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a b s t r a c t

With an exaggerating upsurge in mobile data traffic, the wireless networks are confronted with a subtle
task of enhancing their network capacity. The shortage of spectrum resources creates a jamming
situation in the enhancement of network capacity. To overcome this challenge, cellular networks
have been persuaded to seek more fruitful radio spectra. That is why the wireless industry has been
experiencing a new evolution through ultra-densification. Ultra dense networks (UDNs) involving LTE-
U, cognitive radio networks, heterogeneous networks, cloud-radio access networks, device to device
networks and millimeter wave networks appear to be the leading technologies for many more years
to come for achieving the distinct capabilities that 5G and beyond networks are expected to provide.
Therefore, these technologies will be a crucial enabler for next-generation mobile communications for
enhancing capacity. As the resources are scarce which have to be shared by ubiquitous users, therefore
it becomes more impelling to follow resource allocation approaches. Hence, the resource allocation in
cellular networks inherently makes endeavors for the maximization of resource utilization such as
spectrum efficiency, power efficiency etc. In this direction, the article provides a detailed survey of
resource allocation approaches for UDNs in 5G and beyond networks. Specifically, in the first phase,
this article presents the resource allocation process in different scenarios of UDNs. In the second
phase, a taxonomy to classify the resource allocation problem based on approaches, methods, and
optimization criteria has been reviewed. The last phase alleviates the main difficulties of the resource
allocation process in the wireless network; some prevailing and feasible techniques are presented in
detail too. Finally, the emerging technologies, challenges and active research initiatives are outlined
which require the attention of the researchers.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

With the steep advancement of wireless mobile networks in
he past few years, the increasing prevalence of smart terminals
e.g., mobiles, laptops) and emerging applications (e.g., internet
f things (IoT), artificial intelligence (AI), caching, etc.) has ac-
ivated an overwhelming growth of mobile data stemming. It
as been estimated in the future forecasts that the global mo-
ile data traffic demand is expected to reach 351 Exabyte by
025 [1]. However, in the 5G and beyond networks, the scanty
pectrum levels are imposing a bottleneck situation in further
oosting the capacity of wireless communications. To funda-
entally breakthrough this predicament, academic and indus-

rial communities paid attention to seek advanced technologies
ike long term evolution-unlicensed (LTE-U), cognition, etc., with
ltra-densification process for improving network capacity [2].
herefore, the way to boost network capacity and area spectrum
fficiency is network densification where access points (APs) and
ommunication links densification occurs to support explosive
ata traffic. This densification process can be achieved by es-
ablishing supplementary low power nodes (such as microcells,
emtocells, small-cells, etc.) on every lamp post outside or spaced
t a distance of less than 10 m inside, and is displayed in various

ashions that coexist congenially in the 5G and beyond networks.

2

As an example, the various such main networks are (a) LTE-U
(b) cognitive radio networks (CRNs) (c) heterogeneous networks
(HetNets) (d) cloud-radio access networks (C-RANs) (e) device to
device (D2D) networks (f) millimeter wave (mmWave) networks,
and etc.

As agreed by 3GPP, LTE-Advanced (LTE-A) has emerged as
one of the encouraging technologies for addressing the prolif-
erating capacity demand, explosive data traffic and improved
user experience with the use of many forefront technologies,
such as massive multiple-input multiple-output (MIMO) [3,4],
carrier aggregation (CA) [5], link adaptation, and licensed assisted
access (LAA) [2], etc. These technologies have provided aid to the
traditional licensed spectrum in enhancing their current network
performance demands with high spectral efficiency of the current
wireless cellular network. As the opposite side of the coin, it
closes the door for further capacity improvement as this limited
licensed spectrum is discreditably deficient. Cellular networks
have been encouraged to tap the abundant unlicensed spectrum
for increasing the capacity. So, to overcome the constraint of
the limited spectrum, the idea of outstretching LTE to the un-
licensed spectrum, also known as LTE-U has been studied on
an extensive level in the past few years. For auxiliary usage of
the unlicensed spectrum into regularity, another approach called
the LAA has been launched by the Third Generation Partnership
Project (3GPP).
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The second type of promising technology called CRNs can be
sed for improving network capacity as well as the spectrum
fficiency [6]. By definition, a cognitive radio (CR) is a radio
hich is capable enough to change its transmitter parameters by
nowing its environment through information exchange. It has
wo components, known as the primary and secondary networks.
he spectrum is owned initially by the licensed network called as
he primary network, whereas the unlicensed secondary network
eeks to ingress the licensed spectrum to improve its spectrum
fficiency. In order to share the spectrum, the transmission pa-
ameters of secondary network ought to be configured in such a
ay that the primary network remains conserved [7,8].
The third type of promising technology is HetNets in which

umber of small cells are increased to the legacy macro cells in
rder to improve the network capacity. These low power small
ells can be categorized as femto cell, pico cell, microcell, relay,
tc., which helps in traffic offloading from macro base station
MBS), increase the coverage and improve the network capac-
ty [1]. Consecutively, network capacity is improved by using
central wireless cloud network which is known as C-RAN.

he main properties of C-RAN comprise sharing of resources,
entralized processing and real-time cloud computing [9]. Fur-
hermore, D2D network technology is also being considered as
promising newcomer which could perform a vital job of en-
ancing the network capacity as well as spectrum efficiency, as
eer to peer communication is encouraged between proximate
sers [10]. Another way to improve network capacity is to move
rom the traditional radio spectrum to the unused spectrum
here wide frequencies from 30 GHz to 300 GHz are available,
uch as mmWave networks [11].
Despite the manifold transmission manners, nowadays wire-

ess cellular networks trend has transformed from traditional to
enser networks, very dense networks, and UDNs [12]. The UDN
an be defined as a cellular network where the number of active
sers is lesser in comparison to the cell density, or quantitatively
he cell density is more immense than 103 cells/km2 [13,14]. A
ot of essential features come along with various ultra-densified
etworks in comparison to the traditional networks with follow-
ng points discuss as: (i) Remarkable augmentation of network
erformance outputs, e.g., network coverage and spectrum effi-
iency, etc., can be attained through network densification [15],
ii) It is established that LTE-U UDN technology can utilize the
nlicensed spectrum in an efficacious way. Therefore, from the
ser’s viewpoint, to amplify their data rates, the cellular users
an approach both licensed and unlicensed spectra by exploiting
he existing CA technology, (iii) The coordination between the
rimary and secondary networks helps to achieve enhanced per-
ormance [16] or economic gain [17] and it optimizes the overall
erformance of CRN [18]. Hence, the problem of spectrum under-
tilization can be addressed by using CR based UDN technology,
iv) Number of APs, such as base stations (BSs), small cell BSs,
elay nodes, remote radio heads (RRHs), antennas, D2D enabled
sers, machine-type communication, smart devices, future appli-
ations, and vehicle to everything (V2X) networks, etc. coexist. In
rder to handle such a complex and comprehensive system, well-
rganized resource allocation mechanisms are required. Fig. 1
resents a system model showing resource allocation in UDNs
ith emerging applications.
Resource allocation is an essential prerequisite, and remark-

ble research efforts have been undertaken for investigating and
esigning coherent resource allocation schemes with the aim
o serve an ever-increasing number of users and meeting high
tandards of quality of service (QoS). So, a survey of resource
llocation has been provided in this article, in the context of dif-
erent scenarios of UDNs. To the best knowledge of the authors’,

his article serves to provide a comprehensive survey on resource

3

allocation in the context of UDNs involving LTE-U, CRNs, HetNets,
C-RANs, D2D networks, and mmWave networks. Unlike previous
works, this survey acts as a front runner to discuss methodologies
and techniques which are efficient in solving the obstacles per-
taining to resource allocation in the context of different scenarios
of UDNs.

The subject of resource allocation has been widely elabo-
rated but not well studied. For better illustration, this article
discusses several review articles on UDNs, and their related topics
as summarized in Table 1. Generally, the previous works [19–
29] just mention roughly some background of resource allocation
in different scenarios of a wireless network, but the difficulties
and possible solutions of solving the resource allocation process
remain unstated and unsolved.

1.1. Major contribution of the survey

As a part of its important contributions, this article provides
the state of the art of resource allocation for different scenarios
of UDNs in 5G and beyond wireless networks, discuss approaches
and techniques to overcome the obstacles when accomplishing
the resource allocation, and debate challenges as well as unfold
research spheres. In this survey, numerous hurdles of design-
ing resource allocation schemes generated by the exhaustive
properties of future wireless networks, the uncertainty of user
deployment, as well as practical deployment, and novel service
requests are discussed. The key contributions of this article are
summarized as follows:

• The article presents a comprehensive survey of the exiting
resource allocation techniques for UDNs in detail. The aim
of the article is to fill the research gap exist till date by
presenting focused survey on resource allocation techniques
in ultra dense LTE-U, ultra dense CRNs, ultra dense HetNets,
ultra dense C-RAN, ultra dense D2D networks, and ultra
dense mmWave networks scenarios.

• The article presents the comparative analysis of all the re-
source allocation techniques in detail with their advantages
to provide outline of ongoing research in UDNs.

• The article presents emerging technologies, research gaps
and challenges that are still open and require the attention
of research community.

The rest of the article has been organized in the following
sequence: In Section 2, the article briefly introduces literature
on the resource allocation process in different scenarios of ultra
dense wireless networks. In Section 3, a taxonomy to classify
the resource allocation process has been introduced. Efforts have
been made to address the main difficulties of resource allocation
in ultra dense wireless networks and provide several effective
solutions based on different techniques in Section 4. In Sec-
tion 5, emerging technologies for UDNs have been discussed.
In Section 6, challenges have been identified and open research
directions of 5G and beyond wireless network design before con-
clusions are drawn in Section 7. Fig. 2 delineates the organization
of the article.

2. Resource allocation in different scenarios of ultra dense
networks

Resource allocation has been recognized as an important func-
tion for 5G and beyond networks since the disability and al-
terations of the wireless channels initiate dissimilar proportions
of diversity gains in frequency, time, and space, besides mul-
tiuser diversity. Hence, the improved utilization of accessible
resources could be achieved through the adoption of efficient

resource allocation techniques. The resource allocation process
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Fig. 1. System model showing resource allocation in UDNs with emerging applications.
an be visualized as shown in Fig. 3. The information (like CSI,
nterference temperature (IT) threshold) acquired from the neigh-
oring environment linked to both primary/licensed and sec-
ndary/unlicensed systems, could be regarded as inputs to the
esource allocation process. Though the acquired information
ould be perfect or imperfect, yet efficient resource allocation
echniques should be able to harness both. The running of effec-
ive resource allocation algorithms mark the second stage which
ends to distribute the resources in hand such as channel, time
lots, spectrum bands, transmit and receive antennas, and power,
tc. The scheduling parameters such as user assignment, and/or
pectrum assignment at each time slot act as a yield of a resource
llocation scheme. Even, the power and data rate assigned to each
ser, and the beamforming matrix become a part of the outputs.
In UDNs, the tally of APs existing in a specified area can

e equal or surpass that of users by AP densification, which
an be understood and implemented in various designs under
ifferent scenarios. The densification process is exhibited var-
ously. Here, resource allocation in six different types of ultra
4

dense scenarios has been considered, namely; ultra dense LTE-U,
ultra dense CRNs, ultra dense HetNets, ultra dense C-RANs, ultra
dense D2D networks, and ultra dense mmWave networks. These
technologies have various emerging applications like cloud com-
puting, virtual reality (VR), V2X, machine to everything (M2X), AI
(e.g., driverless car), UAV, etc., as shown in Fig. 1.

2.1. Resource allocation in LTE-U system

To enhance the capacity of cellular networks, there is need to
exploit the copious unlicensed spectrum. So, the idea of extending
LTE UDN in unlicensed spectrum is known as LTE and WiFi
coexistence which is widely investigated in the literature. To have
fair concurrence among LTE and WiFi, the user’s efficient coex-
istence mechanisms are required. Furthermore, the regulation of
resources in the LTE-U ultra dense system plays a vital role in de-
termining system performance. So, we first discuss the resource
allocation in LTE-U ultra dense system. Distributed channel access

of WiFi is different from the centralized architecture of LTE; hence
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able 1
ummary of the overviews and surveys of UDNs and their related topics.
Description Focus Refs.

1. A brief overview of deployment challenges in small cell and UDNs
• Small cell and UDN architecture and enabling technologies discussed;
• Different types of small cell and UDN classified;
• Challenges in resource management and interference management addressed.

Small cell
and UDNs

[19]

2. An overview of energy efficient techniques for network management in HetNet UDNs
• Energy efficiency techniques and enabling strategies are categorized;
• Key design issues and future research direction.

HetNet
UDNs

[20]

3. A detailed overview of design agreements for LTE-U system
• LAA channel selection, downlink LAA framework;
• Coexistence enhancements for LAA listen before talk (LBT);
• Radio resource management and channel state information (CSI) Measurements.

Network
coexistence
(LTE-U)

[21]

4. An overview of dense small cell networks
• Discussed densification model types and techniques;
• Enabling technologies and research issues addressed.

UDNs [22]

5. A detailed survey on UDN and emerging technologies
• Security issues in Massive MIMO, D2D, IoT and, visible light communication systems;
• Security threats and their possible solutions in UDNs are discussed.

UDNs [23]

6. Resource management in LTE-U system
• Single small base station (SBS), multiple SBSs, D2D networks, vehicular networks, and unmanned aerial vehicle (UAV) systems;
• Research issues addressed for resource management in LTE-U.

Network
coexistence
(LTE-U)

[24]

7. An overview of resource allocation techniques in CRNs
• Various design approaches and CR optimization methods are presented for the resource allocation problem;
• Discussed QoS criteria for the physical and the medium access control layers;
• Dynamic spectrum allocation and aggregation, and frequency mobility.

CRNs [25]

8. Recent advances in resource allocation methods in underlay CRNs
• Design of resource allocation process and its components;
• Resource allocation algorithm based on the methodologies, parameters and constraints, common techniques, and network architecture.

Underlay
CRNs

[26]

9. An overview of interference control, resource allocation, and self-organization techniques in underlay HetNets.
• Spatial interference coordination at transmitter and the interference cancelation at the receiver;
• Comprehensively discussed the multi-dimensional optimization, cross-layer optimization, and cooperative radio resource management

methods;
• The self-configuration, self-optimization, and self-healing techniques.

HetNets [27]

10. State of art of resource allocation techniques in UDNs
• Resource allocation approaches in UDNs scenario;
• Classification of resource allocation methods/techniques with a feasible solution;
• Emerging technologies and future research directions.

UDNs [28]

11. Survey of state of the art of UDNs
• Challenges in UDNs including resource management, mobility management, interference management, and security;
• UDNs on emergent applications like IoT, security and privacy, modeling and realistic simulations, and relevant techniques.

UDNs [29]
the fair coexistence of the two networks is a great challenge. To
overcome this challenge the two approaches LTE-U and LAA are
widely exploited in literature which combine unlicensed band
with the aggregator in the licensed band as shown in Fig. 4.

LTE-U resource allocation cross-layer framework has been pro-
osed in [30] where proportional fairness among all the users of
TE-U and WiFi networks has been achieved by using centralized
pproach. Due to the inherent extreme density of 5G\6G cellular
etworks, their centralized architectures face lack of scalability
nd an enhanced information exchange overhead, which in turn
uestions their suitability. In this context, the game-theoretic and
ecentralized approaches which have ease of scalability and less
verhead are beneficial. A self-organized decentralized approach
as been followed to reduce overhead and increase system per-
ormance [31]. In this approach, the system autonomously learns
nd decides the allocation of the licensed and unlicensed band
o each mobile station (MS) in small cell network. To proac-
ively allocate the LTE-LAA resources over the WiFi spectrum,
reinforcement learning based long short term memory (RL-

STM) cells algorithm has been used [32], and these resources are
ormulated as a non-cooperative game to maximize throughput.
he scheme ensures fairness among users, and hence boosts the
hroughput and spectrum efficiency. The average packet stopover
ime has been utilized as the performance metric for solving

he problem of allocating licensed and unlicensed spectrum in

5

HetNets [33]. For an unlicensed band, LBT queueing model has
been proposed to capture its reliability, spectral efficiency, and
additional delay. As an extension of this work, the technique of
spectrum allocation in downlink HetNets with numerous radio
access technologies over different bands has been adopted to
obtain optimal network utility [34]. Further, the authors in the
above discussion do not consider the hidden terminal problem
and the effect of user action prediction. The WiFi hidden node
problem in the LAA system arises because of LBT, which results
in interference in the LAA system. To overcome the problem, the
authors have proposed the hidden node aware resource allocation
algorithm, which maximizes the throughput and guarantees the
QoS of the LAA system [35].

All of the above approaches focus on spectrum efficiency,
throughput maximization, and maintaining the QoS, whereas the
aspect of energy efficiency is not considered. So, an energy-
efficiency criterion is developed in [36] to reduce the downlink
transmission power and increase the user throughput by al-
locating modulation and coding scheme, resource blocks, and
transmit power to users. This leads to the allocation of differ-
ent transmission powers to different users according to their
QoS requirements and channel conditions. Moreover, energy-
efficient spatial reuse and intercell interference coordination are

achieved in the LTE system. A collision in unlicensed channel and
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Fig. 2. Article organization.
Fig. 3. Resource allocation process.
interference in a licensed channel can arise due to network den-
sification and overlapping of dynamic WiFi nodes, which results
in degradation of QoS, and thus an increase in energy consump-
tion [37]. So, the authors have proposed the spectrum access
and power allocation scheme based on the online energy-aware
algorithm, which reduces power consumption in the LAA system
by considering dynamic traffic load and time-varying channel
conditions.
6

A joint power and spectrum allocation of both LTE and WiFi
bands could be initialized to maximize spectrum efficiency and
maintain the QoS of small cell users while guarantying fair co-
existence between LTE and WiFi system [46]. For a multi-mode
scenario, a joint channel and resource allocation problem for the
LTE-U system has been presented to maximize network through-
put, which is solved by delay column generation method and
greedy algorithm [47]. Moreover, the hardware limitation of user
equipment (UE) in the LTE-U system on an unlicensed spectrum
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able 2
urvey of resource allocation process in the LTE-U scenario.
Scenario characteristics Performance parameters Proposed scheme Refs.

Blank subframe allocation for effective
coexistence

• Spectrum efficiency
• LTE delay

• Proposed a Q-learning algorithm to dynamically allocate blank
subframes

[38]

LTE-U Resources allocation • Rate improvement
• Reduce collision probability

• Proposed a stochastic programming model for the allocation of
resources

[39]

Channel allocation • Fairness
• Throughput

• Proposed an optimal channel selection algorithm model for
resource allocation

[40]

Spectrum and transmission power
allocation

• Spectrum efficiency • A hybrid adaptive channel access scheme is proposed by taking
the advantage of duty-cycle muting and LBT methods

[41]

User association, spectrum allocation,
and load balancing

• Rate improvement • Proposed a decentralized expected Q-learning algorithm for
spectrum allocation

[42]

Spectrum allocation • Spectrum efficiency
• Fairness

• Proposed adaptive channel access mechanisms based on LBT
methods

[43]

Radio resources allocation for both
licensed and unlicensed bands

• Maximize user’s utility
• Throughput

• Proposed one-to-one and many-to-one matching algorithms for
radio resource allocation

[44]

Power control and licensed and
unlicensed spectrum allocation

• Spectrum efficiency
• QoS

• The convex optimization method is proposed to solve the
allocation problem

[45]
Fig. 4. The relationship between LTE-U and LAA.

s taken into consideration, which is ignored generally in current
esearch on the LTE-U network. However, the schemes in [46]
nd [47] do not consider the constraint of the capacity-limited
ackhaul link. So, the authors in [48] have proposed the channel
nd power allocation for LTE in the unlicensed and licensed band
y maintaining the constraint of a minimum data rate of small
ell users, interference limit, and congestion-free backhaul links.
n this, the Lagrangian scheme of relaxation combined with the
atched game results in low complexity and fast convergence
nd increases overall network utility. Another extended work
n [49] reuses the unlicensed band resources to improve the
ransmission quality, and hence maximizes the throughput of
oth LTE and WiFi users based on matching theory. Besides, to
andle the external effect, an inter-channel cooperation subrou-
ine is given. This task has been expanded to dynamic resource
llocation [50], wherein the tradeoff between licensed and un-
icensed users has been modeled. Like an interactive matching
ame, the dynamic resource allocation in LTE-U is handled by
he use of Gale–Shapley algorithm and random path to stability
lgorithm. Moreover, the inter-channel cooperation algorithm is
ntroduced to address the external effect which re-stabilize the
ystem as well as increases the network throughput. Hence, the
atching theory method for wireless resource allocation can ad-
ress a few limitations of game theory and optimization. Further-
ore, to have a better understanding of the resource allocation
rocess in the LTE-U scenario, some more papers have been
iscussed in Table 2.

.2. Resource allocation in CRNs

An essential factor to be considered in ultra dense CRN is the
bstacle of augmenting the lowest transmission rate in between
7

multiple source–destination pairs. It has been proposed that co-
operative communication is a viable solution in a CRN [51]. Here,
a joint relay assignment and channel allocation are presented to
increase spectrum efficiency under the interference constraint. In
another study, an efficient resource allocation scheme has been
utilized to maximize the throughput for the secondary user (SU)
under the primary interference power constraint, the secondary
rate outage constraint, and the peak power constraint [52]. An-
other approach that has been proposed emphasized on using
a resource allocation algorithm, which gives more proclivity to
the users with large participation in the spectrum sensing pro-
cess and allocating resources, in comparison to those with best
channel conditions only [53]. The approach results in increased
throughput and fairness among SUs.

However, the aspect of energy efficiency is missing in the
above discussion. So, a cooperative energy harvesting resource
allocation scheme, where SU is located close to SBS harvest en-
ergy in CRN has been proposed to increase the sum rate of the
system under the interference constraint of the primary user
(PU) and limited power budget constraint at the SBS [54]. In a
similar study, the authors in [55] proposed resource allocation for
SUs with a particular overlapping region in which heterogeneous
PUs operate simultaneously in multi-radio access technology-
based CRNs. It led to an increase in network capacity, spectrum
efficiency, and energy efficiency. The energy-efficient aspect of
spectrum sharing and power allocation is formulated by the
Stackelberg game technique [56]. Here, interference has not been
considered. The problem of spectrum assignment and alloca-
tion has been modeled as a worldwide optimization problem by
accounting the interference between PUs and SUs, and the inter-
ference between SUs [57]. A modified binary artificial bee colony
algorithm has been proposed to work out this optimization prob-
lem. The result shows the significant spectrum utilization of the
allocation.

Secure communication is an essential parameter for the ef-
ficiency of ultra dense CRNs as the flexibility and openness of
CRNs instigate the latest security threats. These threats either
result in excessive interference at PU network, or under-utilized
spectrum. Hence, they degrade the system performance. In one of
the studies, the resource allocation scheme has been investigated
in the presence of a PU emulation attack [58]. As false alarm
probability decreases the PU detection, so the double threshold
soft detection fusion scheme for CRNs has been formulated. A
joint spectrum sensing and resource allocation problem has been
introduced to deal with the spectrum sensing data falsification
attack and SUs QoS in CRNs [59]. Here, for cooperative spectrum
sensing of SUs a reinforcement learning method has been pre-
sented. Hence, the proposed scheme improves system robustness
and system utility gain. To secure the transmission for both PU
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nd SU a cooperative paradigm is maintained in CRNs [60]. For
his, transmission power, relay, and time duration are selected to
scalate the secondary secrecy rate, simultaneously securing the
rimary secrecy rate in an imperfect CSI environment.
Under the condition of a time-varying channel in a CRN,

tochastic uncertainty, different estimation errors, time delay,
andom changing of users, and different QoS requirements ex-
st. Thus, the allocation of power becomes a vigorous process,
herein each active SU is required to dynamically regulate the
ransmit power on grounds of an instantaneous objective func-
ion, all available information, and the changing environment.
ynamic control theory acts as a powerful technique to deal with
uch kind of situations with high precision. While considering
he effect of the exogenous disturbance, parameter uncertainties,
nd time-delay, etc., the linear quadratic gaussian (LQG) control
nd H∞ control method can be used as a working tool for
ower allocation. In one of the studies, a distributed closed-
oop power allocation algorithm has been used, which is based
n LQG regulator with safety switching and weight adjustment
echanisms [61]. In this case, the power allocation hurdle has
een constructed in the form of a state–space model with in-
uts as time changing CSI and few parameter measurement
rrors and is solved by tracking power control algorithm. This
lgorithm guarantees the signal to interference plus noise ratio
SINR) necessity of the SUs and controls the IT constraint of
ll the PUs below a threshold and perform better in term of
oS of SUs, lower computational complexity, and signal over-
ead. The issue of time varying channel gain and online channel
stimation for a given CRN has been solved by considering a
cattered power allocation algorithm based on H∞ state feedback
ontrol [62]. This algorithm results in better communication per-
ormance in terms of QoS of SUs, interference control, and lower
omputational complexity. However, it is easier to apply the H∞

ontrol-based method as compared to the LQG control regulator
ethod. Whereas the LQG control method deals with external in-

erference in the control process, the H∞ control does not require
ny statistical information about external interference, besides
he bounded energy constraint [63]. Another method based on
he dynamic controller design has been studied which delineates
he intrinsic transient behavior of the system. This method for-
ulates a robust power allocation problem for distributed CRNs
ith channel perturbations and dynamic environment to amplify
he data rate of SUs under the limitations of maximum allowable
nterference, and total power budget of SUs [64]. Afterward, this
llocation problem is solved by a robust controller, based on a
istributed projected dynamic system, which provide stable and
igher transmission rate.
During the allocation of resources, it is necessary to consider

he QoS provision for some delay-sensitive users or applications.
o, PU’s minimum constant average transmission rate is not an ef-
ective approach for delay-sensitive services. Hence, robust power
llocation and relay selection methods have been formulated
ith the arrangements for QoS to each SU, considering proba-
ilistic and worst-case scenarios [65]. These allocation schemes
mplify the output of the system while gratifying the constraint
f interference for PU in an imperfect CSI environment. To provide
statistical delay, QoS provisioning for PUs alongside optimizing
he SUs performance is a great challenge in highly stochastic
ireless channels. So, as the extension of the work to optimize
oth PU and SU performances, it has been proposed that the
esource allocation problem be optimized to amplify SU’s average
hroughput while fulfilling PU’s statistical delay QoS demand, and
U’s average and peak transmit power limitations [66].
Along with time delay and QoS provision, some of the work

lso consider energy efficiency. The concept of energy efficiency
as been studied in [67] wherein the joint power and time al-
ocation for multi-user secure CRNs with the guarantee of time
8

delay and QoS requirements is proposed by considering perfect
and imperfect CSI. Another similar work where a multi-objective
resource allocation problem has been proposed is solved by two
algorithms [68]. Enhanced fuzzy C-means algorithm based cluster
formation for spectrum sensing and multi-objective random walk
grey wolf optimization algorithm is used to choose the optimal
routing path between PU and SUs. The scheme results in better
throughput, delivery ratio, network lifetime, delay awareness,
energy efficiency, and fairness index.

Most of the previous work considers only one type of service
so, dynamic resource allocation for SUs supporting heteroge-
neous service has been formulated as a mixed-integer problem
by considering the minimum data rate and proportional fairness
constraints [69]. As it is cumbersome to have the ideal knowledge
of dynamic radio environment, so dynamic channel and power
allocation has been done by considering imperfect spectrum sens-
ing which has been designed as a mixed-integer programming
problem and solved as Lagrangian dual method and discrete
stochastic optimization method [70]. Both of these studies do not
consider the economic efficiency and the spatial reusability at
the same time, so to increase spectrum efficiency additionally,
these constraints are considered [71]. Here, the coalitional double
auction mechanism is incorporated for full-economic spectrum
having reclaimable allocation among SUs for CRNs. Furthermore,
to have a better understanding of the resource allocation process
in the CRNs scenario, more papers have been discussed in Table 3.

2.3. Resource allocation in HetNets

In order to enhance the capacity of cellular networks, dense
deployment of various SBSs aggravates the situation towards Het-
Nets [80]. With the evolution of wireless internet and swift uni-
versalization of smart devices, heterogeneous cellular networks
turn out to be an efficient method for handling the escalating
demand for seamless network coverage, enhanced capacity, min-
imized latencies, and inflated data rate (uplink and downlink)
to end-users [81]. For supporting the demand of a thousandfold
capacity increase in the next-generation wireless communica-
tion network, nowadays HetNets are emerging as more firmly
packed, thereby becoming ultra dense, thus being called as ultra
dense HetNets. Hence, in ultra dense HetNets, a wide range of
high-power macrocells, low power small cells (i.e., pico, femto,
and microcells), and supplementary non-cellular heterogeneous
communication systems (i.e., WiFi, UAV, Low-power wide-area
network, D2D, etc.) are transformed into a dense structure to
encounter the high capacity requirements in different environ-
ments. So, the ultra dense HetNets remarkably improve the ca-
pacity and coverage even in blind wireless areas and hotspots by
candidly benefitting from the enhanced spatial reuse of the scarce
frequency resources and availing more ease in its installation
process [82].

In ultra dense HetNets, efficient interference management
methods are required. Resource sharing method based on rein-
forcement learning theory has been proposed in [83] to solve
multi-armed bandit problem. The objective is to guide the de-
cision of each cell in choosing the most suitable resources au-
tonomously with minimum interference level. This has to be done
while ensuring reactivity to the possible changes that can occur in
resource usage. The scheme results in throughput maximization
and interference control. Further, due to the dense deployment
in 5G and beyond networks, two types of bottlenecks arise in
HetNets: the interference issue and the cell-edge effect. Literature
reveals that some of the studies have discussed these issues
jointly. In order to mitigate these issues, interference cancellation
techniques like the power control, cell-free BS-user association
(BUA), and dynamic user-side have been exploited [84]. The cell-
free BUA technique yields a new degree of freedom to utilize
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able 3
urvey of resource allocation process in the CRNs scenario.
Scenario\characteristics Performance parameters Proposed scheme Refs.

Spectrum allocation • Throughput • Proposed online flow control, scheduling, and spectrum
allocation algorithm for resource allocation

[72]

Sub-channel and power
control in cooperative CRNs

• Throughput
• Fairness

• Proposed a suboptimal centralized heuristic and optimal
distributed algorithm for resource allocation

[73]

Power allocation • Minimize symbol error rate • Proposed Langrangian multiplier method-based resource
allocation algorithm

[74]

Channel and slot allocation • Energy efficiency
• Throughput
• Fairness

• Proposed a particle swarm optimization algorithm for
resource allocation

[75]

Channel allocation • Spectrum efficiency
• Interference mitigation

• Proposed interference aware resource allocation
algorithm for channel allocation

[76]

Power allocation • Data rate • Proposed a recursive algorithm for power allocation [77]
Channel allocation • Lower computational complexity • Proposed a heuristic algorithm for channel allocation [78]
Channel allocation • Fairness

• Throughput
• A heterogeneous optimal algorithm for channel allocation [79]
the multi-BS diversity to reduce the interference and cell-edge
effect by selecting the best BS satisfying the channel conditions
and system loadings for each user in HetNets. Joint clustering
and inter-cell resource allocation optimization problem has been
solved in [85] by the game theory and the graph coloring al-
gorithms respectively. The scheme results in cell average and
cell edge throughput maximization. Besides, the macro diversity
coordinated multipoint technique is employed to deal with the
inter-cell interference issue. In another extensive study, the game
theory approach has been used to mitigate the user associa-
tion and resource allocation optimization problem, to coordinate
transmission power and eliminate inter-cell interference among
cell edge [86].

The work can further be enhanced by using the concept of
nergy efficiency and by adding some CR capability. This will
esult in enhanced coverage capacity and reliability. In this re-
ard in a study, a power-availability-aware cell association for
S bearing small cell, with a hybrid energy supply network has
een introduced [87]. This proposed framework mutually inherits
he effect of the battery fluctuations and the users’ power re-
uirement based on stochastic geometry tools. Along with energy
fficiency consideration, some of the work focuses on spectrum
fficiency also. Recently a study has been conducted on frequency
nd power allocation to maximize spectrum efficiency and energy
fficiency subject to the constraint of the QoS requirement of
ser [88].
Although, in the aforementioned studies the backhaul capacity

onstraint between BSs and the core network is not reviewed,
et with the network densification of the future wireless net-
orks, huge data transmissions over backhaul links will occur,
hich will affect capacity. A study has been conducted under
he constraints of backhaul capacity limit and power consump-
ion to jointly optimize user association, spectrum allocation,
ower control, and the number of activated antennas to max-
mize energy efficiency and spectrum efficiency while ensuring
roportional rate fairness [89]. One of the studies considered
ointly optimizing the cell association and bandwidth allocation
roblem to maximize user rate under the wireless backhaul link
onstraint [90]. Global and local backhaul bandwidth allocation
as been considered.

.4. Resource allocation in C-RAN

C-RAN with ultra-densification is a promising network archi-
ecture for the upcoming next-generation wireless communica-
ion systems [91]. In the context of C-RAN, the traditional BSs are
ubstituted by modest complexity and shallow-power RRHs that
re coordinated by a centralized base band unit (BBU) pool, which
erves as the latest cheap way to realize network densification.
9

This process improves spectrum efficiency, energy efficiency, and
link reliability. Moreover, the use of cloud computing technolo-
gies as the infrastructure of the central processor (i.e., BBU pool)
enormously enhances hardware utilization [92].

Several studies in the literature focus on energy efficiency and
increased network capacity in the C-RAN by network densifica-
tion process. A cross-layer resource allocation scheme has been
studied to reduce the overall system power utilization in the
BBU pool, fiber links, and the RRHs in the C-RAN system [93].
Here, the resource allocation problem considers RRH selection,
elastic service scaling, and joint beamforming altogether and is
solved by the Shaping-and-Pruning (SP) algorithm, and results in
weighted sum-rate maximization. Under the aspect of throughput
increase and energy efficiency, a study has been conducted to
evaluate the benefits of small cell on/off and adaptive baseband
unit sharing under UDNs with C-RAN architecture [94]. A frame-
work has been designed for an energy-efficient C-RAN [95] having
characteristics of a joint RRH selection and power minimization
through coordinated beamforming. Here bi-section group sparse
beamforming framework (GSBF) algorithm is used for large-scale
C-RAN, whereas iterative GSBF algorithm is used for medium-
sized networks to achieve optimal points. In C-RAN, as the RRHs
grow denser, the fronthaul capacity becomes critical, which re-
stricts the performance of the network [96]. Here, a combination
of hard and soft transfer modes methodology has been exploited
to maximize the delivery rate, simultaneously fulfilling front haul
capacity and per-enhanced RRH power limitations.

End-to-end resource allocation methods, from data centers
to users, are required to ensure the QoS for users. In C-RAN,
optimizing the end-to-end performance during the resource al-
location process is imperative. To this end, the authors have
proposed a multi-pair two-way transmission, using lattice based
compression method to optimize end-to-end user data rate in
C-RANs [97]. In reference [98] hypervisor has been used to al-
locate resources dynamically among various virtual operators.
Hence, the scheme improves throughput and minimizes end-to-
end delay for delay sensitive applications. For minimization of
both network power and spectrum consumption of hybrid C-RAN,
an optimization framework has been proposed to reduce end-to-
end latency constraint from central cloud to the end-user [99].
In yet another study to obtain an end-to-end QoS for end users,
a queuing method prioritizing the improvement in time and
space has been followed by using the radio access network buffer
management concept [100]. Further, resource reservation is an
important concept for network management as it involves traffic
predictions for resource allocation. Therefore, it helps to maintain
better network performance from data centers to users. In this,
the transmission resources in virtualized RAN should be sliced
and reserved to aid unseen traffic requests. In this context, a block
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oordinate descent algorithm has been proposed to solve the
esource reservation problem by using multi-path routing [101].
urther, reservation of link capacities in backhaul and transmis-
ion resources in RAN is obtained to minimize outage of wireless
inks and to maximize the total expected traffic load.

Additionally, this article provides a summary of related works
n the resource allocation process in HetNets and C-RANs in
able 4.

.5. Resource allocation in D2D networks

D2D technology is used to deal with the turbulently increased
ata traffic problem. In this technique, radio resource blocks are
eutilized to enhance the spectrum efficiency in an ultra dense
cenario. In other words, D2D communications offload the traffic
oad of a BS and a pair of D2D devices can reutilize a frequency,
sed by another pair of D2D devices, to enhance the spectrum
fficiency and system capacity when the two pairs of D2D devices
ave no intervention amongst themselves.
A coloring algorithm has been proposed to allocate radio re-

ource blocks to D2D users initially and cellular users afterward
n such a way that each radio resource block can be effectively
eutilized [110]. The system capacity, as well as the spectrum
fficiency, is improved remarkably. A joint resource block and
ower allocation in ultra dense D2D network scenario could also
nsure QoS of the cellular UEs while maximizing the sum rate
f the D2D tier [111]. Along with network improvement in D2D
ommunication, some studies consider the interference issue,
hich arises as a result of the concurrence of multiple tiers of
Ss. For instance, a sequential max search algorithm could be
sed for D2D resource channel allocation to reduce the interfer-
nce among D2D, cellular, and small cells while augmenting the
verall throughput of the network [112]. The heuristic resource
llocation algorithm is another technique to maximize system
hroughput and satisfy SINR for all D2D users and small cellular
sers [113]. To avoid service degradation and network utilization
uring the time-domain muting a heuristic resource allocation
echnique has been developed which is established on the traffic
oad at the SBSs. It amalgamates improved inter-cell interference
oordination (eICIC) with D2D communication [114].

.6. Resource allocation in mmWave networks

Today’s traditional wireless communication system that uses
he frequencies of 300 MHz to 3 GHz has the problem of spectrum
carcity. Therefore, the mmWave communication network that
ses frequencies ranges from 30 to 300 GHz is a better alter-
ative. With the increase in frequency, the mm-wave channel
ecomes more affected by shadowing and path loss effects during
mWave propagation. However, due to extremely short wave-

ength, high gain beamforming could be obtained by using a large
umber of antennas. It will overcome the problem of path loss
nd shadowing by tuning signal power in the desired direction,
y using multiple directional antennas [115].
To design beamforming, beamwidth selection, user associa-

ion, and resource allocation in an ultra dense mmWave net-
ork is challenging since multiple nodes are present. Numer-
us discussions in the literature study about the directional
ransmission, beamforming, etc. in ultra dense mmWave net-
orks. For indoor mmWave networks, the problem of user as-
ociation, beamwidth selection, and power allocation has been
tudied [116]. Here, mmWave communications characteristics
amely beam alignment policy and directional transmission has
een used to achieve the objective of maximization in minimum
hroughput with fairness factor. Another study focusing over

nterference management in beam domain channels obtained

10
user association and beamforming design for access links via
the weighted sum-rate maximization [117]. Afterwards, wireless
backhaul link design and time resource allocation are optimized
to maximize the end-to-end weighted sum rate performance. A
clustering method has been proposed [118] to increase line of
sight (LoS) connectivity and to reduce co-channel interference in
ultra dense mmWave femto networks. Clustering is performed
on both femto users and femto BSs by considering the maximum
probability of LoS link connectivity. Finally, the user association,
subchannel allocation and power allocation are done to maximize
the sum rate of the network. Another study [119] proposes the
best option first algorithm and many-to-one matching with exter-
nalities algorithm for beam assignment and sub-band allocation
respectively to manage inter-cell interference and improve sum
rate of the network.

3. Resource allocation taxonomy in different scenarios of ultra
dense networks

In this section, a taxonomy has been provided for the re-
source allocation process for the UDNs. Particularly, as the first
step, the resource allocation problem has been categorized by
following an approach that could be centralized, distributed, and
partially distributed. Secondly, resource allocation problems can
be bifurcated into different methods according to the informa-
tion type\availability, demand requirements, and modeling pat-
terns. Third, based on the problem objective, these schemes are
also categorized based on numerous performance optimization
parameters.

3.1. Resource allocation approaches

The literature suggests that the problem of resource allocation
can be addressed by using the following techniques: centralized,
distributed, and partially distributed. Each one has its advantages
and disadvantages. Based on the resource allocation problem type
and requirement, one of these could be utilized.

3.1.1. Centralized approach
This approach centrally survives on the existence of a principal

body such as BS, eNodeB, separate node, etc. Their function is the
collection of information and operation control. Information from
the network is gathered by the principal body and subsequently
sent to different users to harmonize their access, and the termi-
nal decision is taken based on the measurements. As the entire
network shares this global view, the ideal or near-ideal response
of a performance metric (e.g., QoS, energy efficiency, spectrum
efficiency, throughput improvement, interference minimization,
etc.) can be achieved. Thus, the overall network performance
increases.

Although the centralized scheme is more efficient due to its
approach to global information, yet it is more subtle also, due
to the enormous volume of information exchange, which en-
hances the signaling overhead. Moreover, the resource allocation
process of the network in this approach entirely depends on
a central node. Therefore, the failure of this central node can
harshly deteriorate the network execution. Moreover, the central-
ized algorithms used to address the resource allocation problem
require all required data related to the current network (e.g., CSI)
with the presumption that calculative errors might not exist in
all of known data, so that they can execute in a better way
to attain the QoS of the network. Nevertheless, this assump-
tion is unrealistic when contemplating over an actual wireless
communication system as it needs substantial overhead to send
the information. Hence, bandwidth requirement increases. Due to
excessive information, the calculations increase manifold times
which results in more time delays and errors. This scheme has
been broadly discussed in literature [86,95,120].
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able 4
urvey of resource allocation process in HetNets and C-RANs.
Theme Scenario\characteristics Performance parameters Proposed scheme Refs.

• User association and resource
allocation

• Maximize network utility
• Proportional fairness

• Lagrange dual decomposition method is used to address the resource
allocation problem

[102]

Ultra
dense
HetNet

• Resource allocation in
UAV-HetNets

• Energy minimization
• QoS

• A heuristic approach is used to compute proportional weights and
after that weighted power allocation scheme is implemented

[103]

• Frequency and time slot
selection in HetNets

• Throughput
• Interference mitigation

• Game theory is used to solve resource allocation [104]

• Resource allocation of two-tier
HetNets

• Capacity maximization • Proposed distributed and formulated power allocation Q-learning
algorithms for resource allocation

[105]

• Subchannel allocation in a
cache-enabled C-RAN

• Maximize weighted
network sum rate

• Proposed matching algorithm for subchannel allocation [106]

Ultra
Dense
CRAN

• Joint power allocation, user
association and energy
management in H-CRAN

• Maximizes the cost
efficiency

• Lagrange dual decomposition method is used to solve power
allocation, user association and energy management problem

[107]

• Resource assignment and power
allocation in H-CRANs

• Energy efficiency
• Spectrum efficiency
• Interference mitigation

• Lagrange dual decomposition method is used for resource block and
power allocation

[108]

• Coordinated cross-cell radio
resource allocation in H-CRAN

• Throughput
• Fairness

• Proposed resource optimization with cooperative radio resource
manager

[109]
3.1.2. Distributed approach
In the distributed approach, one does not need any central

ntity for controlling the scheduling process. Instead, each user
ecides individually. In the distributed schemes, the resource al-
ocation problems can be transformed into numerous easier sub-
roblems which usually just improve a small set of the decision
ariables on the basis of local information. Hence, the distributed
pproach flaunts larger flexibility and resilience. Moreover, the
olume of overhead and latency with simultaneous computation
s reduced. However, since the distributed algorithms used to
olve the resource allocation problem count on limited knowl-
dge or information, the perfect solution can hardly be obtained.
ence, based on the above discussion, it could be stated that
he distributed resource allocation methods which use local in-
ormation are more dependable and realistic than those of the
entralized methods. A lot of distributed schemes are exploited
or resource allocation in a wireless cellular network, such as dis-
ributed algorithm based on Lagrangian relaxation method [48],
istributed iterative algorithm based on the fixed-point theo-
em [121], alternating direction method of multipliers (ADMM)
122,123]., cooperative online learning [124], etc.

.1.3. Partially distributed
The partially distributed approach combines the benefits of

entralized and distributed design approaches altogether and
vercomes the drawbacks. Hence, it has high network capacity,
ow control, and computational overhead. This approach has been
idely discussed in the literature [73,125,126].

.2. Resource allocation methods

In literature, different resource allocation methods are pre-
ented, which can be categorized into deterministic, stochastic,
ata-driven adaptive methods, and two time-scale methods, and
re discussed as following:

.2.1. Deterministic and stochastic methods
Based on the availability of information, the resource alloca-

ion process can be deterministic or stochastic. The deterministic
rocess depends upon precise knowledge of the network, such
s CSI, queue state information, cache state information, avail-
ble resources, etc. Even though being ordinary and simple, the
eterministic information-based schemes become too unrealistic
n the real practical system and difficult to achieve. So, user
osition calculation can be used despite CSI [127]. Furthermore,
ost resource allocation methods can allow a certain degree of
11
failure arises due to imperfect information. Hence, probabilistic
information can be used with respect to deterministic. It will
decrease the computational intricacy while guaranteeing opti-
mal resource allocation results. Probabilistic resource allocation
has gained attention recently, and hence several probabilistic
information-based methods have been studied in the literature
(e.g., [52,65]).

3.2.2. Data-driven adaptive methods
Resource allocation based on the reservation policy leads to

the problem of underutilization of resources. So, there is a need
to apply dynamic resource allocation methods where the demand
requirements of users are varying over time. For this type of
scenario, the resource demand for each timeslot is specified by
start time, end time, capacity, and cost function. Further, the data-
driven adaptive methods are used for dynamic resource allocation
so that high reliability, resource utilization, and low latency in the
communication process can be achieved.

For fully resource utilization the data-driven approach for on-
line forecasting of resource demand which considers the amount
of uncertainty in the prediction has been presented in [128].
The scheduling method namely, the Prophet has been proposed
in [129] to overcome the problem of resource fragmentation and
over allocation. Here, time-varying resource demand within each
executor has been taken into the scheduling decision. An intelli-
gent mobile traffic prediction and control model by using LSTM
based deep learning algorithm has been proposed in [130]. In this,
the peak traffic predicted at each time instant is transferred to
a remote server, and resources are allocated dynamically based
on the traffic adaptation using a cognitive engine. This results in
achieving high reliable low latency communication.

3.2.3. Two time-scale methods
In wireless communication, the network resources are allo-

cated in two different time-scales based on different require-
ments. In certain scenarios, when there are different dimensions
of randomness these methods are effective. For instance, besides
channel state fluctuation, the amount of harvested energy and
power price also results in high temporal–spatial variations and
are hard to be predicted accurately. Moreover, the time scales
of channel, energy, and power price variations are different. The
channel state changes in seconds whereas the state of harvested
energy and power price mostly changes in minutes. This results
in a difference in time-scale, and thus motivates to apply two or
multi-scale resource allocation methods.
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For the time-scale difference between energy arrival and data
ate, the authors in [131] have proposed two time-scale cross-
ayer resource allocation online algorithm based on matching
heory and Lyapunov optimization. The scheme results in im-
roved data rate and energy utilization. In another study [132], an
nline two time-scale resource allocation algorithm has been pro-
osed by using Lyapunov optimization. It determines the channel
llocation and data collection on a small time scale and the
arvested energy and electricity price on a large time scale.
A multiple time-scale coordination management scheme has

een proposed for densely deployed self-organizing networks
SONs) [133]. Different SONs have different time scales, so to
uarantee efficient network operation M time-scale Markov de-
ision model has been developed. Here, the SON decisions made
n each time scale make an influence on SON decisions in other
-1 time scales on the network. In continuation of [133], the
uthors in [134] have presented a Q-learning based algorithm for
ON functions in the multiple time-scale coordination manage-
ent scheme to obtain a stable control policy by learning from
ast experience. The approach remarkably enhances the network
tility with diverse quality of experience requirements.

.3. Optimization criteria

In the literature, several performance criteria could be ear-
arked by the resource allocation problem in UDNs. These cri-

eria may include energy efficiency, spectrum efficiency, fairness,
nterference, throughput, computational complexity, etc. The cri-
eria may be taken as a fundamental purpose of optimization or
s a limitation that should be satisfied. In Fig. 5 taxonomy of
ptimization criteria or constraints related to resource allocation
rocess has shown.

.3.1. Energy efficiency
Energy-efficient communication has received enormous re-

earch inclination in the past few years from both academia
nd industry due to the continuously increasing wireless devices
perating in the small cells. Energy efficiency is defined as infor-
ation bits per unit of transmitted energy. In literature, various
nergy-efficient resource allocation schemes are discussed which
ocused on energy consumption minimization [56,68,135,136],
nergy harvesting [54,87] and energy-saving [94]. Energy con-
umption includes both transmitted power consumption as well
s hardware or equipment energy consumption. For instance,
n [137] minimization in the weighted sum of backhaul link cost,
nd signal power under the constraint of QoS in cache-enabled
-RAN.
Past studies suggest that the energy efficiency maximiza-

ion problem can be subjected to numerous constraints such
s QoS [81,136,138] interference [58], etc. Further, harvesting
nergy resources is yet another alternative for obtaining energy
fficiency. A proposed scheme in [139], exploits harvested energy
o reduce the on-grid power. A two-stage energy-aware traffic of-
loading scheme has been introduced for the manifold-secondary
ier case, considering different operating characteristics of sec-
ndary tiers with different power sources. The harvesting method
as been used in a study [140] in which SBSs harvest energy
rom non-conventional sources, in addition to the commonly used
ower grid. By efficient allocation of the available energy over
ime across the network, energy cooperation between cells, and
hus energy efficiency is increased.
12
3.3.2. Interference
In future wireless communication, interference is recognized

as one central problem that affects reliable communication. In-
terference can occur between primary\licensed and secondary\
unlicensed users, or between secondary\unlicensed users, and
hence affects the usage of the entire network. To resolve this
problem, interference coordination with resource allocation
among interfering users\nodes uproot in various domains like fre-
quency, time, space, power, etc. Interference coordination mech-
anism as a frequency domain for interference mitigation can be
achieved by using orthogonal frequency channels in either for
dynamic or static resource allocation. Multiple access techniques
(e.g., TDMA, FDMA, SDMA, CDMA) are utilized to harmonize
access among users and sustain orthogonal transmissions, and
hence mitigate interference. In the time-domain multiplexing
technique, unlicensed spectrum eICIC mechanism is used for
interference reduction for the sharing of an unlicensed channel
by multi-operator LTE-U small cells [141]. Furthermore, other
interference coordination methods such as power control [54], al-
most blank subframe [113], adaptive beamforming, and expected
interference ratio [76], etc., are supposed to be a productive
method of reducing the interference. Spreading based spectrum
and power allocation techniques could be used to maximize
spectrum usage and minimizing co-channel interference [135].
The multi-BS diversity gain and user cell interference cancellation
techniques have been used to eliminate co-tier and cross-tier
interference respectively [84]. In HetNets, the soft frequency
reuse and co-channel reverse time division duplex framework
have been introduced for interference management [90].

3.3.3. Throughput
Maximizing network throughput is an important constraint

that is considered in the resource allocation problem. The re-
source allocation problem may broadly deal with maximizing
the individual throughput of the user [36], total throughput of
the network [47,94,136,142,143], network capacity [53,144], sum
rate of the users [54,67,68,140], weighted sum rate [84], through-
put maximization of unlicensed band [135,145] throughput max-
imization of all users [49], cell average and cell edge throughput
maximization [85,86], and cell capacity [146]. It is known that
the throughput maximization problem is subjected to numerous
constraints, such as statistical PUs delay QoS requirement, SU’s
average and peak transmit power constraints [66], minimum
SINR [147], minimum interference [65], the secondary rate outage
constraints and the peak power constraints [52], limited power
budget at the SBS and the interference constraint of the primary
network [54], QoS in terms of success probability and per-tier
minimum rate [148].

3.3.4. Quality of service
Resource allocation algorithms should assure QoS provisioning

which is another important parameter to consider. The reliabil-
ity of the QoS of a cellular network is significant for effective
wireless communication owing to its time-varying nature. Hence,
a lot of work has been done to enhance system performance
while maintaining specific QoS constraints for the secondary net-
work [65]. Since the QoS criteria demand that the system is
improved application-wise, so the QoS may require improving
single or multiple specific performance metrics, e.g., delay [62,66,
67] (in case of online video streaming and gaming), reliability (for
transportation network and electronic health monitoring needs),
battery life (subjecting to smart meters), false alarm probability
(when a disaster or calamity monitoring is required), rate outage
probability [139,149], SINR [62,150], etc., on the basis of the type
of application. The delay and throughput have been quantified
into QoS metrics for LAA-LTE/WiFi coexistence System [151]. Sim-
ilarly in another study, the throughput of the system is quantified
into QoS metrics for both LTE and WiFi band [35].
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Fig. 5. Categorization of optimization criteria/constraints.
.3.5. Spectrum efficiency
Spectrum efficiency is an important parameter to be consid-

red in a wireless communication system. It has an important
elationship with the resource allocation problem. There are nu-
erous methods to overcome the problem of wireless scarcity,
.g., LTE communications in an unlicensed spectrum using LAA-
TE [32], cognition enabled communication [71], etc. Proactive
echanisms can be used to serve the delay tolerant data, and
ence results in the efficient spectrum utilization. Additionally,
everal studies also consider energy efficiency and spectrum ef-
iciency together to investigate the bargain between them [120,
52]. It can be investigated that sacrifices in terms of energy
fficiency can be modified into the gain in terms of spectrum
fficiency or vice versa. Another study proves that the network
erformance can be improved by balancing the tradeoff between
pectrum efficiency and energy efficiency during different load
onditions in the heterogeneous radio access technology environ-
ent [153]. A recent study shows that considerable improvement

n network performance could be achieved by normalizing en-
rgy efficiency-spectrum efficiency tradeoff based on the overlay
pproach in heterogeneous cellular networks [154].

.3.6. Fairness
Possible unfairness problems may arise due to the discrepancy

n channel quality, that is why generally numerous fairness rules
re used in resource allocation problems, including: max–min
airness [79,125,145], proportional fairness [70] weighted pro-
ortional fairness [32,52,59], adaptive proportional fairness [109,
55], alpha-fairness [123,156], power fairness among users [67],
ood value [157], and time delay [53], etc. The coalition game
ased cooperative resource allocation algorithm has been used
n [146] to serve all users fairly. In another study, fairness among
he users is obtained by optimizing the least ratio between the
anted and achieved rates [125].

.3.7. Computational complexity
For the 5G and beyond networks, there is a need to increase

apacity and coverage as the number of users is increasing stu-
endously. So, a lot of research is going on in the field of ultra
etwork densification. As this field has an unavoidable propen-
ity, the setup of such a huge number of APs/users is demand-
ng in terms of computational difficulty. In literature, various
13
methods like convex optimization [52], game theory [48], group
sparse beamforming [95], graph theory [125], stochastic geom-
etry methods [145], stochastic optimization [70], reinforcement
learning [120,150], grouping/clustering method [158], etc., are
exploited to reduce computation complexity during resource allo-
cation. Several algorithms like primal decomposition-based algo-
rithm for the multi-objective problem [89], SP algorithm to obtain
a sparse solution [93], fixed β and optimum power allocation
algorithm [159] have been investigated in the literature to reduce
computational complexity during resource allocation in different
cellular environments. The resource allocation problem can be
divided into many sub-optimal problems or addressed bit by bit,
thereby diminishing the computational complexity.

4. Resource allocation techniques

The densification of cellular network enhances the perfor-
mance gains, like, coverage probability, throughput, energy effi-
ciency, spectrum efficiency, QoS, etc., but a high computational
intricacy and significant signaling overhead are also reflected
when resource allocation algorithms are performed. To over-
come these limitations several acceptable alternatives like con-
vex optimization, combinatorial optimization, graph theory, game
theory, stochastic optimization, sparse optimization, and group-
ing/clustering approach are discussed in this section. Fig. 6 shows
techniques discussed in literature to solve resource allocation
problem to satisfy wide range of objectives or constraints.

4.1. Convex optimization

Convex optimization is an immensely effective method be-
cause it guarantees the optimality of the achieved result. In this
technique, the convex objective function is minimized or maxi-
mized over a convex feasible set. One of the applications of a con-
vex optimization method in wireless cellular networks is to solve
the resource allocation problems for the effective utilization of
accessible network resources. The optimization problems intro-
duced with different purposes could exist as convex/non-convex
problem, continuous/discrete or linear/non-linear problem. Ex-
amples of such problems are energy minimization, fairness, cov-
erage maximization, interference minimization, minimum data



N. Sharma and K. Kumar Physical Communication 48 (2021) 101415

r
t
c

m

w

m
i
t
n
d
l
o
o

i
c
a
s
i
t
a
r
p
b
a
p
c
l
p
c

b
p

Fig. 6. Techniques for optimizing resource allocation problem.
a
o
s
n
c
o
a
w
i
t
n
n
c
A
s
a
o
a
o
s
t
a

4

n
p
p
c
h
C
a
a
i
A
c
s
a
n
m
m

ate, maximum system capacity, weighted sum-rate maximiza-
ion, etc. In general, mathematically, the optimization problem
ould be represented as [160]:

inimize f0(x)
subject to: fi(x) ≤ bi, i = 1, . . . ,m

hereas the problem components are as follows:

• x = (x1, . . .,xn): optimization variables
• f0 : Rn

→ R: objective function
• fi : Rn

→ R, i = 1, . . ., m: constraint functions
• and the optimal solution x∗ has the smallest value of f0

among all vectors that satisfy the constraints.

For convex problems including the standard linear program-
ing, non-linear programming, quadratic programming, mixed

nteger programming, semi-definite programming problems, etc.,
he optimal solutions can be achieved by applying numerous
ormal optimization methods, such as Lagrange duality method,
uality theory, descent methods, etc. For instance, resource al-
ocation at the relay station (RS) has been designed as a convex
ptimization problem [149] that minimizes the consumed power
f RS.
The non-convex optimization problems should be transformed

nto convex ones or solved by the heuristic method, successive
onvex approximation (SCA), greedy algorithm, etc., to obtain
n acceptable ideal solution. The non-convex hurdle of the CRN
cenario has been transformed into a convex problem by us-
ng convex hull and probabilistic transmission theories [66]. As
he convex optimization function achieves the perfect power
llocation strategy, the scenario adjusts to both PU’s delay QoS
equirements and channel conditions. Additionally, it has been
roposed that the probabilistic power allocation problem could
e first transformed into a deterministic non-convex problem
nd then it could be solved by the SCA algorithm [52]. The
roposed algorithm achieves optimal performance and has fast
onvergence. Joint power allocation and backhaul bandwidth al-
ocation problem could be designed as a non-convex nonlinear
rogramming problem that gets additionally dissociated into two
onvex sub-problems [159].
Although, obtaining the optimal resource allocation scheme

y optimization theory is quite popular, but most optimization
roblems consider a large network with several numbers of APs,
 m

14
nd users are also on a large-scale. In such cases obtaining the
ptimal solution with lower complexity is a tedious task. Thus,
ub-optimal approaches with reduced complexity prove to be
oteworthy in addressing the optimization problems in wireless
ellular networks. For instance, a non-convex and non-linear
ptimization problem has been solved by distributed joint cell
ssociation wireless backhauling bandwidth allocation algorithm
hich results in enhanced spectrum efficiency and network util-

ty. Further, low complexity heuristic algorithm for cell associa-
ion is used to provide a sub-optimal solution [90]. A non-linear
on-convex optimization problem has been solved by SCA and
ovel heuristic method, and by using these methods a practi-
al sub-optimal distributed algorithm has been developed [161].
dditionally, a convex optimization problem is divided into two
ub-optimal problems and a staggered two-step joint clustering
nd scheduling scheme which is suitable for large networks and
verlapping clusters has been introduced [85], to maximize cell
verage and cell edge throughput. To provide a better illustration
f the optimization technique, the brief information of some
imilar studies has been presented in Table 5 which showcases
he formulated optimization type problem, objective function,
nd the solution approach of this technique.

.2. Combinatorial optimization

In a combinatorial optimization problem, mathematical tech-
iques are used to find optimal solutions within a finite set of
ossible solutions. It is used to solve the discrete optimization
roblem and is related to algorithm theory and computational
omplexity theory. A combinatorial optimization problem that
ikes up the spectrum usage of the allocation solution for a
RN has been solved by a modified binary artificial bee colony
lgorithm [57]. In this approach, the binary variables of spectrum
ssignment are encoded as bit strings. Further, the solution pool
s selected on the grounds of various selection pressure schemes.
fterward, the latest solutions are obtained by the application of
rossover and mutation operations. This algorithm improves the
pectrum usage efficiency and reduces interference among PUs
nd SUs. Some of the work discussed mixed optimization tech-
iques. For instance, a mixed non-convex and combinatorial opti-
ization problem has been presented [84]. Optimization problem
odification based on a virtual network and weighted minimum

ean square error (WMMSE) algorithm has been used to address
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able 5
summary of convex optimization-based resource allocation algorithms.
Problem type Convex objective function Solution approach Refs.

Non-convex • Maximizing good put • The probabilistic and non-convex problem is transformed into
deterministic and convex optimization
• Adopting Hungarian algorithm to solve resource allocation problem

[65]

Non-convex • Maximize sum-rate • The problem is transformed into a convex optimization problem
• Proposing duality theory and the simplex method-based solutions

[54]

Non-convex • Maximize energy efficiency
• Spectrum efficiency

• A low complex algorithm is developed based on the primal
decomposition method

[89]

Non-convex • Maximize energy efficiency • Proposed iterative resource allocation algorithm to obtain the solution
for resource allocation problem
• A suboptimal low-complexity algorithm is also developed

[159]

Non-convex • Maximize energy efficiency • SCA and gradient search algorithm is adopted [154]
Non-convex • Maximize energy efficiency • Hierarchical resource allocation algorithm is adopted

• Further to reduce complexity uniform pricing scheme is used
[142]

Non-convex • Maximize energy efficiency
• Minimize backhaul capacity

• The transformed optimization problem in subtractive form. Adopting
efficient iterative resource allocation algorithm for allocation

[152]

Non-convex • Maximizing throughput benefit per unit energy cost • Adopting a clustering-based method and iterative algorithm [158]
Convex • Maximize energy efficiency • Optimal resource allocation of transmit power and bandwidth power

allocation is done based on Lagrange duality principles
[162]
the power optimization problem. Further, the greedy algorithm
is applied to find the optimal solution. Additionally, [154] pro-
poses a dual-layer resource allocation approach where a complex
mixed-combinatorial and non-convex optimization problem has
been contrived as a function of the quasi-concavity of the energy
efficiency function and has been solved using the difference of
two concave functions approximation.

4.3. Stochastic geometry methods

Stochastic geometry model is a powerful mathematical tech-
ique which is developed to study wireless networks, where their
se considerably increases in the fields of mobiles ad hoc net-
orks, vehicular ad hoc networks, sensor networks and several
ypes of ultra dense cellular networks such as heterogeneous cel-
ular networks, LTE-U, CRNs, etc. The main goal of the stochastic
eometry method is to presume that the locations of users or
he network structure are irregular in nature due to the size
nd unreliability of users in wireless cellular networks. So, the
se of stochastic geometry processes like homogeneous Poisson
oint processes (HPPPs) [148], hard core point process (HCPP),
oisson cluster process (PCP), etc., help to get the closed or
emi closed-form expressions of network performance without
tilizing simulation technique or deterministic models. The net-
ork performance and QoS of the network are mainly based
n the SINR which forms the mathematical basis for defining
overage and connectivity of the network. A brief review of
tochastic geometry methods has been presented in the following
aragraph.
Firstly, the effective resource allocation algorithms can be

esigned by partial statistical property-based performance pa-
ameters (interference, throughput, etc.), which is derived by
tochastic geometry methods. For instance, the spectrum and
hannel allocation problem has been formulated to seek through-
ut maximization under the constraints of transmission success
robability for both open and closed femtocell access policies. In
ach tier, the calculation of the transmission success probability
or shared or unshared subchannel is done by using stochastic
eometric methods [148].
Successively, based on the performance parameters obtained

y stochastic geometry techniques, different issues can be man-
ged, including modeling node\user position, user association,
tate control, power measurements, etc. For instance, in [87]
mall-cell infrastructures are randomly deployed, resulting in
rregularly-shaped or unpredictable networks. So, modeling the
ode location as random variables stochastic geometry and
arkov chain modeling have been exploited to study the network
15
performance in terms of the power outage and the coverage prob-
ability. Here, the BSs are distributed according to an independent
HPPP, and at each time period, a random number of UEs are taken
from a Poisson distribution which are uniformly distributed over
the specified network area. Additionally, a stochastic geometry
method that contemplates the variations in transmission powers
and data transmission demands between cognitive secondary
base stations (CSBSs) and primary BSs is used to model a HetNet
scenario [145]. The primary BS and CSBS are randomly deployed
and independent of each other and can be modeled as two
independent Voronoi tessellations, where the primary BS, the
CSBS and the associated UE follow the independent HPPP. So,
by using the stochastic process the tier connection probability
is calculated and, then the average outage probability of PU and
cognitive SU is obtained.

4.4. Sparse optimization

As the small cell UDNs bring unforeseen complexity as well
as handling difficulties, so for the optimization problem simple
and approximate solutions are more useful than complex exact
solutions. Hence, the data can be categorized as a set of sparse
or nearly sparse coefficients to obtain a simple optimal solution.
Sparse optimization in the cellular wireless network is useful
for compressing the signal, minimizing the power consumption,
and computational complexity. As energy consumption is the
main problem in ultra dense C-RANs. So, the GSBF framework is
designed [95]. Firstly, the greedy selection algorithm is used to
yield an optimal solution. To further minimize the computational
complexity the sparse beamforming algorithm has been intro-
duced which is based on minimizing the weighted l1/l2 norm.
A bi-section GSBF algorithm and an iterative GSBF algorithm
have been proposed with different complexity. Similarly, the
sparse multicast beamforming (SBF) problem has been formu-
lated in [137] to reduce backhaul cost and transmitted power
consumption by adopting smoothed-norm approximation. The
SBF problem is obtained into the difference of convex programs
and then solved using the convex–concave procedure algorithms.
In this reference, a recent study presented a robust sparse beam-
forming vector to minimize the total power consumption of the
network in C-RAN and introduced an iterative reweighted sparse
beamforming algorithm to resolve the problem [163]. So, by
using Bernstein-type inequality, the chance SINR constraints are
obtained to be convex, and the l1 norm approximation technique
has been utilized to get a sparse solution for the problem. The
drawback of the robust sparse beamforming problem is that the
chance SINR constraints do not have closed-form expression;
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ence, the optimization problem cannot generate sparse values
irectly. Therefore, to deal with the situation Bernstein-type in-
quality is utilized to approximate the chance SINR constraints
o static constraints. However, this proposed algorithm performs
etter in terms of total network power consumption compared to
he scheme presented in [95].

Further, the aspect of network performance has also been
onsidered along with energy efficiency in terms of throughput
aximization [164]. Along with BS clustering, the user schedul-

ng, and beamforming design problem has also been considered
rom the perspective of maximization of network utility with
er-BS backhaul capacity constraint in green C-RANs. This con-
traint is approximated using the iterative weighted l1 norm
method. WMMSE method is used to solve the weighted sum-
rate maximization problem. In addition, elastic service scaling,
RRH selection, and joint beamforming problem has been consid-
ered altogether from the perspective of sum-utility maximization
function and is solved by a less complex SP algorithm to obtain
a sparse solution for the active remote radio headset [93]. In this
study, it can be analyzed that the average sparsity of the solution
obtained by the SP algorithm is more energy-efficient as well
as less complex compare to the greedy selection algorithm used
in [95].

4.5. Graph theory

Graph theory is a mathematical tool that is broadly used
to model pairwise interactions among objects. In this, a highly
computational complex problem could be solved by designing
and analyzing the graph model. Therefore, the graph theory is
widely used in different scenarios of UDNs. Generally, the graph
comprises a set of vertices and edges and is represented as G = (V,
), where V is known as vertices and E is known as edges. These
omponents vary according to problem type. Mostly, the ver-
ices indicate the entities in the network. Whereas, edge existing
etween every two vertices shows some kind of ‘‘relationship’’.
raph algorithms are an efficient tool for resource assignment
n UDNs. A vertex-coloring graph, conflict graph, and bipartite
raph are the three types of graph which are used to solve
he resource allocation problem in a wireless cellular network.
he graph can be weighted or unweighted. The complexity in
weighted graph is more but it is better than an unweighted
raph until the edge weights rightly consider the magnitude of
he interference between any two APs. For example, in the case
f a vertex coloring graph, if the interference graph is sparse
nd each node is to at most N nodes, where N represents the
otal number of possible colors then optimal coloring is possible
ith the low complexity algorithms. To this end, breadth first
earch algorithm can be used for coloring with the complexity of
(|V |+|E|) with |E| = O(|V |), where |E| and |V | are the cardinality
f edges and vertices, respectively.
Vertex list-coloring problem is a popular method in graph

heory that intends to allocate resources like channel assignment
mong APs in which two interfering nodes (nodes connected
ith an edge) should not be allocated the same color. As the
raph coloring problem is NP-hard an optimal solution should
e designed, to allocate the resource properly by a global sched-
ler or distributed optimization techniques. Distributed solutions
re naturally preferred for a large-scale network to decrease
omputational complexity. For instance, a low complexity based
reedy algorithm also known as a heuristic algorithm has been
roposed [125]. In this algorithm at every iteration, the vertex
djacent to the largest number of variably colored neighbors is
olored, possibly with a new one if required. The merit of the
roposed scheme is that by carrying out the graph coloring step
n a distributed manner a fully distributed scheme is achieved.
16
Another distributed fair coloring algorithm (DFC) has been pro-
posed [165]. This is an iterative algorithm that enhances the
utilization of the resources while sharing as equally as possible
between the users. For every iteration, it gives one resource
(color) to each user as long as there are sufficient remaining
colors, and that this color is not used by any of its neighboring
users. So, the resources are shared fairly.

Another graph-based method to solve the resource allocation
problem is the conflict graph, which represents logical relations
between binary variables. A matrix graph (a network-like con-
flict graph) approach has been used to solve the frequency al-
location problem with interference constraints [166]. Here, an
asymptotically optimal algorithm has been proposed based on
the theoretical properties of matrix graphs, which is the key to
reducing the multi-coloring problem. A subchannel assignment
and interference alignment optimization problem to maximize
the satisfactory user ratio in MIMO femtocell networks is pro-
posed in reference [167]. The problem is solved by transform rule
to form the conflict graph and results in interference mitigation
and increases the network throughput.

To model matching problem other graph-based technique
called bipartite graphs, in which vertex set can be divided into
two disjoint subsets in such a manner that each edge connects
two vertices in different subsets, is mostly used in the cellular
communication system. For instance, a polynomial-time propor-
tionally fair resource allocation scheme that can optimally assign
resource blocks to the D2D pairs and can work in time-varying
channel conditions [155]. Here, the resource block allocation is
solved by using the bipartite matching graph theory approach.
To provide a better illustration, for the graph-based resource
allocation method, a brief description of related works has been
presented in Table 6. Here, we discuss the graph model type,
graph mapping to resource allocation problem, algorithm, and the
performance parameters.

4.6. Machine learning

Machine learning is an efficient tool that is used in the wireless
communication system and networking. It is anticipated as the
potential solution for an effective resource allocation and traffic
offloading. In the reinforcement learning-based approach of ma-
chine learning, a specific model or any causal information is not
required, but they learn their environment model by socializing
with the environment and then making the strategies accord-
ingly. The following paragraph discusses the different types of
reinforcement learning methods used in the resource allocation
process.

Online learning utilizes environment awareness to control
co-tier and cross-tier interference and also allocate frequency
resource blocks [124]. In this scheme, secondary tier (femtocell
D2D, picocell) takes actions while they are learning, and hence
it does not require a central controller, which results in reduced
overhead, and thus less complexity. Additionally, in [120] on-
line learning model considers compact state representation to
reduce the complexity by decreasing the size of the state space,
improve the algorithm convergence, and handle dimensional-
ity. Similarly, in [150] the intuition-based online scheme uti-
lizes a brief representation feature that considerably reduces the
computation complexity by approximating the Q-value of online
learning. In reference [126], using multi-agent online learning,
macro BSs learn cooperatively about the environmental condi-
tions. Further, the macro BSs estimate the SINR, based on the
allocated power and the CSI reported by the network nodes and
execute the sophisticated online learning algorithm for resource
allocation. As the wireless channel conditions have stochastic
properties and the environment’s dynamics are not known, the
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able 6
summary of graph-based resource allocation algorithms.
Graph
model

Purpose Resource allocation problem to graph mapping Algorithm Performance parameter

Vertex
list-coloring
graph

Inter cell resource
allocation in UDN

• Vertex: Set of MSs in the systems
• Edge: Between two nodes i and j if j is a neighbor of i
• Color: Resources.

• Scheduling graphic
coloring algorithm

Fairness,
Goodput [85]

Channel allocation • Vertex: Set of MSs in the systems
• Edge: Between two nodes i and j if j is a neighbor of i
• Color: Channel resources

• DFC algorithm Fairness [165]

UE Grouping • Vertex: Corresponds to the UEs
• Edge: Represents the downlink interference conditions
between vertex in each femto BS-cluster or pico BS-cluster

• UE grouping algorithm Mitigate intra-cluster
interference [168]

Conflict
graph

Frequency allocation • Vertex: Communication links as conflicting agents
• Edge: Connect each two vertices if they are within the
interference range
• Color: Frequency band

• Approximation
algorithm and floor
dividing method

Interference mitigation,
Complexity,
Frequency reuse [166]

Bipartite
graph

Interference
cancellation

• Vertex: Variable nodes and factor nodes
• Edge: Exists if there is a connection between variable
nodes and factor nodes

• Successive interference
cancellation algorithm

Uplink throughput improvement,
Interference mitigation,
Channel estimation[169]
authors in [80] have proposed a model-free reinforcement learn-
ing method that learns the optimal policy upon their interaction
with the environment. A policy-gradient based actor-critic algo-
rithm has been used to solve the resource allocation problem.
For the LTE-U scenario, LSTM cells based deep reinforcement
learning algorithm has been presented for proactively allocating
LTE-LAA resources over the unlicensed spectrum [32]. This algo-
rithm converges and attains a mixed-strategy Nash equilibrium,
which results in significant improvement in rate.

4.7. Clustering

The clustering method is categorized as a powerful tool to
ackle high computational complexity and unsupervised learning
ased problems. In the highly dense scenario as the number of
BSs increases, the overhead of information exchange among SBSs
ill increase and results in high signaling overhead. So, the com-
utational complexity can be considerably reduced by organizing
bjects into clusters where the network members share some
ind of similarities with some techniques.
Clustering-based methods are efficient in small cell networks.

or that, the resource allocation optimization problem is divided
nto two phases. In the first phase, the SBSs are clustered based on
ertain criteria. Thereafter, the original optimization problem is
ecomposed into multiple complete sub-problems. In the second
hase, the proposed resource assignment scheme is carried out
or each cluster separately. Fig. 7 shows the clustering process in
erm of its types, features, and techniques.

Disjoint clustering and user-centric clustering are the two
ypes of BS clustering methods. The disjoint clustering method
s exploited in [170] where the entire network is decomposed
nto non-overlapping clusters and the BSs in each cluster coopera-
ively serve all the users within the coverage range. Moreover, the
isjoint clustering method is effective in reducing the interfer-
nce, yet the users at the cluster edge do not perform well [171].
hereas, in the case of user-centric clustering, there is no explicit

luster edge. Here, different clusters for the different users may
verlap, and hence each user is served by an independently chose
ubset of neighboring BSs. In reference [164] dynamic and static
ser-centric clustering scheme has been implemented according
o different user scheduling time slots. When the BS cluster for
ach user can change over time, a dynamic clustering scheme is
dopted which gives more freedom to fully avail the backhaul
esources, but at the cost of increased overhead, as new BS-user
ssociations required to be established continuously. When the
S-user association does not change over time, a static clustering
cheme is used. The scheme results in efficient utilization of

ackhaul resources, and hence network gain can be improved.
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A cluster strategy can be made, based on different features or
criteria. These criteria can be QoS requirement, velocity, direction,
geographical location, data rate requirement, interference, and
distance, etc. For instance, in a study to solve the clustering
problem for dense-small cell networks, a graph-based method
has been adopted [158]. The minimum data rate requirement
is the criteria selected for making the clustering strategy. Re-
source allocation based on the iterative algorithm is performed to
each cluster separately. For pattern recognition problems, the en-
hanced fuzzy C-means algorithm could be used for the clustering
process. Hence, in [68] an enhanced fuzzy C-means algorithm has
been employed for spectrum sensing by scrutinizing the trade-
off between the high spectrum sensing decision reliability and
network overhead.

4.7.1. K-means-class clustering algorithm
The K-means clustering technique has been applied by using

the group-based graph coloring resource allocation algorithm
in [172] that exploits unused spectrum areas to improve cellular
services. In this technique, the feedback parameter has been
considered which act as weights of the links that need excessive
power and is updated in each iteration to obtain different clusters
every time. Wireless resource management has been investi-
gated in UDNs by using a modified K-means clustering algorithm
scheme to seek maximization in the sum throughput parame-
ter [147]. In [168] the cluster-based energy-efficient resource al-
location scheme has been presented to mitigate interference and
improve energy efficiency for UDN with low complexity. In the
clustering phase, a modified K-means clustering algorithm is ex-
ploited which combines subtractive clustering and K-means clus-
tering algorithm, and in the resource allocation phase a two-step
resource blocks allocation algorithm has been proposed.

4.7.2. Game theory based clustering algorithm
When the game theory approach is used in the clustering

process, the users are always acting as players, and the coop-
erating APs are regarded as strategies. Nevertheless, the utility
function differs according to different network scenarios. In [173]
distributed game-theoretic clustering algorithm has been pro-
posed, wherein the network lifetime is extended by maintaining
the equilibrium of the energy utilization for the wireless net-
work, thereby attenuating the problem of a hotspot. Here, the
cluster size is decided adaptively by using the game theory and
the cooperation between cluster heads. Inside a cluster, the cell
load of the serving BSs may vary so, based on load information
the user-centric clustering has been obtained by using game
theory techniques, which aim to maximize the system utility

function [85].
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Fig. 7. Framework of clustering method.
4.7.3. Graph theory based clustering algorithm
The clustering algorithm has been proposed based on an in-

terference graph where each vertex shows a femtocell and edge
shows the interference relationship between two adjacent fem-
tocells [174]. Here, a dynamic cell clustering strategy has been
presented by establishing the various features amongst femto-
cells in such a manner that varying types of femtocells utilize
different sub-channels to reduce mutual interference. In another
study, an interference graph-based multi-cell scheduling frame-
work has been presented to effectively reduce downlink inter-cell
interference in small cell orthogonal frequency division multiple
access networks [175]. Here, dynamic clustering incorporated
with channel-aware resource allocation which maintains QoS
and significantly improves the user’s spectral efficiency of the
cellular system. Improved spectrum efficiency, better throughput,
and mitigated interference could be achieved through coloring
based cluster resource allocation algorithm based on the graph
theory [176].

4.8. Auction theory

An auction can be defined as the method of resource assign-
ment and price learning based on bids from auctioneers’. It is
broadly used as schemes for resource allocation (e.g., channel
allocation, power level, and time allocation), spectrum reusable
allocation, job scheduling, resource assignment for cloud comput-
ing, etc., in different UDNs scenarios. In the wireless cellular net-
works different auction algorithms e.g., Vickrey–Clarke–Groves
(VCG) auction [177] (a type of the sealed-bid auction in which
auctioning of multiple items has been done to maximize social
welfare), Vickrey’s auction [178] (a type of the sealed-bid auc-
tion in which winning bidder pays the second-highest price),
combinatorial auction [179] (multiple items are auctioned simul-
taneously) are mostly used. In order to solve the power allocation
problem in C-RANs an auction-based distributed scheme has been
presented [180]. In CRNs the coalitional double auction mech-
anism has been proposed in [71] to maximize the spectrum
utilization.

4.9. Stochastic optimization

Stochastic optimization is a powerful mathematical tool used
to solve resource allocation problems in different scenarios of
UDNs. This technique generates and use random variables and
minimize or maximize objective function in the presence of ran-
domness in the optimization process. In the resource allocation
18
problem there may be uncertainty or randomness, which oc-
curs due to random noise or interference and random fading
channels. A problem based on uncertainty exploits stochastic
optimization-based methods, and hence the optimization prob-
lem is formulated using random variables, and thus pertains
random objective functions or random constraints. For instance,
to track the non-stationary channels by relearning the channel
statistics over time a stochastic optimization algorithm has been
introduced [67], which results in efficient and fair resource al-
location in CRNs. Another study is presented in [37], where a
queue aware stochastic optimization method has been intro-
duced to reduce the average power consumption of SBSs by
optimizing the licensed and unlicensed subcarriers and power
altogether. Here, stochastic optimization problem is solved by
using the SCA method by exploiting the Lyapunov technique, thus
developing an online energy-aware optimal algorithm called as a
drift-plus-penalty algorithm.

4.10. Game theory

Game theory is a powerful mathematical framework used to
solve the resource allocation problem in UDNs. Typically, the
game model incorporates a group of players (decision-makers)
who provide recommendations (actions) to enhance the perfor-
mance measure function (e.g., throughput, spectrum efficiency,
energy efficiency, network capacity, etc.). So, in this section, a
survey of certain resource allocation schemes has been entailed
which were executed based on game-theoretic approaches.

To compensate abrupt cell outage and enable self-healing in
small cell networks, a mixed-integer non-convex optimization
problem is solved by the coalition game, which can increase the
total payoff without a reduction in payoffs for the individual
players’. So, a coalition game based resource allocation algorithm
has been proposed in [146], which manages the network failure
and improves network performance in terms of network capacity
as well as user fairness. A non-cooperative game model has been
introduced in which SBSs act as homoegualis agents that could
predict a sequence of future actions, and hence can improve
weighted fairness and throughput [32].

The interference is the main problem in future wireless net-
works. In ultra dense LTE-U system scenario, a one to one match-
ing game theory has been utilized in which small cell user com-
pete to get matched with the chunk channels. Hence, it signifi-
cantly reduces the complexity of the system and increases total
network utility by controlling interference and traffic congestion
at the Wi-Fi access point [48]. Along with interference control,
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ome work focused on the energy efficiency parameter since it is
ssential to utilize energy-efficient techniques in HetNets for pro-
onging battery life and reducing power consumption in the net-
ork. A two-level dynamic energy-efficient resource allocation
cheme based on a non-cooperative game-theoretic approach
as been proposed which reduces the intercell-interference and
aximizes the network efficiency. So, a distributed iterative al-
orithm based on the fixed-point theorem is formulated to attain
he equilibrium of the game in the HetNets [121]. Additionally,
he power allocation problem to maximize energy efficiency is
ransformed into a two-stage Stackelberg game, where MBS is a
ollower and all the SBSs are leaders [142].

Table 7 summarizes comparison of all the techniques ex-
loited in resource allocation process. The comparison is done
n terms of classification, examples, advantages, and complexity
nalysis.

. Emerging technologies for ultra dense networks

In this section, we highlight a number of emerging technolo-
ies including network function virtualization (NFV), network
licing and mobile edge computing (MEC) for 5G and beyond
etworks, which act as turning wheel for the development cycle
f UDNs.

.1. Network function virtualization

With the increase in the number of wireless services and ap-
lications, network virtualization (NV) has emerged as a promis-
ng technology for ultra dense wireless networks. NV provides
ecoupling the control and data planes, and hence network man-
gement is easy. By using NV technology, diverse network func-
ions can be performed on the same hardware platform by a
oftware defined network (SDN). This will help many virtual
etworks to perform on a unified infrastructure with no inter-
erence due to the presence of enough isolation among virtual
nits. Following this method, traditional networks can possibly
e fragmented into many separated virtual network units that
oexist on the same environment with an advantage of min-
mal interference because of isolated networks. It makes the
esource allocation process more flexible and greatly reduces
nergy consumption. Moreover, due to the programmability, cus-
omization, and spectrum virtualization and sharing of the virtual
etworks, various network technologies and services can be in-
egrated without changing physical infrastructure characteristics
nd their interfaces.
The current researches in NV mainly focus on virtualization

n RAN networks. Various issues of existing traditional networks
ncluding uncertainty in traffic and information exchange in the
DN can be effectively overcome by using NV with C-RANs. To
his end, authors in [184] have proposed a scheme that allows
pectrum sharing among various mobile network operators and
RH by mitigating inter-tier interference. Then resource allo-
ation is performed by using the binary integer programming
ethod to maximize network throughput and minimize the de-

ay. In another study based on the use of virtualization, the
uthors have used coordinated multipoint transmission/reception
nd SDN technologies to form virtualized BS on per cell or user
asis by assigning virtualized resources on demand [185]. There-
ore, the cross-layer framework for virtualized C-RANs improves

hroughput, reduces handover, and energy consumption.

19
5.2. Network slicing

Due to the rise of cloud dependency, a surge in data traf-
fic of 5G and beyond networks is needed with very vast and
mega requirements. These networks are envisaged to provide
multiple services with various characteristics. The services can
be categorized based on their specifications such as massive
machine type communications, enhanced mobile broadband, and
ultra-reliable low latency communication (URLLC). To support
these multi-services of 5G and beyond networks, network slicing
technology is needed. In network slicing, the multiple dedicated
virtual networks, known as network slices could operate on the
same physical network infrastructure [186]. For the implementa-
tion of network slicing the SDN and NFV are the key technologies
that are needed. A network slice has several virtual network func-
tions (VNFs) that give flexibility, scalability, and programmable
network service with reduced capital and operational expendi-
tures by proficiently controlling and managing VNFs. On the other
side, there are a number of challenges in terms of isolation, elas-
ticity, end-to-end coordination, and customization. For instance,
in the process of resource isolation where sharing and isolation of
radio resources is not that easy due to the varying communication
environment, and hence results in low multiplexing gains [187].

Concerning network slicing, current researches broadly fo-
cus on many aspects like slice association, reconfiguration, cre-
ation, and activation. An association relationship among user-BS-
network slicing has been established in reference [188], so that
the slice users whose QoS need to be satisfied are identified. After
that slice association and bandwidth allocation has been done
for the identified users to minimize bandwidth consumption.
Matching theory has been used in [189] to find the user asso-
ciation, and the isolation character of slicing is used to mitigate
co-tier and cross-tier interferences. This scheme improves the
QoS and energy efficiency of users and eliminates interferences.
In network slicing, to configure the challenge of isolation and
to improve network performance during varying traffic condi-
tions, there is a need to reconfigure network slice adaptively. In
this regard, the deep reinforcement learning-based method has
been used to reconfigure the core network to get maximization
in bandwidth utilization [190]. Further, during network slicing,
one of the main concerns is to minimize slice setup time. In
this regard, a metaheuristic genetic algorithm for scheduling the
VNFs to optimize service creation time has been presented in
reference [191]. In brief, network slicing is a key enabler for
ultra dense next-generation networks and could solve the prob-
lem of resource allocation and optimization concerning diverse
application domains.

5.3. Mobile edge computing

The evolution of UDN has exhibited an inexorable trend. Many
important challenges also appear, like increased energy consump-
tion, user traffic, resource requirement demand, and resource al-
location complexity. To solve these challenges MEC is a promising
technique that allows computation intensive task to be executed
at the edge of the network. Hence, MEC provides ultra-low la-
tency, high bandwidth, and real time network access to resource
limited mobile devices. Moreover, it reduces energy consumption,
network load, and cost.

Concerning MEC, current researches broadly focus on the com-
bination of mobile computing and wireless communication, re-
sulting in a broad range of techniques for task offloading and
network resource allocation. Authors have proposed channel re-
source allocation by using a differential evolution algorithm to
optimize energy consumption under the constraint of delay [192].
The scheme takes efficient offloading decisions for task execution
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omparative analysis of different resource allocation techniques.
Technique Definition Classification Examples of the applicable

problem
Complexity analysis and other advantages

Convex
optimization

• Convex optimization is a branch
of mathematical optimization in
which the resource allocation
problem is solved as a function of
some maxima or minima by
considering the number of
constraints

Distributed/
centralized/
deterministic/
probabilistic/
stochastic

• A convex optimization technique
is used when the resource
allocation problem is convex or
non-convex
(e.g., [52,54,65,66,85,89,90,140,142,
149,152,154,158–162])

• A convex and non-convex problem can be solved by
using Lagrange duality method, SCA, greedy algorithm,
distributed methods such as ADMM, etc., which reduces
the computational complexity

Combinatorial
optimization

• The resource allocation problem
is solved to find optimal solutions
within a finite set of possible
solutions

Distributed/
centralized/
deterministic/
probabilistic/
stochastic

• It can be used for resource
allocation of a discrete
optimization type problems
(e.g., [57,84,154])

• A mixed combinatorial and convex resource allocation
problem can be solved, and hence this dual perspective
can lead to structure insights and better algorithms to
reduce computational complexity

Stochastic
geometry

• Allows study of random
network structure by modeling
and analyzing the average
behavior over many spatial
realizations of the system

Distributed/
centralized/
stochastic

• Stochastic geometry processes
like HPPPs, HCPP, PCP, etc., are
used to analyze network
performance due to the randomly
distributed users
(e.g., [87,145,148])

• Resource allocation problem in random distributed
network is solved by stochastic geometry methods helps
to reduce the complexity of the network

Sparse
optimization

• Based on compressive sensing
theory and composite
minimization framework the
sparse feature is exploited to solve
the resource allocation problem

Distributed/
centralized/
deterministic/
stochastic

• In the resource allocation
problem, the nodes can be
grouped as a set of sparse or
nearly sparse coefficients to obtain
a simple optimal solution
(e.g., [93,95,137,163,164])

• The use of sparse optimization in the wireless cellular
network helps in compressing the signal, minimizing the
power consumption, and computational complexity, etc.

Graph theory • Graph theory consists of nodes
connected by edges and used to
model the interactions in the
network.

Distributed/
centralized/
deterministic

• The resource allocation problem
is solved by a vertex-coloring
graph, conflict graph, and bipartite
graph models
(e.g., [85,125,155,165–169])

• By using global scheduler and distributed optimization
methods a low complex optimal solution is achieved

Machine
learning

• Learn network patterns, user
demands, user
behaviors, resource usage, etc., by
interacting with the environment
and then make predictions or
decisions

Distributed/
centralized/
deterministic/
stochastic

• Online learning, Q-learning,
actor-critic algorithm, RL-LSTM
cells based deep reinforcement
learning algorithm are adopted to
solve the resource allocation
(e.g., [32,59,80,120,124,126,150,
181,182])

• Machine learning techniques results in efficient
solutions to deal with complex problems with
significant computational complexity
• Moreover, it is model-free learning which facilitates
its usage in a dynamic network

Clustering
method

• The resource allocation process
is performed separately by
grouping the users into different
clusters based on certain criteria

Distributed/
centralized/
deterministic/
stochastic

• K-means class clustering, game
theory and graph theory-based
clustering methods are efficiently
used (e.g., [68,85,147,158,164,168,
170–176,183])

• The clustering technique is useful to tackle highly
computational complexity and unsupervised learning
based problems by dividing the larger number of users
into a group of clusters
• Hence, the complexity and exchange of overhead
reduce

Auction
theory

• Auctions theory deal with the
concept of buying and selling
service to maximize revenue in
terms of cost, spectrum efficiency,
etc.

Distributed/
centralized/
deterministic/
stochastic

• VCG auction, Vickrey’s auction,
combinatorial auction are widely
used in the resource allocation
process (e.g., [71,177–180])

• Auction theory works efficiently in the following
environment:
• When the resource allocation process is needed to be
done in a decentralized manner
• To match dynamic patterns of demand and supply
• Operating when limited or no network state and
utility information is available

Stochastic
optimization

• The resource allocation problem
is formulated as a minimize or
maximize objective function in
the presence of randomness in
the optimization process

Distributed/
centralized/
stochastic

• The resource allocation problems
which deals with time dependent
queue state model are solved by
using stochastic optimization.
(e.g., [37,67])

• Used in the uncertain environment scenario where
deterministic optimization does not work

Game theory • The game theory incorporates a
set of decision-makers who make
the actions to maximize the
performance measure function

Distributed/
centralized/
deterministic/
stochastic

• In the resource allocation
problem, the game-theoretic
technique is used by players to
arrive at an optimal strategy
(e.g., [32,48,111,121,142,146])

• Game theory explains the concept of bargaining and
coalition-formation, and hence suitable in the situation
of conflicting interests
either locally or on the edge server. However, a single edge server
environment has been considered, which is the main drawback
of this study. In a multi-edge server environment, SDN based
framework for MEC has been proposed which considers the load
at the edge server while offloading the task [193]. In the UDN
for ultra-low latency applications, it is important to minimize
delay for both uplink and downlink transmission. In this regard, a
joint uplink and downlink task offloading and resource allocation
method serves as an aid that considers transmission overhead
and computation load at the edge server [194]. In an effort to
20
optimize the beamforming vectors at the users and beamforming
matrices at the BS, a mmWave MEC resource allocation and
beamforming algorithm has been proposed that involves com-
putation offloading and resource allocation at the edge server to
minimize overall network latency [195].

6. Challenges and open research direction

There are many research gaps and challenges in the area of
resource allocation for UDNs that need to be addressed. The main
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hallenges and open research direction are summarized in the
ollowing:

.1. Density planning

In today’s scenario, the wireless cellular network considers
ifferent types of cell structures (e.g., femto, macro, micro, etc.)
nd users that operate on different frequencies. There is a differ-
nt level of data traffic requirement for a divergent number of
pplications and different data rate requirements for each user.
o, the main question arises that how to design an efficient
ensity plan i.e., the number of different types of users and cells
n the network system is the critical challenge for future cellular
etwork planning. Mainly, the efficient density design of the
etwork greatly depends on the data rate requirement of users,
hich is highly dynamic in nature, and hence requires prediction.
or instance, in the ultra dense LTE-U SBSs system, two main
roblems arise i.e., co-channel interference between licensed and
nlicensed spectrum and the increase in collision probability of
i-Fi systems during LTE-U transmission. Furthermore, in ultra
ense CRNs with the increasing mobile data traffic, the issue of
pectral congestion has also become unavoidable. These problems
an be solved by using stochastic geometry tools, game-theoretic
pproaches, etc.

.2. Overhead and delay analysis

In UDNs, various critical challenges should be addressed for
he resource decision making process. Mostly, in future cellular
etworks, resource allocation decision is taken when accurate
SI is present. Although, the overhead to obtain complete CSI
hile considering dense implementation is always high. So, the
olution to the problem is to investigate appropriate probabilistic
esource allocation methods with partial CSI or only user position
r distance information. Another solution is to use a distributed
pproach over a centralized approach. As this approach-based
lgorithms reduce the delay of exchanging information and the
mount of overhead in the system. Moreover, other emerging
ethods such as large network decompositions (clustering ap-
roach), AI, deep learning, etc., may promise marvelous solutions
or the future wireless cellular system.

.3. Performance parameter

In future wireless cellular networks, QoS of users can be mea-
ured on distinct performance indicators, such as latency, cost,
nd reliability. Although, most prevalent research mainly concen-
rates on relevant indicators such as network utility, interference
anagement, fairness, spectrum efficiency, and minimum data

ate requirement with the perspective of resource allocation.
oreover, there is an inherent tradeoff between the data rate,
ost, and reliability. For instance, as nominal cost usually results
n more unlicensed spectrum resources, the data rate and relia-
ility of the network will sharply reduce because the unlicensed
pectrum is less reliable than a licensed spectrum. Hence, by
chieving the right balance among these performance parameters
o obtain QoS in UDNs is an important research area to explore.
oreover, the new emerging technologies, such as VR, caching,
DN, energy harvesting, MEC, non-orthogonal multiple access, AI,
elehealth, etc., need higher QoS in the network that demands
xtremely low latency, ultra-high reliability, security, and privacy,
tc. These performance parameters put forward critical require-
ents for both hardware structure and resource management
olicies.
21
6.4. Network mobility

Earlier most of the work considers static environment whereas
network mobility is greatly ignored in literature so the effect
of users’ mobility on the performance of the resource alloca-
tion methods can be investigated more deeply in the UDNs.
For instance, in the mobility-based wireless network model, the
SUs could be mobile during the entire process, and hence can
change their space, frequency, and time coordinates. During the
process, the SUs may be nearer to the PU, which could result in
interference, and hence limit the performance of PU transmission.
Therefore, the issue of network mobility and its influence on
the optimality of the resource allocation method needs further
research. In the case of the future wireless cellular network
environment, the new mobility management aware protocols
are needed to assure high flexibility, high availability, high re-
liability, and resource efficiency. Therefore, realistic user and
efficient traffic distribution schemes are required for maintaining
the reliability of the communication process.

6.5. Security

The security issues play a vital role in UDNs, so obtaining a se-
cure communication is an important design objective for reliable
wireless communications. The dynamic and time varying nature
of wireless channel makes it more agreeable for the untrusted
intruders’ eavesdropping as long as they are in the transmit-
ters range. Thus, the security performance is a pivotal challenge
that require efficient techniques to ensure the data safety in
wireless communication. Mainly, there exist two approaches to
secure the information from the malicious intruders: upperlayer
encryption and physical layer security. In upperlayer encryption
approach the computation cost is high due to the use of en-
cryption/decryption methods. Whereas in physical layer security
network secrecy rate performance is analyzed. For instance, in
ultra dense HetNets scenario number of tier (pico, femto, macro
etc.) are available for different users. So, to provide secure multi-
tier communication the main challenge is to investigate efficient
strategy to properly provide user access to multiple tiers. In
this direction, the precoder design are discussed in literature to
enhance the network secrecy rate.

For instance, if we consider the ultra dense CRNs scenario,
the uniqueness of the CR technology makes these networks more
vulnerable to security threats in comparison to other traditional
cellular wireless communication system. On account of the prop-
erty of a CR device which enables it to sense a broad range of
frequency systems, eavesdropping in CRN has mainly become
candid for a user with malign intent. Hence, it is critical to
develop the resource allocation techniques that tackle this issue
effectively by maximizing the secrecy rate. Most of the works
in literature considered the secure resource allocation problems
which either provide PUs’ security or SUs’ security, not both.
Hence, the design of resource allocation techniques that focus
on providing secure communications for both PUs and SUs si-
multaneously along with encrypted approach is the need of the
hour.

6.6. Experimental testbeds

The real-time testing of the wireless system to check its per-
formance is an essential part of any work invention. This would
spotlight on practical realization issues of wireless cellular com-
munication that need further exploration and require to be solved
to have real-time practical usage. So, designing experimental
testbeds can provide an efficient tool for investigators to exper-

imentally approve their logical results in a real-time scenario.
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hese testbeds are essential, and hence encouraged to perform
igorous, transparent, and replicable research process. Thus, the
imulation of the resource allocation algorithms on the experi-
ental testbeds (system level) is the foremost important step. It
ill enhance the accuracy of obtained analytical results by ad-
ressing factors such as real channel, mobility models, inter-cell
nd intra-cell interference, etc. The various platforms can be used
o design experimental testbeds. For instance, in [196] a testbed
sing LabVIEW communications system design suite software to
niversal software radio peripheral (USRP-2954) is exploited to
nalyze the real implantation issues of the resource allocation
rocess in CR networks. Similarly, in reference [197] performance
f decentralized cloud assisted cooperative multi-agent reinforce-
ent learning based spectrum allocation scheme is analyzed on
SRP-2954R by using LabVIEW design suite software.

.7. Channel models

Mostly the proposed resource allocation methods in a wire-
ess cellular network are based on a Rayleigh fading channel
odel. However, some works considered the Rician channel
odel, Jakes’ channel model, and Clarkes’ model. So, it becomes
ssential to evaluate the prevalent methods and introduce fresh
ethods for various channel models according to the channel
haracteristics (i.e. LoS, non-line of sight (NLoS)). Particularly,
LoS transmission occurs when there is no visual LoS between
ransmitting and receiving end. It is common in office environ-
ents and central business districts. Whereas, in the case of a LoS

ransmission quite little distance exist between a receiver and a
ransmitter. So, Rician fading channels would be more appropri-
te in such environment. Since, for the present scenarios of the
ireless system, the UDNs architecture is more prevailing. In this
etwork, the distance between transmitter and receiver decreases
ue to the densification of small cells, and hence chances of a LoS
ransmission increases. Therefore, more advanced propagation
odels including both LoS and NLoS transmissions would be
ore relevant, which will affect the analytical performance and

he optimality of the resource allocation method.

.8. Backhaul/fronthaul constraints design

The network elements are connected to core networks through
link known as backhaul. This link should satisfy the extreme

equirements in terms of capacity, latency, availability, energy,
nd cost efficiency in order to capture the diverse performance
spects of the network. Due to the requirement of additional
omputing resources as well as efficient backhaul design, the
nnovatory resource allocation methods that includes the newly
merging techniques such as SDN, C-RAN intelligence, software
ptimizing network, and caching capabilities are needed in the
ireless cellular network design. These technologies are building
lock to backhaul and fronthaul management for the infrastruc-
ure sharing in the ultra dense heterogeneous network structure,
ence leading to increased energy and cost efficiency. However,
n SDN framework may results in the issue of network security;
challenge that should be resolved without affecting flexibility,
eliability, and adaptability of the network. Another challenge
xist is the design of efficient compression methods for fronthaul
nd backhaul links in a network. To address this, it is required to
ind the effects of the latency of the links on the performance of
he network. Furthermore most of the work in literature consider
nified backhaul allocation [159]. However, it is important to
nvestigate optimal non unified backhaul bandwidth allocation
ince in heterogeneous environment link latency and capacities
re different. Moreover, based on the traffic load, network topol-
gy, and user location, the link should be re-configurable and

daptable.
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6.9. Green communication

In future wireless cellular communications, except energy ef-
ficiency all other requirements like throughput, capacity, con-
nectivity, data rate, etc., are increasing with speed ranging from
100 to 1000 times. In the present-day scenario, the target to
achieve energy efficiency gain in the densified network is more
critical. Hence, there is need to modify and analyze the present
energy efficient algorithm so that the energy efficient gain could
increase dramatically. The modification should be done in such a
way that it should support heterogeneous applications along with
throughput, delay, and capacity requirements. The key design
methods in this regard is deployment of virtualized network
framework, cloud and cooperative radio networks. Furthermore,
combining energy harvesting techniques with cellular commu-
nication system improve energy efficiency. This can be achieved
by using renewable energy resources or wireless power transfer
techniques in which nodes can charge their batteries by utilizing
electromagnetic energy. Furthermore, massive-MIMO, mmWave,
and beamforming technologies also provide promising solution to
increase energy efficiency, which need further investigation.

6.10. Ultra-reliable low latency communication

The prime requirement of URLLC is to achieve reliability and
tactile internet delay. URLLC points at delivering fast data trans-
ferring services with guaranteed latency less than 1 ms. To
achieve such a stringent delay is a great challenge because the
busty URLLC requests can result in heavy network traffic or con-
gestion in the random-access phase. Furthermore, in the densifi-
cation process as the number of BSs increases, the transmission
and scheduling delays increases. The transmission and scheduling
delays can directly affect real time processing capabilities in the
network; hence it is essential to look over these parameters.
The edge computing, cooperative cloud edge processing, and
proactive caching are the recent emerging technologies used
by researchers in order to get ultra-low latency and very high
reliability in the network. Additionally, cooperative cloud edge
processing technique combine the benefits of both edge and cloud
technologies, and hence enable real time processing of tactile
applications along with handling large amount of data and user
traffic at the cloud server.

6.11. Interference

The future wireless networks are moving towards the technol-
ogy known as densification, and hence the distance between the
users and interfering nodes/APs has reduced. So, when consider-
ing resource allocation problem, this deployment has produced
stronger interference sources, and hence results in co-tier and
cross-tier interference which affects the network efficiency and
QoS requirements. Therefore, in order to control interference
future research should aim at designing efficient algorithms for
power control and cell association in multi-tier structure, sup-
port user association to different BSs simultaneously, and ana-
lyze trade-off between reduced interference level and enhanced
resource usage, etc.

7. Conclusion

It is anticipated that 5G and beyond wireless networks will
depend on ultra dense network technology, to counter the ever-
growing demand for network capacity and data rate requirement,
and hence provide the answer to the issue of spectrum scarcity
and resource management. In this article, a detailed review of re-

source allocation issues in various layouts of ultra dense network
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as been provided. Particularly, it provides insight details about
he resource allocation process explored in the latest technologies
f future wireless networks. Besides this, the terminologies for
revalent resource allocation schemes have been detailed from
he outlook of approaches, methods, and optimization criteria.
ontinuing further, a categorization of current resource allocation
echniques has been provided, which incorporates convex opti-
ization, combinatorial optimization, stochastic geometry-based
ethods, stochastic optimization, sparse optimization, graph the-
ry, machine learning-based methods, clustering approach, game
heory, and auction theory. These techniques underline their op-
rational variation with their respective design principle. Based
n the different performance metrics yardsticks and implemented
esign principles, the resource allocation techniques have been
tudied. Finally, on the grounds of current research endeavours
nd other leading technologies, the article ends with a discussion
f many budding challenges and opens new research horizons.
Unluckily, existing resource allocation techniques for ultra

ense networks still need the adequate reflection of different
etwork parameters with comprehensive research for implemen-
ation in real environment. So, future research in this direction
hould focus on designing the self-organizing intelligent resource
llocation techniques that should truly be beneficial in time vary-
ng dynamic environment network conditions. Therefore, the re-
ource allocation in ultra dense networks is still a challenging
rea which requires the attention of the researchers. Hence, our
ar-reaching review on resource allocation in the 5G and beyond
ltra dense wireless network presented in this article will con-
eivably shed light on important references and specifications for
urther in-deep investigation in this area.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] B.U. Kazi, G.A. Wainer, Next generation wireless cellular networks: ultra-
dense multi-tier and multi-cell cooperation perspective, Wirel. Netw. 25
(4) (2019) 2041–2064.

[2] Y. Gu, Y. Wang, Q. Cui, A stochastic optimization framework for adap-
tive spectrum access and power allocation in licensed-assisted access
networks, IEEE Access 5 (2017) 16484–16494.

[3] X. Xiao, X. Tao, J. Lu, Energy-efficient resource allocation in LTE-based
MIMO-OFDMA systems with user rate constraints, IEEE Trans. Veh.
Technol. 64 (1) (2015) 185–197.

[4] A.R. Utami, Iskandar, Resource allocation analysis with genetic algorithm
in LTE MIMO-OFDMA cellular system, in: Proc. 13th International Con-
ference on Telecommunication Systems, Services, and Applications, 2019,
pp. 182–185.

[5] W. Fu, Q. Kong, Y. Zhang, X. Yan, A resource scheduling algorithm based
on carrier weight in LTE-Advanced system with Carrier Aggregation, in:
Proc. Wireless and Optical Communications Conference, 2013, pp. 1–5.

[6] K. Kumar, A. Prakash, R. Tripathi, A spectrum handoff scheme for optimal
network selection in cogintive radio vehicular networks: A game theoretic
auction theory approach, Phys. Commun. 24 (2017) 19–33.

[7] K. Kumar, A. Prakash, R. Tripathi, Spectrum handoff in cognitive radio
networks: A classification and comprehensive survey, J. Netw. Comput.
Appl. 61 (2016) 161–188.

[8] A. Kumar, K. Kumar, Multiple access schemes for cognitive radio netwoks:
A survey, Phys. Commun. 38 (2020) 100953.

[9] W. Ejaz, S.K. Sharma, S. Saadat, M. Naeem, A. Anpalagan, N.A. Chughtai, A
comprehensive survey on resource allocation for CRAN in 5g and beyond
networks, J. Netw. Comput. Appl. 160 (2020) 102638.

[10] M.K. Pedhadiya, R.K. Jha, H.G. Bhatt, Device to device communication: A
survey, J. Netw. Comput. Appl. 129 (2019) 71–89.

[11] X. Wang others, Millimeter wave communication: A comprehensive
survey, IEEE Commun. Surv. Tutor. 20 (3) (2018) 1616–1653.

[12] M.A. Adedoyin, O.E. Falowo, Combination of ultra-dense networks
and other 5g enabling technologies: A survey, IEEE Access 8 (2020)
22893–22932.
23
[13] H. Zhang, Y. Dong, J. Cheng, J. Hossain, V.C.M. Leung, Fronthauling for 5g
LTE-u ultra dense cloud small cell networks, IEEE Wirel. Commun. 23 (6)
(2016) 48–53.

[14] M. Kamel, W. Hamouda, A. Youssef, Ultra-dense networks: A survey, IEEE
Commun. Surv. Tutor. 18 (4) (2019) 2522–2545.

[15] Yunas S. Fahad, M. Valkama, J. Niemelä, Spectral and energy efficiency
of ultra-dense networks under different deployment strategies, IEEE
Commun. Mag. 53 (1) (2015) 90–100, IEEE.

[16] W. Su, J.D. Matyjas, S. Batalama, Active cooperation between primary
users and cognitive radio users in heterogeneous ad-hoc networks, IEEE
Trans. Signal Process. 60 (4) (2012) 1796–1805.

[17] I. Ahmad, Z. Wei, Z. Feng, Y. Bai, Q. Zhang, P. Zhang, Joint price and power
allocation under interference constraint for dynamic spectrum access
networks, in: Proc. IEEE International Symposium on Dynamic Spectrum
Access Networks, 2014, pp. 141–144.

[18] W. Zong, S. Shao, Q. Meng, W. Zhu, Joint user scheduling and beam-
forming for underlay cognitive radio systems, in: Proc. 15th Asia-Pacific
Conference on Communications, 2009, pp. 99–103.

[19] Nidhi, A. Mihovska, Small cell deployment challenges in ultradense
networks: Architecture and resource management, in: proc. 12th Inter-
national Symposium on Communication Systems, Networks and Digital
Signal Processing, 2020, pp. 1–6.

[20] O. Alamu, A. Gbenga-Ilori, M. Adelabu, A. Imoize, O. Ladipo, Energy
efficiency techniques in ultra-dense wireless heterogeneous networks: An
overview and outlook, Eng. Sci. Technol. Int. J. 23 (6) (2020) 1308–1326.

[21] A. Mukherjee others, Licensed-assisted access LTE: coexistence with IEEE
802.11 and the evolution toward 5g, IEEE Commun. Mag. 54 (6) (2016)
50–57, IEEE.

[22] M. Kamel, W. Hamouda, Ultra-dense networks: A survey, IEEE Commun.
Surv. Tutor. 18 (4) (2019) 2522–2545.

[23] G. Chopra, R. Kumar Jha, S. Jain, A survey on ultra-dense network
and emerging technologies: Security challenges and possible solutions,
J. Netw. Comput. Appl. 95 (2017) 54–78.

[24] R. Liu, Q. Chen, G. Yu, G.Y. Li, Z. Ding, Resource management in LTE-u
systems: Past, present, and future, IEEE Open J. Veh. Technol. 1 (2019)
(2019) 1–17.

[25] G.I. Tsiropoulos, O.A. Dobre, M.H. Ahmed, K.E. Baddour, Radio resource
allocation techniques for efficient spectrum access in cognitive radio
networks, IEEE Commun. Surv. Tutor. 18 (1) (2016) 824–847.

[26] M. El Tanab, W. Hamouda, Resource allocation for underlay cognitive
radio networks: A survey, IEEE Commun. Surv. Tutor. 19 (2) (2017)
1249–1276.

[27] M. Peng, C. Wang, J. Li, H. Xiang, V. Lau, Recent advances in underlay
heterogeneous networks: interference control, resource allocation, and
self-organization, IEEE Commun. Surv. Tutor. 17 (2) (2015) 700–729.

[28] Y. Teng, M. Liu, F.R. Yu, V.C.M. Leung, M. Song, Y. Zhang, Resource
allocation for ultra-dense networks: A survey, some research issues and
challenges, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2134–2168.

[29] W. Yu, H. Xu, H. Zhang, D. Griffith, N. Golmie, Ultra-dense networks: Sur-
vey of state of the art and future directions, in: Proc. 25th International
Conference on Computer Communications and Networks, 2016, pp. 1–10.

[30] H. He, H. Shan, A. Huang, L.X. Cai, T.Q.S. Quek, Proportional fairness-based
resource allocation for LTE-u coexisting with wi-fi, IEEE Access 5 (2017)
4720–4731.

[31] M. Chen, W. Saad, C. Yin, Optimized uplink-downlink decoupling in LTE-U
networks: An echo state approach, in: Proc. IEEE ICC Mobile and Wireless
Networking Symposium, 2016, pp. 1–6.

[32] U. Challita, L. Dong, W. Saad, Proactive resource management for LTE
in unlicensed spectrum: A deep learning perspective, IEEE Trans. Wirel.
Commun. 17 (7) (2018) 4674–4689.

[33] Z. Zhou, D. Guo, M.L. Honig, Allocation of licensed and unlicensed spec-
trum in heterogeneous networks, in: Proc. Australian Communications
Theory Workshop, 2016, pp. 59–64.

[34] Z. Zhou, D. Guo, M.L. Honig, Licensed and unlicensed spectrum allo-
cation in heterogeneous networks, IEEE Trans. Commun. 65 (4) (2017)
1815–1827.

[35] T. Zhang, J. Zhao, Y. Chen, Hidden node aware resource allocation in
licensed-assisted access systems, in: Proc. IEEE Global Communications
Conference, 2017, pp. 1–6.

[36] D. Lopez-perez, X. Chu, A.V. Vasilakos, H. Claussen, On distributed
and coordinated resource allocation for interference mitigation in
self-organizing LTE networks, IEEE/ACM Trans. Netw. 21 (4) (2013)
1145–1158.

[37] Y. Gu, Q. Cui, Y. Wang, S. Soleimani, Energy-Aware adaptive spectrum
access and power allocation in LAA networks via Lyapunov optimization,
in: Proc. IEEE Vehicular Technology Conference, 2017, pp. 1–6.

[38] Y.Y. Liu, S.-J. Yoo, Dynamic resource allocation using reinforcement learn-
ing for LTE-U and WiFi in the unlicensed spectrum, in: Proc. International
Conference on Ubiquitous and Future Networks, 2017, pp. 471–475.

http://refhub.elsevier.com/S1874-4907(21)00152-X/sb1
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb1
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb1
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb1
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb1
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb2
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb2
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb2
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb2
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb2
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb3
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb3
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb3
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb3
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb3
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb6
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb6
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb6
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb6
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb6
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb7
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb7
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb7
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb7
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb7
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb8
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb8
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb8
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb9
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb9
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb9
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb9
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb9
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb10
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb10
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb10
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb11
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb11
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb11
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb12
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb12
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb12
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb12
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb12
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb13
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb13
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb13
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb13
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb13
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb14
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb14
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb14
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb15
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb15
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb15
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb15
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb15
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb16
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb16
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb16
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb16
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb16
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb20
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb20
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb20
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb20
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb20
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb21
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb21
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb21
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb21
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb21
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb22
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb22
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb22
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb23
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb23
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb23
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb23
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb23
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb24
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb24
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb24
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb24
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb24
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb25
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb25
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb25
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb25
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb25
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb26
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb26
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb26
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb26
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb26
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb27
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb27
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb27
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb27
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb27
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb28
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb28
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb28
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb28
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb28
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb30
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb30
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb30
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb30
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb30
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb32
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb32
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb32
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb32
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb32
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb34
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb34
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb34
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb34
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb34
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb36


N. Sharma and K. Kumar Physical Communication 48 (2021) 101415
[39] H.V. Lima, A.S. Abdallah, E.F. Bueno, K.V. Cardoso, A stochastic program-
ming model for resource allocation in LTE-U networks, in: Proc. IEEE
Canadian Conference on Electrical and Computer Engineering, 2018, pp.
4–8.

[40] J. Dai, C. Shen, Adaptive resource allocation for LTE/WiFi coexistence
in the unlicensed spectrum, in: Proc. International Conference on
Computing, Networking and Communications, 2018, pp. 457–462.

[41] S. Liu, R. Yin, G. Yu, Hybrid adaptive channel access for LTE-u systems,
IEEE Trans. Veh. Technol. 68 (10) (2019) 9820–9832.

[42] Y. Hu, R. Mackenzie, M. Hao, Expected Q-learning for Self-organizing
resource allocation in LTE-U with downlink-uplink decoupling, in: Proc.
23rd European Wireless Conference., 2017, pp. 185–190.

[43] R. Yin, G. Yu, A. Maaref, G.Y. Li, LBT-Based adaptive channel access for
LTE-u systems, IEEE Trans. Wirel. Commun. 15 (10) (2016) 6585–6597.

[44] Y. Gao, Y. Wu, H. Hu, X. Chu, J. Zhang, Licensed and unlicensed bands
allocation for cellular users: A matching-based approach, IEEE Wirel.
Commun. Lett. 8 (3) (2019) 969–972.

[45] Y. Xu, R. Yin, Q. Chen, G. Yu, Joint licensed and unlicensed spectrum
allocation for unliencensed LTE, in: Proc. IEEE International Sympo-
sium on Personal, Indoor and Mobile Radio Communications, 2015, pp.
1912–1917.

[46] Y. Xu, R. Yin, Q. Chen, G. Yu, Joint licensed and unlicensed spectrum
allocation for unlicensed LTE, in: Proc. IEEE 26th International Sympo-
sium on Personal, Indoor and Mobile Radio Communications, 2015, pp.
1912–1917.

[47] X. Zhen, H. Shan, G. Yu, Y. Cheng, L.X. Cai, A. Huang, Joint resource
allocation for LTE over licensed and unlicensed spectrum, in: Proc. IEEE
Vehicular Technology Conference, 2017, pp. 1–6.

[48] T. Leanh, N.H. Tran, D.T. Ngo, Z. Han, C.S. Hong, Orchestrating resource
management in LTE-unlicensed systems with backhaul link constraints,
IEEE Trans. Wirel. Commun. 18 (2) (2019) 1360–1375.

[49] Y. Gu, Y. Zhang, L.X. Cai, M. Pan, L. Song, Z. Han, Exploiting student-project
allocation matching for spectrum sharing in LTE-unlicensed, in: Proc. IEEE
Global Communications Conference, 2015, pp. 1–6.

[50] Y. Gu, C. Jiang, L.X. Cai, M. Pan, L. Song, Z. Han, Dynamic path to stability
in LTE-unlicensed with user mobility: A matching framework, IEEE Trans.
Wirel. Commun. 16 (7) (2017) 4547–4561.

[51] P. Li, S. Guo, W. Zhuang, B. Ye, On efficient resource allocation for
cognitive and cooperative communications, IEEE J. Sel. Areas Commun.
32 (2) (2014) 264–273.

[52] W. Chen, W. Lin, H. Tsao, C. Lin, Probabilistic power allocation for cogni-
tive radio networks with outage constraints and one-bit side information,
IEEE Trans. Signal Process. 64 (4) (2016) 867–881.

[53] S. Dwivedi, O.P. Meena, An improved resource allocation algorithm for
OFDM overlay cooperative cognitive radio network, in: Proc. International
Conference on Recent Innovations in Signal processing and Embedded
Systems, 2017, pp. 75–77.

[54] Z. Ali, G.S.A. Sidhu, M. Waqas, L. Xing, F. Gao, A joint optimization
framework for energy harvesting based cooperative CR networks, IEEE
Trans. Cogn. Commun. Netw. 5 (2) (2019) 452–462.

[55] Y. Jiao, I. Joe, Energy-efficient resource allocation for heterogeneous
cognitive radio network based on two-tier crossover genetic algorithm, J.
Commun. Netw. 18 (1) (2016) 112–122.

[56] R. Xie, F.R. Yu, H. Ji, Y. Li, Energy-efficient resource allocation for het-
erogeneous cognitive radio networks with femtocells, IEEE Trans. Wirel.
Commun. 11 (11) (2012) 3910–3920.

[57] X. Zhang, X. Zhang, L. Han, Utilization-oriented spectrum allocation in an
underlay cognitive radio network, IEEE Access 6 (2018) 12905–12912.

[58] D. Das, S. Das, Intelligent resource allocation scheme for the cognitive
radio network in the presence of primary user emulation attack, IET
Commun. 11 (15) (2017) 2370–2379.

[59] H. Chen, M. Zhou, L. Xie, K. Wang, J. Li, Joint spectrum sensing and
resource allocation scheme in cognitive radio networks with spectrum
sensing data falsification attack, IEEE Trans. Veh. Technol. 65 (11) (2016)
9181–9191.

[60] N. Mokari, S. Parsaeefard, H. Saeedi, P. Azmi, Cooperative secure resource
allocation in cognitive radio networks with guaranteed secrecy rate for
primary users, IEEE Trans. Wirel. Commun. 13 (2) (2014) 1058–1073.

[61] S. Zhang, X. Zhao, Distributed power allocation based on LQG regulator
with adaptive weight and switching scheme for cognitive radio networks,
IEEE Access 6 (2018) 39180–39196.

[62] S. Zhang, X. Zhao, Distributed power allocation for cognitive radio net-
works with time varying channel and delay: H∞ state feedback control
approach, IEEE Access 6 (2018) 56893–56910.

[63] N.U. Hassan, M. Assaad, H. Tembine, Distributed h∞-based power control
in a dynamic wireless network environment, IEEE Commun. Lett. 17 (6)
(2013) 1124–1127.

[64] S. Pan, X. Zhao, Y. Liang, Robust power allocation for OFDM-based
cognitive radio networks: A switched affine based control approach, IEEE
Access 5 (2017) 18778–18792.
24
[65] S. Mallick, R. Devarajan, Robust resource optimization for cooperative
cognitive radio networks with imperfect CSI, IEEE Trans. Wirel. Commun.
14 (2) (2015) 907–920.

[66] Y. Wang, P. Ren, Q. Du, L. Sun, Optimal power allocation for underlay-
based cognitive radio networks with primary user’s statistical delay qos
provisioning, IEEE Trans. Wirel. Commun. 14 (12) (2015) 6896–6910.

[67] Z. Bai, L. Ma, Y. Dong, P. Ma, Energy-efficient resource allocation for
secure cognitive radio network with delay qos guarantee, IEEE Syst. J.
13 (3) (2019) 2795–2805.

[68] S.R. Sonti, M. Siva, G. Prasad, Enhanced fuzzy C-means clustering based
cooperative spectrum sensing combined with multi-objective resource
allocation approach for delay-aware CRNs, IET Commun. 14 (4) (2020)
619–626.

[69] R. Xie, H. Ji, P. Si, Y. Li, Dynamic channel and power allocation in cognitive
radio networks supporting heterogeneous services, in: Proc. IEEE Global
Telecommunications Conference, 2010, pp. 1–5.

[70] R. Xie, F.R. Yu, H. Ji, Dynamic resource allocation for heterogeneous
services in cognitive radio networks with imperfect channel sensing, IEEE
Trans. Veh. Technol. 61 (2) (2012) 770–780.

[71] G. Sun others, Coalitional double auction for spatial spectrum allocation
in cognitive radio networks, IEEE Trans. Wirel. Commun. 13 (6) (2014)
3196–3206.

[72] T.M. Ho, T. Leanh, S.M.A. Kazmi, C.S. Hong, Opportunistic resource alloca-
tion via stochastic network optimization in cognitive radio networks, in:
Proc. 16th Asia-Pacific Network Operation and Management Symposium,
2014, pp. 1–4.

[73] H. Xu, B. Li, Resource allocation with flexible channel cooperation
in cognitive radio networks, IEEE Trans. Mob. Comput. 12 (5) (2013)
957–970.

[74] A. Zafar, M. Alouini, Y. Chen, R.M. Radaydeh, New resource allocation
scheme for cognitive relay networks with opportunistic access, in: Proc.
IEEE International Conference on Communications, 2012, pp. 5603–5607.

[75] H. Khan, S.-J. Yoo, Multi-objective optimal Resource allocation using parti-
cle swarm optimization in cognitive radio, in: Proc. IEEE 7th International
Conference on Communications and Electronics, 2018, pp. 44–48.

[76] M.N. Pavan, S. Kumar, G. Nayak, Interference aware resource allocation
( IARA ) in cognitive radio networks, in: Proc. 13th IEEE International
Conference on Industrial and Information Systems, 2018, pp. 202–206.

[77] W. Lee, W. Huang, Optimal resource allocation in underlay cognitive radio
networks based on partial CSI, in: Proc. IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting, 2016, pp. 1–4.

[78] S. Wang, Efficient resource allocation algorithm for cognitive OFDM
systems, IEEE Commun. Lett. 14 (8) (2010) 725–727.

[79] H.B. Salameh, Efficient resource allocation for multicell heterogeneous
cognitive networks with varying spectrum availability, IEEE Trans. Veh.
Technol. 65 (8) (2016) 6628–6635.

[80] Y. Wei, F.R. Yu, M. Song, Z. Han, User scheduling and resource allocation
in hetnets with hybrid energy supply: An actor-critic reinforcement
learning approach, IEEE Trans. Wirel. Commun. 17 (1) (2018) 680–692.

[81] Y. Jiang others, Joint power and bandwidth allocation for energy-efficient
heterogeneous cellular networks, IEEE Trans. Commun. 67 (9) (2019)
6168–6178.

[82] H. Liu, S. Xu, K.S. Kwak, Geometric programming based distributed
resource allocation in ultra dense Hetnets, in: Proc. IEEE Vehicular
Technology Conference, 2016, pp. 1–5.

[83] A. Feki, V. Capdevielle, Autonomous resource allocation for dense LTE
networks: A multi armed bandit formulation, in: Proc. IEEE 22nd Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications,
2011, pp. 66–70.

[84] A. Liu, V.K.N. Lau, Joint.BS-user. association, power. allocation, Joint BS-
user association power allocation and user-side interference cancellation
in cell-free heterogeneous networks, IEEE Trans. Signal Process. 65 (2)
(2017) 335–345.

[85] L. Liu, V. Garcia, L. Tian, Z. Pan, J. Shi, Joint clustering and inter-cell
resource allocation for CoMP in ultra dense cellular networks, in: Proc.
IEEE ICC Wireless Communications Symposium, 2015, pp. 2560–2564.

[86] N. Trabelsi, C.S. Chen, R. El Azouzi, L. Roullet, E. Altman, User association
and resource allocation optimization in LTE cellular networks, IEEE Trans.
Netw. Serv. Manag. 14 (2) (2017) 429–440.

[87] F. Parzysz, M. Di Renzo, C. Verikoukis, Power-availability-aware cell
association for energy-harvesting small-cell base stations, IEEE Trans.
Wirel. Commun. 16 (4) (2017) 2409–2422.

[88] C.C. Coskun, E. Ayanoglu, Energy-spectral efficiency tradeoff for het-
erogeneous networks with QoS constraints, in: Proc. IEEE ICC Green
Communications Systems and Networks Symposium, 2017, pp. 1–7.

[89] Y. Hao, Q. Ni, H. Li, S. Hou, On the energy and spectral efficiency tradeoff
in massive MIMO-enabled hetnets with capacity-constrained backhaul
links, IEEE Trans. Commun. 65 (11) (2017) 4720–4733.

http://refhub.elsevier.com/S1874-4907(21)00152-X/sb41
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb41
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb41
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb43
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb43
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb43
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb44
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb44
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb44
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb44
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb44
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb48
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb48
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb48
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb48
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb48
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb50
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb50
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb50
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb50
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb50
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb51
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb51
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb51
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb51
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb51
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb52
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb52
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb52
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb52
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb52
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb54
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb54
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb54
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb54
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb54
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb55
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb55
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb55
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb55
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb55
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb56
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb56
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb56
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb56
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb56
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb57
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb57
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb57
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb58
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb58
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb58
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb58
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb58
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb59
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb60
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb60
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb60
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb60
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb60
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb61
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb61
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb61
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb61
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb61
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb62
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb62
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb62
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb62
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb62
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb63
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb63
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb63
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb63
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb63
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb64
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb64
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb64
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb64
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb64
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb65
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb65
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb65
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb65
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb65
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb66
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb66
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb66
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb66
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb66
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb67
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb67
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb67
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb67
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb67
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb68
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb70
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb70
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb70
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb70
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb70
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb71
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb71
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb71
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb71
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb71
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb73
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb73
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb73
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb73
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb73
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb78
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb78
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb78
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb79
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb79
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb79
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb79
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb79
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb80
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb80
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb80
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb80
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb80
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb81
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb81
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb81
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb81
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb81
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb84
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb86
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb86
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb86
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb86
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb86
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb87
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb87
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb87
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb87
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb87
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb89
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb89
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb89
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb89
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb89


N. Sharma and K. Kumar Physical Communication 48 (2021) 101415
[90] N. Wang, E. Hossain, V.K. Bhargava, Joint downlink cell association and
bandwidth allocation for wireless backhauling in two-tier hetnets with
large-scale antenna arrays, IEEE Trans. Wirel. Commun. 15 (5) (2016)
3251–3268.

[91] R.G. Stephen, R. Zhang, Joint millimeter-wave fronthaul and OFDMA
resource allocation in ultra-dense CRAN, IEEE Trans. Commun. 65 (3)
(2017) 1411–1423.

[92] C. Pan, H. Ren, M. Elkashlan, A. Nallanathan, L. Hanzo, Robust beamform-
ing design for ultra-dense user-centric C-RAN in the face of realistic pilot
contamination and limited feedback, IEEE Trans. Wirel. Commun. 18 (2)
(2019) 780–795.

[93] J. Tang, W.P. Tay, T.Q.S. Quek, Cross-layer resource allocation eith elastic
service scaling in cloud radio access network, IEEE Trans. Wirel. Commun.
14 (9) (2015) 5068–5081.

[94] Y.N.R. Li, J. Li, H. Wu, W. Zhang, Energy efficient small cell operation
under ultra dense cloud radio access networks, in: Proc. IEEE Globecom
Workshops, 2014, pp. 1120–1125.

[95] Y. Shi, J. Zhang, K.B. Letaief, Group sparse beamforming for green
cloud-RAN, IEEE Trans. Wirel. Commun. 13 (5) (2014) 2809–2823.

[96] S.-H. Park, O. Simeone, S.S. Shitz, Joint optimization of cloud and edge
processing for fog radio access networks, in: Proc. IEEE International
Symposium on Information Theory, 2016, pp. 315–319.

[97] M.A. Hasabelnaby, A. Chaaban, End to end rate enhancement in C-RAN
using multi pair two way computation, Comput. Res. Repos. (2021) 1–6.

[98] I. Al-Samman, M. Artuso, H. Christiansen, A. Doufexi, M. Beach, A
framework for resources allocation in virtualised C-RAN, in: Proc. 27th
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2016, pp. 1–7.

[99] A. Alabbasi, M. Berg, C. Cavdar, Delay constrained hybrid CRAN: A func-
tional split optimization framework, in: Proc. IEEE Globecom Workshops,
2019, pp. 1–7.

[100] S.Y. Yerima, K. Al-Begain, End-to-end QoS improvement of HSDPA end-
user multi-flow traffic using RAN buffer management, in: Proc. New
Technologies, Mobility and Security Conference and Workshops, 2008,
pp. 1–5.

[101] N. Reyhanian, H. Farmanbar, Z.Q. Luo, Resource reservation in backhaul
and radio access network with uncertain user demands, in: Proc. 21st
IEEE international Workshop on Signal Processing Advances in Wireless
Communications, 2020, pp. 1–5.

[102] Q. Han, B. Yang, G. Miao, C. Chen, X. Wang, X. Guan, Backhaul-aware user
association and resource allocation for energy-constrained hetnets, IEEE
Trans. Veh. Technol. 66 (1) (2017) 580–593.

[103] A. Manzoor, D.H. Kim, C.S. Hong, Energy efficient resource allocation in
UAV-based heterogeneous networks, in: Proc. 20th Asia-Pacific Network
Operations and Management Symposium, 2019, pp. 1–4.

[104] F. Ye, S. Shao, J. Dai, Y. Tian, A Joint resource allocation algorithm in
HetNet based on game theory, in: Proc. USNC-URSI Radio Science Meeting
(Joint with AP-S Symposium), 2018, pp. 167–168.

[105] W. Alsobhi, A.H. Aghvami, QoS-aware resource allocation of two-tier
HetNet: A Q-learning approach, in: Proc. 26th International Conference
on Telecommunications, 2019, pp. 330–334.

[106] J. Zhao, Y. Liu, T. Mahmoodi, K.K. Chai, Y. Chen, Z. Han, Resource allocation
in cache-enabled CRAN with non-orthogonal multiple access, in: Proc.
IEEE International Conference on Communications, 2018, pp. 1–6.

[107] P. Lin, P. Ma, Y. Ma, W. Han, Cost efficient power allocation, user
association and energy management in H-CRAN with hybrid energy
sources, in: Proc. International Conference on Wireless Communications
and Signal Processing, 2019, pp. 1–7.

[108] M. Peng, K. Zhang, J. Jiang, J. Wang, W. Wang, Energy-efficient resource
assignment and power allocation in heterogeneous cloud radio access
networks, IEEE Trans. Veh. Technol. 64 (11) (2015) 5275–5287.

[109] M. Gerasimenko others, Cooperative radio resource management in
heterogeneous cloud radio access networks, IEEE Access 3 (2015)
397–406.

[110] H.W. Tseng, Y.J. Yu, B.-S. Wu, C.-F. Kuo, P.-S. Chen, A resource allocation
scheme for device-To-device communication over ultra-dense 5G cellular
networks, in: Proc. IEEE International Conference on Applied System
Innovation, 2017, pp. 80–83.

[111] S. Dominic, L. Jacob, Fully distributed joint resource allocation in ultra-
dense D2d networks: A utility-based learning approach, IET Commun. 12
(19) (2018) 2393–2400.

[112] A. Algedir, H.H. Refai, Adaptive D2D resources allocation underlaying
(2-tier) heterogeneous cellular networks, in: Proc. IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, 2017,
pp. 1–6.

[113] K. Wen, Y. Chen, Y. Hu, A resource allocation method for D2D and small
cellular users in HetNet, in: Proc. 3rd IEEE International Conference on
Computer and Communications, 2017, pp. 628–632.
25
[114] M.A. Elshatshat, S. Papadakis, V. Angelakis, Improving the spectral effi-
ciency in dense heterogeneous networks using D2D-assisted eICIC, in:
Proc. IEEE 23rd International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks, 2018, pp. 1–6.

[115] A.N. Uwaechia, N.M. Mahyuddin, A comprehensive survey on millimeter
wave communications for fifth-generation wireless networks: Feasibility
and challenges, IEEE Access 8 (2020) 62367–62414.

[116] N. Eshraghi, V. Shah-Mansouri, B. Maham, Fair beamwidth selection and
resource allocation for indoor millimeter-wave networks, in: Proc. IEEE
ICC Mobile and Wireless Networking, 2017, pp. 1–6.

[117] G. Kwon, H. Park, Joint user association and beamforming design for
millimeter wave UDN with wireless backhaul, IEEE J. Sel. Areas Commun.
37 (12) (2019) 2653–2668.

[118] B. Soleimani, M. Sabbaghian, Cluster-based resource allocation and user
association in mmwave femtocell networks, IEEE Trans. Commun. 68 (3)
(2020) 1746–1759.

[119] Z. Zhao, J. Shi, Z. Li, L. Yang, Y. Zhao, W. Liang, Matching theory assisted
resource allocation in millimeter wave ultra dense small cell networks, in:
Proc. IEEE International Conference on Communications, 2019, pp. 1–6.

[120] I. Al Qerm, B. Shihada, Enhanced machine learning scheme for energy
efficient resource allocation in 5G heterogeneous cloud radio access
networks, in: Proc. IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, 2018, pp. 1–7.

[121] A.Y. Al-Zahrani, F.R. Yu, An energy-efficient resource allocation and
interference management scheme in green heterogeneous networks using
game theory, IEEE Trans. Veh. Technol. 65 (7) (2016) 5384–5396.

[122] M. Liu, F.R. Yu, Y. Teng, V.C.M. Leung, M. Song, Joint computation
offloading and content caching for wireless blockchain networks, in: Proc.
IEEE Conference on Computer Communications Workshops, 2018, pp.
517–522.

[123] Z. Allybokus, K. Avrachenkov, J. Leguay, L. Maggi, Multi-path alpha-fair
resource allocation at scale in distributed software-defined networks, IEEE
J. Sel. Areas Commun. 36 (12) (2018) 2655–2666.

[124] I. Alqerm, B. Shihada, A cooperative online learning scheme for resource
allocation in 5G systems, in: Proc. IEEE ICC Wireless Communications
Symposium, 2016, pp. 1–7.

[125] S. Sadr, R.S. Adve, Partially-distributed resource allocation in small-cell
networks, IEEE Trans. Wirel. Commun. 13 (12) (2014) 6851–6862.

[126] I. AlQerm, B. Shihada, Sophisticated online learning scheme for green
resource allocation in 5g heterogeneous cloud radio access networks, IEEE
Trans. Mob. Comput. 17 (10) (2018) 2423–2437.

[127] N. Singh, S. Agarwal, T. Agarwal, P.K. Mishra, RBF-SVM based resource
allocation scheme for 5G CRAN networks, in: Proc. 3rd International
Conference and Workshops on Recent Advances and Innovations in
Engineering, 2018, pp. 22–25.

[128] F. Pace, D. Milios, D. Carra, D. Venzano, P. Michiardi, A data-driven
approach to dynamically adjust resource allocation for compute clusters,
Comput. Res. Repos. (2018) 1–15.

[129] G. Xu, C.Z. Xu, S. Jiang, Prophet: Scheduling executors with time-varying
resource demands on data-parallel computation frameworks, in: Proc.
IEEE International Conference on Autonomic Computing, 2016, pp. 45–54.

[130] M. Chen, Y. Miao, H. Gharavi, L. Hu, I. Humar, Intelligent traffic adaptive
resource allocation for edge computing-based 5g networks, IEEE Trans.
Cogn. Commun. Netw. 6 (2) (2020) 499–508.

[131] Y. He, L. Tang, Z. Zhou, S. Mumtaz, K.M.S. Huq, J. Rodriguez, Two time-
scale resource allocation in hybrid energy powering 5G wireless system,
in: Proc. IEEE Global Communications Conference, 2019, pp. 1–6.

[132] D. Zhang, Y. Qiao, L. She, R. Shen, J. Ren, Y. Zhang, Two time-scale resource
management for green internet of things networks, IEEE Internet Things
J. 6 (1) (2019) 545–556.

[133] M. Qin, J. Li, Q. Yang, N. Cheng, K. Kwak, X. Shen, Multiple time-scale
SON function coordination in ultra-dense small cell networks, in: Proc.
IEEE Global Communications Conference, 2018, pp. 1–6.

[134] M. Qin others, Learning-aided multiple time-scale SON function coordi-
nation in ultra-dense small-cell networks, IEEE Trans. Wirel. Commun. 18
(4) (2019) 2080–2092.

[135] R. Thakur, V.J. Kotagi, C.S.R. Murthy, Resource allocation and cell selection
framework for LTE-unlicensed femtocell networks, Comput. Networks 129
(2017) 273–283.

[136] A. Shahid, V. Maglogiannis, I. Ahmed, K.S. Kim, E. De Poorter, Energy-
efficient resource allocation for ultra-dense licensed and unlicensed
dual-access small cell networks, IEEE Trans. Mob. Comput. 1 (1) (2019)
1–20.

[137] M. Tao, E. Chen, H. Zhou, W. Yu, Content-centric sparse multicast
beamforming for cache-enabled cloud RAN, IEEE Trans. Wirel. Commun.
15 (9) (2016) 6118–6131.

[138] A. Shahid, K.S. Kim, E. De Poorter, I. Moerman, Self-organized energy-
efficient cross-layer optimization for device to device communication in
heterogeneous cellular networks, IEEE Access 5 (2017) 1117–1128.

http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb90
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb91
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb91
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb91
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb91
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb91
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb92
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb93
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb93
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb93
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb93
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb93
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb95
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb95
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb95
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb97
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb97
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb97
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb102
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb102
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb102
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb102
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb102
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb108
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb108
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb108
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb108
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb108
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb109
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb109
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb109
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb109
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb109
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb111
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb111
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb111
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb111
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb111
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb115
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb115
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb115
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb115
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb115
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb117
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb117
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb117
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb117
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb117
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb118
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb118
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb118
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb118
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb118
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb121
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb121
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb121
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb121
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb121
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb123
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb123
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb123
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb123
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb123
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb125
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb125
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb125
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb126
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb126
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb126
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb126
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb126
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb128
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb128
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb128
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb128
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb128
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb130
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb130
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb130
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb130
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb130
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb132
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb132
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb132
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb132
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb132
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb134
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb134
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb134
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb134
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb134
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb135
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb135
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb135
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb135
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb135
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb136
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb137
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb137
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb137
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb137
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb137
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb138
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb138
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb138
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb138
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb138


N. Sharma and K. Kumar Physical Communication 48 (2021) 101415
[139] S. Zhang, N. Zhang, S. Zhou, J. Gong, Z. Niu, X. Shen, Energy-aware traffic
offloading for green heterogeneous networks, IEEE J. Sel. Areas Commun.
34 (5) (2016) 1116–1129.

[140] R. Ramamonjison, V.K. Bhargava, Energy allocation and cooperation for
energy-efficient wireless two-tier networks, IEEE Trans. Wirel. Commun.
15 (9) (2016) 6434–6448.

[141] M.R. Khawer, J. Tang, F. Han, UsICIC — A proactive small cell interference
mitigation strategy for improving spectral efficiency of LTE networks
in the unlicensed spectrum, IEEE Trans. Wirel. Commun. 15 (3) (2016)
2303–2311.

[142] L. Xu, Y. Mao, S. Leng, G. Qiao, Q. Zhao, Energy-efficient resource
allocation strategy in ultra dense small-cell networks: A Stackelberg game
approach, in: Proc. IEEE ICC Next Generation Networking and Internet
Symposium, 2017, pp. 1–6.

[143] A. Kaur, K. Kumar, Intelligent spectrum management based on reinforce-
ment learning schemes in cooperative cognitive radio networks, Phys.
Commun. 43 (2020) 101226.

[144] W. Yang, X. Zhao, Robust resource allocation for orthogonal frequency
division multiplexing-based cooperative cognitive radio networks with
imperfect channel state information, IET Commun. 11 (2) (2017) 273–281.

[145] X. Huang, D. Zhang, S. Tang, Q. Chen, J. Zhang, Fairness-based distributed
resource allocation in two-tier heterogeneous networks, IEEE Access 7
(2019) 40000–40012.

[146] S. Fan, H. Tian, Cooperative resource allocation for self-healing in small
cell networks, IEEE Commun. Lett. 19 (7) (2015) 1221–1224.

[147] R. Wei, Y. Wang, Y. Zhang, A two-stage cluster-based resource manage-
ment scheme in ultra-dense networks, in: Proc. IEEE/CIC ICCC Symposium
on Wireless Communications Systems, 2014, pp. 738–742.

[148] W.C. Cheung, T.Q.S. Quek, M. Kountouris, Throughput. optimization,
spectrum. allocation, Throughput optimization spectrum allocation and
access control in two-tier femtocell networks, IEEE J. Sel. Areas Commun.
30 (3) (2012) 561–574.

[149] W.S. Jeon, D.G. Jeong, Energy-efficient distributed resource allocation with
low overhead in relay cellular networks, IEEE Trans. Veh. Technol. 66 (12)
(2017) 11137–11150.

[150] I. Alqerm, B. Shihada, Energy-efficient power allocation in multitier 5g
networks using enhanced online learning, IEEE Trans. Veh. Technol. 66
(12) (2017) 11086–11097.

[151] J. Tan, S. Xiao, S. Han, Y. Liang, V.C.M. Leung, Qos-aware user association
and resource allocation in LAA-LTE / WiFi coexistence systems, IEEE Trans.
Wirel. Commun. 18 (4) (2019) 2415–2430.

[152] D.W.K. Ng, E.S. Lo, R. Schober, Energy-efficient resource allocation in
multi-cell OFDMA systems with limited backhaul capacity, IEEE Trans.
Wirel. Commun. 11 (10) (2012) 3618–3631.

[153] J.B. Rao, A.O. Fapojuwo, Analysis of spectrum efficiency and energy
efficiency of heterogeneous wireless networks with intra-/inter-RAT
offloading, IEEE Trans. Veh. Technol. 64 (7) (2015) 3120–3139.

[154] J. Tang, D.K.C. So, E. Alsusa, K.A. Hamdi, A. Shojaeifard, K.-K. Wong,
Energy-efficient heterogeneous cellular networks with spectrum underlay
and overlay access, IEEE Trans. Veh. Technol. 67 (3) (2018) 2439–2453.

[155] I. Mondal, A. Neogi, P. Chaporkar, A. Karandikar, Bipartite graph based
proportional fair resource allocation for D2D communication, in: Proc.
IEEE Wireless Communications and Networking Conference, 2017, pp.
1–6.

[156] P. Xu, K. Cumanan, Optimal power allocation scheme for non-orthogonal
multiple access with α-fairness, IEEE J. Sel. Areas Commun. 35 (10) (2017)
2357–2369.

[157] F. Fossati, S. Moretti, S. Secci, A mood value for fair resource allocations,
in: Proc. IFIP Networking Conference, IFIP Networking and Workshops,
2017, pp. 1–9.

[158] L. Xu, Y. Mao, S. Leng, G. Qiao, Q. Zhao, A cluster-based resource allocation
strategy with energy harvesting in dense small-cell networks, in: Proc.
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, 2017, pp. 303–310.

[159] H. Zhang, H. Liu, J. Cheng, V.C.M. Leung, Downlink energy efficiency
of power allocation and wireless backhaul bandwidth allocation in
heterogeneous small cell networks, IEEE Trans. Commun. 66 (4) (2018)
1705–1716.

[160] S. Boyd, V. Lieven, Convex Optimization, Cambridge Univ. Press,
Cambridge, U.K., 2004.

[161] M.V. Nguyen, T.Q. Duong, C.S. Hong, S. Lee, Y. Zhang, Optimal and sub-
optimal resource allocation in multi-hop cognitive radio networks with
primary user outage constraint, IET Networks 1 (2) (2012) 47–57.

[162] D. Tsilimantos, J.-M. Gorce, K. Jaffrès-Runser, H. Vincent Poor, Spectral
and energy efficiency trade-offs in cellular networks, IEEE Trans. Wirel.
Commun. 15 (1) (2016) 54–66.
26
[163] Y. Teng, W. Zhao, Robust group sparse beamforming for dense C-
RANs with probabilistic SINR constraints, in: Proc. IEEE Wireless
Communications and Networking Conference, 2017, pp. 1–6.

[164] B. Dai, W. Yu, Sparse beamforming and user-centric clustering for
downlink cloud radio access network, IEEE Access 2 (2014) 1326–1339.

[165] W. Wang, X. Liu, List-coloring based channel allocation for open-spectrum
wireless networks, in: Proc. IEEE Vehicular Technology Conference, 2005,
1, pp. 690–694.

[166] Y. Yangt, B. Bai, W. Chen, Achieving high frequency reuse in dense cellular
networks: A matrix graph approach, in: Proc. IEEE Global Conference on
Signal and Information Processing, 2014, pp. 937–941.

[167] Y. Meng, J. Li, H. Li, M. Pan, A transformed conflict graph-based resource-
allocation scheme combining interference alignment in OFDMA femtocell
networks, IEEE Trans. Veh. Technol. 64 (10) (2015) 4728–4737.

[168] L. Liang, W. Wang, Y. Jia, S. Fu, A cluster-based energy-efficient resource
management scheme for ultra-dense networks, IEEE Access 4 (2016)
6823–6832.

[169] H. Han, Y. Li, X. Guo, A graph-based random access protocol for crowded
massive MIMO systems, IEEE Trans. Wirel. Commun. 16 (11) (2017)
7348–7361.

[170] Y. Zhang, S. Wang, J. Guo, Clustering-based interference management in
densely deployed femtocell networks, in: Proc. IEEE/CIC ICCC Symposium
on Wireless Networking and Multimedia, 2015, pp. 478–483.

[171] H. Huang, M. Trivellato, A. Hottinen, M. Shafi, P.J. Smith, R. Valenzuela,
Increasing downlink cellular throughput with limited network MIMO
coordination, IEEE Trans. Wirel. Commun. 8 (6) (2009) 2983–2989.

[172] S. Basloom, A. Nazar, G. Aldabbagh, M. Abdullah, N. DImitriou, Resource
allocation using graph coloring for dense cellular networks, in: Proc. In-
ternational Conference on Computing, Networking and Communications,
2016, pp. 1–5.

[173] Y. Yang, C. Lai, L. Wang, X. Wang, A energy-aware clustering algorithm
via game theory for wireless sensor networks, in: Proc. 12th International
Conference on Control, Automation and Systems, 2012, pp. 261–266.

[174] Y. Liu, Y. Wang, Y. Zhang, R. Sun, L. Jiang, Game-theoretic hierarchical
resource allocation in ultra-dense networks, in: Proc. 27th IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications,
2016, pp. 1–6.

[175] E. Pateromichelakis, M. Shariat, A. Quddus, M. Dianati, R. Tafazolli,
Dynamic clustering framework for multi-cell scheduling in dense small
cell networks, IEEE Commun. Lett. 17 (9) (2013) 1802–1805.

[176] C. Zhao, X. Xu, Z. Gao, L. Huang, A coloring-based cluster resource
allocation for ultra dense network, in: Proc. IEEE International Conference
on Signal Processing, Communications and Computing, 2016, pp. 1–5.

[177] Y. Guo, J. Ma, C. Wang, K. Yang, Incentive-based optimal nodes selection
mechanism for threshold key management in MANETs with selfish nodes,
Int. J. Distrib. Sens. Netw. (2013) 1–14.

[178] L. Blumrosen, N. Nisan, Combinatorial auctions, in: Algorithmic Game
Theory, Cambridge Univ. Press, Cambridge, U.K., 2007, pp. 267–298.

[179] J.-H. Cho, A. Swami, T. Cook, Combinatorial auction-based multiple
dynamic mission assignment, in: Proc. IEEE Military Communications
Conference, 2011, pp. 1327–1332.

[180] L. Ferdouse, O. Das, A. Anpalagan, Auction based distributed resource
allocation for delay aware OFDM based cloud-RAN system, in: Proc. IEEE
Global Communications Conference, 2017, pp. 1–6.

[181] I. Alqerm, B. Shihada, Energy efficient traffic offloading in multi-tier
heterogeneous 5g networks using intuitive online reinforcement learning,
IEEE Trans. Green Commun. Netw. 3 (3) (2019) 691–702.

[182] A. Kaur, K. Kumar, A reinforcemnt learning based evolutionary multi-
objective optimization algorithm for spectrum allocation in cognitive
radio networks, Phys. Commun. 43 (2020) 101196.

[183] Y. Zhao, H. Xia, Z. Zeng, S. Wu, Joint clustering-based resource allocation
and power control in dense small cell networks, in: Proc. IEEE/CIC ICCC
Symposium on Wireless Communications Systems, 2016, pp. 1–5.

[184] M. Kalil, A. Al-Dweik, M.F. Abu Sharkh, A. Shami, A. Refaey, A frame-
work for joint wireless network virtualization and cloud radio access
networks for next generation wireless networks, IEEE Access 5 (2017)
20814–20827.

[185] X. Wang others, Virtualized cloud radio access network for 5g transport,
IEEE Commun. Mag. 55 (9) (2017) 202–209.

[186] W. Lee, T. Na, J. Kim, How to create a network slice? - A 5G core
network perspective, in: Proc. International Conference on Advanced
Communication Technology, 2019, pp. 616–619.

[187] R. Su others, Resource allocation for network slicing in 5g telecommuni-
cation networks: A survey of principles and models, IEEE Netw. 33 (6)
(2019) 172–179.

http://refhub.elsevier.com/S1874-4907(21)00152-X/sb139
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb139
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb139
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb139
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb139
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb140
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb140
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb140
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb140
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb140
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb141
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb143
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb143
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb143
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb143
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb143
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb144
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb144
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb144
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb144
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb144
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb145
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb145
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb145
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb145
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb145
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb146
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb146
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb146
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb148
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb149
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb149
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb149
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb149
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb149
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb150
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb150
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb150
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb150
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb150
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb151
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb151
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb151
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb151
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb151
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb152
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb152
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb152
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb152
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb152
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb153
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb153
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb153
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb153
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb153
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb154
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb154
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb154
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb154
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb154
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb156
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb156
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb156
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb156
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb156
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb159
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb160
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb160
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb160
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb161
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb161
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb161
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb161
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb161
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb162
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb162
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb162
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb162
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb162
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb164
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb164
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb164
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb167
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb167
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb167
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb167
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb167
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb168
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb168
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb168
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb168
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb168
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb169
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb169
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb169
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb169
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb169
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb171
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb171
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb171
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb171
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb171
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb175
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb175
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb175
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb175
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb175
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb177
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb177
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb177
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb177
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb177
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb178
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb178
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb178
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb181
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb181
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb181
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb181
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb181
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb182
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb182
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb182
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb182
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb182
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb184
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb185
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb185
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb185
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb187
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb187
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb187
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb187
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb187


N. Sharma and K. Kumar Physical Communication 48 (2021) 101415
[188] Y. Sun, S. Qin, G. Feng, L. Zhang, M.A. Imran, Service provisioning
framework for RAN slicing: User admissibility, slice association and
bandwidth allocation, IEEE Trans. Mob. Comput. (2020) 1–15.

[189] M. Amine, A. Kobbane, J. Ben-Othman, New network slicing scheme
for UE association solution in 5G ultra dense HetNets, in: Proc. IEEE
International Conference on Communications, 2020, pp. 1–6.

[190] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, Y. Liang, Network slice
reconfiguration by exploiting deep reinforcement learning with large
action space, IEEE Trans. Netw. Serv. Manag. 17 (4) (2020) 2197–2211.

[191] A.S. Charismiadis, D. Tsolkas, N. Passas, L. Merakos, A metaheuristic
approach for minimizing service creation time in slice-enabled networks,
in: Proc. ICC IEEE International Conference on Communications, 2020, pp.
1–6.

[192] X. Chen, Z. Liu, Y. Chen, Z. Li, Mobile edge computing based task
offloading and resource allocation in 5g ultra-dense networks, IEEE Access
7 (2019) 184172–184182.

[193] P. Yang, Y. Zhang, J. Lv, Load optimization based on edge collaboration
in software defined ultra-dense networks, IEEE Access 8 (1) (2020)
30664–30674.

[194] J. Zheng others, Joint downlink and uplink edge computing offloading in
ultra-dense hetnets, Mob. Networks Appl. 24 (5) (2019) 1452–1460.

[195] C. Zhao, Y. Cai, A. Liu, M. Zhao, L. Hanzo, Mobile edge computing meets
mmwave communications: Joint beamforming and resource allocation for
system delay minimization, IEEE Trans. Wirel. Commun. 19 (4) (2020)
2382–2396.

[196] M.S. Gupta, K. Kumar, Application aware networks’ resource selection
decision making technique using group mobility in vehicular cognitive
radio networks, Veh. Commun. 26 (2020) 1–24.

[197] A. Kaur, K. Kumar, Imperfect CSI based intelligent dynamic spectrum
management using cooperative reinforcement learning framework in
cognitive radio networks, IEEE Trans. Mob. Comput. (2020) 1–13.
27
Nidhi Sharma has received her B.Tech. degree from the
Department of Electronics and Communication Engi-
neering, Chitkara University, Himachal Pradesh, India in
2013, and M.Tech. degree in Mobile and Pervasive Com-
puting from Indira Gandhi Delhi Technical University
for Women, Delhi, India in 2016. From 2018 to 2019,
she was an Assistant Professor at the National Institute
of Technology, Hamirpur, India (Institute of National
Importance). Presently, she is pursuing her Ph.D. degree
in Electronics and Communication Engineering from
National Institute of Technology, Hamirpur, India. She

has publications in the field of communication on international platform. Her
area of interest includes wireless communication, resource management, ma-
chine learning especially the application of artificial intelligence in ultra-dense
networks.

Krishan Kumar has received his B.E. degree from
the Department of Electronics and Communication En-
gineering, CR State College of Engineering, Murthal,
Haryana, India in 2002, and his M.Tech. degree in
Electronics and Communication Engineering from the
National Institute of Technology, Kurukshetra, India
(Institute of National Importance), in 2005. He has
received his Ph.D. degree from the Department of Elec-
tronics and Communication Engineering, Motilal Nehru
National Institute of Technology Allahabad, Prayagraj,
India, under Quality Improvement Program scheme.

Presently, he has been working as an Assistant Professor at the National Institute
of Technology, Hamirpur, India (Institute of National Importance), since 2006. He
is the reviewer of various SCI-indexed journals. He is handling various projects
sponsored by Department of Science and Technology, Government of India.
His area of interest includes wireless communication especially cognitive radio
networks, vehicular networks with mobility management issues, and application
of artificial intelligence.

http://refhub.elsevier.com/S1874-4907(21)00152-X/sb188
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb188
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb188
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb188
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb188
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb190
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb190
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb190
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb190
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb190
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb192
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb192
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb192
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb192
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb192
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb193
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb193
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb193
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb193
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb193
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb194
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb194
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb194
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb195
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb196
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb196
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb196
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb196
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb196
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb197
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb197
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb197
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb197
http://refhub.elsevier.com/S1874-4907(21)00152-X/sb197

	Resource allocation trends for ultra dense networks in 5G and beyond networks: A classification and comprehensive survey
	Introduction
	Major contribution of the survey

	Resource allocation in different scenarios of ultra dense networks
	Resource allocation in LTE-U system 
	Resource allocation in CRNs
	Resource allocation in HetNets
	Resource allocation in C-RAN 
	Resource allocation in D2D networks 
	Resource allocation in mmWave networks 

	Resource allocation taxonomy in different scenarios of ultra dense networks
	Resource allocation approaches 
	Centralized approach
	Distributed approach
	Partially distributed 

	Resource allocation methods 
	Deterministic and stochastic methods 
	Data-driven adaptive methods 
	Two time-scale methods

	Optimization criteria 
	Energy efficiency 
	Interference 
	Throughput 
	Quality of service 
	Spectrum efficiency 
	Fairness 
	Computational complexity 


	Resource allocation techniques
	Convex optimization 
	Combinatorial optimization 
	Stochastic geometry methods 
	Sparse optimization 
	Graph theory
	Machine learning
	Clustering
	K-means-class clustering algorithm
	Game theory based clustering algorithm 
	Graph theory based clustering algorithm 

	Auction theory 
	Stochastic optimization 
	Game theory 

	Emerging technologies for ultra dense networks
	Network function virtualization
	Network slicing
	Mobile edge computing

	Challenges and open research direction
	Density planning
	Overhead and delay analysis
	Performance parameter
	Network mobility
	Security
	Experimental testbeds
	Channel models
	Backhaul/fronthaul constraints design
	Green communication
	Ultra-reliable low latency communication 
	Interference 

	Conclusion
	Declaration of competing interest
	References


