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A B S T R A C T

Emergent behavior is a key feature defining a system under study as a complex system. Simulation has been
recognized as the only way to deal with the study of the emergence of properties (at a macroscopic level)
among groups of system components (at a microscopic level), for the manifestations of emergent structures
cannot be deduced from analyzing components in isolation. A systems-oriented generalization must consider
the presence of feedback loops (micro components react to macro properties), interaction among components
of different classes (modular composition) and layered interaction of subsystems operating at different spatio-
temporal scales (hierarchical organization). In this work we introduce Emergent Behavior-DEVS (EB-DEVS)
a Modeling and Simulation (M&S) formalism that permits reasoning about complex systems where emergent
behavior is placed at the forefront of the analysis activity. EB-DEVS builds on the DEVS formalism, adding
upward/downward communication channels to well-established capabilities for modular and hierarchical M&S
of heterogeneous multi-formalism systems. EB-DEVS takes a minimalist stance on expressiveness, introducing
a small set of extensions on Classic DEVS that can cope with emergent behavior, and making both formalisms
interoperable (the modeler decides which subsystems deserve to be expressed via micro–macro dynamics).
We present three case studies: flocks of birds with learning, population epidemics with vaccination and sub-
cellular dynamics with homeostasis, through which we showcase how EB-DEVS performs by placing emergent
properties at the center of the M&S process.
1. Introduction

Complex systems are collections of dynamic components that, upon
interaction, may produce novel system-level properties that cannot be
directly explained from laws governing the components in isolation [1].
Thus, complex systems and emergent properties appear tightly con-
nected. Sometimes, the very existence of emergent properties is used
to define a system as being a complex one [2]. System-level properties
and interacting components imply at least two organizational levels to
be involved in the emergent behavior of these complex systems, i.e., a
macroscopic and a microscopic level. Thereby, the role of macroscopic
level is merely to be the level where the emergent behavior manifests
itself.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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This definition assumes varied forms across the literature. For in-
stance in the Springer Complexity program [3] it is stated that complex
systems are ‘‘[. . . ] systems that comprise many interacting parts with
the ability to generate a new quality of macroscopic collective behavior
the manifestations of which are the spontaneous formation of distinctive
temporal, spatial or functional structures’’.

Others present unexpected properties that arise from low level
interactions as non-linear dynamics that yield levels of organization,
or even as the formation of order by means of self-organization [4–7].

Thus, emergent behavior shows itself at the macro level of a sys-
tem, although originating in its micro level, the observed changes are
significant and occur spontaneously.
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As a simple illustrative example of emergence in physics we can
consider the sand pile. We slowly pour sand over a flat surface. As
grains pile up a new structure arises. Subsequent falling grains are
confronted with a novel and evolving conical structure. The pile con-
straints the degrees of freedom of falling particles in ways that differ
noticeably from the restrictions faced by the initial batch of grains.
In this particular case, moreover, the macro-structure is formed by
the micro-constituents themselves, and the system can exhibit self-
organized criticality (power-law like distributions of avalanche sizes
and duration) [8,9].

Even in this idealized toy system we can identify interesting mod-
eling challenges. We can only know about the existence of the entity
‘‘conical pile’’ after we have experimented with, and observed, the
system at work. We cannot deduce the pile from the laws of motion
that govern each individual free-falling grain. Also, the criterion to
state when and why a pile has emerged, distinguishing it from simple
scattered grains, can be elusive (we can think of the existence of a state-
driven structure). Similarly, the function of a growing pile (as perceived
by grains) will remain the same only until the height of the pile reaches
the level of the pouring source (e.g. a conveyor belt).

It is also clear that the spatiotemporal scale at which we decide to
analyze the system can in turn modify what we consider an emergent
structure (e.g. we are ignoring the size, shape, plasticity or rolling
capabilities of the grains which may strongly impact, or even prevent,
the emergence of a pile).

The above considerations have been dealt with extensively in the
literature of complex systems. When it comes to the approach taken
by the simulation modeling community, many efforts have been made
regarding the identification and validation of emergent properties ex
post (after a simulation is completed), while fewer antecedents deal
with the live system (at simulation time). In this work we shall provide
a formal, system-theoretic modeling and simulation approach to deal
with emergence in the live system, relying on the Discrete Event System
Specification (DEVS) [10].

When emergence is present as a concept already during the model-
ing phase, it allows the modeler to reason about emergent structures
as she encodes the behavior of the system’s constituents, explicitly
relating them to the conceived emerging structure. Therefore, in this
work we will explore how emergence can be integrated into a formal
modeling approach, thereby exploring the relations between emergence
and multi-level modeling and simulation.

From a modeling perspective placing emergent behavior as a first
class citizen will require preserving carefully the separation between
macroscopic dynamics, microscopic dynamics and their interaction
structure. From a simulation perspective, emergent properties can ap-
pear spontaneously, producing significant changes within the behavior
of a system. Therefore, a hierarchical discrete event modeling and
simulation approach will form the basis of our research.

We argue that understanding the root causes of a phenomenon and
predicting its behavior under different conditions can be considered as
two sides of the same coin. Yet, it has been argued that in systems with
emergence, even having perfect knowledge and understanding may not
imply good predictive capabilities, being simulation the optimal means
for the study of such systems [4].

Also in complex engineered systems unexpected behavior can show
up [11] and it is therefore relevant to model, predict and analyze such
behaviors. The term unexpected here is typically related to undesirable
(unforeseen, not-engineered) features [12] not conceivably thought of
during a purposeful design process. Yet, in a socio-natural system, the
surprise can be a consequence of passively observing an emergent be-
havior that could not be deduced from previously available knowledge
on the interacting subsystems. We argue that the distinction between
unexpected vs. emergent concepts can be domain-dependent; in this
regard, we shall consider them as overlapping concepts allowing space
2

for a modeler to adopt either one according to the type of system under
study, the known and unknown information available, and what is (or
is not) expected a priori from its observed behavior.

It is therefore both a concern and a goal to provide sound modeling
and simulation technologies capable of producing complex system-
level observable based on individual agent-level behavior, like in self-
organizing systems.

From a multi-level perspective, Wilson states [13] that ‘‘expla-
nation of observed behavior is not possible with reference solely to the
spatial–temporal scale at which the observation was made’’ (p.267).

This requires, in our perspective, working towards modeling and
simulation techniques that take into account emergence in an explicitly
multi-level framework. Consequently, in order to integrate different
system levels, communication and causation mechanisms must be es-
tablished between micro and macro dynamics and structures. We will
resort to these methods to share emergent states and to trigger changes
in a multi-level setting.

In this work we present Emergent Behavior DEVS (EB-DEVS), a
new approach to tackle the above mentioned issues by relying on the
DEVS formal modeling and simulation technique. We will present the
formalism and its core theoretical properties such as closure under
coupling, bisimulation with Classic DEVS and legitimacy.

Formal approaches facilitate the interpretation and reuse of simu-
lation models by means of clear unambiguous semantics. DEVS is a
modeling formalism for discrete-event systems capable of representing
exactly any discrete system, and of approximating continuous systems
with any desired accuracy. DEVS also makes emphasis on modular and
hierarchical composition of (possibly heterogeneous) subsystems. In
addition, its clear separation of concerns between model definition and
model execution will allow us to focus strictly on modeling aspects first,
leaving the intricacies of executing a discrete event simulation model
as a separate, though very important second stage.

All these features combined makes DEVS a suitable starting point
for our research on modeling and simulating emergent behavior in
complex systems. This has been recognized recently as a challenge in
the realm of simulation infrastructures for Complex Adaptive Systems
where traditional systems engineering practices fall short in capturing
emergent behavior [14,15].

The rest of the paper is structured as follows. In Section 2 we review
the DEVS formalism. Then in Section 3 we present the motivations that
lead to the new EB-DEVS extension and in Section 4 we provide both
the intuitive idea and the formal specification of EB-DEVS, including its
theoretical properties. In Section 5 we develop three case studies used
to test the capabilities and limits of EB-DEVS as a practical modeling
tool. We close the paper in Section 6 with a discussion about our
contribution in relation to other modeling alternatives for complex
systems and provide ideas for future research.

2. Background

The DEVS formalism [16] can describe hybrid systems, combining
discrete time, discrete event and continuous systems. This generality is
achieved by the ability of DEVS to represent generalized discrete event
systems, i.e., any system whose input–output behavior can be described
by sequences of events.

More specifically, a DEVS model processes an input event trajectory
and, according to that trajectory and to its own initial state, produces
an output event trajectory. Formally, a DEVS atomic model is defined
by the following structure:

𝑀 = ⟨𝑋, 𝑌 , 𝑆, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, 𝑡𝑎⟩ (1)

where:

𝑋 is the set of input event values, i.e., the set of all
the values that an input event can assume.

𝑌 is the set of output event values.
𝑆 is the set of state values.
𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, 𝑡𝑎 are functions that define the system dynamics.
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Each possible state 𝑠 (𝑠 ∈ 𝑆) has an associated time advance

alculated by the time advance function 𝑡𝑎(𝑠) (𝑡𝑎(𝑠) ∶ 𝑆 → ℜ+
0 ). The

time advance is a non-negative real number representing how long the
system remains in a given state in the absence of input events.

Thus, if the state adopts the value 𝑠1 at time 𝑡1, after 𝑡𝑎(𝑠1) units of
time (i.e. at time 𝑡𝑎(𝑠1) + 𝑡1) the system performs an internal transition,
resulting in a new state 𝑠2. The new state is calculated as 𝑠2 = 𝛿𝑖𝑛𝑡(𝑠1),
where 𝛿𝑖𝑛𝑡 (𝛿𝑖𝑛𝑡 ∶ 𝑆 → 𝑆) is called internal transition function.

Before this state transition from 𝑠1 to 𝑠2 an output event is produced
with value 𝑦1 = 𝜆(𝑠1), where 𝜆 (𝜆 ∶ 𝑆 → 𝑌 ) is called output function.

When an input event arrives, the external state transition function
𝛿𝑒𝑥𝑡 (𝛿𝑒𝑥𝑡 ∶ 𝑆×ℜ+

0 ×𝑋 → 𝑆) is invoked. The new state value depends not
only on the input event value but also on the previous state value and
the elapsed time since the last transition. The new state is calculated
as 𝑠4 = 𝛿𝑒𝑥𝑡(𝑠3, 𝑒, 𝑥1) (note that 𝑡𝑎(𝑠3) ≥ 𝑒). No output event is produced
during an external transition.

DEVS models can be coupled modularly [16]. A DEVS coupled
model 𝐶𝑁 is defined by the structure:

𝐶𝑁 = ⟨𝑋𝑠𝑒𝑙𝑓 , 𝑌𝑠𝑒𝑙𝑓 , 𝐷, {𝑀𝑖}, {𝐼𝑖}, {𝑍𝑖,𝑗}, 𝑆𝑒𝑙𝑒𝑐𝑡⟩ (2)

where:

𝑋𝑠𝑒𝑙𝑓 and 𝑌𝑠𝑒𝑙𝑓 are the sets of input and output values of the
coupled model.

𝐷 is the set of component references, so that
for each 𝑑 ∈ 𝐷, 𝑀𝑑 is a DEVS model.

𝐼𝑖 ⊂ (𝐷 ∪ {𝑠𝑒𝑙𝑓}) − {𝑑} is the set of Influencer models on subsystem
𝑑 for each 𝑑 ∈ 𝐷 ∪ {𝑠𝑒𝑙𝑓}.

𝑍𝑖,𝑗 is the translation function for each 𝑖 ∈ 𝐼𝑖,
where

Z𝑖,𝑗 :
⎧

⎪

⎨

⎪

⎩

𝑋𝑁 → 𝑋𝑗 if 𝑖 = 𝑠𝑒𝑙𝑓
𝑌𝑖 → 𝑌𝑠𝑒𝑙𝑓 if 𝑗 = 𝑠𝑒𝑙𝑓
𝑌𝑖 → 𝑋𝑗 otherwise

𝑆𝑒𝑙𝑒𝑐𝑡 ∶ 2𝐷 → 𝐷 is a tie-breaking function for simultaneous
events. It must verify 𝑆𝑒𝑙𝑒𝑐𝑡(𝐸) ∈ 𝐸, being
𝐸 ⊂ 2𝐷 the set of components producing the
simultaneity of events.

DEVS models are closed under coupling, i.e., the coupling of DEVS
models defines an equivalent atomic DEVS model [16].

3. Extending DEVS for capturing emergent behavior: Design goals
and principles

So far we have discussed why emergence is an important topic
in complex systems. Yet, integrating emergence into an M&S formal
framework presents some nuances. For instance, emergent properties
should not be explicitly encoded into a model, for then there would
not be true emergence at all, no ‘surprise’ factor whatsoever. There are
also decisions to be made about what DEVS flavor to take as a departure
point for the new formalism.

Classic DEVS has shown sound capabilities to represent a plethora
of formalisms [17], both in the discrete and continuous realms, and
also in the deterministic and stochastic domains. Since its initial in-
troduction [18] several new practical needs showed up arising from
challenges in the practice of DEVS-based M&S. These needs moti-
vated the proposal of powerful extensions such as parallel semantics
(P-DEVS [19]), variable structure (DS-DEVS [20,21]), multi-level dy-
namics (ML-DEVS [22]) just to name a few, and also combinations of
them.

The relevance of emergent behavior from the perspective of DEVS
3

M&S was .elaborated in detail by [23] where the author presents
systematically how DEVS extensions can be applicable to tackle emer-
gence, stigmergy and complex adaptive systems modeling (see an his-
torical account in [24]).

Yet, we purposely decide to step back from well-known advanced
DEVS extensions and frame our approach within Classic DEVS, aiming
at answering the following fundamental question:

What could be a minimal formal structure that allows for reasoning
about emergence in a DEVS-like model, that is naturally compatible
with the original classic formalism?

Thus, in order to organize the formulation of such new formalism
we propose a list of design goals:

1. Extend Classic DEVS to allow for dealing with emergence, re-
lying on multi-level feedback loops between macro and micro-
states.

2. Minimize the number of interventions required into Classic
DEVS.

3. Preserve the state information hiding property in DEVS mod-
els, relying on communication channels to control information
sharing between levels.

4. Offer the usage of micro–macro dynamics as an optional capabil-
ity, to be either adopted or ignored by the modeler in a flexible
way.

5. Provide model heterogeneity, allowing for models with and
without emergence to coexist and interact seamlessly.

6. Minimize the impact in terms of changes to the Classic DEVS
abstract simulator.

7. Minimize the complexity for updating macro-level states derived
from the micro-level models.

8. Foster an intuitive DEVS-style modeling of top-down and
bottom-up dynamics.

9. Discourage the explicit modeling of macro-states detached from
(or unrelated to) dynamics driven by micro-states.

The list above is driven by an underlying purpose to privilege
compactness in the formalism, perhaps sacrificing some practical con-
veniences (e.g. parallelism or dynamic structure) which will be the
subject of future research. Yet, as it will become clear in Section 4,
we will resort to a flavor of parallelism in the upward communication
channel (a collection of parallel bottom-up messages in a bag).

We shall then introduce a macro-level state in the formalism that is
key to identify, analyze, and model emergence. This idea is supported
by Mittal’s and Rainey’s work [25], where they developed the concept
of Emergence Behavior Observer (EBO) Snapshots, as the variable or
variables that hold the information representing components, states and
interactions aggregated information.

Quoting John H. Holland ‘‘aggregates at one level become ‘building
blocks’ for emergent properties at a higher level’’ [9](pp. 4–6). Furthermore
in the M&S community, In Fig. 1 a conceptual scheme shows the
information flow between the macro and micro system levels.

A (global) macro-state 𝑠𝐺 appears stored at the coupled model, as an
aggregate state that emerges from a network of (individual) micro-states
at the atomic models (i.e., the building blocks that make emergence
possible).

The macro-state shall be produced by a new global function applied
across micro-states. In fact, in order to preserve information hiding
(Item 3) the global function should act only upon what is exposed to it,
stemming from the micro-states. We can consider that at any instant in
a simulated timeline, atomic models present their environment with a
set of visible properties by means of an upward causation mechanism.
This should conform a sequence of consistent collective snapshots of mi-
croscopic states. As a consequence, for any given instant in a simulation
there will be a single, unambiguous macro-level state resulting from the
latest evaluation of a global function (applied over the latest collective
snapshot).
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Fig. 1. Conceptual approach to equip DEVS with information channels across model
levels in the parent–children hierarchy.

In turn, the macro-level state should be always exposed back to
all children models by means of a downward information mechanism,
thereby (possibly) influencing micro-level state transitions. Namely,
during each atomic model’s internal or external transition the macro-
level state is made readable to the transition functions to produce
the state change. The latter might trigger a subsequent update of the
coupled model’s aggregate state, via the upward causation mechanism
explained above, hence evidencing the desired micro–macro closed
loop capability (Item 1). Obviously, a well-defined orchestration mech-
anism must be defined in order to grant that race conditions can
never be created as the result of the multi-level information exchange
mechanisms.

Yet, the closed loop mechanism shall not be mandatory (Item 4). It
is not mandatory to resort to micro–macro dynamics. It is possible to
use the formalism the same way as in Classic DEVS, when multi-level
interaction is not required. Namely, the information exchange through
upward and downward channels must be optional, and the execution of
all transition functions (at both, coupled and atomic models) will treat
multi-level information only as an optional piece of data, thus achieving
Item 5.

Also, it is worth noting that micro–macro dynamics should be
allowed to span across all levels in a model hierarchy. In other words,
the capability of pushing messages upwards by an atomic model to its
parent must be recursive, hence the coupled model being also capable
of pushing messages to its own parent model (i.e., the grandparent of
the original atomic one). This can create a cascade of upward causation
transitions, spreading information from the bottom-up.

As a consequence, due to the micro–macro loops explained above,
and considering the tree-like hierarchical structure of DEVS, every
coupled model in a system will have the chance to be influenced
(although indirectly) by any atomic model in the system, and vice
versa.

Taking into consideration the design goals explained above, and
taking Classic DEVS as a departure point, we define the following
design strategy (refer to Fig. 2 to see mathematical elements mapped
to a model architecture):

• Equip the coupled model with new elements (functions and sets)
at a ‘‘global’’ level.
This is a rather evident design choice, aiming mainly at the goal
in Item 1. We will use sub index G for the new elements of the
coupled model. In this sense the concept of ‘‘macro’’ and ‘‘global’’
can be used interchangeably.

• Add a global state 𝑠𝐺 calculated by a global transition function
𝛿 triggered exclusively by the arrival of upward messages.
4

𝐺

• Avoid implementing a time advance function at the global level.
This decision prevents entailing a coupled model with
autonomous global behavior (i.e., not driven by micro dynamics),
and also prevents creating a type of coupled model that is concep-
tually very close to what an atomic model is. With this strategy
we mainly support goal in Item 9 impacting also goals in Items
2, 5 and 6.

• Allow all new functions and sets to remain undefined, yet produc-
ing well-formed models.
In the limit case, ignoring all information related to micro–macro
dynamics should render a valid Classic DEVS.

• Adopt a many-to-one causation mechanism for the upward micro–
macro communication channel.
Possibly many atomic models bubble up selected information
from their state set during a given simulation cycle (same times-
tamp). Said information is sent up in the form of 𝑦𝑢𝑝 messages, and
accumulated in a bag (or mailbox) 𝑥𝑏 at the global level. Upon
reception of all 𝑦𝑢𝑝 messages in a simulation cycle, 𝛿𝐺 is invoked.

• Use internal and external transition functions to produce the up-
ward 𝑦𝑢𝑝 messages. State transition functions 𝛿𝑖𝑛𝑡 or 𝛿𝑒𝑥𝑡 calculate
both the new state 𝑠 and the new 𝑦𝑢𝑝 message. We avoid including
a new type of 𝜆𝑢𝑝 upward output function (i.e. imitating the classic
𝑦 = 𝜆(𝑠) scheme) as it is not needed. The reason for this is that
the simulation cycle for upward messaging is not decoupled from
the cycle of a state transition (as is the case with Classic DEVS
messaging).

• Adopt a one-to-many value coupling mechanism for the downward
macro–micro communication channel.
Every atomic model has read-only access to the global 𝑠𝐺 state
through a local 𝑠𝑚𝑎𝑐𝑟𝑜 state (transformed by 𝑣𝑑𝑜𝑤𝑛), while under-
going the 𝛿𝑖𝑛𝑡 or 𝛿𝑒𝑥𝑡 state transition functions. The triggering of
these functions remains the same as in Classic DEVS, now with
additional macro-level information made available to decide on
micro-level behavior.

• Make upward messaging and downward value coupling recursive
mechanisms throughout all hierarchical levels.
Thus, the 𝑦𝑢𝑝 messages and 𝑠𝑚𝑎𝑐𝑟𝑜 mirrored states (valid at atomic
models) have their global counterparts (valid at coupled models),
namely 𝑦𝐺𝑢𝑝

(calculated by 𝛿𝐺) and 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
(mirrored from the

parent’s parent).
• Make the global state 𝑠𝐺 depend on three levels: macro, global,

and micro.
At a coupled model, the global state transition function 𝛿𝐺 de-
pends on the global state 𝑠𝐺, its elapsed time 𝑒𝐺, its children’s
micro-level information (stored at 𝑋𝑏) and its parent’s macro-
level state (mirrored at 𝑆𝐺𝑚𝑎𝑐𝑟𝑜

).

In the following section we introduce the EB-DEVS formalism,
derived from the goals and strategies described in this section.

4. The emergent behavior DEVS (EB-DEVS) formalism

The Fig. 2 shows how atomic and coupled models interact with each
other. Upward causation events are written in the output ports 𝑌𝑢𝑝.
They are read by the coupled model in the 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 input bag port.
The upward causation output port in the coupled model is called

𝑌𝐺𝑢𝑝
. Conversely, it receives information from the higher-level models

through the 𝑆𝐺𝑚𝑎𝑐𝑟𝑜
input port via value couplings. These input and

output ports relationships is a common denominator between levels
giving consistency through the model hierarchy.

4.1. EB-DEVS atomic model formal definition

Several differences compared with the atomic DEVS model ex-
ist, some of them have been discussed in Section 3, regarding the
new communication channels. These changes enable the top-down and
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Fig. 2. Architecture, components and communication channels of EB-DEVS.
bottom-up information sharing process. But the new available informa-
tion needs to be taken into account by the state transition functions.
This is one of the major changes in the atomic model. State transition
functions 𝛿𝑖𝑛𝑡 and 𝛿𝑒𝑥𝑡 use the parent’s model state as a parameter for the
state change. Their domain and co-domain have changed accordingly,
and their outputs are used to communicate the results to the parent
model.

Let us now look at the Atomic EB-DEVS model definition.

𝑀 =

Classic DEVS
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨𝑋, 𝑌 , 𝑆, 𝑡𝑎, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆,

EB-DEVS
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑌𝑢𝑝, 𝑆𝑚𝑎𝑐𝑟𝑜⟩ (3)

where,

𝑋 is the set of input events.
𝑌 is the set of output events.
𝑆 is the set of states.
𝑡𝑎 ∶ 𝑆 → ℜ+

0 ∪∞ is the time advance function that
determines the lifespan of a state.

𝛿𝑖𝑛𝑡 ∶ 𝑆 × 𝑆𝑚𝑎𝑐𝑟𝑜 →
𝑆 × 𝑌𝑢𝑝

is the internal transition function which
defines how a state of the model changes
autonomously (when the elapsed time
reaches the lifetime of the state). The
second output value in the tuple, defined
in 𝑌𝑢𝑝, carries information for the parent
to compute 𝛿𝐺 (defined in the next
section).

𝛿𝑒𝑥𝑡 ∶ 𝑆 ×ℜ+
0 ×𝑋 ×

𝑆𝑚𝑎𝑐𝑟𝑜 → 𝑆 × 𝑌𝑢𝑝
is the external transition function which
defines how an input event changes the
current state of the model. The value for
the output port 𝑌𝑢𝑝 is defined as in the
internal transition.

𝜆 ∶ 𝑆 → 𝑌 is the output function.
𝑌𝑢𝑝 is the set of output events directed to the

parent model.
𝑆𝑚𝑎𝑐𝑟𝑜 is the (value coupled) set of parent’s

states.
5

4.2. The EB-DEVS coupled model formal definition

Classic DEVS coupled models are containers that enable hierarchical
compositions of other models. However, they have no behavior nor
state of their own. In EB-DEVS, an upward communication channel
is defined to convey messages coming from the set 𝑌𝑢𝑝 (at the micro
level) towards the set 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 (at the macro level) enabling an upward
causation mechanism. It allows for the calculation of a global state
in 𝑆𝐺 that depends on local information recollected at 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜, and is
calculated by the global transition function 𝛿𝐺.

Also, as an argument of 𝛿𝐺 is 𝑆𝐺𝑚𝑎𝑐𝑟𝑜
which allows for accessing the

coupled model’s parent global state (downward information channel
from upper layers).

To compute the new macro-level state 𝑠𝐺 ∈ 𝑆𝐺, the function 𝛿𝐺 also
uses the current value of 𝑠𝐺 and its elapsed time 𝑒𝐺 (similarly to what
a Classic DEVS external transition function does).

Each calculation of 𝛿𝐺 can also produce upward output messages
through the 𝑌𝐺𝑢𝑝

set.

For the downward communication channel (from parent to chil-
dren) we define a value coupling mechanism by means of the 𝑣𝑑𝑜𝑤𝑛
function. It has access to the global state in 𝑆𝐺 and, when invoked by
one or more children, it can restrict the amount of global information
made visible to the lower layer.

𝐶𝑁 =

Classic DEVS
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨𝑋𝑠𝑒𝑙𝑓 , 𝑌𝑠𝑒𝑙𝑓 , 𝐷, {𝑀𝑖}, {𝐼𝑖}, {𝑍𝑖,𝑗}, Select,

EB-DEVS extension
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑋𝑏

𝑚𝑖𝑐𝑟𝑜, 𝑌𝐺𝑢𝑝 , 𝑆𝐺𝑚𝑎𝑐𝑟𝑜 , 𝑆𝐺 , 𝑣𝑑𝑜𝑤𝑛, 𝛿𝐺⟩

(4)

The new coupled model preserves the original elements of Classic
DEVS coupled models, and adds six new elements.
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𝑋𝑠𝑒𝑙𝑓 is the set of input values.
𝑌𝑠𝑒𝑙𝑓 is the set of output values.
D is the set of component references.
{𝑀𝑖} for each 𝑑 ∈ 𝐷, 𝑀𝑑 is a DEVS model.
{𝐼𝑖} is the set of influencer models for each

subsystem.
{𝑍𝑖,𝑗} for each 𝑖 ∈ 𝐼𝑑 , 𝑍𝑖,𝑑 is the translation

function.
Select is the tie breaking function for

simultaneous events.
𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 is a mailbox input port for the
information events sent by the atomic
models.

𝑌𝐺𝑢𝑝 is an output port for the information
events sent towards the parent.

𝑆𝐺 is the set of states that the coupled model
can adopt.

𝑆𝐺𝑚𝑎𝑐𝑟𝑜 is the parent’s set of states. It can be ⊘ in
case of not having a parent.

𝑣𝑑𝑜𝑤𝑛 ∶ 𝑆𝐺 → 𝑆𝑚𝑎𝑐𝑟𝑜 is the downward value coupling function
that provides the global information to its
children.

𝛿𝐺 ∶ 𝑆𝐺 ×ℜ+
0 ×𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 ×
𝑆𝐺𝑚𝑎𝑐𝑟𝑜 → 𝑆𝐺 × 𝑌𝐺𝑢𝑝

is a function that computes a new macro
state 𝑆𝐺 based on its own state, the
elapsed time for its last state change, the
messages 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 arrived from its micro
components and its parent’s macro state
𝑆𝐺𝑚𝑎𝑐𝑟𝑜. It also computes the
upward-causation event (a value in the
𝑌𝐺𝑢𝑝

set) towards its parent. The cascade
of upward causation events can
eventually climb up in the hierarchy,
possibly (but not necessarily) until the
root coupled model.

4.3. Theoretical properties of EB-DEVS

In this section we show three core theoretical properties of EB-
DEVS. The closure under coupling property enables us to define a
single, universal EB-DEVS abstract simulator for any modular/hier-
archical composition of atomic and coupled EB-DEVS models. Also,
a definition for the notion of legitimacy of EB-DEVS must be pro-
vided, to delimit the class of EB-DEVS models that can produce correct
simulations (in the sense of guaranteeing a physically realizable rep-
resentation of time). We will approach this definition by relying on a
third property, the bisimulation between EB-DEVS and DEVS.

Fig. 3 synthesizes the relations between the closure under coupling
and bisimulation properties between DEVS and EB-DEVS models, both
atomic and coupled.

The numbered arrows depict source–destination pairs. For instance,
arrow 4 represents the fact that it is always possible to find a Coupled
EB-DEVS model that bisimulates a given Coupled DEVS model, and
arrow 6 represents that given a Coupled EB-DEVS model we can
always find an equivalent Atomic EB-DEVS model. We refer the reader
to the appendices for the formal proofs of closure under coupling
(Appendix A), bisimulation (Appendix C) and legitimacy (Appendix D).

4.3.1. Abstract simulator for EB-DEVS
The DEVS simulator (also, the DEVS abstract simulator) was first

introduced, and later evolved by Bernard Zeigler [16,18,26]. It allows
generating unambiguous behavior (state and output trajectories) for
any given system specification and initial conditions. Additionally,
the formalism enforces rules to make the system specification and its
resulting behavior match with each other. The DEVS abstract simulator
6

defines how models are executed. For instance, it ensures that the
output function is invoked before the internal transition, that the
select function is applied in case of a need for tie-breaking, and how
to dispatch the output messages between models. In this section we
extend the DEVS abstract simulator to express the new kind of behavior
required for EB-DEVS to work.

The corresponding EB-DEVS abstract simulator inherits from DEVS
the tree-like structure and the message passing mechanism. As in DEVS,
there are three types of processors: the EB-DEVS-root-coordinator (which
has no model associated with it and forms the root processor of the
tree), the EB-DEVS-coordinators (which are associated with coupled
models, and represent the inner nodes of the tree) and the EB-DEVS-
simulators (which are associated with atomic models and represent
the leaves of the tree). The EB-DEVS-root-coordinator initiates and
controls the simulation cycles, it sends the initialization messages and
forwards top-level messages to the corresponding lower-level proces-
sor. Correspondingly, processors (EB-DEVS-coordinators and EB-DEVS-
simulators) communicate information between model levels (top-down,
bottom-up, or the same level). Communication is done with messages
to signal initialization, external transitions, internal transitions, output
events, or when a model has ended executing its state transition (i.e.
*-messages, x-messages, y-messages, and done-messages).

The main modifications brought into the abstract simulator are the
exposure of macro-level states to the micro-level atomic models, and
the execution of the coupled model’s transition function 𝛿𝐺.

For a detailed explanation about how this is implemented, please
refer to Appendix B, where we show how the EB-DEVS abstract simu-
lator’s processors are extended.

5. Case studies

In this section we adopt EB-DEVS to model three types of systems
with micro–macro level interactions. The purpose is to explore both the
potential and limitations of the formalism.

First we will discuss the implementation of the classic epidemio-
logical Susceptible Infected Recovered (SIR) model [27]. We will show
how EB-DEVS can implement Classic DEVS models (without multi-level
interactions) and how easy it is to extend its behavior to take advantage
of multi-level closed-loop dynamics.

The second model is the classic Reynold’s Boids model [28] and two
additional extensions. These models will showcase how it is possible to
represent complex behavior by integrating the multiple levels of the
system. We will resort to EB-DEVS to exploit indirect communication,
adaptive behavior, and spontaneous organization as model features.

Finally, we implemented a recent mitochondria model, based on
Dalmasso’s agent based model [29]. In this case, we test the limits of the
formalism by modeling a system that calls for variable model structure.
We will show how it can be approached with EB-DEVS, what additional
features would be required and how indirect communication can be of
help to circumvent the variable structure issue.

5.1. A SIR model

The SIR model is a classical epidemiological compartmental model
proposed by Kermack and McKendrick and further extended by Hop-
pensteadt [27,30] and many others.

Susceptible, Infected, and Recovered compartments in a given pop-
ulation evolve over time influencing each other. The model presents
strong assumptions. All Susceptible (S) become Infected (I) at a rate 𝛽𝐼 ,
while all Infected become Recovered (R) at a rate 𝛾𝐼 . The parameter
𝛽 represents the average number of contacts per person multiplied by
the probability of transmission at the moment of each contact. On the
other hand, 𝛾 describes the rate of recovery.

This simple model can be used to study how a contagious disease
spreads in terms of the evolution of the amount of infected population,
duration of the epidemic, effect of social distancing policies, impact of

vaccination campaigns, etc.
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Fig. 3. Formal relations and possible transformations between DEVS and EB-DEVS models. For coupled models, red links depict classic input–output connections, green links depict
upward causation and downward information, and blue links depict an overlying broadcast network required for a classic Coupled DEVS model to bisimulate a Coupled EB-DEVS
model. The added broadcast network is a complete bidirectional graph including only those components that use micro–macro dynamics in the EB-DEVS counterpart.
The SIR model has been extended and studied extensively by chang-
ing the types of compartments [31], the connectivity network [32] (by
using mean-field theory), or the conditions of the infection process.

Investigation through Ordinary Differential Equations (ODEs) is
one of the possible macroscopic approaches to study this model. The
following is a representation in the form of a set of ODEs parametrized
with the above mentioned rates:

𝑑𝑆(𝑡)
𝑑𝑡

= −𝑆(𝑡)
𝛽𝐼(𝑡)
𝑁

𝑑𝐼(𝑡)
𝑑𝑡

= 𝑆(𝑡)
𝛽𝐼(𝑡)
𝑁

− 𝛾𝐼(𝑡)

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼(𝑡)

𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)

(5)

Agent-based discrete event models are also an effective approach
when microscopic phenomena needs to be taken into account. Interac-
tions among agents can be modeled as a graph where pairs of nodes are
connected if there is a potential of interaction. One option is to focus
on the degrees of each node, that is, the number of encounters each
person may have with others. A common approach is to model such
social interactions with a Configuration Model (CM) type of network,
widely used in social science research. A CM allows building complex
networks with an arbitrary sequence of node’s degrees (for an in-depth
explanation of Configuration Models see the works of Barabási [33] and
Bollobas [34]). In this section we will call SIR-CM the SIR model that
spans over a Configuration Model graph.

5.1.1. Modeling a SIR-CM with EB-DEVS
We present a possible implementation of the SIR-CM model with EB-

DEVS. As we will see, the most interesting part of this example comes
when some emergent property is detected at the system level, such that
it becomes reflected at the agents’ level.

We model the environment as a coupled model. It contains atomic
models (agents) connected by means of a network N built as a CM
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graph. The degree sequence of the CM follows a Gamma distribution
with parameters 𝑘 = 10, 𝜃 = 1.

Each atomic model has a state variable denoting the S, I or R stages
of the agent. Each pair of interacting atomic models are bidirectionally
connected through input and output ports according to the topology of
N. Atomic models have a single input port to receive messages coming
from (possibly many) other models. The rules that define the dynamics
of each agent are:

• A Susceptible agent changes its state to Infected when it receives
a message through its input port (signaling an infection).

• An Infected agent sends infection messages through its output
ports (one at a time, and never more than one at the same time).
It may infect more than one agent during its infectious period
(before recovering).

• An Infected agent will recover from the disease changing its state
to Recovered, and never get infected again (even if it receives
further infection messages from other agents). This models the
immunization of the agent.

The rates at which agents get infected and recover are in accordance
with the SIR structure in the form of ODEs in Eq. (5). To translate
those rates into the agent’s state transition functions, we define two
exponential clocks that will trigger individual infections and recoveries.
An agent will stay in the Infected state for a period sampled from an
exponential distribution 𝑒𝑥𝑝(𝜆 = 1∕𝛾). After that, it will transition to
Recovered. The same agent will infect other agents by following a clock
with exponential distribution 𝑒𝑥𝑝(𝜆 = 1∕(#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ⋅ 𝛽)).

The internal transition determines if an atomic model can either
infect another model or recover, changing its state depending on the
clock’s events order. The situation of having 𝑖 ∈ (1,… , 𝑛) concurrent
exponential clocks with parameter 𝜆𝑖 is known as an exponential race.
To solve this problem we define 𝜉 as the minimum in a set of 𝜉𝑖
exponentially distributed variables of parameter 𝜆𝑖. The parameter for
the exponential distribution of 𝜉 is 𝜆 =

∑𝑛
𝑖 𝜆𝑖. The probability that 𝜉𝑖

be the triggered event among 𝜉 has probability 𝑃 (𝜉 = 𝜉 ) = 𝜆 ∕𝜆 (see
𝑖 𝑖
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p

Bocharov’s Queuing Systems [35] book, lemmas 1.2.2 and 1.2.3, for the
roof).

We define the EB-DEVS primitives as follows.

• The time advance function 𝑡𝑎 for a Susceptible or a Recovered
agent returns ∞, while for an Infected agent it returns values
sampled from the exponential distribution

𝑒𝑥𝑝(𝜆 = 1
#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ⋅ 𝛽

+ 1
𝛾
)

• The external transition function 𝛿𝑒𝑥𝑡 changes the agent’s state
upon reception of an infection message. If the agent is Susceptible,
it changes its state to Infected.

• The internal transition function 𝛿𝑖𝑛𝑡 acts only on the Infected state.
It changes the state from Infected to Recovered with probability

𝑃 =
#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ⋅ 𝛽

#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ⋅ 𝛽 + 𝛾
(remaining in Recovered until the end of the simulation ignoring
any other event). Conversely, it will remain in state Infected with
probability 1 − 𝑃 .

• The output function 𝜆 will emit an Infect message through a
randomly selected output port (uniform distribution) only if the
agent is in Infected state.

• The relationship between the 𝛿𝑖𝑛𝑡 and 𝜆 functions can be stated
as follows. Consider that 𝑠𝑖+1 = 𝛿𝑖𝑛𝑡(𝑠𝑖) after 𝑡𝑎(𝑠𝑖) units of time.
There are two possible cases that are selected randomly at the 𝛿𝑖𝑛𝑡
function. In one case, at the next internal transition the infected
agent shall recover according to 𝑠𝑖+1 = 𝛿𝑖𝑛𝑡(𝑠𝑖) = 𝑅 and 𝑡𝑎(𝑅) = ∞
(no further output message will be issued). Otherwise, at the next
internal transition the agent shall infect a neighbor and remain
infected, according to 𝜆(𝐼) = Infect and 𝑠𝑖+1 = 𝛿𝑖𝑛𝑡(𝑠𝑖) = 𝑠𝑖 = 𝐼 .

• Each state change is informed by every agent to the coupled
model with the 𝑦𝑢𝑝 output port (many-to-one upward causation).

• The coupled model aggregates the states of its dependents, by
means of its 𝛿𝐺 function, calculating the number of agents for
each compartment (S, I and R). This information is not made
available to the atomic models (i.e., the one-to-many downward
value coupling would return a null value if invoked by an agent).

5.1.2. Formal instance of the SIR-CM model
We give the formal definition of the SIR-CM model using EB-DEVS.

We define the following atomic model:

𝐴𝑔𝑒𝑛𝑡 = ⟨𝑋, 𝑌 , 𝑆𝐴, 𝑡𝑎, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, 𝑌𝑢𝑝, 𝑆𝑚𝑎𝑐𝑟𝑜⟩ (6)

Note: we name the agent‘s state set 𝑆𝐴 instead of the usual 𝑆 to
avoid a naming clash with the Susceptible compartment.

• 𝑋 = 𝑌 = {Infect}
• 𝑆𝐴 = {𝑆, 𝐼, 𝑅}
• 𝑌𝑢𝑝 = {𝑆, 𝐼, 𝑅}
• 𝑡𝑎(𝑆) = 𝑡𝑎(𝑅) = +∞
• 𝑡𝑎(𝐼) = 𝑒𝑥𝑝(𝜆 = 1

#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝛽 + 1
𝛾 )

• 𝜆(𝐼) = Infect
• 𝜆(𝑅) = 𝜆(𝑆) = ⊘
• 𝛿𝑖𝑛𝑡(𝑆, ⋅) = (𝑠𝐴 = 𝑆, 𝑦𝑢𝑝 = 𝑆)
• 𝛿𝑖𝑛𝑡(𝐼, ⋅) = if 𝑢𝑛𝑖𝑓 (0, 1) < #𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝛽

#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝛽+𝛾
then (𝑠𝐴 = 𝑅, 𝑦𝑢𝑝 = 𝑅)
else (𝑠𝐴 = 𝐼, 𝑦𝑢𝑝 = 𝐼)

• 𝛿𝑖𝑛𝑡(𝑅, ⋅) = (𝑠𝐴 = 𝑅, 𝑦𝑢𝑝 = 𝑅)
• 𝛿𝑒𝑥𝑡(𝑆, 𝑒, Infect, ⋅) = 𝛿𝑒𝑥𝑡(𝐼, 𝑒, Infect, ⋅) = (𝑠𝐴 = 𝐼, 𝑦𝑢𝑝 = 𝐼)
• 𝛿𝑒𝑥𝑡(𝑅, 𝑒, Infect, ⋅) = (𝑠𝐴 = 𝑅, 𝑦𝑢𝑝 = 𝑅)
• 𝑆𝑚𝑎𝑐𝑟𝑜 = ⊘

We define the ‘Environment’ coupled model, as a container for the
atomic models (or ‘agents’). The network N (see Section 5.1.1) defines
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the values for 𝐼𝑖 and 𝑍𝑖,𝑗 .

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = ⟨𝑋𝑠𝑒𝑙𝑓 , 𝑌𝑠𝑒𝑙𝑓 , 𝐷, {𝑀𝑖}, {𝐼𝑖}, {𝑍𝑖,𝑗},
Select, 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜, 𝑌𝐺𝑢𝑝
, 𝑆𝐺𝑚𝑎𝑐𝑟𝑜

, 𝑆𝐺 , 𝑣𝑑𝑜𝑤𝑛, 𝛿𝐺⟩
(7)

• 𝑋𝑠𝑒𝑙𝑓 = 𝑌𝑠𝑒𝑙𝑓 = ⊘
• 𝐷 = {1, … , 𝑁}
• {𝑀𝑖} = {Agent𝑖}
• {𝐼𝑖} = CM-graph-connectivity
• {𝑍𝑖,𝑗} = {𝐼𝑛𝑓𝑒𝑐𝑡} → {𝐼𝑛𝑓𝑒𝑐𝑡}
• Select = sort by 𝑖 ∈ 𝐷
• 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 = {𝑆, 𝐼, 𝑅}
• 𝑌𝐺𝑢𝑝

= 𝑆𝐺𝑚𝑎𝑐𝑟𝑜
= ⊘

• 𝑆𝐺 = {(𝑥, 𝑦, 𝑧)|𝑥, 𝑦, 𝑧 ∈ N}
• 𝑣𝑑𝑜𝑤𝑛 = ⊘
• 𝛿𝐺(𝑠𝐺 , 𝑒, 𝑆, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜

) = (# of agents with state S + 1,
# of agents with state I ,
# of agents with state R)

• 𝛿𝐺(𝑠𝐺 , 𝑒, 𝐼, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
) = (# of agents with state S,

# of agents with state I +1,
# of agents with state R)

• 𝛿𝐺(𝑠𝐺 , 𝑒, 𝑅, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
) = (# of agents with state S,

# of agents with state I ,
# of agents with state R + 1)

5.1.3. SIR-CM-V: Extending the SIR-CM model with vaccination
We extend the SIR-CM model to provide atomic models with aggre-

gated information of the rate of infection. This information is later used
by the atomic models to decide whether to vaccinate or not.

A vaccination campaign is deployed to prevent infection of a Sus-
ceptible agent. To achieve this, we use an outbreak emergent property.

In this case the primitives are implemented as follows:

• The internal transition, time advance, and output functions re-
main the same as in the SIR-CM model.

• The external transition function 𝛿𝑒𝑥𝑡 is extended to read the
emergent outbreak information made available by the coupled
model. If the outbreak variable crosses a given threshold, when
the agent detects this property then decides to avoid current and
future infections by setting its vaccinated flag.

• The 𝛿𝐺 function computes 𝑠𝐺 as the growth rate for the Infected
compartment, discretizing time into regular time bins. As we have
the number of infected agents in the infected compartment for
time bin 𝑁 − 1 and 𝑁 (being 𝑁 the latest time bin), we can
calculate the discrete derivative indicating the rate of growth or
decay of infected agents.

• The value-couplings function 𝑣𝑑𝑜𝑤𝑛 shares the rate of growth with
the atomic models.

• The 𝑦𝑢𝑝 output message shares the new state with the coupled
model.

5.1.4. Formal instance of the SIR-CM-V model including vaccination
Using EB-DEVS we present the SIR-CM-V model. It is based on

the SIR-CM and it uses downward information to model a vaccination
campaign for preventing infections.

The macro-level state stores the amount of agents at each com-
partment. It then computes the increase or decrease of infected agents
per time unit. This decreases or increases the rate used by the agents
to detect if there is an outbreak of the infection. Susceptible agents
receiving an Infect message while the outbreak emergent property is
present will become ‘‘vaccinated’’, staying in Susceptible state until the
end of the simulation.

The Susceptible compartment is split into the ones that got ‘vac-
cinated’ (𝑆𝑣) and the ones that have not (𝑠¬𝑣). This is used to avoid
future infections after the outbreak property is deactivated. We use 𝑆
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as a wildcard in cases where there is no distinction between the two
states.

𝐴𝑔𝑒𝑛𝑡 = ⟨𝑋, 𝑌 , 𝑆𝐴, 𝑡𝑎, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆, 𝑌𝑢𝑝, 𝑆𝑚𝑎𝑐𝑟𝑜⟩ (8)

Note: we name the agent state set 𝑆𝐴, to avoid naming clashes with
the Susceptible compartment.

• 𝑋 = 𝑌 = {Infect}
• 𝑆𝐴 = {𝑆¬𝑣, 𝑆𝑣, 𝐼, 𝑅}
• 𝑌𝑢𝑝 = {𝑆, 𝐼, 𝑅}
• 𝑡𝑎(𝑆) = 𝑡𝑎(𝑅) = +∞
• 𝑡𝑎(𝐼) = 𝑒𝑥𝑝(𝜆 = 1

#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝛽 + 1
𝛾 )

• 𝜆(𝐼) = Infect
• 𝜆(𝑅) = 𝜆(𝑆) = ⊘
• 𝛿𝑖𝑛𝑡(𝑆, ⋅) = 𝑆
• 𝛿𝑖𝑛𝑡(𝐼, ⋅) = if 𝑢𝑛𝑖𝑓 (0, 1) < #𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝛽

#𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝛽+𝛾
then (𝑠𝐴 = 𝑅, 𝑦𝑢𝑝 = 𝑅)
else (𝑠𝐴 = 𝐼, 𝑦𝑢𝑝 = 𝐼)

• 𝛿𝑖𝑛𝑡(𝑅, ⋅) = (𝑠𝐴 = 𝑅, 𝑦𝑢𝑝 = 𝑅)
• 𝛿𝑒𝑥𝑡(𝑆¬𝑣, 𝑒, Infect, 𝑛) = if 𝑛 < vaccination threshold

then (𝑠𝐴 = 𝐼, 𝑦𝑢𝑝 = 𝐼)
else (𝑠𝐴 = 𝑆𝑣, 𝑦𝑢𝑝 = 𝑆𝑣)

• 𝛿𝑒𝑥𝑡(𝑆𝑣, 𝑒, Infect, 𝑛) = (𝑠𝐴 = 𝑆𝑣, 𝑦𝑢𝑝 = 𝑆𝑣)
• 𝛿𝑒𝑥𝑡(𝐼, 𝑒, Infect, 𝑛) = (𝑠𝐴 = 𝐼, 𝑦𝑢𝑝 = 𝐼)
• 𝛿𝑒𝑥𝑡(𝑅, 𝑒, Infect, 𝑛) = (𝑠𝐴 = 𝑅, 𝑦𝑢𝑝 = 𝑅)
• 𝑆𝑚𝑎𝑐𝑟𝑜 = N

We define the coupled model as a container of the atomic models
named ‘agents’. The coupled model contains the coupled network details
for the connections of the agents with the coupled model and the rest
of the model.

In this case, we also define the value-couplings and internal/ex-
ternal transition functions to use this information for their transition.

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = ⟨𝑋𝑠𝑒𝑙𝑓 , 𝑌𝑠𝑒𝑙𝑓 , 𝐷, {𝑀𝑖}, {𝐼𝑖}, {𝑍𝑖,𝑗},
Select, 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜, 𝑌𝐺𝑢𝑝
, 𝑆𝐺𝑚𝑎𝑐𝑟𝑜

, 𝑆𝐺 , 𝑣𝑑𝑜𝑤𝑛, 𝛿𝐺⟩
(9)

• 𝑋𝑠𝑒𝑙𝑓 = 𝑌𝑠𝑒𝑙𝑓 = ⊘
• 𝐷 = {1, … , 𝑁}
• {𝑀𝑖} = {Agent𝑖}
• {𝐼𝑖} = CM-graph-connectivity
• {𝑍𝑖,𝑗} = {𝐼𝑛𝑓𝑒𝑐𝑡} → {𝐼𝑛𝑓𝑒𝑐𝑡}
• Select = sort by 𝑖 ∈ 𝐷
• 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜 = {𝑆, 𝐼, 𝑅}
• 𝑌𝐺𝑢𝑝

= 𝑆𝐺𝑚𝑎𝑐𝑟𝑜
= ⊘

• 𝑆𝐺 = {(𝑥, 𝑦, 𝑧)|𝑥, 𝑦, 𝑧 ∈ N}
• 𝑣𝑑𝑜𝑤𝑛 = Change (increase or decrease) in the

# of agents with state I
• 𝛿𝐺(𝑠𝐺 , 𝑒, 𝑆, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜

) = (# of agents with state S + 1,
# of agents with state I ,
# of agents with state R)

• 𝛿𝐺(𝑠𝐺 , 𝑒, 𝐼, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
) = (# of agents with state S,

# of agents with state I +1,
# of agents with state R)

• 𝛿𝐺(𝑠𝐺 , 𝑒, 𝑅, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
) = (# of agents with state S,

# of agents with state I ,
# of agents with state R + 1)

5.1.5. Simulation experiments
For the SIR-CM and SIR-CM-V models, 500 atomic models were

instantiated with 10% of the agents starting the simulation with in-
fected state while the remaining with susceptible state. We used a
Configuration Model network with degree sequence 𝛤 (𝛼 = 10, 𝛽 = 1).
9

Fig. 4. SIR-CM model vs. SIR-CM-V model. The 𝑦-axis represents the amount of
agents in each compartment for each model version. Points represent mean values
and crossbars indicate standard deviation.

The simulation models were run 50 times each with the same
parameters using different seeds for the random number generation.

In Fig. 4 we can see how the two models compare over time. The
SIR-CM model presents the expected evolution of a classic SIR model,
the SIR-CM-V model drops the number of infected agents while reach-
ing the outbreak emergent property making it diverge from SIR-CM
model.

We can observe the effect of the vaccination events in Fig. 5. Ver-
tical blue boxes highlight the moments where the outbreak emergent
property is present. At the same time of detection of the property,
susceptible agents ignore the infection message thus preventing their
infection.

5.1.6. Discussion
We presented a SIR-CM model and its extension, the SIR-CM-V

model. Given the model implemented in EB-DEVS, extending it for
the use of micro–macro level dynamics proved straightforward. The
simplicity of modeling with EB-DEVS shows us how practical it can be
to add emergent behavior to existing models.

Yet, extending model behavior to include complex conditions based
on a state variable can bring about some modeling issues. As mod-
els grow, the conditions needed to support their behavior become
more complex, potentially generating too many branches of conditions.
Furthermore, if this behavior is bound to macro-level variables, the
requirements for their generation can result in a model re-engineering.
During the implementation of the SIR-CM-V model, we incorporated a
simple behavior related to an aggregated state variable for the modeling
of vaccination in the SIR-CM model. While working with a simple
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Fig. 5. SIR-CM-V Model execution. The y-axis represents the amount of agents in
each compartment. Vertical lines show the instants at which the vaccination event
was active.

model like SIR-CM-V, if we consider an analogous Classic DEVS im-
plementation it would require rethinking the whole model, recreating
its connectivity and probably the atomic models’ external transitions.
In Eq. 5.1.4, we see how the modifications are restricted to the 𝛿𝐺 (for
the computation of the aggregated macro state), the value couplings
(for the downward communication of the macro state), and the 𝛿𝑖𝑛𝑡
functions (for the actual usage of the newly available information in
the state transition).

5.2. Boids

The Boids model defined by Reynolds [28] is a well known dis-
tributed behavior model that has been extensively used to showcase
modeling methodologies and capabilities [36–38]. This model offers
a good platform to benchmark models that target emergence as a key
aspect.

In this section we will study the Boids model and how emergent
properties appear in its execution. Furthermore, we will explore how
indirect communication, adaptive behavior and emergent properties
can be exploited to produce self organizing behavior in the birds’
movement relative to their flock.

In Reynold’s Boids model, birds move in a two dimensional space
with constant speed and varying heading according to their position
relative to neighboring birds. Those birds within a given radius are
considered neighbors.

The following three rules define how the heading is adapted dynam-
ically:

Separation: if two neighboring birds are closer than a given distance,
move away from the closest bird.
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Alignment: if there is no need to separate, drive bird’s direction
towards the average heading of the neighboring birds.

Cohesion: finally steer bird’s direction towards the center of mass of
the neighboring birds.

The environment is a 2-dimensional grid with periodic boundary
conditions. This means that when a bird hits the border it will re-enter
through the other side as it would in a torus ring shaped space.

5.2.1. Mapping to EB-DEVS
Our implemented Boids model is a discrete time model with a Flock

EB-DEVS coupled model that contains Birds EB-DEVS atomic models.
The Bird’s state is defined by their heading and a pair of x,y

coordinates in a continuous 2D space. We assume constant velocity (one
spatial unit per time unit) in the desired direction.

The 𝛿𝑖𝑛𝑡 function moves the Bird in space by advancing the position
towards the heading direction. In order to determine the nearest neigh-
bor and the flock-mates, the Bird accesses the macro variable stored in
𝑠𝑚𝑎𝑐𝑟𝑜. As this model uses only indirect influence among agents, neither
the 𝛿𝑒𝑥𝑡 function nor the 𝜆 output function are implemented.

In its internal transition a Bird will first ask for the closest neighbor
to be able to execute the three Reynold’s rules. The search for the
closest neighbor, the set of closest neighbors, and the proximity graph
spanned by the neighboring proximities are resolved by querying a Ra-
dius Neighbors Regressor (RNR) [39], a Machine Learning algorithm used
to classify points in the euclidean space. We used a RNR modification
to support spaces with periodic boundary conditions.

The 𝛿𝑖𝑛𝑡 function will work as specified in the following pseudocode.

Listing 1: Pseudocode of the Boids internal transition function
1 function intTransition:
2 closest = 𝑣𝑑𝑜𝑤𝑛[closest]
3 if (closest == None):
4 advance()
5 return
6 if (euclidean.dist(closest.coord, self.coord) <

Parameters.MAX_DIST):
7 separate()
8 else:
9 align_with(𝑣𝑑𝑜𝑤𝑛[neighbors])

10 cohere_with(𝑣𝑑𝑜𝑤𝑛[neighbors])
11 advance()
12 𝑦𝑢𝑝 = self.coord
13 return

The separation is done by rotating the heading angle (𝛼) away from
the closest neighbor. Using 𝛼𝑠𝑒𝑙𝑓 − 𝛼𝑐𝑙𝑜𝑠𝑒𝑠𝑡 for the delta increment of the
direction, restricted by a rotation threshold. The alignment with the
neighbors is done by steering the direction towards the average heading
of neighboring birds. To do this we implemented the angular average
with the formula

�̄� = 𝑎𝑡𝑎𝑛2
(

1
𝑛
∑𝑛

𝑗=1 𝑠𝑖𝑛(𝛼𝑗 ),
1
𝑛
∑𝑛

𝑗=1 𝑐𝑜𝑠(𝛼𝑗 )
)

with 𝑛 the neighboring

birds and 𝛼𝑗 the neighboring bird’s heading. We limit the alignment
turn with a threshold parameter. Finally for the cohesion rule, we turn
the direction of the bird towards the center of mass of local flock-mates.

To move a bird forward in the advance function call, we calculate
the 𝑥 and 𝑦 increments by decomposing the heading vector into its
components. At the transition, the new position is informed to the
coupled model by means of an upward causation message, which will
in turn trigger the 𝛿𝐺 function that computes the nearest neighbors for
each bird.

The value coupling function serves the Birds with information re-
garding the closest bird’s distance and heading, the flock-mates center
of mass and average direction, and the overall number of flocks in the
system. The later is used in two extensions of the Boids model discussed



Journal of Computational Science 53 (2021) 101387D. Foguelman et al.
Fig. 6. Boids vanilla model clusters evolution. The green curve shows the evolution of
mean and standard deviation for the amount of clusters. In blue, the evolution of the
mean and standard deviation of the number of agents per cluster. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

later in this section. This information is used in the aforementioned 𝛿𝑖𝑛𝑡
closing the circle for the closed-loop dynamic.

Extending this model provides us with the possibility to experiment
with different closed-loop feedback dynamics. Two different exten-
sions have been developed using emergent macro-level information to
change micro-level (bird) behavior.

Fearful agents avoid gangs (or FA) presents a modification in the
internal transition of the bird’s models. When the number of flocks
at the system surpasses a defined threshold, the agents change their
behavior. Instead of cohering and aligning with the neighboring birds,
they switch to an anti-cohesion behavior. This behavior changes head-
ings to point towards the opposite direction of the closest neighbors’
center of mass. This will apply while the number of flocks remains
above the threshold. The number of flocks is calculated in the 𝛿𝐺 and
informed in the 𝑣𝑑𝑜𝑤𝑛 function.

Brave agents join gangs and develop laziness (or BA), like FA, takes into
account the total number of clusters of the system. Yet, instead of doing
anti-cohesion, it will make the birds drive their headings towards the
center of mass. We call this super-cohesion. This process will happen
for a fixed amount of iterations and will occur for a limited number of
times during the simulation. The length of each period will decrease for
each iteration the bird enters this state and it will be enabled a limited
amount of times.

5.2.2. Simulation experiments
The experiments detailed in this section were configured with the

following parameters: the size of the grid is 70 x 70 units, the flock
size is 200 birds, the radius of visibility for each bird is 5 units and
the minimum allowed distance between birds is 0.5 units. The position
evolves over time following the updated direction with a constant
velocity equal to 1 distance unit per time unit. The total simulation
time was set to 250 time units.

In the following plots we show the average and standard deviation
of the amount of clusters and the number of agents per cluster. These
experiments shows 20 simulation runs aggregates.The Fig. 6 shows the
original Boids model simulation, Fig. 7a shows the modified Fearful
Agents model simulation. In Fig. 7b we see the Brave Agents model
simulation.

The effects of the macro events affecting the micro level agents are
better appreciated in single-run experiments. We show in the figures
Fig. 8 (Vanilla model), Fig. 9 (FA model), and Fig. 10 (BA model), the
evolution of the amount of clusters (top), the intra-cluster complete
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and average distance (middle), and the agents evolution on the grid
(bottom) for each model.

5.2.3. Discussion
In this section we presented and extended the classic Reynolds’

Boids model to demonstrate the use of closed-loop dynamics. We pro-
vided two extensions implementing different scenarios of micro–macro
interactions.

The EB-DEVS’ Boids implementation, shows how the formalism
assists the modeling phase by providing tools that simplifies the coding
of the Boids rules into the model. Using dynamic structures like the
Radius Neighbors Regressor, allowed us the identification of emergent
structures in real time. The bird to bird interactions developed complex
behaviors that resulted in higher level structures if observed from the
environment point of view. These cluster-like objects influence the
birds behavior showing group cohesiveness.

Let us first consider the Vanilla Boids model implementation. We
were able to observe that for every experiment run, the number of
flocks (or clusters) decreases while growing in size. The generation of
large flocks, and the convergence of the birds flocks into well organized
structures is observed in every run. In general, this behavior is followed
by an increase in the size of the flocks (Fig. 6). Moreover, when we
start considering the flock as a higher level structure, we can observe
properties of its own. The intra-cluster diameter is one of them and it
can be used to analyze flock cohesiveness. During the single run we
were able to analyze this property related to the number of system
level clusters. Furthermore, the number of clusters drop while the
complete and average intra-cluster grows. These measurements help to
understand the flock’s cohesive behavior (Fig. 8).

In the case of the FA model, we observed how the anti-cohesion rule
resets the flock structure. The spontaneous disorder generated by this
rule, is enabled by a system level property. This information triggers
birds’ anti-cohesion behavior. In this scenario, the model presents no
adaptation in the birds’ behavior. In opposition to the vanilla model, it
is noteworthy to show how convergence is never reached (Fig. 7a). Fur-
thermore, the number of clusters and their average sizes spikes shortly
after the anti-cohesion rule. Additionally, the analysis of intra-cluster
distance shows how cohesion is far from being present (Fig. 9).

Finally, in the BA we represent adaptation and self-organization
thanks to the super-cohesion rules. During the execution of the model
we can see an increase in the number of flocks during the first moments
of the experiment’s execution. This is explained by the initial super-
cohesion behavior. Uniformly distributed Birds tend to gather up in
very cohesive flocks (Fig. 7b and Fig. 10). After the initial phase, the
birds form new flocks with increasing inter cluster distance. Further-
more, this behavior is like the one observed in the Vanilla model. While
the adaptation of the super-cohesive events decreases, the behavior
tends to reproduce the Vanilla model.

In summary, the Boids model allows us to put in place different
micro–macro level interaction patterns. With different behavioral rule-
sets, we can implement a diverse set of distributed behavior algorithms.
Furthermore, we can design and experiment with complex system’s
adaptive, self organizing behaviors.

5.3. Agent-based modeling of mitochondria sub-cellular dynamics

Mitochondria are highly dynamic organelles placed within eukary-
otic cells. They are constantly undergoing fusion and fission events to
adapt to stress conditions and to the cell’s energy demand. The dynam-
ics and homeostasis of this sub-population was studied by Dalmasso
et al. [29] by means of a simulation model, where each mitochondrion
moves in a 2D plane limited by an outer circle (the cell membrane)
and an inner circle (the cell nucleus). In the space between these
two borders each mitochondrion moves with a random velocity vector
at discrete time steps 𝛥t = 1 s. After 300 s the mitochondrion can

undergo a fission with a predefined probability, or a fusion if a suitable
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Fig. 7. Evolution of clusters in the Boids model. The green curve shows the evolution of the number of clusters while the blue curve shows the number of agents per cluster
(mean and standard deviation). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Boids Vanilla model. Top panel: evolution of the amount of clusters. Middle panel: intra-cluster distance. Bottom panel: positions of the birds at simulation times 1, 85,
170 and 250 (final state of the simulation). Bird’s colors represent the flock membership (one color per flock). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
mitochondrion is nearby. We slightly modified the model proposed
in [29] by restricting fusion and fission cycles to be mutually exclusive,
based on the work of Twig et al. [40].

5.3.1. Mapping to EB-DEVS
The Mitochondria model is a discrete time model that uses indirect

communication between mitochondria across the cell. The mitochon-
drion is represented as atomic models. The environment is a coupled
model named Cell that defines three regions: nuclear, perinuclear and
cytosolic areas. Atomic models track the movement of each mitochon-
drion through perinuclear and cytosolic regions, considering that they
cannot enter the nucleus or escape the cell. The mitochondrial speed
is determined by a uniform random value. In the perinuclear area,
mitochondria move on average slower than in the cytosolic area. The
12
Cell presents certain mass restrictions, such as the smallest and largest
possible mass of a mitochondrion.

We now show the 𝛿𝑖𝑛𝑡 definition in Listing 2 describing how the
model is implemented.

First, the 𝛿𝑖𝑛𝑡 transition function changes the (𝑥, 𝑦) coordinates by
moving the mitochondrion in the new direction by projecting the head-
ing vector into (𝑥, 𝑦) coordinates. If the cellular boundary is reached, the
direction is set to the opposite direction.

The fusion and fission cycles take effect every 300 s, thus the 𝛿𝑖𝑛𝑡
transition checks if it is time for a fusion/fission cycle to take place
(Listing 2 lines 6–7).

For a mitochondrion to fuse with another, several conditions need
to be met (Listing 2 lines 13–15). A uniformly distributed number
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Fig. 9. Boids FA model. Top panel: evolution of the amount of clusters, vertical black lines depict the moments where the anti-cohesion event was detected. Middle panel:
intra-cluster distance. Bottom panel: positions of the birds at simulation times 1, 87 (before anti-cohesion event), 90 (after anti-cohesion event) and 250 (final state of the
simulation).

Fig. 10. Boids BA model. Top panel: evolution of the amount of clusters, gray boxes depict the super-cohesion event. Middle panel: intra-cluster distance. Bottom panel: positions
of the birds at simulation times 1, 25 (first super-cohesion event with minimum intra-cluster distance), 75 (second super-cohesion event), 125 (final super-cohesion event), and
250 (final state of the simulation).
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is generated and compared with the predefined fission probability to
determine if it will fission. If this condition is met, the mitochondrion
must have enough mass to split into two mitochondria, each one with
at least the minimum size (in this model 0.5 μm2). As the fission event
proceeds, an inactive mitochondria becomes active taking its remaining
mass and positioning at the same coordinates as the original (Listing
2 lines 29–32). Hence, the system preserves mass during fusion and
fission cycles.

The fusion of two mitochondria also takes place every 300 s in
a similar fashion. First, a uniformly distributed number is generated
and compared with the predefined fusion probability. If the condition
is met, there needs to be a neighboring mitochondrion such that the
sum of both sizes is less than the defined maximum size (in this model
3 μm2) (Listing 2 line 15). In the meantime, the fused mitochondrion
gets the neighboring mass and the neighboring mitochondrion is set to
‘inactive’ (Listing 2 lines 33–35).

Fusion and fission events’ probabilities are disjoint, in opposition
to Dalmasso’s model. Yet, the case where a mitochondrion remains
unchanged during the fusion–fission cycle still exists. Furthermore, we
modified Dalmasso’s model to behave in this manner for comparison
purposes. In summary, we used a modified version of the NetLogo
model with disjoint fusion and fission events for comparison purposes.

As we defined EB-DEVS with static couplings in mind, agents cannot
be created or removed from the coupled model’s domain in runtime.
Thus, we implemented a mechanism to activate/deactivate (instead of
add/remove) atomic models from the cellular dynamics at runtime.
Our model features ‘inactive’ and ‘active’ atomic models. An atomic
nactive model becomes ‘active’ if a new mitochondrion is created by a
ission event. Active agents go through motion and fusion–fission cycles,
nactive agents wait for activation signals.

After each internal transition, the new model states are communi-
ated to the Cell via the 𝑦𝑢𝑝 function. This communication allows the
oupled model to synchronize the list of active and inactive models.
he coupled model informs the atomic models with restrictions based
n the area of the cell it is located at, such as proximity with other
itochondria. It also enables for structural changes by keeping an
pdated list of active and inactive models.

.3.2. Simulation experiments
We validated the implementation of the model against a modified

almasso’s model implementation. Both models were initialized with
niform distributed mitochondrial sizes and a total size of 300 μm2. We
un 3 different combinations of fission/fusion probabilities (20%/80%,
0%/50% and 80%/20%). Since both approaches are stochastic, we
an each model 20 times for 1 h of virtual time, which corresponds to
2 fusion/fission events. The results in Fig. 11 show that the system is
ble to reach the state of homeostasis. In blue we see the evolution of
he NetLogo version, and in orange the EB-DEVS implementation. The
itochondrial sizes are grouped as in the Dalmasso’s model:

.5 μm2 ≤ 𝑠𝑚𝑎𝑙𝑙 ≤ 1 μm2 (10)

1 μm2 < 𝑚𝑒𝑑𝑖𝑢𝑚 ≤ 2 μm2 (11)

2 μm2 < 𝑙𝑎𝑟𝑔𝑒 ≤ 3 μm2 (12)

ach mitochondrion falls in one of these size-based groups.

.3.3. Discussion
In this section we provided a model that captures mitochondrial dy-

amics. The implementation of Dalmasso’s mitochondrial model using
B-DEVS allowed us to create closed-loop dynamics with multiple types
f event cycles. Movement, fusion and fission cycles alter the system’s
tructure and mitochondria’s behavior. Such behavior is responsible for
he consequent system stabilization; after three to four fusion–fission
ycles the mitochondria’s group distribution converges towards a stable
14

alue. The authors of the original model observed this phenomenon in t
he cellular sub-populations of different masses, calling it sub-population
omeostasis. This property emerges from the lower level models towards
he higher levels of observation of the system. This can be considered
n emergent property unforeseen from the agents individual behavior.

The validation of the model was done against the modified Dal-
asso’s NetLogo model to restrict for mutually exclusive fusion and

ission cycles. The results of the executions show good correspondence
etween models, either while comparing means, standard deviations,
nd overall behavior.

Considering the level of complexity of this model, we found that
t tests the limits of the EB-DEVS approach. In the first place, fusion
nd fission cycles use the environment while sharing mass in the
usion and fission cycles. We used indirect communication for the
mplementation of this model’s feature. To our knowledge, without
ndirect communication, this feature would require either dynamic
nput–output ports connections or clique connectivity between atomic
odels. Using dynamic input–output ports would also be required to

epresent complex behavior as the links should be updated based on
itochondria’s proximity. While DEVS extensions like ML-DEVS [22]

r Dyn-DEVS [21] include dynamic links as part of the formalism,
hey fall far away from the EB-DEVS approach in several other aspects.

e shall tackle dynamic structure in a follow up paper extending EB-
EVS. Additionally, another benefit from using indirect communication

ies upon the model’s declarability and performance. Let us consider
he case of using a model with n agents. In this case, the number of
ommunication links (connections between input and output ports in
he model) would be 𝑛(𝑛−1), most of them remaining actually unused.
odeling a full mesh of mostly unused links adds unnecessary clutter

hat can hinder both performance (e.g. memory footprint) and model
eadability. This is avoided by the indirect communication that takes
lace naturally in EB-DEVS via micro–macro feedback loops.

Another challenging modeling problem can be seen in the dynamic
ature of mitochondria. The model of mitochondria requires that mito-
hondria are created and destroyed in runtime. We were able to model
his using active and inactive models. At the moment a fission event
ccurs, an inactive agent turns into an active one. While this strategy
orks, it penalizes the simulation performance.

By using these inactive models, we doubled the required models for
he system to work.

In summary, our model implementation reproduces Dalmasso’s
mergent behavior of sub-population homeostasis while preserving
otal cellular levels of mitochondria. This behavior emerges out of
he interaction between macro and micro-level. Here, the environment
lays a leading role in allowing indirect communication between mito-
hondria. The environment assists fusion and fission cycles across three
ypes of mitochondria populations, cycles responsible for size changes
hile traversing the cellular space.

. Discussion and related work

In this work we have discussed the new EB-DEVS formalism that
ocuses on dealing formally with micro–macro closed-loop dynamics.

Emergence is a niche research area that has many interesting ap-
lications. There is a growing need to develop techniques for the
dentification, validation and modeling of emergence.

Our intention is to highlight the importance of having a formalism
hat helps the modeler with expressing emergence in complex systems.

.1. EB-DEVS compared to other approaches

We can find in the literature several efforts to tackle the identifi-
ation and validation of emergent properties. A review of the state of
he art can be found in Szabo’s and Birdsey’s work [41]. The authors
escribe critical challenges in the identification of variables capturing
icro and the macro levels, and the relationships and dependencies be-
ween them. Correspondingly, the modeling and simulation discipline’s
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Listing 2: Pseudocode of the Mitochondrion state internal transition
# 𝐹𝑝 = fusion probability
# 𝑓𝑝 = fission probability
# 𝑀𝑀𝐴𝑋 = maximum mass allowed
# 𝑀𝑀𝐼𝑁 = minimum mass allowed
function intTransition:
fusion_fision_condition = (current_time mod 300 == 0)
if (not fusion_fision_condition):
if (state == Active):
calculate_area_from_position()
calculate_velocity_form_position()
advance()

else:
if (state == Active and
unif(0,1) ≤ 𝑓𝑝 and
𝑚𝑎𝑠𝑠 ≥ 2 ∗ 𝑀𝑀𝐼𝑁):

𝑥𝑓 = unif(0,1)
𝑚1 = (𝑥𝑓 ∗ (0.5 − 𝑀𝑀𝐼𝑁

𝑚𝑎𝑠𝑠
) + 𝑀𝑀𝐼𝑁

𝑚𝑎𝑠𝑠
) ∗ 𝑚𝑎𝑠𝑠

𝑜𝑙𝑑_𝑚𝑎𝑠𝑠 = 𝑚𝑎𝑠𝑠

19 𝑚𝑎𝑠𝑠 = 𝑚1
20 if (state == Active and
21 unif(0,1) < 𝐹𝑝 and
22 mass ≤ 2 ∗ 𝑀𝑀𝐼𝑁):
23 closest_mito = 𝑣𝑑𝑜𝑤𝑛[closest active neighbor

information]
24 total_mass = 𝑚𝑎𝑠𝑠 + closest_mito.𝑚𝑎𝑠𝑠
25 if (total_mass ≤ 𝑀𝑀𝐴𝑋):
26 𝑚𝑎𝑠𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑠𝑠
27 request parent to inactivate closest_mito
28 if (state == Inactive):
29 fission_model = 𝑣𝑑𝑜𝑤𝑛[fissionate information]
30 if (fission_model != None):
31 𝑚𝑎𝑠𝑠 = fission_model.𝑜𝑙𝑑_𝑚𝑎𝑠𝑠 - fission_model. 𝑚𝑎𝑠𝑠
32 state = Active
33 should_fusion = 𝑣𝑑𝑜𝑤𝑛[fusion information]
34 if (should_fusion == True):
35 state = Inactive
36 𝑦𝑢𝑝 = state
Fig. 11. A comparative between Dalmasso’s (modified) mitochondria model and the EB-DEVS implementation. The 𝑦-axis shows the percentage of mitochondria for each size,
small medium and large. Mitochondrial mass groups: 0.5 μm2 ≤ 𝑠𝑚𝑎𝑙𝑙 ≤ 1 μm2 < 𝑚𝑒𝑑𝑖𝑢𝑚 ≤ 2 μm2 < 𝑙𝑎𝑟𝑔𝑒 ≤ 3 μm2. Three fission probabilities were tested according to Dalmasso’s
results.
needs to address this with tools for the validation and identification
of emergence in simulated models. Regarding emergent properties
identification, the authors classify the efforts in postmortem vs live,
depending on whether it is done after the system’s execution or while
it is running respectively.

Regarding DEVS and emergence, Bernard Zeigler studied DEVS’s
ability to model and predict emergence [42]. Zeigler’s work shows how
different formalisms based on DEVS allows the analysis and predic-
tion of emergence. He identifies three key aspects for the modeling
of emergence. In the first place, the importance of how dynamic
coupling mechanisms enables to model complex systems and how the
appearance of new technology facilitates the modeling of such evolving
15
systems. Also, Zeigler argues in favor of Markov chain DEVS [43] for
their explanatory and predictive power. Finally, Emergence Behavior
Observers [25] (EBO) can be useful as a strategy to analyze system state
transitions with the purpose of recording model’s states snapshots.

Recently, Cellular Automata (CA) has been considered as a
paradigm of emergence in the complex systems field [44]. We can see
an example of this in the emergent patterns of Conway’s game of life.
In this sense, we can mention Gabriel Wainer’s CellDEVS [45], a DEVS
Extension that integrates Cellular Automata with DEVS simulation
models. The idea is to bring the benefits of DEVS formal simulation
models to the CA world. CellDEVS shows its applicability in diverse
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scenarios [46–49]. It allows for indirect communication between neigh-
boring cells and it results in a sound tool to model spatially explicit
complex dynamics. Yet, it depends on a predefined fixed neighboring
region for each cell, limiting the capability of producing emergent
behavior in more generalized situations. Also, CellDEVS does not
provide a means to discover and handle explicitly system-level emer-
gent properties.

Regarding dynamic structures in DEVS, Barros [20] defines DSDEVS
a formalism where its network structure can be modified in runtime.
Barros extends DEVS with the use of a particular type of model, the
network executive (NE), a hybrid atomic/coupled model responsible for
network changes. The NE’s state changes via transitions and presents
a structure function that changes the network structure according to its
own state. It can be argued that the network structure emerges from
the dependant’s states and that this network change influences back
the agents. Nevertheless, the lack of a closed-loop feedback mechanism
restricts the possibility of modeling emergence, while the required
hybrid atomic/coupled model can be seen as an entity too artificial
when comparing the model against the real system.

Steiniger and Uhrmacher introduced ML-DEVS, a general purpose
DEVS extension that combines ‘‘a modular, hierarchical modeling with
ariable structures, dynamic interfaces, and explicit means for describing up
nd downward causation between different levels of the compositional hier-
rchy ’ [50]. ML-DEVS presents several differences with Classic DEVS.
irst, the formalism presents a different model’s taxonomy. Coupled
odels have their own autonomous behavior, like classic Atomic DEVS
odels. The top-down 𝜆𝑑𝑜𝑤𝑛 function, activates bottom models in a
ownward causation fashion, the upward information and causation
re modeled using variable ports. Changing the port’s distribution gen-
rates changes that enable structural changes and upward causation.
ven though ML-DEVS allows for closed-loop dynamics via downward
nd upward causation/information, it requires definitions of atomic
nd coupled models that are considerably different from Classic DEVS
e.g. atomic models have a single transition function, the coupled model
as its own time advance function, to name a few).

This hinders a smooth integrability between Classic DEVS and ML-
EVS within a same simulation model, which is one of the main
oals pursued by EB-DEVS (for a full implementation of ML-DEVS we
efer the reader to the James II implementation and corresponding
ublications [51]).

All previously described DEVS extensions provide tools that tar-
et indirect agents’ communication, multi-level feedback loops, dy-
amic structures, and emergence prediction and modeling. Neverthe-
ess, our contribution provides a general modeling framework for the
ive-identification and validation of emergent properties compatible
ith existing DEVS simulators.

There exist other formalisms beyond the DEVS ecosystem that sup-
ort multi-level modeling, and therefore could be valid alternatives
o deal with live-identification and modeling of emergent properties.
xamples are ML-RULES [52] (a modeling language for the modeling
f biological cell systems, centered in the description of rules sup-
orting hierarchical dynamics, assignment of attributes at each level
nd flexible definition of reaction kinetics), Colored Petri Nets [53]
a Petri Net’s extension specific for the modeling of complex sys-
ems enabling multi-level, multi-scale and multi-dimensional models),
nd Attributed 𝜋-calculus with Priorities [54] (an extension of the

𝜋-calculus formalism for the modeling of concurrent systems with
process attributes, enabling interaction constraints and expression of
multi-level dynamics), just to name a few.

There are two other contributions to the live identification of emer-
ent properties that we consider worth mentioning. Szabo and Teo have
eveloped an approach for the semantic validation of emergence [55].
his approach is used either for a-priori or postmortem identification
nd validation of emergent properties. Identification is done by com-
16

uting the semantic distance between state variables and the model’s
composed-state. Using their modification of reconstructability analysis
it is possible to calculate such composed-state and, if the semantic
distance is significant, to save this state as an emergent state. In the
context of EB-DEVS this technique can be implemented at the new
global state transition function of the parent (coupled) level.

Chan’s work [37] analyzes interaction metrics between agents. He
gives arguments in favor of this approach for the detection of emergent
behavior.

Regarding taxonomy, different authors have categorized emergence
identification in three classes, grammar-based, event-based, and
variable-based.

In event-based emergence modeling (see Chen’s work [56]) emer-
gence is defined as complex events that can be reduced to a sequence
of simple events. Simple events are defined as state transitions and
complex events are a composition of complex or simple events. Chen
used event-based modeling for postmortem analysis.

Kubik [6] proposed a grammar-based approach towards the identifi-
cation of emergence. It relies on the idea that ‘‘the whole is more than the
sum of its parts’’ and specifies two grammars, 𝐿𝑊𝐻𝑂𝐿𝐸 and 𝐿𝑃𝐴𝑅𝑇𝑆 . The
former grammar represents the system properties, while the latter rep-
resents the properties resulting in the sum of the parts. The difference
between 𝐿𝑊𝐻𝑂𝐿𝐸 and 𝐿𝑃𝐴𝑅𝑇𝑆 results in the properties that are found
in the system and not in 𝐿𝑃𝐴𝑅𝑇𝑆 , these are emergent properties. This
approach is used mostly for the postmortem identification of emergent
properties. Szabo and Teo have extended these ideas [36] to support
multiple agent types, mobility and variations on the number of agents
over time.

Several efforts in emergence identification can be found in the
variable-based category. The use of a variable or metric for identifica-
tion of changes in the ‘expected’ behavior of the system. Some authors
like Mnif [57], use entropy to measure emergence. As entropy decreases
in the selected variable, the signs of order appear showing evidence
of ‘self-organization’. It would be interesting to explore joint-entropy
using multiple variables in this analysis. In this line of research, Seth’s
work [38] uses Granger’s causality to establish relationships between
the model’s levels, this approach requires stationarity for correlated
variables. This property is hard to determine without the complete
observation of the variables interactions, hence the methodology is best
suited for postmortem analysis. Furthermore, using multiple variables
for Granger’s causality presents its own problems like multicolinearity.

In addition, some authors used Machine Learning for the identifi-
cation of emergent properties. Brown and Goodman [58] used naive
Bayes to classify the collective behavior of a flock model depending on
the spatial structure and neighboring interactions between birds. Via
monitoring the trajectories of stochastic simulations, statistical model
checking [59] allows to test whether (possibly emergent) properties
specified in a temporal logic occur with a specific probability or to
determine the probability with which these properties occur.

We claim that our EB-DEVS approach is compatible with all the
above listed ongoing research efforts, towards the live identification
of emergent properties that rely on metrics based on interactions,
behavior or properties. We argue that EB-DEVS can be seen as a
container where such strategies can be implemented and tested, and
that our main contribution relies on a generic framework towards live
identification of emergence based on DEVS.

6.2. Emergence and complex systems’ modeling

Emergence is a broad topic that has been discussed in the literature
for over a century. Philosophy and science have treated this subject
extensively, as it is intertwined with the interpretation, understanding
and analysis of complex systems. Either if we study life, consciousness,
or engineering systems, emergence is a key element for their under-
standing. Emergence is relevant while analyzing a system’s properties,
and the underlying patterns and first principles that drive a systems’

behavior.
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As with many complex terms, there are many definitions for emer-
gence. We would like to give here some useful definitions while work-
ing with complex systems and emergent behavior. Let us start by
defining emergence according to three modern authors.

Holland [2] defines emergence in a system when the sum of its
arts is bigger than the whole, giving place to non-linear behaviors.
aas [60] defines a property as emergent, if it is discontinuous from the
roperties of the components at the lower levels in the hierarchy. While
romm [11] defines it as the formation of order from disorder that
s based on self-organization, or as the materialization of higher-scale
roperties unexpected while observing lower-scale behaviors.

From these definitions we can identify some common characteris-
ics. The notion of a hierarchy of components that connects the system’s
t different scales is present, the components show properties that in a
igher level of the hierarchy present different characteristics than in
solation. Finally, the formation of higher level properties that shows
evels of organization in the lower level components.

But how do these different levels connect, what drives self-
rganization, and what are their relationships with simulation? Sev-
ral authors have discussed these issues in the past. There is broad
greement about at least two types of emergence: Weak and Strong.

Mark Bedau highlights the importance of weak emergence over
strong emergence [61], stating that ‘‘at best [strong emergence] play[s]
a primitive role in science. Strong emergence starts where scientific
explanation ends’’ (Bedau, 1997, p.7). While deciding which type of
emergence is important for science, and in particular for the M&S
discipline, we should favor weak emergence as it allows the study
of the micro-level mechanisms that may be causing the emergent
phenomenon.

A definition for weak and strong emergence that relates to multi-
level dynamics is described by Szabo and Birdsey, which we choose to
adopt for our work: ‘‘weak emergence as being the macro-level behavior
that is a result of micro-level component interactions, and strong emergence
as the macro-level feedback or causation on the micro-level’’ (Szabo, 2017,
p.4) [41].

As for multi-level system’s interactions Campbell [62] and Em-
meche [63] among others have discussed how higher levels affect
or restrict the course of action of bottom level processes. Downward
causation, a term coined by Campbell, reflects how the system at the
top-levels affects the bottom levels. Upward causation can be seen as
a reciprocal relationship where bottom-level entities affect the top-
level. Apparently, these two notions cannot be separated. Mario Bunge’s
treaty on causality [64] (p.362) exposes both relationships and criti-
cizes the use of the term ‘causation’ in this context, as he states that
‘‘what we do have here is not causal relations but functional, relations
among properties and laws at different levels’’.

Evidently, the causation or functional relations between levels are
intertwined with weak and strong emergence.

In addition to these concepts that relate the micro with the macro, it
is important to discuss how system components at the same level relate
and communicate with each other. DEVS adopted a direct communica-
tion strategy. For each pair of models we can define an input–output
port’s bond that allows for direct message passing. Analogously, indi-
rect communication allows for the interaction between models without
the need of an explicit communication channel.

The role of communication in multi-agents system’s simulation,
either direct or indirect, and its evolution, has been well documented.
For instance, in Multi-Agent System Simulations Tummolini et al. [65],
iscusses the role of communication and its evolution in the discipline.
n particular, the role of stigmergy in simulation models.

Stigmergy is a form of indirect communication through the environ-
ent where the actors or components use information put at disposal

y an upper-level layer in the system. The concept was proposed by
rassé [66] while observing the organization of termite populations.
17
Stigmergy was further conceptualized by Mittal [23] in the context of
the DEVS formalism.

In the case of EB-DEVS, we introduced changes in the DEVS for-
malism that enable indirect communication in the spirit of stigmergy.
The main difference though is that we enable for multiple hierarchical
levels of indirect communication. This difference is significant as this
information flows upwards through the model hierarchy propagating
upward and enabling information that was not previously possible.

Finally, according to Mittal’s work [23] Complex Adaptive Systems
(CAS) and its properties are of fundamental interest for the M&S
discipline, with emergent behavior playing a key role in the ladder
of complexity. These properties require special attention in order to
extend DEVS theory to encompass the CAS theory presenting the fol-
lowing challenges: ‘‘how clusters are formed, hubs appear and evolve;
how multi-level self-organization occurs; how strong emergence results
in self-organization (with an embedded observer capable of causal
behavior at lower levels in the hierarchy); and how formal attention to
coupling specification may provide additional abstraction mechanisms
to model dynamic interconnected environments’ [p.37]. We claim that
EB-DEVS capabilities contribute to all these challenges, tackling prob-
lems of multi-level modeling, self-organization, strong emergence and
stigmergy.

In summary, our work is centered in the modeling and live identifi-
cation of emergence in the context of DEVS. Using the theoretical and
conceptual basis discussed so far, we adopt Szabo’s definitions of weak
and strong emergence, which can be studied with EB-DEVS thanks to
its generic, domain-agnostic nature. This strategy allows for flexible
definitions of models with emergent behavior within the DEVS realm.

7. Conclusions and future work

The main goal of the current study was to determine the feasibility
of a DEVS extension focused on the modeling and live-identification of
emergent properties in complex systems. In a broad sense, multi-level
interactions enable the appearance of emergent properties, facilitating
the development of complex systems. For this reason, we empha-
size hierarchical models that allow for the generation of system-level
properties based on multi-level interactions.

Centered on the identification of emergent properties, EB-DEVS
extended DEVS to generate macro-level ‘global’ states based on micro-
level models. Global states can be exposed back to the constituents’
state transition functions closing a feedback loop. The implemented
bidirectional communication allows for the study of weak and strong
emergence.

The use of formal M&S frameworks for the study of complex dy-
namic systems offers some warranties while imposing some limitations.
On the one hand, it facilitates the modeling and reuse of models while
hiding away underlying complexities of the simulation execution. But
this comes at the cost of accepting some modeling constraints required
by the same formalism. Consequently, we decided to extend DEVS due
to its general systems-oriented nature, its modular and hierarchical
approach, and its broad acceptance in the M&S community across
several application domains.

To the best of our knowledge, EB-DEVS is the only M&S frame-
work designed for the live-identification of emergent properties while
integrating naturally with existing DEVS-based implementations.

The modeling experience resulting from applying EB-DEVS to three
case studies of increasing complexity showed that the mechanisms
required to capture emergence remained naturally close to core con-
cepts in complex systems: multiple levels, upward/downward effects,
macro/micro states, indirect communication among micro agents and
emergent macro properties. EB-DEVS fosters a conceptualization of
models in at least two levels (which can in turn be nested in a recursive
hierarchy of micro–macro-etc.) producing models that are compact and

elegant, which would otherwise be intricate to express.
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Meanwhile, several limitations need to be acknowledged. First, the
utilization of Classic DEVS as a base formalism limits the modeling
of parallel dynamics. Second, the lack of dynamic structural changes
limits expressiveness for instance when agents need to be added or
removed at simulation time. These aspects will be addressed in future
work, together with a systematic exploration of hierarchical feedback
loops involving more than two micro–macro levels of abstraction.
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Appendix A. EB-DEVS closure under coupling

Theorem 1 (EB-DEVS Closure Under Coupling). EB-DEVS models are
closed under coupling.

The proof relies on the ability of EB-DEVS to express any coupled
model, along with its component children models, as a behaviorally
equivalent atomic model. We will follow this idea to prove the closure
under coupling property in EB-DEVS.

In order to prove that the resultant atomic model 𝐷𝐸𝑉 𝑆𝑁 is
equivalent to the coupled model 𝐶𝑁 we need to define a translation
procedure between them. Let 𝐶𝑁 be an EB-DEVS coupled model with
ependent atomic models 𝑀𝑑 as defined in Section 4.1. Let the set of
nfluencers of model 𝑑 be given by 𝑑 ⊆ 𝐷 ∪ {𝐶𝑁}, 𝑑 ∉ 𝐼𝑑 .

The resultant model will be denoted by

𝐸𝑉 𝑆𝑁 = ⟨𝑋, 𝑌 , 𝑆, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝑡𝑎, 𝜆, 𝑌𝑢𝑝, 𝑆𝑚𝑎𝑐𝑟𝑜⟩ (A.1)

nd otherwise stated we will be referring to its constituent elements.

.1. The interfaces

We define 𝐷𝐸𝑉 𝑆𝑁 to inherit 𝐶𝑁 ’s interfaces and communication
hannels with other models. This includes the communication with
ts siblings in the hierarchy, by means of 𝐶𝑁 ’s 𝑋 and 𝑌 sets which
re directly inherited from 𝐶𝑁 . For upward/downward communication
ith 𝐶𝑁 ’s parent, it is sufficient to define

𝑌𝑢𝑝 = 𝑌𝐺𝑢𝑝

𝑚𝑎𝑐𝑟𝑜 = 𝑆𝐺𝑚𝑎𝑐𝑟𝑜

(A.2)

.2. The state set

S is designed to hold all possible state combinations of the atomic
odel’s states. Thus, 𝑆 shall hold, for each model, its state 𝑠, the

lapsed time 𝑒, the 𝑦𝑢𝑝 message sent in the last transition, and the macro
evel values 𝑠𝐺 and 𝑒𝐺. The later are needed to compute the macro-level
tate 𝑠𝐺 via the 𝛿𝐺 function call.

𝑑 = {(𝑠𝑑 , 𝑦𝑢𝑝,𝑑 , 𝑒𝑑 )|𝑠𝑑 ∈ 𝑆𝑑 , 𝑦𝑢𝑝,𝑑 ∈ 𝑌𝑢𝑝,𝑑 , 𝑒𝑑 ∈ [0, 𝑡𝑎𝑑 (𝑠𝑑 )]} (A.3)

We define 𝑆 by taking each possible combination of all model’s
states in 𝑄𝑑 , plus the required global elements of 𝐶𝑁 :

𝑆 = {(𝑞𝑑 , 𝑠𝐺 , 𝑒𝐺)|𝑞𝑑 ∈ ×𝑑∈𝐷𝑄𝑑 , 𝑠𝐺 ∈ 𝑆𝐺 , 𝑒𝐺 ∈ ℜ+
0 } (A.4)

The elements 𝑠𝐺, 𝑦𝐺𝑢𝑝
and 𝑒𝐺 of the coupled EB-DEVS model will be
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used to compute the corresponding 𝛿𝐺 global transition function.
A.3. The time advance function

This function determines when an atomic model will do its internal
transition. The time advance for state 𝑠 is the minimum remaining time
between dependent models.

𝜎𝑑 = 𝑡𝑎𝑑 (𝑠𝑑 ) − 𝑒𝑑 (A.5)

𝑡𝑎 ∶ 𝑆 → ℜ+
0 ∪ {∞}

𝑡𝑎(𝑠) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚{𝜎𝑑 |𝑑 ∈ 𝐷}
(A.6)

A.4. The set of imminent models

We define it as the set of models with minimum time advance:

IMM(s) = {𝑑|𝑑 ∈ 𝐷 ∧ 𝜎𝑑 = 𝑡𝑎(𝑠)} (A.7)

𝑑∗ = Select(IMM(s)) (A.8)

A.5. The internal transition function

This function gives autonomy to the resulting model, and must
transition whenever any of the components of 𝐶𝑁 undergo an internal
transition. It shall resort also to 𝐶𝑁 ’s parent information exchanged
hrough their downward/upward channels: 𝑌𝐺𝑢𝑝

for upward causation
and 𝑆𝐺𝑚𝑎𝑐𝑟𝑜

for downward value coupling. The access to these sets is
ranted by means of Eq. (A.2). The 𝐶𝑁 macro-level state is stored in
he 𝑆𝐺 state set.

The construction of the internal transition shall take into account
hat atomic models might need to access the coupled model’s state 𝑠𝐺

to fulfill their state transitions. Let

𝛿𝑖𝑛𝑡 ∶ 𝑆 × 𝑆𝑚𝑎𝑐𝑟𝑜 → 𝑆 × 𝑌𝑢𝑝 (A.9)

The state value of the resulting atomic EB-DEVS can be seen as

𝑠 = ((… , (𝑠𝑑 , 𝑦𝑢𝑝,𝑑 , 𝑒𝑑 ),…), 𝑠𝐺 , 𝑒𝐺) (A.10)

Upon transition, 𝑠′ = 𝛿𝑖𝑛𝑡(𝑠). Therefore, 𝑠′ and 𝑦′𝑢𝑝 are defined as
follows.

Consider first that model 𝑑∗ is the imminent model and 𝐼𝑑∗ are the
influenced models by the output messages of 𝑑∗. Firstly we define

(𝑠′𝑑 , 𝑦
′
𝑢𝑝,𝑑 , 𝑒

′
𝑑 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑖𝑛𝑡,𝑑 (𝑠𝑑 , 𝑣𝑑𝑜𝑤𝑛(𝑠𝐺)), 0 if 𝑑 = 𝑑∗

𝛿𝑒𝑥𝑡,𝑑 (𝑠𝑑 , 𝑒𝑑 + 𝑡𝑎𝑑∗ (𝑠𝑑∗ ), if 𝑑 ∈ 𝐼𝑑∗
𝑣𝑑𝑜𝑤𝑛(𝑠𝐺), 𝑥𝑑 ), 0

𝑠𝑑 , ⊘, 𝑒𝑑 + 𝑡𝑎𝑑∗ (𝑠𝑑∗ ) otherwise

ith 𝑥𝑑 = 𝑍𝑑∗ ,𝑗 (𝜆𝑑∗ (𝑠𝑑∗ ))

(A.11)

Secondly,

𝑠′𝐺 , 𝑦
′
𝐺𝑢𝑝

= 𝛿𝐺(𝑠𝐺 , 𝑒𝐺 + 𝑡𝑎𝑑∗ (𝑠𝑑∗ ), 𝑥𝑏𝑚𝑖𝑐𝑟𝑜, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
)

ith 𝑥𝑏𝑚𝑖𝑐𝑟𝑜 = {𝑦𝑢𝑝,𝑑 |𝑦𝑢𝑝,𝑑 ≠ ⊘}
𝑒′𝐺 = 0

(A.12)

Finally, we can express the resulting pair of values yielded by 𝛿𝑖𝑛𝑡
s follows:

𝑖𝑛𝑡(𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜) = ((… , (𝑠′𝑑 , 𝑦
′
𝑢𝑝,𝑑 , 𝑒

′
𝑑 ),…), 𝑠′𝐺 , 0), 𝑦

′
𝐺𝑢𝑝

(A.13)

.6. The external transition function

Along the same lines of reasoning presented for the internal tran-
ition function, we propose a construction of the external transition
unction. Again, it must take into account a potential need to access
he coupled model’s state 𝑠𝐺 to fulfill state transitions. Let

∶ 𝑆 ×ℜ+ ×𝑋 × 𝑆 → 𝑆 × 𝑌 (A.14)
𝑒𝑥𝑡 0 𝑚𝑎𝑐𝑟𝑜 𝑢𝑝
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(

The state value and the upward causation value of the resulting
atomic EB-DEVS can be seen as

𝑠 = ((… , (𝑠𝑑 , 𝑦𝑢𝑝,𝑑 , 𝑒𝑑 ),…), 𝑠𝐺 , 𝑒𝐺)
𝑦𝑢𝑝 = 𝑦𝐺𝑢𝑝

(A.15)

Then the elements that build up 𝑠′ and 𝑦′𝑢𝑝 are defined as follows:

𝑠′𝑑 , 𝑦
′
𝑢𝑝,𝑑 , 𝑒

′
𝑑 ) =

⎧

⎪

⎨

⎪

⎩

𝛿𝑒𝑥𝑡,𝑑 (𝑠𝑑 , 𝑒𝑑 + 𝑡𝑎𝑑∗ (𝑠𝑑∗ ), if 𝑑 ∈ 𝐼𝑑∗
𝑥𝑑 , 𝑣𝑑𝑜𝑤𝑛(𝑠𝐺)), 0

𝑠𝑑 , ⊘, 𝑒𝑑 + 𝑡𝑎𝑑∗ (𝑠𝑑∗ ) otherwise
with 𝑥𝑑 = 𝑍𝑑∗ ,𝑗 (𝜆𝑑∗ (𝑠𝑑∗ ))

(A.16)

and

𝑠′𝐺 , 𝑦
′
𝐺𝑢𝑝

= 𝛿𝐺(𝑠𝐺 , 𝑒𝐺 + 𝑡𝑎𝑑∗ (𝑠𝑑∗ ), 𝑥𝑏𝑚𝑖𝑐𝑟𝑜, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜
)

with 𝑥𝑏𝑚𝑖𝑐𝑟𝑜= {𝑦𝑢𝑝,𝑑 | 𝑑 ∈ 𝐷, 𝑦𝑢𝑝,𝑑 ≠ ⊘}
𝑒𝐺 = 0

(A.17)

We can express the resulting pair of values yielded by 𝛿𝑒𝑥𝑡 as follows:

𝛿𝑖𝑛𝑡(𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜) = ((… , (𝑠′𝑑 , 𝑦
′
𝑢𝑝,𝑑 , 𝑒

′
𝑑 ),…), 𝑠′𝐺 , 0), 𝑦

′
𝐺𝑢𝑝

(A.18)

Remember the definition of 𝑍 from Classic DEVS:

{𝑍𝑖,𝑗 | 𝑖 ∈ 𝐷 ∪ {𝐶𝑁}, 𝑗 ∈ 𝐼𝑖}

𝑍𝑖,𝑗 ∶

⎧

⎪

⎨

⎪

⎩

𝑋𝐶𝑁 → 𝑋𝑗 if 𝑖 = 𝐶𝑁
𝑌𝑖 → 𝑌𝐶𝑁 if 𝑗 = 𝐶𝑁
𝑌𝑖 → 𝑋𝑗 otherwise

(A.19)

This means that all components influenced by the external input
x will change their state according to the input 𝑥𝑑 transmitted to
them converted by the respective interface mappings 𝑍𝑖,𝑗 . All other
components increment their elapsed times by e.

Finally, we can express the resulting pair of values yielded by 𝛿𝑒𝑥𝑡
as follows:

𝛿𝑒𝑥𝑡(𝑠, 𝑒, 𝑥, 𝑠𝑚𝑎𝑐𝑟𝑜) = ((… , (𝑠′𝑑 , 𝑦
′
𝑢𝑝,𝑑 , 𝑒

′
𝑑 ),…), 𝑠′𝐺 , 0), 𝑦

′
𝐺𝑢𝑝

(A.20)

A.7. The output function

In the case of the output function, we define it to dispatch the
imminent’s output value.

𝜆 ∶ 𝑆 → 𝑌
𝜆(𝑠) = 𝑍𝑑∗ ,𝐶𝑁 (𝜆𝑑∗ (𝑠𝑑∗ )) if 𝐶𝑁 ∈ 𝐼𝑑∗

= ⊘ otherwise
(A.21)

To output the corresponding value, we need to translate the output
of the selected imminent component 𝑑∗ through the interface map
𝑍𝑑∗ ,𝑁 . This is only in the case which 𝑑∗ has external outputs to send.

We have therefore built the resultant atomic model that represents
an initial coupled model and its network of atomic models, concluding
the proof.

Appendix B. The abstract simulator

B.1. The EB-DEVS root coordinator

The EB-DEVS root-coordinator algorithm is in charge of the ini-
tialization of the first level of models, this initialization messages are
further propagated by lower level processors. It also signals via the
*-message that the first subordinate in transition needs to run. The
*-message is modified in order to send the first macro-level state, a
null value. The higher-level coupled models will have no information
from their parents as there is none. In Listing 3 we show in red the
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modifications that were made to the DEVS abstract simulator.
Listing 3: Pseudocode of the EB-DEVS-root-coordinator
1 EB-DEVS-root-coordinator
2 // variables:
3 t // current simulation time
4 child // direct subordinate devs-simulator or devs-

coordinator
5 // algorithm:
6 t = 𝑡0
7 send initialization message (i, t) to subordinate
8 t = tn of its subordinate
9 loop

10 send (*, t, null) message to child
11 t = tn of its child
12 until end of simulation
13 end EB-DEVS-root-coordinator

B.2. The EB-DEVS-coordinator

The EB-DEVS-coordinator dispatches messages to other models in
the hierarchy and computes the macro-level state when required. The
mechanism is detailed in Listing 4. First, it forwards initialization mes-
sages to its dependent models in line 19. Afterwards, it processes four
types of messages: initialization messages (i-message), internal tran-
sition messages (*-message), external transition messages (x-message)
and upward causation messages (y-up-message).

The two main messages handled by the EB-DEVS-coordinator are
those in charge of triggering internal and external transitions.

The *-message is sent to the imminent models that need to run an
internal transition. The EB-DEVS-coordinator will forward this
message to the minimum remaining time dependents. In EB-
DEVS we modified the signature of this message to forward the
𝑣𝑑𝑜𝑤𝑛(𝑠𝐺) value (lines 24 and 28). This is the value-coupling
function applied to the macro-level state. After sending this mes-
sage it will wait for the dependents to raise their 𝑦𝑢𝑝 messages
(line 30), queuing them in the input bag 𝑥𝑏𝑚𝑖𝑐𝑟𝑜 as they arrive
(line 35). After all the messages are received, i.e. the ones from
all the imminents, and from the influenced models, it will invoke
the 𝛿𝐺 function updating the macro-level state (line 32).

The x-message is forwarded towards the processors that need to han-
dle an external transition. These are EB-DEVS-simulators or
EB-DEVS-coordinators that will forward the x-message towards
other processors. We modified the x-message signature (lines 37
and 42) to include the macro-level state as in the *-message.
The main difference is that there is no need to wait for upward
causation events, those will be handled in the *-message.

Listing 4: Pseudocode of the EB-DEVS coordinator.
1 EB-DEVS-coordinator
2 // variables:
3 CN = ⟨X,Y,D,{𝑀𝑑},{𝐼𝑑},{𝑍𝑖,𝑑},Select, 𝑋𝑏

𝑚𝑖𝑐𝑟𝑜, 𝑌𝐺𝑢𝑝, 𝑆𝐺𝑚𝑎𝑐𝑟𝑜,
𝑆𝐺 , 𝑣𝑑𝑜𝑤𝑛, 𝛿𝐺⟩ // EB-DEVS coupled model

4 parent // parent coordinator
5 tl // time of last event
6 tn // time of next event
7 event-list // list of elements (d,𝑡𝑛𝑑) sorted by 𝑡𝑛𝑑 and

Select
8 𝑑∗ // selected imminent child
9 𝑥𝑏𝑚𝑖𝑐𝑟𝑜 // the upward causation set

10 𝑦𝐺𝑢𝑝 // the mailbox to communicate upwards the new
coupled state

11 𝑠𝐺𝑚𝑎𝑐𝑟𝑜 // the parent’s state, used as input to
transition this coupled model
12 𝑠𝐺 // the current coupled model state
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13 𝑣𝑑𝑜𝑤𝑛 // the value coupling function to communicate
downwards the new state

14 𝛿𝐺 // the coupled model’s state transition function
15 // algorithm:
16 when receive i-message(i,t) at time t
17 for-each d in D do
18 send i-message(i,t) to child d
19 sort event-list according to 𝑡𝑛 and Select
20 tl = max {𝚝𝚕𝚍 | 𝑑 ∈ D}
21 tn = min {𝚝𝚗𝚍 | 𝑑 ∈ D}
22

23 when receive *-message(*,t,𝑠𝐺𝑚𝑎𝑐𝑟𝑜) at time t
24 if t != 𝑡𝑛 then
25 error: bad synchronization
26 𝑑∗ = first(event-list)
27 send *-message(*,t,𝑣𝑑𝑜𝑤𝑛(𝑠𝐺)) to 𝑑∗

28 sort event-list according to 𝑡𝑛𝑑 and Select
29 wait for all 𝑦𝑢𝑝 messages
30 𝑒𝐺 = t - tl
31 𝑠𝐺 , 𝑦𝐺𝑢𝑝

= 𝛿𝐺(𝑠𝐺 , 𝑒𝐺 , 𝑥𝑏𝑚𝑖𝑐𝑟𝑜, 𝑠𝐺𝑚𝑎𝑐𝑟𝑜)
32 tl = t
33 tn = min {𝑡𝑛𝑑 | 𝑑 ∈ D}
34 send y-up-message(𝑦𝐺𝑢𝑝

) to parent coordinator
35

36 when receive x-message(x,t,𝑠𝐺𝑚𝑎𝑐𝑟𝑜) at time t with
external input x and parent state 𝑠𝐺𝑚𝑎𝑐𝑟𝑜

37 if not (𝑡𝑙 ≤ 𝑡 ≤ 𝑡𝑛) then
38 error: bad synchronization //consult external

input coupling to get children influenced by
the input

39 receivers = {𝑟 | 𝑟 ∈ 𝐷,𝑁 ∈ 𝐼𝑟, 𝑍𝑁,𝑟(𝑥) ≠ ⊘}
40

41 for-each r in receivers
42 send x-messages(𝑥𝑟,t,𝑣𝑑𝑜𝑤𝑛(𝑠𝐺)) with input value

𝑥𝑟 = 𝑍𝑁,𝑟(𝑥) to r
43 sort event-list according to 𝑡𝑛𝑑 and Select
44 tl = t
45 tn = min { 𝑡𝑛𝑑 | 𝑑 ∈ 𝐷 }
46

47 when receive y-message(𝑦𝑑∗,t) with output 𝑦𝑑∗ from 𝑑∗

48 if 𝑑∗ ∈ 𝐼𝑁 ∧𝑍𝑑∗ ,𝑁 (𝑦𝑑∗ ) ≠ ⊘ then
49 send y-message(𝑦𝑁,t) with value 𝑦𝑁 = 𝑍𝑑∗ ,𝑁 (𝑦𝑑∗ ) to

parent
50 receivers = { 𝑟 | 𝑟 ∈ 𝐷, 𝑑∗ ∈ 𝐼𝑟, 𝑍𝑑∗ ,𝑟(𝑦) ≠ ⊘ }
51 for-each r in receivers
52 send x-messages(𝑥𝑟,t,𝑣𝑑𝑜𝑤𝑛(𝑠𝐺)) with input value

𝑥𝑟 = 𝑍𝑑∗ ,𝑟(𝑦𝑑∗ ) to r
53

54 when receive y-up-message(𝑦𝑢𝑝,t) with output 𝑦𝑢𝑝
55 add 𝑦𝑢𝑝 to 𝑥𝑏𝑚𝑖𝑐𝑟𝑜
56 end EB-DEVS-coordinator

B.3. The EB-DEVS simulator

As detailed in Listing 5, the simulator works by processing the
messages received from the EB-DEVS coordinator. Its main respon-
sibility relies on calling the 𝛿𝑖𝑛𝑡 and 𝛿𝑒𝑥𝑡 events and forwarding the
corresponding y-up and y messages to its parent coordinator. It handles
three messages: initialization messages (i-message in line 10), internal
transition messages (*-message in line 14), and external transition
messages (x-message in line 24).

The following modifications made in the simulator are required to
forward the macro-level state into the 𝛿𝑖𝑛𝑡 (lines 14 and 19) and 𝛿𝑒𝑥𝑡
(lines 24 and 28) function invocations. Here we close the loop making
available the macro-level information to the atomic models. After the
state transition functions are called, the 𝑦𝑢𝑝 message is forwarded to the
processor’s parent (lines 22 and 31).
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Listing 5: Pseudocode for the EB-DEVS simulator
1 EB-DEVS-simulator
2 // variables:
3 𝑀 = ⟨𝑋, 𝑌 , 𝑆, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝑡𝑎, 𝜆, 𝑌𝑢𝑝, 𝑆𝑚𝑎𝑐𝑟𝑜⟩ // EB-DEVS atomic

model
4 parent // parent coordinator
5 tl // time of last event
6 tn // time of next event
7 y // current output value of the associated model
8 𝑦𝑢𝑝 // output value for communication with the model

’s parent
9 // algorithm:

10 when receive i-message( i,t) at time t
11 tl = t - e
12 tn = tl + ta(s)
13

14 when receive *-message(*,t,𝑠𝑚𝑎𝑐𝑟𝑜) at time t
15 if t != tn then
16 error: bad synchronization
17 y = 𝜆(𝑠)
18 send y-message(y,t) to parent coordinator
19 𝑠, 𝑦𝑢𝑝 = 𝛿𝑖𝑛𝑡(𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜)
20 tl = t
21 tn = tl + ta(s)
22 send y-up-message(𝑦𝑢𝑝) to parent coordinator
23

24 when receive x-message(x,t,𝑠𝑚𝑎𝑐𝑟𝑜) at time t with
input value x

25 if not (𝑡𝑙 ≤ 𝑡 ≤ 𝑡𝑛) then
26 error: bad synchronization
27 e = t - tl
28 𝑠, 𝑦𝑢𝑝 = 𝛿𝑒𝑥𝑡(𝑠, 𝑒, 𝑥, 𝑠𝑚𝑎𝑐𝑟𝑜)
29 tl = t
30 tn = tl + ta(s)
31 send y-up-message(𝑦𝑢𝑝) to parent coordinator
32 end EB-DEVS-simulator

B.4. The abstract simulator execution as a sequence diagram

In Fig. B.12 we see how the abstract simulator runs for a model
comprised of one couple model (CM) with two atomic models (A1,
AN). Both atomic models are connected through input–output ports.
A1 model will output a message to AN model after the first inter-
nal transition execution. In Fig. B.12 we see how the initialization
messages are forwarded from the root-coordinator (the top-level pro-
cessor) through the coordinator (the internal nodes) towards the leaves
(the EB-DEVS-simulator). After the initialization section the EB-DEVS-
root-coordinator proceeds with the signaling of the internal transition
messages.

Internal transition messages cascade from the root-coordinator to-
wards the EB-DEVS-imulators. After the EB-DEVS-coordinator estab-
lishes the next processor to be selected (by selecting the most imminent
model), it sends an internal transition message to EB-DEVS-simulator-1.
The EB-DEVS-simulator-1 will invoke the internal transition function
of A1 model generating the output corresponding value, cascading a
y-message to the EB-DEVS-coordinator. It will then run its internal
transition, changing its state and generating an upward-causation y-
up-message. The EB-DEVS-coordinator will wait for all the pending
y-up-messages as it sends the external transition messages, x-message,
to EB-DEVS-simulator-N.

The EB-DEVS-simulator-2 will handle the x-message calling its ex-
ternal transition function so it can change its own state and generate
an upward-causation message.

After this step the EB-DEVS-coordinator, having received all the

y-up-messages, will compute the new 𝑠𝐺 macro-level state.
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Fig. B.12. Sequence Diagram for the abstract simulator algorithm. Coupled model CM contains 𝐴1 to 𝐴𝑁 atomic models. 𝐴1 output port is connected to 𝐴𝑁 input port. 𝐴1 starts
its execution with an internal transition, and sends an output message to 𝐴𝑁 generating a 𝛿𝐺 global state transition execution.
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Appendix C. Bisimulation between DEVS and EB-DEVS

We will show that given an EB-DEVS model it is always possible
to construct an equivalent DEVS model that simulates its EB-DEVS
counterpart, producing the same trajectories of internal states and
the same observable traces of input–output events. We will split the
proof in two cases: EB-DEVS models with and without micro–macro
interactions.

Note: In this section we will adapt slightly the naming convention
for the sake of clarity: 𝐸𝐵𝐷 and 𝐷𝐸𝑉 𝑆 will denote EB-DEVS and DEVS
models, respectively, and subscripts 𝐴 and 𝐶 will denote Atomic and
Coupled types, respectively.

C.1. EB-DEVS without micro–macro dynamics

Consider an atomic EB-DEVS model 𝐸𝐵𝐷𝐴 where its 𝑌𝑢𝑝 and 𝑆𝑚𝑎𝑐𝑟𝑜
elements have been fixed to a null value:

𝐸𝐵𝐷𝐴 = ⟨𝑋, 𝑌 , 𝑆, 𝑡𝑎, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆,⊘,⊘⟩ (C.1)

𝐸𝐵𝐷𝐴 has therefore no ability to exchange information with its
parent. Such a model can be simulated with an equivalent atomic DEVS
model 𝐷𝐸𝑉 𝑆𝐴:

𝐷𝐸𝑉 𝑆𝐴 = ⟨𝑋, 𝑌 , 𝑆, 𝑡𝑎, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝜆⟩ (C.2)

where 𝑋, 𝑌 , 𝑆, 𝑡𝑎 and 𝜆 are the same as in 𝐸𝐵𝐷𝐴 and

𝛿𝑑𝑒𝑣𝑠𝑖𝑛𝑡 (𝑠) = 𝛿𝑒𝑏𝑑𝑖𝑛𝑡 (𝑠,⊘)
𝛿𝑑𝑒𝑣𝑠𝑒𝑥𝑡 (𝑠, 𝑒, 𝑥) = 𝛿𝑒𝑏𝑑𝑒𝑥𝑡 (𝑠, 𝑒, 𝑥,⊘)

∀𝑠 ∈ 𝑆, 𝑒 ∈ ℜ+
0 , 𝑥 ∈ 𝑋

(C.3)

As EB-DEVS models are closed under coupling, and so are DEVS
models, it follows immediately that a coupled EB-DEVS model 𝐸𝐵𝐷𝐶
can be expressed as a coupled DEVS model 𝐷𝐸𝑉 𝑆𝐶 in the case where
𝐸𝐵𝐷𝐶 has no micro–macro interaction with its parent model.

C.2. EB-DEVS with micro–macro dynamics

These models require to express a transformation between models
using the notion of bisimulation to show their equivalence.

We will adopt the notion of observationally indistinguishable on its
outputs and states, where both models produce the same observations
when the same experiments are performed on them by exerting the
system through its inputs. The bisimulation relation between automata
can be also referred to as ‘‘system isomorphism’’ [16].

According to Rutten’s bisimulation definition [67] we can specify a
relationship 𝑅 between automata as follows.

Definition 1 (Bisimulation). A bisimulation between two automata
⟨𝑆, 𝑜, 𝑡⟩ and ⟨𝑆′, 𝑜′, 𝑡′⟩ is a relation 𝑅 ⊆ 𝑆 × 𝑆′ that verifies

if 𝑠𝑅 𝑠′ then
{

𝑜(𝑠) = 𝑜(𝑠′) and
𝑡(𝑠, 𝑎)𝑅 𝑡′(𝑠′, 𝑎)

(C.4)

for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′ and 𝑎 ∈ 𝐴, where 𝑆 and 𝑆′ are sets of states, 𝑜
and 𝑜′ are output functions, 𝑡 and 𝑡′ are transition functions and 𝐴 is
the alphabet of inputs.

Two automata are bisimilar if there exists a relationship 𝑅 of
bisimulation between them.

Theorem 2 (Bisimulation Between EB-DEVS and DEVS). EB-DEVS models
are bisimilar with DEVS models.

We will show that a relation 𝑅 exists and can be found for any
atomic EB-DEVS model by constructing its corresponding bisimilar
atomic DEVS model. Let us set a general enough context for our analysis
by considering a coupled EB-DEVS model and its set of atomic EB-DEVS
22

components, all of which make use of their micro–macro dynamics.
The intuitive idea is to find a transformation procedure that can
replace the set of all micro–macro communication channels (between
the EB-DEVS parent and its children components) with a new, over-
lying broadcast network of Classic DEVS channels (input–output ports
connected with directed links) such that the resulting behavior of
each DEVS component is bisimilar to its EB-DEVS counterpart (see the
relation between Coupled models in Fig. 3 where a broadcast network –
blue links – is used to replace the micro–macro dynamics – green links
– for children components 𝐴 and 𝐵).

Note: In the limit case where there is only one atomic component,
the overlaying broadcast network reduces down to zero ports and links.

We will achieve this by computing a shared, broadcast aggregate
state 𝑠𝑚𝑎𝑐𝑟𝑜 at each dependent model, by embedding a copy of the
𝛿𝐺 function into each component. Thus, 𝛿𝐺 will be available for all
𝛿𝑖𝑛𝑡 and 𝛿𝑒𝑥𝑡 transition functions, enabling an ‘‘imitation’’ of a micro–
macro closed-loop dynamic, but this time computed locally at each
component.

First, we want atomic models to be able to broadcast their states via
their output function to the rest of components.

We thus modify the 𝜆 function of each atomic model, adding the
responsibility to communicate its state through a special new broadcast
output port, after it has finished sending its (non-broadcast) original
messages through its original output ports.

Regarding the external state transition, the modified 𝛿𝑒𝑥𝑡 must split
its behavior in two modes: regular and broadcast. When an event comes
through the broadcast input port the message value is added to a local
input bag and then resumes its previous time advance with 𝑡𝑎 = 𝜎 − 𝑒.
This cycle must not affect the 𝑠 state. When an event comes through
a regular input port, 𝛿𝑒𝑥𝑡 will first compute a local version of the
aggregate state 𝑠𝑚𝑎𝑐𝑟𝑜 by invoking its local replica of 𝛿𝐺. Then, it will
compute the original version of 𝛿𝑒𝑥𝑡 (possibly using the value of 𝑠𝑚𝑎𝑐𝑟𝑜)
to calculate the new 𝑠 state. In this case, an internal transition must
be forced (𝑡𝑎 = 0) with the sole purpose of triggering the 𝜆 function to
broadcast the new value of 𝑠.

The case for the internal transition function shall also split into two
modes, regular and broadcast. The broadcast case is the same as with
the 𝛿𝑒𝑥𝑡 function, i.e. a forced transition with the purpose of triggering
𝜆 to send 𝑠 through the broadcast output port. In the regular case, the
modified 𝛿𝑖𝑛𝑡 will also first compute 𝑠𝑚𝑎𝑐𝑟𝑜 by invoking 𝛿𝐺, and then
ompute the original 𝛿𝑖𝑛𝑡 (possibly using 𝑠𝑚𝑎𝑐𝑟𝑜) to calculate the new 𝑠.

Having explained the nature of the transformation we will proceed
to formalize this idea.

For a given EB-DEVS coupled model (𝐸𝐵𝐷𝐶 ) we define an equiva-
lent DEVS coupled model (𝐷𝐸𝑉 𝑆𝐶 ). Each model will contain multiple
(more than one) atomic components. Atomic models are named 𝐸𝐵𝐷𝐴
and 𝐷𝐸𝑉 𝑆𝐴 respectively.

We leave the case of a model with only one atomic model as
a particular case with no interesting properties from the EB-DEVS
perspective.

Let the EB-DEVS Coupled model be:

𝐸𝐵𝐷𝐶 = ⟨𝑋𝑒𝑏𝑑
𝑠𝑒𝑙𝑓 , 𝑌

𝑒𝑏𝑑
𝑠𝑒𝑙𝑓 , 𝐷

𝑒𝑏𝑑 , {𝑀𝑖}𝑒𝑏𝑑 , {𝐼𝑖}𝑒𝑏𝑑 , {𝑍𝑖,𝑗}𝑒𝑏𝑑 ,

Select𝑒𝑏𝑑 , 𝑋𝑏,𝑒𝑏𝑑
𝑚𝑖𝑐𝑟𝑜, 𝑌

𝑒𝑏𝑑
𝐺𝑢𝑝

, 𝑆𝑒𝑏𝑑
𝐺𝑚𝑎𝑐𝑟𝑜

, 𝑆𝑒𝑏𝑑
𝐺 , 𝑣𝑒𝑏𝑑𝑑𝑜𝑤𝑛, 𝛿

𝑒𝑏𝑑
𝐺 ⟩ (C.5)

Let us consider for the sake of simplicity that 𝐸𝐵𝐷𝐶 is a root parent
(i.e., the topmost in the DEVS hierarchy). Hence 𝑆𝑒𝑏𝑑

𝐺𝑚𝑎𝑐𝑟𝑜
= 𝑌 𝑒𝑏𝑑

𝐺𝑢𝑝
= {⊘}.

he inductive step to prove the general case requires to first flatten a
eneric coupled model (with arbitrary hierarchical levels) by using the
losure under coupling property of EB-DEVS, thus obtaining the equiv-
lent root parent used here. This structural induction is straightforward
nd does not require explicit elaboration.

Let the DEVS Coupled model be:

𝐸𝑉 𝑆𝐶 = ⟨𝑋𝑑𝑒𝑣𝑠
𝑠𝑒𝑙𝑓 , 𝑌

𝑑𝑒𝑣𝑠
𝑠𝑒𝑙𝑓 , 𝐷𝑑𝑒𝑣𝑠, {𝑀𝑖}𝑑𝑒𝑣𝑠, {𝐼𝑖}𝑑𝑒𝑣𝑠, {𝑍𝑖,𝑗}𝑑𝑒𝑣𝑠, Select𝑑𝑒𝑣𝑠⟩
(C.6)
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Let the 𝐸𝐵𝐷𝐴 atomic model be:

𝐸𝐵𝐷𝐴 = ⟨𝑋𝑒𝑏𝑑 , 𝑌 𝑒𝑏𝑑 , 𝑆𝑒𝑏𝑑 , 𝑡𝑎𝑒𝑏𝑑 , 𝛿𝑒𝑏𝑑𝑖𝑛𝑡 , 𝛿
𝑒𝑏𝑑
𝑒𝑥𝑡 , 𝜆

𝑒𝑏𝑑 , 𝑌 𝑒𝑏𝑑
𝑢𝑝 , 𝑆𝑒𝑏𝑑

𝑚𝑎𝑐𝑟𝑜⟩ (C.7)

And finally let be the 𝐷𝐸𝑉 𝑆𝐴 Atomic model:

𝐸𝑉 𝑆𝐴 = ⟨𝑋𝑑𝑒𝑣𝑠, 𝑌 𝑑𝑒𝑣𝑠, 𝑆𝑑𝑒𝑣𝑠, 𝑡𝑎𝑑𝑒𝑣𝑠, 𝛿𝑑𝑒𝑣𝑠𝑖𝑛𝑡 , 𝛿𝑑𝑒𝑣𝑠𝑒𝑥𝑡 , 𝜆𝑑𝑒𝑣𝑠⟩

Consider that the same list of atomic models and priorities are
resent at each coupled model.

{𝑀𝑖}𝑑𝑒𝑣𝑠 = {𝑀𝑖}𝑒𝑏𝑑

𝐷𝑑𝑒𝑣𝑠 = 𝐷𝑒𝑏𝑑

𝑒𝑙𝑒𝑐𝑡𝑑𝑒𝑣𝑠 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑏𝑑
(C.8)

We define the coupled model structure by connecting each atomic
odel in 𝐷𝐸𝑉 𝑆𝐶 using a fully connected mesh network. This is

equired to broadcast the atomic states to its siblings.
𝑑𝑒𝑣𝑠
𝑖 = {𝑑 ∈ 𝐷𝑒𝑏𝑑

|𝑑 ≠ 𝑖} (C.9)

The atomic DEVS model will have the following input, output sets
nd transformation function:

𝑋𝑑𝑒𝑣𝑠 = 𝑋𝑒𝑏𝑑 ∪ {(bIPort, 𝑥)|𝑥 ∈ 𝑋𝑏,𝑒𝑏𝑑
𝑚𝑖𝑐𝑟𝑜}

𝑌 𝑑𝑒𝑣𝑠 = 𝑌 𝑒𝑏𝑑 ∪ {(bOPort, 𝑦)|𝑦 ∈ 𝑌 𝑒𝑏𝑑
𝑢𝑝 }

{𝑍𝑖,𝑗}𝑑𝑒𝑣𝑠 = {𝑍𝑖,𝑗}𝑒𝑏𝑑
(C.10)

where bOPort stands for Broadcast Output Port and bIPort for Broadcast
Input Port. We work with named ports in order to distinguish between
the new broadcast ports and the Classic DEVS ports IPort and OPort
inherited through 𝑋𝑑𝑒𝑣𝑠 and 𝑌 𝑑𝑒𝑣𝑠, respectively.

The new set of atomic model’s states is defined by:

𝑆𝑑𝑒𝑣𝑠 = 𝑌 𝑒𝑏𝑑
𝑢𝑝 × 𝑆𝑒𝑏𝑑 × 𝑆𝑒𝑏𝑑

𝑚𝑎𝑐𝑟𝑜 × 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡
𝑠𝑑𝑒𝑣𝑠 = (𝑦𝑢𝑝, 𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡)

(C.11)

with 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = {0, 1} acting as a flag to determine when the atomic
model is broadcasting a state change to its sibling components within
𝐷𝐸𝑉 𝑆𝐶 . We have lumped 𝑌 𝑒𝑏𝑑

𝑢𝑝 and 𝑆𝑒𝑏𝑑
𝑚𝑎𝑐𝑟𝑜 into the classic 𝑆𝑑𝑒𝑣𝑠 state

set, i.e. the two elements that enable an EB-DEVS model to operate with
micro–macro dynamics.

The output function will have two responsibilities. On the one hand
it will work as defined in 𝐸𝐵𝐷𝐴, and on the other it will output the
model’s state changes for broadcasting purposes.

𝜆𝑑𝑒𝑣𝑠 ∶𝑆𝑑𝑒𝑣𝑠 → 𝑌 𝑑𝑒𝑣𝑠 (C.12)

𝜆𝑑𝑒𝑣𝑠((𝑦𝑢𝑝, 𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡)) =

{

(𝑏𝑂𝑃𝑜𝑟𝑡, 𝑦𝑢𝑝) if broadcast,
𝜆𝑒𝑏𝑑 (𝑠) otherwise.

(C.13)

The time advance function will take into account if the model needs
to broadcast its state:

𝑡𝑎𝑑𝑒𝑣𝑠 ∶𝑆𝑑𝑒𝑣𝑠 → ℜ+
0 ∪ {+∞} (C.14)

𝑡𝑎𝑑𝑒𝑣𝑠((𝑦𝑢𝑝, 𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡)) =

{

0 if broadcast,
𝑡𝑎𝑒𝑏𝑑 (𝑠) otherwise.

(C.15)

The internal transition 𝛿𝑑𝑒𝑣𝑠𝑖𝑛𝑡 function will compute the new state by
using the 𝐸𝐵𝐷𝐴 internal dynamics.

𝛿𝑑𝑒𝑣𝑠𝑖𝑛𝑡 ∶𝑆𝑑𝑒𝑣𝑠 → 𝑆𝑑𝑒𝑣𝑠 (C.16)

𝛿𝑑𝑒𝑣𝑠𝑖𝑛𝑡 ((𝑦𝑢𝑝, 𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡)) =

{

(𝑦𝑢𝑝, 𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 0) if broadcast,
(𝑦′𝑢𝑝, 𝑠

′, 𝑠𝑚𝑎𝑐𝑟𝑜, 1) otherwise.
(C.17)

with (𝑦′𝑢𝑝, 𝑠
′) = 𝛿𝑒𝑏𝑑𝑖𝑛𝑡 (𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜).

The 𝛿𝑒𝑏𝑑𝐺 function will be invoked only upon reception of broadcast
input messages at bIPort. Therefore, for the external transition function
𝛿𝑑𝑒𝑣𝑠𝑒𝑥𝑡 we need to consider special cases based on the type of input port.

𝑑𝑒𝑣𝑠 𝑑𝑒𝑣𝑠 + 𝑑𝑒𝑣𝑠 𝑑𝑒𝑣𝑠
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𝛿𝑒𝑥𝑡 ∶ 𝑆 ×ℜ0 ×𝑋 → 𝑆 (C.18)
𝛿𝑑𝑒𝑣𝑠𝑒𝑥𝑡 ((𝑦𝑢𝑝, 𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡), 𝑒, (𝑝, 𝑥)) =

=

{

(𝑦𝑢𝑝, 𝑠, 𝑠′𝑚𝑎𝑐𝑟𝑜, 0) if p=bIPort,
(𝑦′𝑢𝑝, 𝑠

′, 𝑠𝑚𝑎𝑐𝑟𝑜, 1) otherwise.
(C.19)

with (𝑦′𝑢𝑝, 𝑠
′) = 𝛿𝑒𝑏𝑑𝑒𝑥𝑡 (𝑠, 𝑠𝑚𝑎𝑐𝑟𝑜, 𝑒, (𝑝, 𝑥)) and 𝑠′𝑚𝑎𝑐𝑟𝑜 = 𝛿𝑒𝑏𝑑𝐺 (𝑠𝑚𝑎𝑐𝑟𝑜, 𝑒, 𝑥,⊘).

We have just embedded 𝛿𝑒𝑏𝑑𝐺 from a coupled 𝐸𝐵𝐷𝐶 model into an
atomic 𝐷𝐸𝑉 𝑆𝐴 model by defining

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠𝐺 = 𝑠𝑚𝑎𝑐𝑟𝑜
𝑒𝐺 = 𝑒
𝑥𝑏𝑚𝑖𝑐𝑟𝑜 = 𝑥
𝑠𝐺𝑚𝑎𝑐𝑟𝑜

= ⊘

(C.20)

This concludes the constructive proof.

Appendix D. Legitimacy

The legitimacy property of a DEVS model specifies requirements to
be imposed for the model to be considered a system. Zeigler defined a
criterion to assess this property for any DEVS model in [18]. Namely,
the legitimacy property requires that a DEVS model does not undergo
an infinite number of state transitions within a finite time interval.
Therefore, we will define how and when an EB-DEVS instance can be
considered a legitimate model of a system. Intuitively, relying on the
bisimulation property, we can first transform an EB-DEVS model into an
equivalent legitimate DEVS model, stating that if such transformation
exists then the EB-DEVS model is legitimate.

Definition 2 (Legitimacy of EB-DEVS Models). An EB-DEVS model
𝐸𝐵𝐷𝐴 is legitimate if and only if a transformation 𝑇 can be found such
that 𝑇 (𝐸𝐵𝐷𝐴) ≅ 𝐷𝐸𝑉 𝑆𝐴 where 𝐷𝐸𝑉 𝑆𝐴 is a legitimate DEVS model.

Consider that 𝑇 is a transformation built by using Theorem 2.
Then if 𝐸𝐵𝐷𝐴 and 𝐷𝐸𝑉 𝑆𝐴 are isomorphic, they will present the
same properties. If 𝐷𝐸𝑉 𝑆𝐴 is not legitimate then neither 𝐸𝐵𝐷𝐴 can
be legitimate. But given that 𝐷𝐸𝑉 𝑆𝐴 is legitimate under the DEVS
legitimacy definition (Zeigler et al. , 2018, definition 6.1, p. 158) [16]
then by construction 𝐸𝐵𝐷𝐴 must be legitimate as well.
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