
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 79–88

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.202

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.202 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Simulating a Search Engine Service focusing on Network

Performance

Joe Carrión1, Daniel Franco Puntes1, and Emilio Luque1

Universitat Autónoma de Barcelona, Computer Architecture and Operative Systems Department,
08193, Bellaterra, Spain

joe.carrion@caos.uab.es, daniel.franco@uab.es, emilio.luque@uab.es

Abstract
Large-scale computer systems like Search Engines provide services to thousands of users, and
their user demand can change suddenly. This unstable demand impacts sensitively to the
service components (like network and hosts). The system should be able to address unexpected
scenarios; otherwise, users would be forced to leave the service. Creating tests scenarios is
an alternative to deal with this variable workload before implementing new configuration in
the system. However, the complexity and size of the system are a huge constraint to create
physical models. Simulation can help to test promising models of search engines. In this paper
we propose a method to model a Search Engine Service (SES) on small scale to analyze the
impact of different configurations. We model the interaction of a typical search engine with
three main components: a Front Service (FS), a Cache Service (CS) and an Index service (IS).
The FS takes as input a query of user and search into a database with the support of a CS
to improve the performance of the system. The proposed model processes a trace file from a
real SES and based on the dependency relation among the messages, services and queries, it is
modeled the full functionality of the SES. The output is, on one hand a simulated trace file to
compare the model with the real system and on the other hand statistics about performance.
The simulation allow us to test configurations of FS, CS, and IS, which can be unlikely in the
real system.

Keywords: Service simulation, network simulation, application-aware network, search engine services

1 Introduction

Search Engine Services are used by millions of users daily. Providers of these services are
Google Inc., Yahoo, Baidu, Ask and although they prevail in the market[2] there are other
environments where Search Engine Service are a useful tool like social networks or enterprise
portals. This service is supported by the interaction of a vast set of small systems and services
working together to create a complex structure able to scale from hundred of hosts to thousands
of hosts interconnected. [13]. The planned and deployed resources for a search engine should

1

This space is reserved for the Procedia header, do not use it

Simulating a Search Engine Service focusing on Network

Performance

Joe Carrión1, Daniel Franco Puntes1, and Emilio Luque1

Universitat Autónoma de Barcelona, Computer Architecture and Operative Systems Department,
08193, Bellaterra, Spain

joe.carrion@caos.uab.es, daniel.franco@uab.es, emilio.luque@uab.es

Abstract
Large-scale computer systems like Search Engines provide services to thousands of users, and
their user demand can change suddenly. This unstable demand impacts sensitively to the
service components (like network and hosts). The system should be able to address unexpected
scenarios; otherwise, users would be forced to leave the service. Creating tests scenarios is
an alternative to deal with this variable workload before implementing new configuration in
the system. However, the complexity and size of the system are a huge constraint to create
physical models. Simulation can help to test promising models of search engines. In this paper
we propose a method to model a Search Engine Service (SES) on small scale to analyze the
impact of different configurations. We model the interaction of a typical search engine with
three main components: a Front Service (FS), a Cache Service (CS) and an Index service (IS).
The FS takes as input a query of user and search into a database with the support of a CS
to improve the performance of the system. The proposed model processes a trace file from a
real SES and based on the dependency relation among the messages, services and queries, it is
modeled the full functionality of the SES. The output is, on one hand a simulated trace file to
compare the model with the real system and on the other hand statistics about performance.
The simulation allow us to test configurations of FS, CS, and IS, which can be unlikely in the
real system.

Keywords: Service simulation, network simulation, application-aware network, search engine services

1 Introduction

Search Engine Services are used by millions of users daily. Providers of these services are
Google Inc., Yahoo, Baidu, Ask and although they prevail in the market[2] there are other
environments where Search Engine Service are a useful tool like social networks or enterprise
portals. This service is supported by the interaction of a vast set of small systems and services
working together to create a complex structure able to scale from hundred of hosts to thousands
of hosts interconnected. [13]. The planned and deployed resources for a search engine should

1

This space is reserved for the Procedia header, do not use it

Simulating a Search Engine Service focusing on Network

Performance

Joe Carrión1, Daniel Franco Puntes1, and Emilio Luque1

Universitat Autónoma de Barcelona, Computer Architecture and Operative Systems Department,
08193, Bellaterra, Spain

joe.carrion@caos.uab.es, daniel.franco@uab.es, emilio.luque@uab.es

Abstract
Large-scale computer systems like Search Engines provide services to thousands of users, and
their user demand can change suddenly. This unstable demand impacts sensitively to the
service components (like network and hosts). The system should be able to address unexpected
scenarios; otherwise, users would be forced to leave the service. Creating tests scenarios is
an alternative to deal with this variable workload before implementing new configuration in
the system. However, the complexity and size of the system are a huge constraint to create
physical models. Simulation can help to test promising models of search engines. In this paper
we propose a method to model a Search Engine Service (SES) on small scale to analyze the
impact of different configurations. We model the interaction of a typical search engine with
three main components: a Front Service (FS), a Cache Service (CS) and an Index service (IS).
The FS takes as input a query of user and search into a database with the support of a CS
to improve the performance of the system. The proposed model processes a trace file from a
real SES and based on the dependency relation among the messages, services and queries, it is
modeled the full functionality of the SES. The output is, on one hand a simulated trace file to
compare the model with the real system and on the other hand statistics about performance.
The simulation allow us to test configurations of FS, CS, and IS, which can be unlikely in the
real system.

Keywords: Service simulation, network simulation, application-aware network, search engine services

1 Introduction

Search Engine Services are used by millions of users daily. Providers of these services are
Google Inc., Yahoo, Baidu, Ask and although they prevail in the market[2] there are other
environments where Search Engine Service are a useful tool like social networks or enterprise
portals. This service is supported by the interaction of a vast set of small systems and services
working together to create a complex structure able to scale from hundred of hosts to thousands
of hosts interconnected. [13]. The planned and deployed resources for a search engine should

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.202&domain=pdf


80 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88Simulating a SES focusing on network performance Carrión, Franco and Luque

be computed on expected demand. Although the capacity installed should support a dynamic
workload related to variable user demand.

This research proposes a methodology to simulate the interaction of the hosts and services
in order to analyze the impact of different scenarios. Additionally, it is possible to provide
a baseline to design better promising configurations of a search engine. We studied a Search
Engine Service (SES) with a typical configuration based on three components: Front Service
(FS), Cache Service (CS) and Index Service (IS). These components are deployed over a cluster
designed to support the service with a high speed network and redundant resources.

The performance of the system depends on the accepted workload and the installed capacity.
In order to balance this two criteria, first we analyze the injection rate of queries and second
we check metrics to manage the workload of the system. This analysis can be done in the real
system on expenses of some overhead and to design hypothetical configurations. However, new
resources and configurations need to be tested exhaustively. New configurations can be tested
by the injection of artificial traffic. On literature like [3], [4], [6] we can find methods to simulate
hypothetical conditions through the injection of synthetic traffic, we evaluated the importance
to use real traffic. Therefore we propose a model with real traffic.

We analyze real traffic of the system for a period of time and simulate the services of the
Front Service, Cache Service and Index Service. The model simulates the interaction of services.
When a query arrives, it is submitted to next service based on the data flow of the system.
When the query arrives to destination, it is simulated the time to solve the query and then
it is returned to sender. Because of each query is divided in messages the simulation take
into account the relation dependency among them. We modified a network simulator and we
added a tier to simulate the search engine to process the traffic and inject it to the network.
The output of the network is analyzed to simulate the services and re-inject the traffic to the
network. Finally the output of the simulation should be analyzed to reconfigure the system
with new parameters and create new scenarios for the service.

In section 2 we present a summary of relevant publications and previous work of the authors
related to this work. In Section 3 an overview about the search engine architecture is presented.
Section 4 details the methodology proposed and in Section 5 an evaluation of this work is given.
Finally in 6 the conclusions and future work are presented.

2 Related Work

In order to model the SES a methodology is proposed in [12], where is defined a simulation pro-
cess of a full SES. That methodology proposes modeling the services with parallel computation
and it uses benchmarks to measure the cost of the services (FS, CS, IS and network). Authors
in[9] present a discrete event simulation specification of a SES, where the queries are simulated
with a message moving around different stages to compute the time to solve it, authors com-
pared the results with a real web search engine trace file. The accuracy of the experiments
of those simulations allows to generate trace files to compare with the real system. Addition-
ally, the results enable to extend the test scenarios to try new experiments related to others
components of the system like the network.

The authors in [6] proposed a network simulator as a tool to analyze network designs, and
it is detailed the importance of the specification of performance requirements. For a complex
system like SES the performance is based on the number of queries solved by second, it means in
terms of application performance, then modelling the application with real traffic is necessary.
There are critical issues regarding traffic of real applications, which is, the relation dependency
among messages, authors in [8] addressed this issue by encoding the dependencies with two

2

Simulating a SES focusing on network performance Carrión, Franco and Luque

Figure 1: Overview of main flows of SES. Front service submit queries to Cache service, Cache
Service returns Success or Fail. On Fail, queries are submitted to Index service.

steps, the first one is a full-simulation to detect and encode the dependencies and the second
step includes a new simulation based in the execution of windows of time to ensure related
messages are processed in order.

Authors have proposed simulation techniques to analyze the network and new algorithms
to improve the network performance, based on a detailed traffic pattern analysis of SES [5].

3 Background

The SES analyzed has three main software components: Front Service (FS), Cache Service (CS)
an Index Service (IS) [7]. SES service processes queries (Q) from users through a FS. The FS
distributes the query to a set of CS, the CS checks if Q has been solved previously. CS returns
a success or fail to FS, on fail, FS submits the Q to to IS. The IS generates a list with the
relevant documents to Q (Top K). The Figure 1 illustrates the steps to solve a query.

The output of the system is a list of relevant user documents (K) for the query. The time to
solve a query is called the Query Latency (QL). QL defined by the time to process the query by
the FS plus the network time and plus the time to solve a query by the CS. When Q is solved
by the IS we named Q’. QL’ is defined by QL plus the time need to solve the query by IS. A
graph to compute QL and QL’ is showed in Figure 1.

The main requirement of a SES is solve Q in a defined period of time, a metric of the service
is given by the Throughput (T). T is defined by K divided by Q in the same period of time.

3.1 Search Engine Service Architecture

The SES is deployed on a large cluster of computers. The nodes are arranged on arrays of P
x D, where P defines the level of data partitioning and D the level of replication of the data,
it is used a partitioning and redundancy schemes to improve the performance of the SES in
terms of QL. The cluster of the SES is deployed on a fat-tree topology[1]. A full description of
the architecture is published in [7]. The number of instances of each service is defined in the
configuration of the SES. We show an overview in Figure 1.

3



 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88 81Simulating a SES focusing on network performance Carrión, Franco and Luque

be computed on expected demand. Although the capacity installed should support a dynamic
workload related to variable user demand.

This research proposes a methodology to simulate the interaction of the hosts and services
in order to analyze the impact of different scenarios. Additionally, it is possible to provide
a baseline to design better promising configurations of a search engine. We studied a Search
Engine Service (SES) with a typical configuration based on three components: Front Service
(FS), Cache Service (CS) and Index Service (IS). These components are deployed over a cluster
designed to support the service with a high speed network and redundant resources.

The performance of the system depends on the accepted workload and the installed capacity.
In order to balance this two criteria, first we analyze the injection rate of queries and second
we check metrics to manage the workload of the system. This analysis can be done in the real
system on expenses of some overhead and to design hypothetical configurations. However, new
resources and configurations need to be tested exhaustively. New configurations can be tested
by the injection of artificial traffic. On literature like [3], [4], [6] we can find methods to simulate
hypothetical conditions through the injection of synthetic traffic, we evaluated the importance
to use real traffic. Therefore we propose a model with real traffic.

We analyze real traffic of the system for a period of time and simulate the services of the
Front Service, Cache Service and Index Service. The model simulates the interaction of services.
When a query arrives, it is submitted to next service based on the data flow of the system.
When the query arrives to destination, it is simulated the time to solve the query and then
it is returned to sender. Because of each query is divided in messages the simulation take
into account the relation dependency among them. We modified a network simulator and we
added a tier to simulate the search engine to process the traffic and inject it to the network.
The output of the network is analyzed to simulate the services and re-inject the traffic to the
network. Finally the output of the simulation should be analyzed to reconfigure the system
with new parameters and create new scenarios for the service.

In section 2 we present a summary of relevant publications and previous work of the authors
related to this work. In Section 3 an overview about the search engine architecture is presented.
Section 4 details the methodology proposed and in Section 5 an evaluation of this work is given.
Finally in 6 the conclusions and future work are presented.

2 Related Work

In order to model the SES a methodology is proposed in [12], where is defined a simulation pro-
cess of a full SES. That methodology proposes modeling the services with parallel computation
and it uses benchmarks to measure the cost of the services (FS, CS, IS and network). Authors
in[9] present a discrete event simulation specification of a SES, where the queries are simulated
with a message moving around different stages to compute the time to solve it, authors com-
pared the results with a real web search engine trace file. The accuracy of the experiments
of those simulations allows to generate trace files to compare with the real system. Addition-
ally, the results enable to extend the test scenarios to try new experiments related to others
components of the system like the network.

The authors in [6] proposed a network simulator as a tool to analyze network designs, and
it is detailed the importance of the specification of performance requirements. For a complex
system like SES the performance is based on the number of queries solved by second, it means in
terms of application performance, then modelling the application with real traffic is necessary.
There are critical issues regarding traffic of real applications, which is, the relation dependency
among messages, authors in [8] addressed this issue by encoding the dependencies with two

2

Simulating a SES focusing on network performance Carrión, Franco and Luque

Figure 1: Overview of main flows of SES. Front service submit queries to Cache service, Cache
Service returns Success or Fail. On Fail, queries are submitted to Index service.

steps, the first one is a full-simulation to detect and encode the dependencies and the second
step includes a new simulation based in the execution of windows of time to ensure related
messages are processed in order.

Authors have proposed simulation techniques to analyze the network and new algorithms
to improve the network performance, based on a detailed traffic pattern analysis of SES [5].

3 Background

The SES analyzed has three main software components: Front Service (FS), Cache Service (CS)
an Index Service (IS) [7]. SES service processes queries (Q) from users through a FS. The FS
distributes the query to a set of CS, the CS checks if Q has been solved previously. CS returns
a success or fail to FS, on fail, FS submits the Q to to IS. The IS generates a list with the
relevant documents to Q (Top K). The Figure 1 illustrates the steps to solve a query.

The output of the system is a list of relevant user documents (K) for the query. The time to
solve a query is called the Query Latency (QL). QL defined by the time to process the query by
the FS plus the network time and plus the time to solve a query by the CS. When Q is solved
by the IS we named Q’. QL’ is defined by QL plus the time need to solve the query by IS. A
graph to compute QL and QL’ is showed in Figure 1.

The main requirement of a SES is solve Q in a defined period of time, a metric of the service
is given by the Throughput (T). T is defined by K divided by Q in the same period of time.

3.1 Search Engine Service Architecture

The SES is deployed on a large cluster of computers. The nodes are arranged on arrays of P
x D, where P defines the level of data partitioning and D the level of replication of the data,
it is used a partitioning and redundancy schemes to improve the performance of the SES in
terms of QL. The cluster of the SES is deployed on a fat-tree topology[1]. A full description of
the architecture is published in [7]. The number of instances of each service is defined in the
configuration of the SES. We show an overview in Figure 1.

3



82 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88Simulating a SES focusing on network performance Carrión, Franco and Luque

3.2 Front Service

The FS accepts Q from users and the service returns a list of relevant documents to the query.
A query is composed by a set of keywords. The FS is a cluster with a defined number of hosts
running an instance of FS.

Each query has four states: new, hit, no hit or done. FS processes new Q and submits it
to different CS. If the Q state is no hit, Q is submitted to IS. On hit or done results K are
returned to user. Each state increases QL according to estimated time for each service. Only
IS and CS change Q state. FS distributes Q based on algorithms (like Round Robin) to balance
the workload among different CS and IS hosts. Figure 1 shows an scheme of the different Q
states.

3.3 Cache Service

The CS keeps a set of the most frequent queries and results. Basically there are two main tasks
on CS service, the first one is processing new queries and the second one is to keep updated
its content to solve Q quickly. The operation of the CS involves time to balance the workload
among CS nodes. At the same time, CS processes previous results based on a set of cache
policies. Authors of [7] explain in detail the CS features. CS updates Q state from new to hit
or no hit and it increases QL.

3.4 Index Service

The IS computes a list of the top-K relevant documents for Q. To do this, there is parallel
process to recover documents from the web to create a document collection. Each document
is associated with an unique identifier and it is parsed to recover a list of relevant terms. The
result of this process is a structure named inverted index. This structure can be huge and it is
necessary distribute it among the hosts of the IS cluster. The IS accesses to the inverted index
for relevant documents, because of the results can be stored in different nodes it is applied a
ranking algorithm to compute a Top-K list with links to the original document. IS updates Q
state from no hit to done and it increases QL.

3.5 Traffic Pattern Analysis of SES

In order to design a model to simulate SES we have studied the traffic pattern of the real
system. In a SES the communication pattern is defined by the flows of the service architecture.
The load of the system depends on two elements, the volume of user requests (Q) and the size
of the content stored in the system. The volume of users submitting queries in a period of time
is unpredictable. This input rate triggers an unstable communication pattern.

We have conducted a set of experiments using simulation techniques to analyze the traffic
pattern of SES. For instance below we introduce two basic looks related to traffic patterns.

The first one is shown in Figure 2 (a), where axis X and Y are the host identification from
1 to 128 hosts. The marks correspond to the service which submits the message. We can see
that each node only contacts with a delimited set of services, a CS node submits messages to a
single FS node, and IS node submits messages only to a single FS node. Using the flow-traffic
conditions described on Figure 1, the set of couples is deterministic. Each pair S-R (Sender -
Receiver) is created with a delimited set of nodes. The tendency reduces the set of couples and
it creates an unbalanced traffic. On one hand if there is unused resources the network could be
reduced, on the other hand there are overloaded buffers and they can generate bottlenecks.

4

Simulating a SES focusing on network performance Carrión, Franco and Luque

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Traffic pattern Search engine service

Sender

R
e

c
e

iv
e

r

Index Service

Cache Service

Front Service

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300  400  500  600  700

O
c
c
u

p
a

n
c
y
 (

>
T

h
re

s
h

o
ld

)

Buffers (Switches Level 0, 1, 2)

Buffer Ocuppancy > 25%. Traffic Search engine

Low: Edge: Level 2

Low: Aggregation: Level 1

Low: Core: Level 0

(b)

Figure 2: (a) Pairs of Senders and Receivers by kind of service. (b) Number on events where
the buffer capacity was higher than a threshold of (25%).

The second experiment focuses on analyze the traffic workload among switches. In order
to analyze the impact of traffic, we monitor the network in a window of time and we define a
threshold of 25% of the buffer capacity to count the number of events when the occupancy is
higher than the threshold. For instance with a fat-tree network with three levels, Figure 2(b)
depicts the buffers occupancy, we can see imbalanced traffic among the network and there are
some buffers with very high occupancy and unused buffers.

4 Network Simulation of SES

This paper proposes a methodology to simulate a search engine service with an approach based
on real traces. In Figure 3(a) we show the current (actual) method based on workloads, where
the analysis of network performance is based on traffic generated by mathematical model,
random numbers or bit-based. In the Figure 3(b) we depict our a method based on real traces
to simulate the application (proposed).

The proposed methodology is based on the interactions of application components, the
dependency of the traffic (workload of services) and the flow-data conditions. Additionally
It has an analytical phase (external) to reconfigure the system in order to create new test
scenarios for experimentation, this phase is based on the information provided by simulation
which contains details related to the services.

4.1 Application Tier

The proposed model creates a tier to simulate the application interacting with the network.
Figure 4 illustrates the basic model, where a set of instances of FS, CS, and IS inject messages
to the network and the simulator returns the messages to services.

We used a modified version of Booksim simulator published in [10] and [11]. The modified
Booksim to support real traces of the SES. We included three main components to the simulator,

5



 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88 83Simulating a SES focusing on network performance Carrión, Franco and Luque

3.2 Front Service

The FS accepts Q from users and the service returns a list of relevant documents to the query.
A query is composed by a set of keywords. The FS is a cluster with a defined number of hosts
running an instance of FS.

Each query has four states: new, hit, no hit or done. FS processes new Q and submits it
to different CS. If the Q state is no hit, Q is submitted to IS. On hit or done results K are
returned to user. Each state increases QL according to estimated time for each service. Only
IS and CS change Q state. FS distributes Q based on algorithms (like Round Robin) to balance
the workload among different CS and IS hosts. Figure 1 shows an scheme of the different Q
states.

3.3 Cache Service

The CS keeps a set of the most frequent queries and results. Basically there are two main tasks
on CS service, the first one is processing new queries and the second one is to keep updated
its content to solve Q quickly. The operation of the CS involves time to balance the workload
among CS nodes. At the same time, CS processes previous results based on a set of cache
policies. Authors of [7] explain in detail the CS features. CS updates Q state from new to hit
or no hit and it increases QL.

3.4 Index Service

The IS computes a list of the top-K relevant documents for Q. To do this, there is parallel
process to recover documents from the web to create a document collection. Each document
is associated with an unique identifier and it is parsed to recover a list of relevant terms. The
result of this process is a structure named inverted index. This structure can be huge and it is
necessary distribute it among the hosts of the IS cluster. The IS accesses to the inverted index
for relevant documents, because of the results can be stored in different nodes it is applied a
ranking algorithm to compute a Top-K list with links to the original document. IS updates Q
state from no hit to done and it increases QL.

3.5 Traffic Pattern Analysis of SES

In order to design a model to simulate SES we have studied the traffic pattern of the real
system. In a SES the communication pattern is defined by the flows of the service architecture.
The load of the system depends on two elements, the volume of user requests (Q) and the size
of the content stored in the system. The volume of users submitting queries in a period of time
is unpredictable. This input rate triggers an unstable communication pattern.

We have conducted a set of experiments using simulation techniques to analyze the traffic
pattern of SES. For instance below we introduce two basic looks related to traffic patterns.

The first one is shown in Figure 2 (a), where axis X and Y are the host identification from
1 to 128 hosts. The marks correspond to the service which submits the message. We can see
that each node only contacts with a delimited set of services, a CS node submits messages to a
single FS node, and IS node submits messages only to a single FS node. Using the flow-traffic
conditions described on Figure 1, the set of couples is deterministic. Each pair S-R (Sender -
Receiver) is created with a delimited set of nodes. The tendency reduces the set of couples and
it creates an unbalanced traffic. On one hand if there is unused resources the network could be
reduced, on the other hand there are overloaded buffers and they can generate bottlenecks.

4

Simulating a SES focusing on network performance Carrión, Franco and Luque

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Traffic pattern Search engine service

Sender

R
e

c
e

iv
e

r

Index Service

Cache Service

Front Service

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300  400  500  600  700

O
c
c
u

p
a

n
c
y
 (

>
T

h
re

s
h

o
ld

)

Buffers (Switches Level 0, 1, 2)

Buffer Ocuppancy > 25%. Traffic Search engine

Low: Edge: Level 2

Low: Aggregation: Level 1

Low: Core: Level 0

(b)

Figure 2: (a) Pairs of Senders and Receivers by kind of service. (b) Number on events where
the buffer capacity was higher than a threshold of (25%).

The second experiment focuses on analyze the traffic workload among switches. In order
to analyze the impact of traffic, we monitor the network in a window of time and we define a
threshold of 25% of the buffer capacity to count the number of events when the occupancy is
higher than the threshold. For instance with a fat-tree network with three levels, Figure 2(b)
depicts the buffers occupancy, we can see imbalanced traffic among the network and there are
some buffers with very high occupancy and unused buffers.

4 Network Simulation of SES

This paper proposes a methodology to simulate a search engine service with an approach based
on real traces. In Figure 3(a) we show the current (actual) method based on workloads, where
the analysis of network performance is based on traffic generated by mathematical model,
random numbers or bit-based. In the Figure 3(b) we depict our a method based on real traces
to simulate the application (proposed).

The proposed methodology is based on the interactions of application components, the
dependency of the traffic (workload of services) and the flow-data conditions. Additionally
It has an analytical phase (external) to reconfigure the system in order to create new test
scenarios for experimentation, this phase is based on the information provided by simulation
which contains details related to the services.

4.1 Application Tier

The proposed model creates a tier to simulate the application interacting with the network.
Figure 4 illustrates the basic model, where a set of instances of FS, CS, and IS inject messages
to the network and the simulator returns the messages to services.

We used a modified version of Booksim simulator published in [10] and [11]. The modified
Booksim to support real traces of the SES. We included three main components to the simulator,

5



84 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88Simulating a SES focusing on network performance Carrión, Franco and Luque

(a) (b)

Figure 3: (a) Traditional model. (b) Proposed model.

Figure 4: Basic scheme of the Application Tier interacting with the Network Simulator.

first a module to process an application trace file, second an injector traffic based on the services
of the application and third a feature to validate the messages dependency among the services.

4.2 Application Simulation

The simulation takes as input a trace file (tf) and a mapping file (mf) generated by the real
service. The tf contains the query (Q), and the services interchange messages (m) along a
window of time (t).

The tf contains a the traffic generated by each host of a real system. The mf contains the
configuration of the SES and the role of each host (IS, FS, CS) . The output of the simulation
is a log with details about the network performance. The structure of tf and mf are shown in
Table 1.

Host POD Rol Replica Host replica
IP (0..10) FS/CS/IS R/NR IP

(a) Mapping file structure (mf).

ID timestamp Op1 Op2 Event CPU Src Dest Size Q D

(b) Trace file structure (tf).

Table 1: Trace files structure.

The SES in defined with the number of instances of FS, CS and IS. For instance a config-
uration with one FS, two CS and three IS is used in Figure 5. The time (t) to solve Q by CS
and FS are provides by tf. We call this cost as tFS, tCS, tIS.

The simulation starts with the injection of Q, then the FS creates m as number of instance
of CS are defined, then m is injected to the kernel of network simulator. When m arrives to
CS host, the tCS is simulated. CS submits messages to network simulator and FS wait until
all from CS messages related to the same Q has been returned. If at least one message has
changed to hit state the results are submitted to user and a new entry to the simulated trace

6

Simulating a SES focusing on network performance Carrión, Franco and Luque

Figure 5: Pipeline phases of SES simulation process.

is created. When the state is no hit, Q is submitted to IS hosts. Then IS submits the messages
to the network and and the network simulator returns messages to FS. Finally FS waits for all
messages for the same Q and submits K to user. The Figure 5 illustrates this process.

4.3 Message Dependency

A Q is solved by a set of m, by the flow of communication among services and by a sequence
ordered of messages. Messages compete for network resources, therefore some times messages
spend time on queues. This condition causes some messages for the same query arrive disordered
to the destination, then checking if all messages of Q have arrived is necessary before injecting
them again to next service or to submit it to user. Figure 6(a) shows an overview of the
simulation process and Figure 6(b) shows the process to verify the message dependency.

(a)
(b)

Figure 6: (a) Simulation is based on the interaction of FS, CS, IS and the network simulation.
(b) The traffic from search engine is injected to queue services, simulation checks the messages
dependency before injecting messages to next service.

7



 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88 85Simulating a SES focusing on network performance Carrión, Franco and Luque

(a) (b)

Figure 3: (a) Traditional model. (b) Proposed model.

Figure 4: Basic scheme of the Application Tier interacting with the Network Simulator.

first a module to process an application trace file, second an injector traffic based on the services
of the application and third a feature to validate the messages dependency among the services.

4.2 Application Simulation

The simulation takes as input a trace file (tf) and a mapping file (mf) generated by the real
service. The tf contains the query (Q), and the services interchange messages (m) along a
window of time (t).

The tf contains a the traffic generated by each host of a real system. The mf contains the
configuration of the SES and the role of each host (IS, FS, CS) . The output of the simulation
is a log with details about the network performance. The structure of tf and mf are shown in
Table 1.

Host POD Rol Replica Host replica
IP (0..10) FS/CS/IS R/NR IP

(a) Mapping file structure (mf).

ID timestamp Op1 Op2 Event CPU Src Dest Size Q D

(b) Trace file structure (tf).

Table 1: Trace files structure.

The SES in defined with the number of instances of FS, CS and IS. For instance a config-
uration with one FS, two CS and three IS is used in Figure 5. The time (t) to solve Q by CS
and FS are provides by tf. We call this cost as tFS, tCS, tIS.

The simulation starts with the injection of Q, then the FS creates m as number of instance
of CS are defined, then m is injected to the kernel of network simulator. When m arrives to
CS host, the tCS is simulated. CS submits messages to network simulator and FS wait until
all from CS messages related to the same Q has been returned. If at least one message has
changed to hit state the results are submitted to user and a new entry to the simulated trace

6

Simulating a SES focusing on network performance Carrión, Franco and Luque

Figure 5: Pipeline phases of SES simulation process.

is created. When the state is no hit, Q is submitted to IS hosts. Then IS submits the messages
to the network and and the network simulator returns messages to FS. Finally FS waits for all
messages for the same Q and submits K to user. The Figure 5 illustrates this process.

4.3 Message Dependency

A Q is solved by a set of m, by the flow of communication among services and by a sequence
ordered of messages. Messages compete for network resources, therefore some times messages
spend time on queues. This condition causes some messages for the same query arrive disordered
to the destination, then checking if all messages of Q have arrived is necessary before injecting
them again to next service or to submit it to user. Figure 6(a) shows an overview of the
simulation process and Figure 6(b) shows the process to verify the message dependency.

(a)
(b)

Figure 6: (a) Simulation is based on the interaction of FS, CS, IS and the network simulation.
(b) The traffic from search engine is injected to queue services, simulation checks the messages
dependency before injecting messages to next service.

7



86 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88Simulating a SES focusing on network performance Carrión, Franco and Luque

4.4 Query Injection

First we introduce the attributes included in tf. The ID is a unique identificator of each entry.
Timestamp allows to measure the injection rate of Q, Srv1 and Srv2 are the services (source
and destination), The Event defines each entry as m or processing time, CPU attribute is the
cost of processing Q by the service. Src and Des are a host identifier. Q is the query identifier
and finally data is the Q state. In Figure 5 we illustrate the process to inject the traffic to
the simulator. FS read Q from tf. The CS destinations are selected from tf. The messages are
submitted to network simulator, and the output of network is stored in a queue to wait for all
messages from the same Q. The process continues until the full trace has been processed.

5 Evaluation

The data for the experimentation corresponds to trace files used by authors of [7]. Trace files
were obtained by Yahoo Search Engine in 2005.

We are using a trace log file with a configuration of 128 host. The network topology is a
Fat-tree topology. The topology is created using a feature of simulator named anynet. First we
parse the mf to generate the anynet topology in the format required by the simulator. This
topology is passed to simulator in the configuration file using the parameter network file.

(a) (b)

Figure 7: (a) Mapping of messages among services along a window of time. (b) Workload
comparison among services in a windows of time.

Figure 8: Buffer occupancy in a defined window of time for switches of Level 0. Axis X shows
channels and axis Y shows percentage of events where Occupancy was higher than a threshold
of 25% of the capacity (Switches 1, 4 and 6 reported 0 events).

In Figure 7 (a) we show a sequence of messages between nodes in a period of time. This chart

8

Simulating a SES focusing on network performance Carrión, Franco and Luque

allows us to recognize a communication pattern where most of Senders belongs to nodes from
1 to 20 and the Receivers go from 1 to 128 with a constant trade-off. This should be analyzed
with the current configuration in order to define if this is the expected work-balance over the
network. Also the report can be compared with the workload of each service, in Figure 7 (b) is
shown a chart with the workload by service. We can see that most of the traffic corresponds to
IS replica, and the number of messages of CS is the lowest. Regarding to work balance, Figure
8 shows a comparison among six switches of Level 0 of the Fat-tre topology, it is shown the
workload for nine channels, as you can see the traffic has been distributed among 5 switches
and switch 3 has the lower workload. Next analysis is related to QL, Figure 9 shows the real
QL and the simulator QL. We got in the simulation a QL of 35.8 ms. against 34.8 ms. in the
real trace, it means 97.1% of accuracy. Finally Figure 10 shows the QL distribution for the
same sample. We can see that simulator slightly increases QL however the distribution belongs
to the same range of values.

0 100 200 300 400 500

1
0

3
0

5
0

Query stream to Front Service

Q
u

e
ry

 l
a

te
n

c
y
 (

N
o

rm
a

li
z
e

d
)

Real

Simulator

Figure 9: Sequence of input using a sample of 480 queries.

Real: Query Latency distribution (ms)

Q
L

10 20 30 40 50 60

0
.0

0
0
.1

0
0
.2

0
0
.3

0

(a)

Simulator: Query Latency distribution (ms)

Q
L

10 20 30 40 50 60 70

0
.0

0
0
.1

0
0
.2

0
0
.3

0

(b)

Figure 10: (a) QL Real distribution (b) QL Simulated distribution.

6 Conclusions

We have presented a methodology to simulate a Search Engine Service in a small scale in
order to evaluate the performance of promising scenarios. We simulated the interaction among
main components on the system based on a real trace. The output is a useful tool to create
experiments in order to analyze and design new configurations of the services and network. As

9



 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88 87Simulating a SES focusing on network performance Carrión, Franco and Luque

4.4 Query Injection

First we introduce the attributes included in tf. The ID is a unique identificator of each entry.
Timestamp allows to measure the injection rate of Q, Srv1 and Srv2 are the services (source
and destination), The Event defines each entry as m or processing time, CPU attribute is the
cost of processing Q by the service. Src and Des are a host identifier. Q is the query identifier
and finally data is the Q state. In Figure 5 we illustrate the process to inject the traffic to
the simulator. FS read Q from tf. The CS destinations are selected from tf. The messages are
submitted to network simulator, and the output of network is stored in a queue to wait for all
messages from the same Q. The process continues until the full trace has been processed.

5 Evaluation

The data for the experimentation corresponds to trace files used by authors of [7]. Trace files
were obtained by Yahoo Search Engine in 2005.

We are using a trace log file with a configuration of 128 host. The network topology is a
Fat-tree topology. The topology is created using a feature of simulator named anynet. First we
parse the mf to generate the anynet topology in the format required by the simulator. This
topology is passed to simulator in the configuration file using the parameter network file.

(a) (b)

Figure 7: (a) Mapping of messages among services along a window of time. (b) Workload
comparison among services in a windows of time.

Figure 8: Buffer occupancy in a defined window of time for switches of Level 0. Axis X shows
channels and axis Y shows percentage of events where Occupancy was higher than a threshold
of 25% of the capacity (Switches 1, 4 and 6 reported 0 events).

In Figure 7 (a) we show a sequence of messages between nodes in a period of time. This chart

8

Simulating a SES focusing on network performance Carrión, Franco and Luque

allows us to recognize a communication pattern where most of Senders belongs to nodes from
1 to 20 and the Receivers go from 1 to 128 with a constant trade-off. This should be analyzed
with the current configuration in order to define if this is the expected work-balance over the
network. Also the report can be compared with the workload of each service, in Figure 7 (b) is
shown a chart with the workload by service. We can see that most of the traffic corresponds to
IS replica, and the number of messages of CS is the lowest. Regarding to work balance, Figure
8 shows a comparison among six switches of Level 0 of the Fat-tre topology, it is shown the
workload for nine channels, as you can see the traffic has been distributed among 5 switches
and switch 3 has the lower workload. Next analysis is related to QL, Figure 9 shows the real
QL and the simulator QL. We got in the simulation a QL of 35.8 ms. against 34.8 ms. in the
real trace, it means 97.1% of accuracy. Finally Figure 10 shows the QL distribution for the
same sample. We can see that simulator slightly increases QL however the distribution belongs
to the same range of values.

0 100 200 300 400 500

1
0

3
0

5
0

Query stream to Front Service

Q
u

e
ry

 l
a

te
n

c
y
 (

N
o

rm
a

li
z
e

d
)

Real

Simulator

Figure 9: Sequence of input using a sample of 480 queries.

Real: Query Latency distribution (ms)

Q
L

10 20 30 40 50 60

0
.0

0
0
.1

0
0
.2

0
0
.3

0

(a)

Simulator: Query Latency distribution (ms)

Q
L

10 20 30 40 50 60 70

0
.0

0
0
.1

0
0
.2

0
0
.3

0

(b)

Figure 10: (a) QL Real distribution (b) QL Simulated distribution.

6 Conclusions

We have presented a methodology to simulate a Search Engine Service in a small scale in
order to evaluate the performance of promising scenarios. We simulated the interaction among
main components on the system based on a real trace. The output is a useful tool to create
experiments in order to analyze and design new configurations of the services and network. As

9



88 Joe Carrión et al. / Procedia Computer Science 108C (2017) 79–88Simulating a SES focusing on network performance Carrión, Franco and Luque

future work, this model also allow us introduce new algorithms to deal with issues like network
congestion and to analyse overload of services.

7 Acknowledgments

This research has been supported by the MINECO Spain under contract TIN2014-53172-P,
SENESCYT1 under contract 2013-AR7L335. Authors would like to thank to Veronica Gil-
Costa, Mauricio Marin and Centro de Biotecnoloǵıa and Bioinformática under Basal Project.

References

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center
network architecture. In ACM SIGCOMM Computer Communication Review, volume 38, pages
63–74. ACM, 2008.

[2] Net Applications. Market Share Statistics for Internet Technologies, 2016. https://www.

netmarketshare.com/.

[3] J.J.P. Arias, A.S. González, and R.P.D. Redondo. Teoŕıa de colas y simulación de eventos discretos.
Pearson Educación, 2003.

[4] Jerry Banks, John S Carson, Barry L Nelson, and David M Nicol. Discrete-Event System Simu-
lation: Pearson New International Edition. Pearson Higher Ed, 2013.

[5] Joe Carŕıon, Daniel Franco, and Emilio Luque. Application-aware routing policy based on appli-
cation pattern traffic. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), page 142. The Steering Committee of The
World Congress in Computer Science, Computer Engineering and Applied Computing (World-
Comp), 2015.

[6] William James Dally and Brian Patrick Towles. Principles and practices of interconnection net-
works. Elsevier, 2004.

[7] Veronica Gil-Costa, Jair Lobos, Alonso Inostrosa-Psijas, and Mauricio Marin. Capacity planning
for vertical search engines: An approach based on coloured petri nets. In International Conference
on Application and Theory of Petri Nets and Concurrency, pages 288–307. Springer, 2012.

[8] Joel Hestness, Boris Grot, and Stephen W Keckler. Netrace: dependency-driven trace-based
network-on-chip simulation. In Proceedings of the Third International Workshop on Network on
Chip Architectures, pages 31–36. ACM, 2010.

[9] Alonso Inostrosa-Psijas, Gabriel Wainer, Veronica Gil-Costa, and Mauricio Marin. Devs modeling
of large scale web search engines. In Simulation Conference (WSC), 2014 Winter, pages 3060–3071.
IEEE, 2014.

[10] Nan Jiang, James Balfour, Daniel U Becker, Brian Towles, William J Dally, George Michelo-
giannakis, and John Kim. A detailed and flexible cycle-accurate network-on-chip simulator. In
Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium
on, pages 86–96. IEEE, 2013.

[11] Nan Jiang, George Michelogiannakis, Daniel Becker, Brian Towles, and William J Dally. Booksim
2.0 users guide. Standford University, 2010.

[12] Mauricio Marin and volume=1 pages=1–1 year=2017 publisher=IEEE Gil-Costa, Vernica jour-
nal=Computing in Science and Engineering. Simulating search engines.

[13] John Wilkes. Keynote: Cluster management at Google. In Federated Computing Research Con-
ference, FCRC ’15, pages 1–, New York, NY, USA, 2015. ACM.

1SENESCYT: Secretaŕıa Nacional de Educación Superior, Ciencia, Tecnoloǵıa e Innovación,
http://www.senescyt.gob.ec/

10


