading our reconnaissance or strikes, the dynamic ground threat moves 

away from roads or gentle terrain. 

Thus, different kinds of threats receive relative
ty

i according to different intentions, as shown in Table 1. 

Table 1 
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Values of intention impact factor. 

 Intention 1 Intention 2 

Ground radar 
1

rC  
2

rC  

Anti-aircraft missile 
1

mC  
2

mC  

Anti-aircraft gun 
1

gC  
2

gC  

where, 1

rC , 1

mC , 1

gC are the intent factors when Intention 1 is adopted for different types of dynamic ground 

threats, respectively. 2

rC , 2

mC , 2

gC are the intention factors for the dynamic ground threat when Intention 2 is 

adopted, respectively. 

The initial locations of dynamic ground threats are assumed to be flat terrain. When the dynamic ground 

threat takes Intention 1, ty

c is the expectation that the ground threat will remain unchanged in the direction of 

movement with a greater probability. When the dynamic ground threat takes Intention 2, the value of ty

c should 

be relatively small. Therefore, the value of ty

c should be constrained by 

( )1 2 1 2 1 2={ , , , , , } 0,1ty r r m m g g

c C C C C C C                                                       (4) 

1 2 1 2 1 2, andr r m m g gC C C C C C                                                           (5) 

(2) Speed impact factor: ty

v  

If the dynamic ground threat moves faster at the previous moment, it can be inferred that the probability 

that it will change its manoeuvre direction at the next moment is lower [31]. Assuming the average speed of the 

threat as the judgement criterion, the speed impact factor for different threats can be described as 

1 1

2 1

,

,

r r

r t r

v r r

t r

v

v

 

 

−

−

 
 = 


                                                                   (6) 

1 1

2 1

,

,

m m

m t m

v m m

t m

v

v

 

 

−

−

 
 = 


                                                                  (7) 

1 1

2 1

,

,

g g

t gg

v g g

t g

v

v

 

 

−

−

 
 = 


                                                                  (8) 

where,
r

v ,
m

v ,
g

v are the speed impact factors for ground radar, anti-aircraft missile and anti-aircraft gun 

respectively, 1

r

t − , 1

m

t − , 1

g

t − are the speeds of movement at the previous moment corresponding to the above 

ground threats, and rv , mv , gv are the average speed of ground radar, anti-aircraft missile and anti-aircraft gun, 

respectively. 

Due to the inertia of a moving object, the larger the speed impact factor, the greater the probability p that 

the dynamic ground threat will remain constant in its original direction. Therefore, the value of ty

v should be 

constrained by 
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2 1

2 1

2 1

0 0.5 1, Ground radar

0 0.5 1, Anti-aircraft missile

0 0.5 1, Anti-aircraft gun

r r

m m

g g

 

 

 

    


   
    

                                              (9) 

In addition, the values of 1

r , 2

r , 1

m , 2

m , 1

g , 2

g  can be adjusted according to the needs of the actual 

simulation experiment. 

(3) Topographic impact factor: ty

t  

As shown in Fig. 6, assume that the battlefield terrain can be divided into three categories: hillside, valley 

and plain. Therefore, depending on the different intentions, the terrain impact factor ty

t can be calculated by 

1

1

a

  

, 0

(1 ) (1 ), 0 max 

0, m

     

x

ty

k

kty ty ty

t k sn

n

i

ty

k s

 


 





→

=


 =



 = −  −  







                                     (10) 

2

1

x

 

1 , 0

(1 ), 0 m ax

0 a

 

,

 

m

ty

k

kty ty ty

t k sn

n

i

ty

k s

 


 





→

=


 − =



 =  −  







                                      (11) 

where, 1

ty

t →  and 2

ty

t→  denote the terrain impact factors when Intention 1 and Intention 2 are used for 

ground threats, respectively. ty  is the topographic impact factor value of three threats, and 0.5 1ty  . k  

represents the angle of the kth terrain with respect to the horizontal plane. m ax ty

s  represents the maximum 

climbing angle for ground threats. 

 

Fig. 6. Diagram of ground threats climb and descent. 

3.2.2. Predictive update mechanism for the dynamic ground threat status 

The state update process can be divided into updating the direction of movement, updating the speed of 

movement and updating the distribution location. 

(1) Update of movement direction 
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The movement direction update mechanism based on the roulette strategy can be defined as 

2

2

( 1)

1

( 1) ( 1)
2 2

          

( ), 0

( 1)
( ),         

az

k k
az az

az d t

j j
az

j

az d t d t
k k

d t P

d t
d t P P





−

−

+

+

+ +
=− =−

  


+ = 
 


 

                                      (12) 

where, ( 1)azd t +  is the direction chosen by the dynamic ground threat at the current moment in time, 

2 ( 1)azd t
P − +  is the probability of being selected in direction 

2

a zd −
 , 

( 1)
2

k
az

j

d t
k

P
+

=−

  denotes the cumulative 

probability of directional selection, j = -1, 0, 1, -2, and rand(0,1) = . 

(2) Update of movement speed 

When the travel direction at moment t+1 is the same as at moment t, the travel speed of the dynamic 

ground threat can be understood to remain constant. 

( 1) ( )ty tyv t v t+ =                                                                        (13) 

where, ( )tyv t  and ( 1)tyv t +  denote the instantaneous velocity of the dynamic ground threat at the previous 

moment and the current moment, respectively. 

When the direction of the dynamic ground threat changes, its travel speed is reduced according to the 

turning angle. At the end of a turning manoeuvre, if ( )ty tyv t v  ( tyv is the average speed of the dynamic threat), 

the ground threat will perform an acceleration manoeuvre proportional to the difference in current speed. 

Therefore, the speed update strategy for the dynamic ground threat can be calculated by 

( 1) ( ) [ ( )]ty ty az ty tyv t v t v v t+ = +  −                                                     (14) 

where, 
az  is the speed adjustment parameter. The speed adjustment parameter az  is influenced by 

terrain and intention, with different acceleration effects for different terrain under different intentions. az
 can 

be expressed as 

ty ty

az i t =                                                                             (15) 

( ) ( )

step

(1 )

1
π arctan π

( 1)
 

ty
ty i
i

ty

t

ty

t

T

h t h t

v t T

 −
 =

   + − = −    +    

                                                (16) 

where,
ty

i and
ty

t are the intention factor and topography factor of the speed adjustment parameter az , T 

and t are the total simulation steps and the current update steps, h(t+1) represents the height of the terrain 

where the ground threat is located at the current moment, and stepT  is the time step of the update. 

Remark 1: As the number of updates increases, the cumulative amount of velocity also increases. ty

i needs 

to grow larger over time to compensate for the previous cumulative velocity difference. In addition, the velocity 
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increment of Intention 2 should be higher than that of Intention 1, which is also consistent with the definition of 

ty

i . For 
ty

t , the gentler the terrain slope, the greater the speed increase. Conversely, the smaller the increase 

in velocity. This is in accordance with the fundamental laws of physics. 

(3) Update of the distribution location 

After determining the direction of manoeuvre and speed of travel of the dynamic ground threat, the 

coordinates of the threat's position in the map can be updated. The location update mechanism can be expressed 

as 

( )

( )

1 step

1 step

terrain

1 1

1
cos π ( 1)

4

1
sin π ( 1)

4

ty ty ty

t t t az

ty ty ty

t t t az

ty

t t

x x v N d t T

y x v N d t T

z z

+

+

+ +

  
= +   +  

 
  

= +   +   
 

 =



                                               (16) 

where,
1

ty

tx +
,

1

ty

ty +
,

1

ty

tz +
are the coordinates of the dynamic ground threat position at the current moment, 

1

terrain

tz +
indicates the height of the terrain where the current dynamic ground threat is located, and 

( )( 1)azN d t +  represents the reference number of the direction selected by the dynamic ground threat at the 

current moment, ( )( 1) {0,1,2,3,4}azN d t +  . 

3.2.3. Probabilistic diffusion mechanisms for the dynamic ground threat 

Based on the laws of probability statistics, the distribution of the dynamic ground threat in a certain region 

basically obeys the Gaussian distribution [32]. 

 

Fig. 7. Schematic of distribution probability diffusion. 

As shown in Fig. 7, we take the endpoint coordinates of each prediction and spread its probability values 

through a Gaussian distribution, ultimately forming a probability distribution region rather than a single 

coordinate point. The specific diffusion can be calculated by 

( )
0 0 0 0

2

2

1
( , ) ( , ) exp

2π 2

ij
Kp x i y j Kp x y

l






+ + = 

 −
 −
 
 

                                          (17) 
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2 2

, Lateral

, Vertical

, Diagonal

ij

i

l j

i j

=

+







                                                               (18) 

where, 
0 0

( , )Kp x y  denotes the probability of the current coordinate point, 
ij
l  is the diffusion step size, i, j 

respectively represent the horizontal and vertical diffusion steps, and   ,   respectively represent the mean 

and variance of the error. 

The dynamic ground threat distribution probability calculation and diffusion process is shown in Fig. 8. 

 

Fig. 8. Flowchart of the ground threat prediction algorithm. 

3.2.4. Modelling of UAH dynamic no-fly zones 

Areas where the dynamic ground threat may exist should be considered the no-fly zone to ensure the safety 

of UAH flights. As shown in Fig. 9, the different colours in the heat map indicate differences in the probability of a 

threat occurring at that location. 

 

Fig. 9. Dynamic no-fly zone modeling. 

The dynamic no-fly zone can be determined by establishing the boundaries of the probability spread area. It 

is important to note that the no-fly zone in this area is dynamically irregular and can change as the area of spread 

changes. The dynamic no-fly zone flow chart is shown in Fig. 10. 
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Fig. 10. Flowchart of dynamic no-fly zone modeling. 

3.3. Objective function and performance constraints 

In this paper, the cost function of a flight path is described as the sum of three optimization criteria and 

three penalty terms. Thus, the objective function for predictive path planning can be expressed as [33] 

3 3

1 1

( ) min oc pt

i i

i i

obj x J f g
= =

= = +                                                            (19) 

where, i = 1, 2, 3, oc

if is the optimization criterion to evaluate the flight path, and pt

ig is the penalty function to 

ensure he flight path meets the UAH performance constraints. 

In addition, the UAH cannot fly beyond the map area boundary. 

( )
min max

min max

min max

( , , ) , ,

pk

k pk pk pk pn pn pn pk

pk

L x L

p x y z x y z W y W

H z H

 

 →  

 







                                    (20) 

where, k = 1, 2,..., n,  is the solution space, 
min max

[ , ]L L , 
min max

[ , ]W W  and 
min max

[ , ]H H  are the 

boundaries of UAH flight area, respectively. 

The optimization criteria for the flight path of the UAH are as follows: 

⚫ Cost of the flight path length
1

oc
f  

A shorter flight path means less flight time and fuel consumption. 
1

oc
f  can be described as [33] 

1

1

n
oc

k

k

f l
=

=                                                                             (21) 

With 

2 2 2

k p p pl x y z=  + +                                                                 (22) 

( 1)

( 1)

( 1)

p pk p k

p pk p k

p pk p k

x x x

y y y

z z z

−

−

−

 = −

 = −
 = −

                                                                    (23) 

where, k = 1, 2,..., n, n is the number of the waypoints. 
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⚫ Cost of the ground threats 2

ocf  

Considering the three threat categories of ground radar, anti-aircraft missiles and anti-aircraft gun, 2

ocf can 

be described as [17] 

2

1

( )
n

oc rt mt gt

k k k

k

f c c c
=

= + +                                                                   (24) 

With 

2

max

max

2

1

,

,
1 (( ) / RCS)

krt
b rt rtk

b rtrt

k

krt
rt b rt rtk

b rt

cv
d R

d
c

cv
cv d R

d


→

→

→

→





= 
 + 
 +

                                   (25) 

max

max 4
max

4 max 4

(
  

,

)
,

( ) ( )

kmt
b mt mtk

b mtmt

k

kmt mt
mt b mt mtk

o mt mt

cv
d R

d
c

cv R
cv d R

d R

→

→

→

→





= 

 + 
 +

                                     （26） 

max

max

,

1
(1 ),

gt k

b gt gtk

b gtgt

k

k

gt b gt gtk

b gt

cv
d R

d
c

cv d R
d

→

→

→

→





= 
  + 



                                                (27) 

where, 
rt

kc , 
mt

kc  and 
gt

kc  denote the threat cost of the ground radar, anti-aircraft missile and anti-aircraft 

gun at k
P , respectively. rtcv , mtcv  and gtcv  are the basic threat parameters of these dynamic threats. RCS 

is the radar cross-section, 1  and 2  are the inherent parameters of the radar. 
max

rtR , 
max

mtR  and 
max

gtR  

denote the maximum action distance of the ground radar, anti-aircraft missile and anti-aircraft gun, respectively. 

k

b rtd → , 
k

o mtd → , and 
k

b gtd →  denote the vertical distance of k
P  from the centreline of the ground radar, 

anti-aircraft missile and anti-aircraft gun, respectively. 
k

o mtd →  is the distance of k
P  from the centre of the 

anti-aircraft missiles. 
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Fig. 11. Schematic diagram of waypoint threat cost. 

Remark 2: As shown in Fig. 11, 
k

b ty
d

→  represents the vertical distance of waypoint k
P  from the centre 

line of the nearest threat spreading point. The criterion for selecting the nearest threat spreading point is to 

determine whether the distance 
k

o ty
d

→  between the waypoint k
P  and the neighbouring spreading point is 

minimal. The cost of threats in an irregular no-fly zone can be calculated using the above rules. 

⚫ Cost of the flight altitude 3

o c
f  

On the premise of ensuring the safe flight of UAH, a lower flying altitude can improve its concealment 

performance. Therefore, 3

o c
f  can be calculated by [33] 

con

3

1

n
oc

k

k

f c
=

=                                                                          (28) 

With 

con safe concon

safe con
  

, ( )

( ), (  )

pk t k

k

pk t k pk t k

H z H P H H
c

z H P z H P H H

− − 
=

− − − 





                                         (29) 

where, pk
z  is the z-axis coordinate of waypoint k

P ,  ( )
t k

H P is the terrain altitude at k
P  , safe

H  is the 

minimal safe flight height, and con
H  is the threshold for concealed height. 

The constraints for the flight path of the UAH are as follows: 

⚫ Constraint of the yawing angle 1

ptg  

The penalty function 1

ptg  is the sum of those waypoints that can not satisfy the UAH yawing angle 

constraint, which can be calculated by [34] 
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yaw

1

1

n
pt

pk

k

g g
=

=                                                                          (30) 

With 

max

yaw yaw ,

0, otherwise

k k

pkg
   

= 


                                                             (31) 

( ) ( )
max

2 2
max

( 1) ( 1)2k pk p k pk p k

n
g x x y y

v
 − −=   − + −                                        (32) 

where, k  is the flight path yawing angle of the waypoint k
P , 

max

k is the maximum flight path yawing angle 

of the UAH, yaw  is the penalty coefficient, g is the gravitational acceleration, maxn  is the maximum lateral 

overload and v is the flight velocity of the UAH. 

⚫ Constraint of the pitching angle 2

ptg  

The slope k  of the sub-track can not scale out the maximum pitching angle 
max

k  . 2

ptg  can be 

calculated by [34] 

pitch

2

1

n
pt

pk

k

g g
=

=                                                                           (33) 

With 

max

pitch pitch ,

0, otherwise

k k

pkg
   

= 


                                                               (34) 

where, pitch  is the penalty coefficient. k at the waypoint
k

P can be calculated by 

( 1)

2 2

( 1) ( 1)( ) ( )

pk p k

k

pk p k pk p k

z z

x x y y


−

− −

−
=

− + −
                                                     (35) 

⚫ Constraint of collision 3

ptg  

The penalty function 3

ptg  is introduced to penalize the nonfeasible paths that are likely to crash into 

mountains. 

ter

3

1

n
pt

pk

k

g g
=

=                                                                           (36) 

With 

collision safeter

safe

, ( )

0, ( )

  pk t k

pk

pk t k

z H P H
g

z H P H

  +
= 

 +
                                                     (37) 

where, collision  is the penalty coefficient and safeH  is the minimal safe flight height. 

 

4. Hybrid enhanced ABC algorithm based on collaborative thinking strategy 

Jo
urn

al 
Pre-

pro
of



The ABC algorithm has been widely used in the field of path planning due to its excellent optimization 

capability [35]. However, as the path planning problem becomes more and more complex, the traditional ABC 

algorithm can no longer meet the performance requirements of current path planning algorithms. 

 

Fig. 12. Schematic diagram of hybrid enhanced swarm intelligence. 

In this paper, a hybrid enhanced ABC algorithm is designed based on collaborative thinking strategy (CTS). As 

shown in Fig. 12, by introducing the leader-member thinking mechanism and the collaborative learning strategy, 

the CTS-ABC algorithm can effectively address the shortcomings of the traditional ABC algorithm, significantly 

improve the optimization performance of the ABC algorithm. 

4.1. Initialization 

All the vectors of the population of food sources ix  are initialized ( 1, 2,...,ix i SN ） by scout bees and 

control parameters are set. One nectar source represents a feasible solution to the path planning problem. Each 

nectar source ix  has D parameters to be optimized ( , 1, 2,...,j

ix j D= ）. The initial source locations are 

randomly initialized by [36] 

lb ub lbrand(0,1)( )j

i i i ix x x x= + −                                                          (38) 

where, ub

ix  and lb

ix  are the upper and lower limits of the parameter j

ix , respectively. 

The fitness value fit( )x  of 
j

ix  can be calculated by [36] 

( )1 1 obj( ) , if obj( ) 0
fit( )

1 abs(obj( )   ), othewris

 

e

x x
x

x

 + 
= 

+
                                                  (39) 

4.2. Employed bee phase based on leader-member thinking mechanism 

For the traditional ABC algorithm, an employed bee searches a new food position 
iv  using its current food 

position 
ix  as follows [36]: 

( )j j j j

i i i kv x x x= + −                                                                    (40) 

where,  , 1,2,...,i k SN ,  1,2,...,j D , i k , and rand( 1,1) = − . 

The necessity of mining near the current optimal nectar source is often higher than that of other nectar 
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sources. The optimal food source should be searched in a different way from other nectar sources in the same 

iteration cycle. 

 

Fig. 13. The schematic of leader-member thinking mechanism. 

As shown in Fig. 13, the best individual in the current population is the leader and uses its own excellent 

position to evolve using innovative thinking. The rest of the individuals become members and adopt a guided 

thinking approach to position updating. 

(1) Search strategy based on innovative thinking 

This search strategy is suitable for the optimal individual in the current iteration cycle. In order to fully 

explore the development potential for the highest quality individual, the search strategy based on innovative 

thinking is defined as 

leader best best(1 )( )j j j j

i kv x x x  − = + − −                                                    (41) 

With 

iter

Maxcycle
 =                                                                         (42) 

where, best

jx  represents the current optimal individual,   is the adaptive adjustment parameter, iter is the 

number of current iterations, Maxcycle represents the maximum number of iterations of the algorithm, 

1, 2,..., }{ k SN , and  1, 2,...,j D . 

(2) Search strategy based on guided thinking 

The experience of the leader often plays a positive guiding role for other employed bees. This kind of 

guidance will make the ABC algorithm converge quickly to the optimal solution, thereby avoiding too many invalid 

searches. This search strategy is defined as 

member 1 best 2 1 2
(1 ) [ ( ) ( )]

j j j j j j

i i i r r
v x x x x x     

−
= − + − + −                                     (43) 

where,  1, 2,..., 1i SN − , 1  and 2  are the learning factors, 
1

j

rx  and 
2

j

rx  are randomly selected 
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individuals from the population. 

The specific steps of the employed bee phase are shown in Fig. 14. 

 

Fig. 14. Specific steps of the employed bee phase. 

4.3. Onlooker bee phase 

After completing the employed bees phase, a probability value is computed as follow [36]: 

1

fit( )
( )

fit( )
SN

i

x
p x

x
=

=


                                                                    (44) 

4.4. Scout bee phase based on collaborative learning strategy 

When a nectar source has been explored several times and still not renewed, this employed bee will be 

transformed into the scout bee to explore a new nectar source by [37]. It is worth mentioning that the local 

optimum solution is updated by randomly selecting a new nectar source in its vicinity. As shown in Fig. 15, if the 

evolutionary direction of the local optimal solution does not improve the quality of this individual, the utilization 

value of this individual will be reduced and this situation may continue [38-40]. 

 

Fig. 15. The schematic of local optimal solution evolution/degeneration. 

In order to reduce the negative impact of randomness on the scout bee phase, a collaborative learning based 

evolutionary strategy is proposed. As shown in Fig. 16, during the scout bee phase, the locally optimal individuals 

generally go through three processes to cooperatively learn other individuals' knowledge before proposing their 

own ideas. 

Jo
urn

al 
Pre-

pro
of



 

Fig. 16. The schematic of collaborative learning process. 

The core idea of collaborative learning search strategy is to adopt a new method to simulate the process of 

human swarm intelligence generating new ideas [41]. Taking individual 
j

ix  as an example, the specific steps for 

its adoption of collaborative learning strategies are as follows: 

(1) Local optimal individual determination 

The collaborative learning strategy is only applicable to locally optimal individuals. This judgment criterion of 

the locally optimal individuals can be described as 

iterNum limitj
ix
                                                                            (45) 

where, limit is the maximum search threshold for nectar sources, 
iterNum j

ix  represents the number of 

developments of 
j

ix  by employed bees. For individual 
j

ix , if it satisfies the above conditions, then ,

j j

i l o ix x −→ . 

(2) Observation and selection 

For each candidate solution, randomly select m other candidate solutions 1 2, ,...,j j j

mx x x  in the current 

iteration cycle as the collaborative learning cases caseX . 

case 1 2{ , ,..., }j j j

mX x x x=                                                                  (46) 

(3) Analysis and reflection 

The degree of influence on ,

j

l o ix −  will vary due to the different levels of individuals in the learning case. For 

each collaborative learning case case

j

kx X , the collaborative learning weight   is calculated by normalizing 

the fitness values 1 2fit( ), fit( ), , fit( )j j j

mx x x  of the collaborative learning cases. The collaborative learning 

weigh   is calculated by 

( )fit( ) /j

i kx  = −                                                                    (47) 

where, k m ,   and   are the mean and standard deviation of the fitness values 1fit( )jx , 

2fit( )jx ,..., fit( )j

mx , respectively. 
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  describes the degree of influence of different learning objects on the evolution of ,

j

l o ix − . The individual 

,

j

l o ix −  can be updated to the transition individual ,

j

vir ix  using  , which will serve as an excess region for the 

convergence of the local optimal solution to the global optimal solution. 

(4) Learning and practice 

The transition individual ,

j

vir ix  can be seen as a `springboard' for the evolution of the locally optimal 

individual ,

j

l o ix −  to the vicinity of the global optimal solution. The transitional individual vir,

j

ix  can be 

calculated by 

vir, ,

1, 1

m
j j

i i l o i

i j

x x −

= =

=                                                                      (48) 

where, i is the learning weight for the locally optimal individual ,

j

l o ix − . 

 

Fig. 17. Flowchart of the collaborative learning strategy. 

In order to make the ABC algorithm more efficient in jumping out of the influence of the local optimal 

solution, the scout bee uses the following formula to generate a new nectar source new

jx  to replace the local 

optimal solution 
j

l ox −
 through the collaborative learning. 

new, vir, best vir,( )j j j j

i i ix x x x= + −                                                             (49) 

where, best

jx  is denoted as the optimal individual of the current population except for the local optimal 

solution. 

Fig. 17 is the flowchart of the collaborative learning strategy, and Fig. 18 is the specific steps of the CTS-ABC 
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algorithm. 

4.5. Computing complexity analysis 

The computing complexity of the proposed method includes the dynamic threat prediction algorithm 

computing complexity and the CTS-ABC algorithm computing complexity. 

(1) The dynamic threat prediction algorithm 

The dynamic threat prediction algorithm can be viewed as an inference process that runs with two loops 

nested in it. The computing complexity of the dynamic threat prediction algorithm can be calculated by 

2( )dC O N D=                                                                         (50) 

where, ( )O  is the asymptotic time complexity. 

(2) The CTS-ABC algorithm 

The CTS-ABC algorithm consists of the initialization phase and the optimization phase [17]. The computing 

complexity of these two components can be calculated separately by 

1 max[ (1), ( )] ( )cC O O N D O N D=  =                                                     (51) 

( ) ( )2

2

2

max[ lg , ( ), ( ), ( ), lg ]

    ( )

cC O N D O N D O N D O N D O n N D

O N D

=     

= 
                  (52) 

Thus, we can get the maximum computing complexity of the CTS-ABC algorithm. 

2

1 2

2

max[ ( ), ( )]= max[ ( ), ( )]

    ( )

c c cC C N C N O N D O N D

O N D

=  

= 
                                   (53) 

Similarly, the maximum computing complexity of the traditional ABC algorithm can be described as [33] 

ABC 2

2

max[ (1), ( ), ( ), ( lg )]

        ( ) 

C O O N D O N D O n N D

O N D

=   

= 
                                  (54) 

The analysis results show that the computing complexity of the dynamic threat prediction algorithm and the 

CTS-ABC algorithm are relatively low. The efficiency of solving the UAH path planning problem can still be 

guaranteed. 
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Fig. 18. Specific steps of the CTS-ABC algorithm. 

 

5. Simulation results 

In order to verify the efficiency of the proposed model and algorithm for the dynamic threat path planning 

problem, we have introduced the two scenarios with the different level (the higher level has the more complex 

threats and no-flight zones). The detailed information of scenarios is shown in Table 2, main parameters of 

dynamic threats distribution model are shown in Table 3, and main parameters of the CTS-ABC algorithm are 

shown in Table 4. Furthermore, to make the experiment results more objective, we make the following 

assumptions for each simulation: 1) Assume that the initial location of all dynamic threats is on the flat terrain; 2) 

Assume that the UAHs in all scenarios fly at a constant speed; 3) The threat prediction termination time is the 

moment when the UAH simulation reaches the end point. 

Table 2 

Main parameters of scenarios. 
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Terrain Map 1 Map 2 

Map size/km 200*200*1000
 

400*400*1000
 

Start point [16,17,34]
 

[18,72,127]
 

Target point [200,203,26] [381,363,46] 

Initial location [21,117,42] [58,220,418] 

[80,40,33] [80,40,393] 

[157,135,26] [157,190,45] 

[180,30,17] [164,288,144] 

- [229,227,55] 

- [255,622,15] 

Threat radius/km 40/35/35/30
 

35/35/30/40/35/40
 

Table 3 

Main parameters of dynamic threats distribution model. 

Parameters Types Values 

Intention impact factor ty

c  
1 1 1/ /r m gC C C  0.7/0.65/0.6

 

 2 2 2/ /r m gC C C  0.5/0.45/0.4
 

Target point ty

v  
1 1 1/ /r m g  

 
0.8/0.7/0.6 

 2 2 2/ /r m g  
 

0.45/0.4/0.35 

Topographic impact factor ty

t /(°) / /r m g  
 

0.8/0.7/0.6 

 slope slope slopemax / max / maxr m g

 30/40/50 

Average speed 
tyv /(km·h-1) / /r m gv v v  25/30/35

 

Table 4 

Main parameters of scenarios. 

Main parameter Values 

Swarm size SN 50
 

Predefined threshold Limit 5
 

Lower/upper boundary lb ub/i ix x  repmat((ub-lb),SN)/repmat(lb,SN) 

Maximum iterations Maxcycle 40/200 

Learning factors 
1 2/   0.7/0.4

 

5.1. Scenario 1 

For the first scenario, Fig. 19 shows the diffusion process of dynamic threats in Map 1. Over time, the 

distribution of dynamic threats expands and the probability of distribution decreases. The diffusion process lasted 

a total of 16 s, which is the time taken for the UAH to reach the target point during the planning process. The 

colour change in the area of the probability distribution of dynamic threats in the graph illustrates this process. 

Fig. 20 describes the final shape of the dynamic no-fly zone. In order to reduce the computer rendering time, 

the boundaries of the dynamic no-fly zone are drawn to describe the extent and size of the entire no-fly zone. 

Due to the relatively flat terrain, the dynamic no-fly zone is relatively concentrated in scope. 
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Fig. 19. The diffusion process of dynamic threat in Map 1. 

 

Fig. 20. The final shape of the dynamic no-fly zone Map 1. 

Fig. 21 shows the process of the UAH path planning based on the CTS-ABC algorithm in Map 1. The red path 

indicates the pre-planned flight path and the yellow path indicates the actual flight path of the UAH. The green 

waypoints in the path are collision warning points, i.e. location nodes for path replanning. The red paths in Fig. 

21(5), Fig. 21(7) and Fig. 21(8) indicate the replanned UAH flight path. The dynamic no-fly zone changes over time 

during the path planning process. The yellow path in Fig. 21(12) indicates the actual path flown by the UAH. It is 

important to note that although part of this path crosses the no-fly zone, the UAH has flown out of the area 

before the arrival of this no-fly zone, so this path does not affect the safety of the UAH. 
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Fig. 22 shows the final path planning results of the CTS-ABC algorithm in Map 1. The CTS-ABC algorithm can 

plan a smooth predicted flight path for UAH based on the incomplete information of the battlefield. The predicted 

path enables the UAH to avoid ground threats that could affect flight safety, significantly reducing the 

computational stress on onboard computers and sensors. 

 

Fig. 21. The final shape of the dynamic no-fly zone Map 1. 

 

Fig. 22. The final flight path by the CTS-ABC algorithm in Map 1. 
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Fig. 23. The convergence results in Map 1. 

Fig. 23 shows the convergence curves of the CTS-ABC algorithm in Map 1. Fig. 23(a) depicts the iterative 

process of the flight path pre-planned by the CTS-ABC algorithm. It can be intuitively seen that the iterations for 

the CTS-ABC algorithm to converge to the global optimum is 27. The curves in Fig. 23(b) indicate the iterative 

process of the five replanned flight paths using the CTS-ABC algorithm. Form the convergence curve, it is clear 

that the cost values for the five replanned paths are 1.71×104, 1.65×104, 1.59×104, 1.51×04, and 1.28×104, 

respectively. Since the waypoints of the five replans are closer, the cost values of these replanned paths are also 

closer. The statistical results of the path planning can be shown in Table 5. 

Table 5 

Statistical results of the CTS-ABC algorithm in Map 1。 

Performances 
1 2 3/ /oc oc ocf f f (×104)

 
Iterations/times Optimization time/s Collision warning points 

Pre-planning 0.77
 

0.65 0.44 27 7.92 - 

1th re-planning 0.64
 

0.59 0.48 29 6.40 [48,26,61] 

2th re-planning 0.52 0.51 0.62 35 6.23 [64,34,80] 

3th re-planning 0.47 0.49 0.63 38 6.64 [73,36,79] 

4th re-planning 0.46 0.48 0.57 31 6.05 [82,39,79] 

5th re-planning 0.41
 

0.39 0.48 36 6.11 [90,41,78] 

5.2. Scenario 2 

In the second scenario, a more complex planning environment is used to verify the effectiveness of the 

proposed method. Fig. 24 shows the diffusion process of dynamic threats in Map 2. Due to the more complex 

terrain, the dynamic threat spreads more widely across the map. The simulation of the threat diffusion process 

took 25 s, in other words, the simulated flight time of the UAH following the pre-planned path was also 25 s. 
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Fig. 24. The diffusion process of dynamic threat in Map 2. 

 

Fig. 25. The final shape of the dynamic no-fly zone Map 2. 

Fig. 25 shows the final shape of the dynamic no-fly zone in Map 2. Compared to Map 1, the dynamic no-fly 

zones in Map 2 are more discrete in their distribution and more irregular in shape. The increase in the size and 

number of no-fly zones will directly increase the difficulty of UAH predictive path planning. Fig. 26 shows the part 

of the process of UAH predictive path planning in Map 2. Figs. 26(5)–Fig. 26(17) show the part of the process of 

UAH path replanning.  
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Fig. 26. The processes of pre-planning and re-planning Map 2. 

 

Fig. 27. The final flight path by the CTS-ABC algorithm in Map 2. 

Fig. 27 shows the final path planning results of the CTS-ABC algorithm in Map 2. Due to the constantly 

changing dynamic no-fly zone, the predictive path planning was replanned 21 times. 
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Fig. 28. The convergence results in Map 2. 

Fig. 28 is the convergence curves of the CTS-ABC algorithm in the complex environment model. Form the 

simulation convergence curve, we can see that the CTS-ABC algorithm can find the optimal solution with fewer 

iterations in both path pre-planning and path re-planning. In Fig. 28(a), the CTS-ABC algorithm requires only 120 

iterations to plan an initial flight path. The cost value of the initial flight path is 0.62×106. The curves in Fig. 28(b) 

indicate the iterative process of flight path re-planning using the CTS-ABC algorithm. The intuitive quantitative 

statistical results are shown in Table 6. 

Table 6 

Statistical results of the CTS-ABC algorithm in Map 2。 

Performances 
1 2 3/ /oc oc ocf f f  (×106) Iterations/times Optimization time/s Collision warning points 

Pre-planning 0.347
 

0.109 0.164 120 16.3 - 

1th re-planning 0.164
 

0.042 0.104 24 9.5 [105,113,345] 

2th re-planning 0.132 0.064 0.108 23 9.3 [114,127,327] 

3th re-planning 0.149 0.057 0.095 37 11.2 [123,142,309] 

4th re-planning 0.117 0.035 0.144 35 10.6 [129,149,299] 

5th re-planning 0.128
 

0.048 0.113 37 10.9 [154,175,284] 

6th re-planning 0.136 0.039 0.099 38 11.4 [161,181,281] 

7th re-planning 0.104 0.041 0.126 38 11.1 [171,203,271] 

8th re-planning 0.111 0.032 0.138 37 10.5 [175,211,266] 

9th re-planning 0.109 0.051 0.109 39 11.7 [177,219,250] 

10th re-planning 0.123 0.032 0.107 37 10.2 [197,237,266] 

11th re-planning 0.127 0.027 0.142 36 9.6 [204,243,265] 

12th re-planning 0.093 0.029 0.078 35 10.3 [217,255,264] 

13th re-planning 0.074 0.024 0.101 32 8.9 [218,264,250] 

14th re-planning 0.065 0.019 0.101 29 8.6 [226,269,251] 

15th re-planning 0.043 0.021 0.070 39 10.4 [240,279,241] 

16th re-planning 0.086 0.017 0.110 30 9.7 [262,295,245] 

17th re-planning 0.071 0.018 0.076 24 8.8 [269,299,246] 

18th re-planning 0.077 0.019 0.075 33 9.3 [276,304,247] 

19th re-planning 0.062 0.014 0.091 21 6.9 [283,309,247] 

20th re-planning 0.049 0.016 0.094 25 7.7 [292,311,246] 

21th re-planning 0.037 0.012 0.095 29 7.4 [299,317,254] 

Simulation results show that the ground threat prediction path planning method of UAH can plan a safe 

flight path in the case of incomplete battlefield information. In addition, the collaborative thinking strategy 

enhances the optimization performance of the traditional ABC algorithm. Effective threat information prediction 

with hybrid enhanced CTS-ABC algorithm provides a strong guarantee for the UAH path planner. 
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6. Conclusions 

In this paper, a ground threat prediction-based path planning method for UAH has been proposed. Firstly, a 

dynamic ground threat distribution probability model was developed based on the characteristics of typical air 

defense threats. The movement state of dynamic threats was fuzzy inferred from the distribution probability, 

based on which the possible distribution area of dynamic ground threats was simulated. Then, based on the 

probability of distribution of the ground threat, we have modelled dynamic no-fly zones for UAH path planning. 

The boundaries of the dynamic no-fly zone were determined and updated in real time by extracting the edge of 

the probability spread area. Furthermore, for improving the efficiency and quality of the UAH predictive path 

planner, a hybrid enhanced ABC algorithm based on collaborative thinking strategy has been proposed. By 

introducing the leader-member thinking mechanism and the collaborative learning update strategy, the 

optimization performance of ABC algorithm was released and the solution efficiency of UAH path planning system 

was improved. Finally, simulation results show that the proposed path planning method can provide a safe flight 

path for UAH in the presence of non-complete dynamic ground threats. 
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