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A B S T R A C T

Reducing complexity in system architecture and design specifications, and more specifically
from the software aspect, is essential. The architecture specifications focus on what the
requirements and static aspects of systems are. The design specifications define dynamic aspects
of computational components that sense and react to external stimuli. As the architecture and
design specifications serve complementary roles in developing systems, the use of Architecture
Analysis & Design Language (AADL) and Discrete Event System Specification (DEVS) is proposed
for developing, in a step-wise fashion, combined architecture and design models. The proposed
AADL-DEVS framework is grounded in the foundational modularity and hierarchy principles
common to the AADL and DEVS modeling approaches. A realization of this framework capable
of transforming and simulating the AADL-DEVS specifications is developed using the Open
Source AADL Tool Environment (OSATE) and DEVS-Suite simulator. The scope of this paper is
on the computational aspect of systems. The proposed AADL-DEVS framework is demonstrated
using a model for the software part of an infant incubator, a time-sensitive and safety–critical
system.

. Introduction

Building Cyber–Physical Systems (CPS) or, more broadly, Systems-of-Systems (SoS) remains challenging. Many kinds of modeling
pproaches have been proposed for the development of integrated computational and physical systems [1–5]. For these systems,
he distinct models for architecture and design serve complementary purposes. Therefore, a key challenge is to develop well-formed
rchitecture and design artifacts individually and collectively. Models can be developed and simulated for mixed actual-simulated
PS (e.g., [6]). Simulation can also assist in architecture evaluation for alternative selections. Employing models using different
odeling languages and supported with methodologies, frameworks, and standards becomes more useful as the complexity of

ystems increases.
The development of simulation models can be undertaken by specifying architectures and extending them with design

pecifications. Separate and integrated modeling is supported at the architecture and design abstraction levels, a key benefit for
eveloping simulation models as close as possible to those needed for building actual systems. The use of modeling and simulation
ids in reducing design complexity using the architecture purposed for higher-level specifications with an emphasis on structures
nd relationships while the design is purposed for lower-level specifications with an emphasis on behaviors and executions. The
elationship between the architecture and design abstraction levels should be concisely and explicitly formulated. These observations
ighlight the importance of addressing system structure and behavior complexity and scalability traits using integrated architecture
nd design modeling [7].
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The Architecture Analysis & Design Language (AADL) [8] supports software/hardware architecture specifications for building
ctual systems. For design, the Discrete Event System Specification (DEVS) [9] supports specifying modular, hierarchical simulation
odels. These approaches serve as the means for a methodology to rigorously model combined architecture and design specifications

nd generation of simulatable models. The above considerations enable the development of the proposed AADL-DEVS framework
here the AADL and DEVS serve to specify the structure and behavior of systems, respectively.

Frameworks supported with robust tools are needed to develop architecture and design specifications. Examples are the Open
ource AADL Tool Environment (OSATE) [10] and the DEVS-Suite simulator [11]. The OSATE tool supports AADL requirements,
atency, and safety analyses. The DEVS-Suite supports modeling, simulation, experimentation, and evaluation of discrete-event
ynamical systems. AADL-DEVS framework is realized through OSATE-DEVS-Suite tool. An infant incubator [12], a time-sensitive
nd safety–critical system, as an exemplar, shows an implementation of the novel algorithms for generating parallel, hierarchical
EVS simulatable models from AADL-DEVS hierarchical model specifications under the OSATE-DEVS-Suite tool.

.1. Contributions

This study presents a methodology for developing simulatable code using the AADL and DEVS modeling languages. A DEVS
nnex (DA) adds behavior to the AADL’s core static structure. Following a Model-Based Engineering (MBE) approach, the systematic
ombination of the AADL and DA supports generating code for the DEVS-Suite simulator. The contributions of this paper can be
ummarized as follows.

First, the proposed AADL-DEVS framework is developed for combined structure and behavior modeling of time-constrained
afety–critical systems. The realization of this framework using OSATE and DEVS-Suite enables disciplined combined modeling of
rchitecture and design specifications to achieve simulations as close as desired to actual implementation. To our knowledge, the
EVS modeling formalism for behavior specification has not been explored and included in AADL. In a related work, the DEVS

meta-modeling is used to extend AADL to generate code for model structure but without behavior and code generation for model
behavior [13]. Compared to this work, the AADL-DEVS framework promotes detailed behavior modeling with code generation
through extending the AADL core language. The generated code for the DEVS-Suite simulator ‘‘imports’’ the AADL hierarchical
models, I/O ports with their assigned data, and state information.

Second, the AADL to DEVS CoDe generation Engine (ADCoDE) is developed as a plugin for OSATE. Three novel algorithms are
introduced and used to develop a translator to generate partial code for the DEVS-Suite simulator. The ADCoDE follows a constructive
approach for generating simulatable AADL-DEVS model. Thus, the resultant executable code by the simulator is traceable to the
AADL-DEVS model. These algorithms are capable of code generation for hierarchical AADL-DEVS models.

Third, a demonstrative example for the AADL-DEVS modeling and code generation is developed for an infant incubator. The
specification is simple yet rich enough to show the need and usefulness of AADL-DEVS framework for modeling and simulation of
complex time-sensitive and safety–critical systems.

1.2. Outline

Grounded in the AADL and DEVS modeling approaches, the rest of this paper details the proposed and developed AADL-DEVS
framework. Section 2 introduces DEVS and the DEVS-Suite simulator as well as AADL with OSATE. Section 3 presents a detailed
description of the proposed AADL-DEVS framework with descriptions of structure and data modeling using the core AADL and
behavior modeling and DEVS Annex (DA). In Section 4, an AADL to DEVS CoDe generation Engine (ADCoDE) is described for
automated simulation code for the DEVS-Suite simulator. In Section 5, Isolette system (i.e., an infant incubator) is presented as an
exemplar to demonstrate the use of the proposed AADL-DEVS framework for time-critical and safety–critical systems. Section 6
highlights the use of the DEVS-Suite for simulating the generated code for a sub-system of the Isolette system. Section 7 presents
some key related works. Section 8 presents a summary of this research.

2. Background

This section presents an overview of the parallel DEVS formalism and the DEVS-Suite simulator. The emphasis is on the atomic
and coupled model specification constructs and their realization and execution in the simulator. Similarly, the basics of the AADL
and OSATE for modeling software component structures are presented as well.

2.1. System-theoretic discrete-event simulation

A variety of systems can be modeled using the parallel Discrete Event System Simulation (DEVS) formalism [9]. As a mathematical
language, it lends itself for specifying structures and behaviors of Systems-of-Systems (SoS) including Cyber–Physical Systems (CPS).
This modeling approach is based on Systems Theory [14] where a system is defined in terms of hierarchical parts that are composed
through their inputs and outputs. Models can send/receive arbitrary data objects to/from each other at any arbitrary time instances.
DEVS can be used to describe any discrete time and discrete event systems [9]. In DEVS, there are two types of models: atomic and
coupled components. The abstract simulator protocols (i.e., operational semantics) for atomic and coupled models are excluded for
2
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2.1.1. Atomic DEVS model
A parallel DEVS atomic model is a mathematical structure as defined below.

𝐷𝐸𝑉 𝑆 = ⟨𝑋𝑏, 𝑌 𝑏, 𝑆,𝑄, 𝛿𝑒𝑥𝑡, 𝛿𝑖𝑛𝑡, 𝛿𝑐𝑜𝑛, 𝜆, 𝑡𝑎⟩ where (1)

𝑋𝑏 is a set of input port names, each having a bag of values,
𝑌 𝑏 is a set of output port names, each having a bag of values,
𝑆 is a set of sequential states,
𝑄 is a set of total states {(𝑠, 𝑒)|𝑠 ∈ 𝑆, 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠), 𝑒 is the elapsed time},
𝛿𝑒𝑥𝑡 ∶ 𝑄 ×𝑋𝑏 → 𝑆 is an external transition function,
𝛿𝑖𝑛𝑡 ∶ 𝑆 → 𝑆 is the internal transition function,
𝛿𝑐𝑜𝑛 ∶ 𝑄 ×𝑋𝑏 → 𝑆 is an confluent transition function,
𝜆 ∶ 𝑆 → 𝑌 𝑏 is an output function, and
𝑡𝑎 ∶ 𝑆 → ℜ+

0,∞ is a time advance function.
The input and output ports with their values (i.e., primitive or compound messages) are used to specify the input/output structure

of every atomic model. The internal behavior of an atomic model is specified in terms of a set of state variables and a set of functions.
The 𝑡𝑎(𝑠) presents time allowed to be in a particular state 𝑠. The 𝑡𝑎(𝑠) = 0 specifies instantaneous state change. A model can have
autonomous and reactive behaviors in response to any number of input messages specified in terms of an internal transition function
and an external transition function, respectively. The output function is for generating output messages for any number of output
ports. The time advance function specifies timings of state transitions. The confluent function specifies the handling of simultaneous
internal and external events. An atomic model can have multiple input and/or output ports and messages (objects). The elapsed time
𝑒 allows external inputs to arrive at arbitrary future time instance. The atomic models can be simulated according to an abstract
simulator protocol [9].

2.1.2. Coupled DEVS model
A parallel DEVS coupled model is a mathematical structure as defined below

𝐶𝑀 = ⟨𝑋𝑏, 𝑌 𝑏, 𝐷,𝑀𝑑 |𝑑 ∈ 𝐷,𝐸𝐼𝐶,𝐸𝑂𝐶, 𝐼𝐶⟩ where (2)

𝑋𝑏 is a set of input port names, each having a bag of values,
𝑌 𝑏 is a set of output port names, each having a bag of values,
𝐷 is a set of component names,
𝑀𝑑 is a set of basic components for each 𝑑 ∈ 𝐷,
𝐸𝐼𝐶 is a set of external input couplings,
𝐸𝑂𝐶 is a set of external output couplings, and
𝐼𝐶 is a set of internal couplings.

A coupled model is composed of one or more atomic and/or coupled models. The input and output ports and values have the
same specifications as the atomic model. The structure specification of a coupled model includes input and output ports, a set of
named components, and couplings. DEVS can ensure semantically identical input/output interfaces for atomic and coupled models.
The couplings amongst a coupled model and its atomic or coupled models are (i) the external input couplings (EIC) - the couplings
of the coupled component input ports to the input ports of one or more of its components, (ii) the external output couplings (EOC) -
the couplings of the output ports of the components to the output ports of their coupled component, and (iii) the internal couplings
(IC) - the couplings of the output ports to the input ports of the components of the coupled component. A coupled model behavior
is based on the message exchanges between itself and its components as well as message exchanges among the components (which
can be atomic or coupled models). The coupling allows message passing between components. DEVS has the property of closure
under coupling where any coupled model can be transformed to an atomic model with identical behavior. This property supports
modeling larger models in a hierarchical manner. The atomic and coupled models are executed according to atomic and coupled
simulator protocols, respectively [9].

2.1.3. DEVS-suite simulator
The DEVS-Suite simulator (https://sourceforge.net/projects/devs-suitesim/) is an open-source and free tool for the parallel DEVS

formalism [11,15,16]. It is one of the most commonly used simulators for developing and simulating parallel DEVS models . The
modeling part supports implementing DEVS atomic and coupled models that have hierarchical tree-structures. The 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐
and 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐷𝑖𝑔𝑟𝑎𝑝ℎ Java classes allow visualization of the simulatable atomic and coupled components, respectively.

Both atomic and coupled models can receive input and send output Java entities (messages) only via separate input and output
ports. Entities can strictly be transmitted via couplings between any two distinct models that are at the same level belonging to
a single node in the hierarchy. The entities do not change during transmissions. The simulation part implements a message-based
simulation protocol. It is responsible for executing the behavior of every atomic model as well as the transmissions of the messages
in every coupled model.
3
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Fig. 1. An illustration of the AADL-DEVS modeling supported with code generation and simulation.

2.2. Architecture analysis & design language

Architecture Analysis & Design Language (AADL) [8] is an SAE International standard language for the architectural description
of embedded systems [17]. It is a Model-based Engineering (MBE) approach which promotes analyzable architecture development
and dependability prediction. Architectural modeling is realized through component specification of the application software and the
execution platform. Component Type and Implementation classifiers, corresponding to system entities are instantiated and connected
together to form the system architecture model. More details are provided in Section 3.3.

The application software may contain process, data, subprogram, thread, and thread group components [18]. The process component
represents a protected memory space shared among thread subcomponents. A data component represents a data type with its
characteristics, a subprogram represents a block of executable code. A thread represents an entity that executes a sequential
instruction flow.

The execution platform is made up of computation and communication resources, consisting of processor, memory, bus, and device
components. The processor represents the hardware and software responsible for thread scheduling and execution. The memory
is used for describing code and data storage entities. Devices can represent either physical entities in the external environment,
or interactive system components like actuators and sensors. Physical connections between execution platform components are
accomplished via a bus component. System components represent compound entities containing software, execution platform or
other (sub)system components.

2.2.1. Open source AADL tool environment
To support AADL specifications, the Open Source AADL Tool Environment (OSATE) [10] is developed using the Eclipse plugin

framework. It supports textual, graphical, XML Metadata Interchange (XMI) specification formats, and a set of analysis plugins. This
tool supports modeling and analysis of real-time embedded systems. In order to support extensive and focused model analysis, the
AADL core language support extensions through annexes and properties.

3. AADL-DEVS framework

This framework is developed using the AADL, a semi-formal architecture description language, and DEVS, a discrete-event
modeling formalism [19,20]. The result supports a combined static analysis and dynamic behavior. In this framework, the AADL
is used to define structure specification, whereas the DEVS is used to define behavior specification. The nodes in AADL can be
hierarchically combined using connections and bindings to define combined software and hardware specifications. DEVS lends itself
to specify reactive hierarchical components, each having input and output structure with encapsulated behavior. It should be noted
that the AADL structural specification is more elaborate compared to DEVS. The AADL input and output ports are typed and may
be used to combine software and hardware components. In DEVS, compared to AADL, the input and output data can be arbitrary
messages and can be paired with input and output ports. Such differences are accounted for in the AADL-DEVS framework and its
realization, the OSATE-DEVS-Suite tool. Details are provided in Sections 3.2 and 5.1.

The AADL-DEVS framework follows a three-step process depicted in Fig. 1. In the first step, the AADL-DEVS model can be
developed using the AADL and the DEVS Annex (DA). In the second step, the AADL-DEVS models are converted to partial code for
the DEVS-Suite simulator. In the third step, the generated partial code should be completed to support simulations. The AADL-DEVS
model shows that the component structures are specified according to AADL and then mapped to component structures according
to DEVS. The behaviors for the DEVS models are defined according to the DA, DEVS behavior specification following the AADL
language. In the AADL-DEVS framework illustration, the dotted arrows show mapping relationships (e.g., AADL component structures
are mapped to atomic and coupled DEVS model structures). The solid arrows show the elements that need to be used together
4
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(e.g., Data Values and Data Objects). The block arrows show the development flow from specifying AADL component structure to
imulatable parallel DEVS models.

The AADL-DEVS modeling framework in the above process has two parts – (i) the AADL language and (ii) the DA sublanguage.
he OSATE is extended with the DA to support the DEVS-Suite simulator. First, the structural syntax of atomic and coupled DEVS
odels are specified in OSATE. Second, the behavioral syntax of the atomic DEVS model is added using OSATE. The DA structure

pecification accounts for the syntax of OSATE and DEVS-Suite primitive and compound data types. Furthermore, the data types
n DEVS-Suite, unlike their counterparts in OSATE, have behaviors. In addition, the DA sublanguage supports defining the internal
nd external functions of atomic models as time-based state machines. Other functions that are supported in the DA sublanguage
re time advance and test input functions.

The code generator in the above process transforms AADL-DEVS models into parallel atomic and coupled DEVS-Suite imple-
entations. In order to generate code for the simulator, the input and output primitive and compound data types in OSATE are
apped to their counterparts in the DEVS-Suite simulator. This requires two steps (see Section 4.1). A set of generic I/O data types

n the mold of the AADL I/O data types are defined in the DA. The code generation engine is extended to transform the DA I/O
ata defined in OSATE to their counterparts defined in the DEVS-Suite simulator. The generated code may be manually extended
s needed.

The AADL Behavior Annex (BA) provides abstractions for generic and composite component types and implementation [8].
he dynamics for these components are specified using modes (states) and mode (state) transitions. Alternative behaviors for a
omponent can be defined in terms of a finite number of state transitions with non-zero duration for modes and events. The state
ransitions are encapsulated within components and may be specialized using inheritance. In DEVS, this kind of behavioral modeling
s supported with key differences [21]. First, for each state change, the transition either strictly depends on the state or on input and
tate. The behavior of these models are defined in terms of a logical clock, not the passage of time controlled by target computing
latform. Second, internal and external transitions can occur simultaneously. These state transitions are ordered where one consumes
ero logical time. Concurrency in simulation is possible because time is a logical artifact. Third, DEVS has an abstract protocol that
s solely responsible for time management and input/output communication needed for hierarchical models. As in BA, models can
e inherited by other models using object-orientation [21]. Therefore, AADL with DA, compared with the AADL with BA, directly
ends itself to developing models and simulating them. The rest of this section describes the structure and data modeling using AADL
ith the DA sublanguage.

.1. Component structure modeling

In AADL, the structure of a system is defined as a hierarchical composition of software and hardware components. Each
omponent declaration incorporates component type and implementation classifiers to represent externally visible characteristics and

internal realization, respectively. A component type declaration defines the interface elements and may contain Feature, Flows and
Property. Features are communication ports for Data, Event, and Event Data for transmitting data, control, and control and data,
respectively. Port communication is typed and directional. For example, an in port receives data/control data and an out port
sends data/control data while an in out port can send and receive the data. A component implementation declaration defines the
nternal structure in terms of Subcomponents, subcomponent Connections, Subprogram call sequences, Modes, Flow implementations,

and Properties. Ports of a component declared in a type declaration are connected through connections in the AADL implementation
declaration. Software components are mapped onto execution platform components, e.g., a thread is mapped to a processor while a
data component can be mapped to a memory component. Multiple implementation classifiers can be associated to a type classifier
of a component.

AADL with annexes can provide support for both static and dynamic architectural modeling [22]. A static architecture contains
hierarchical composition of interconnected subcomponents for each containing component. These interconnected subcomponents
form the internal structure of the containing component. Reconfigurable structure specification of AADL facilitates multiple
architecture models. Dynamic architectures are realized through modal behavior of the system. Models contain component and
connection configuration for different operational as well as error modes [23].

3.2. Data modeling

AADL provides a Data Modeling Annex with pre-defined data types [24]. This annex has primitive data types that can be used
as they are and for defining compound data types. The primitive data types include real, integer, string, and Boolean, among
many others. A compound data type has multiple elements, each of which can be either of primitive or compound data types.
The compound data types include Integer_Range and Real_Range. The DA code generation engine supports automatic conversion
of the AADL primitive data types to primitive counterparts in the Java programming language. When a primitive data type is to
be used as a message for transmission via any DEVS-Suite atomic or coupled model’s input and output ports, the data type must
be converted to a subclass of the entity class [11]. In the DEVS-Suite simulator, all input and output (primitive or compound) are
referred to as entities. The code generation engine provides the IntEnt, DoubleEnt, and StringEnt classes corresponding to the AADL
integer, real, and string data types. A Java class must exist or be constructed for any AADL compound data type, as in primitive data
types, to be used as input or output messages. The Integer_Range (used to represent a finite range of integer values) and Real_Range
(used to represent a finite range of real values) compound data types are provided as part of the code generation [20]. These data
5
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3.3. Behavior modeling using DEVS annex

For AADL to support discrete-event modeling and simulation, its language is extended with the DEVS Annex (DA). An earlier
ersion of the DA was introduced in [19] with detailed syntax, and grammar with appropriate examples for each of the four
ections entities, variables, states, and behavior dedicated to specify different aspects of a detailed behavior model. Based
n the knowledge acquired during the development of the code generator, the entities section is removed as they are not used

for simulation. In a DA subclause, behavior specification starts with the variables section, followed by the states section, which
is then followed by behavior section. Declaration of these sections in DA are independent of one another (i.e., for the DEVS-Suite
simulator, the order in which the variables, states, and behaviors are declared is immaterial).

Considering a system is a hierarchical composition of modular components, DA enables AADL to model detailed behaviors at
different abstraction levels (component and system levels) based on the concepts of the Atomic DEVS and the Coupled DEVS. Software
and execution platform components can be annotated with DA subclauses to model the discrete behavior. Implemented as a plugin
for the Open Source Architecture Tool Environment (OSATE), the DA is perfectly aligned with the semantics of the AADL core
language to model desired monitored and controlled variables by specifying data types for ports and communicated through them.
In the following, the sections variables, states, and behavior are briefly explained. The Extended Backus–Naur Form (EBNF)
grammar with examples for the each of the DA section can be found in [19].

The variables section is used to declare local variables with their data types. Variable declaration in this section is supported by
the classifier references (either defined in the same package, or within the scope of another package imported using with clause) to
the appropriate AADL data components. Initial value specified after => is mandatory for each variable and it can either be primitive
(i.e., integer, real, Boolean, or string literal) or compound consisting of more than one primitive values separated by commas and
enclosed in parenthesis.

Section states contains definition of all the required and desired states of a particular component. Each state is defined with a
name followed by the specification of the time to remain in a particular state before next transition (time advance function). The
starting state is labeled as initial while the unlabeled states are considered as transient states with time advance set to 0.0. States
with time advance function INFINITY indicate the final states. Starting from the initial state, the control suspends in transient states
for different time advance functions and ends in a final state.

The behavior section contains discrete behavior specifications in terms of a state-transition system with three functions and one
declaration. The confluent transition function is not defined as it is provided by default in the simulator. The external transition
triggered by an input message (composed of the respective port name, the value received, and a variable to store) from a source
state is modeled using the function deltext. It interrupts simulation to move forward to its destination state. The behavior of the
external transition function is modeled as behavior action and depends on the current state, received input, and the time elapsed in
he current state.

The function deltint is used to specify internal state transitions caused by the progression of the elapsed time (e). The control
s moved to the next state when 𝑒 = 𝑡𝑎. The function deltint is specified with a source state identifier followed by the target state
dentifier and the behavior action.

The function outfn is used for generating output before the state change (i.e., before executing the internal and external state
transition functions). An output message is specified with the name of the port followed by ! sign and the data to be transmitted.
The output function can further be restricted by adding conditional expressions.

Although, not part of the DEVS formalism, stand-alone testing during simulation is modeled using declaration intest.1 It is used
for providing test inputs for model components during simulation.

4. Code generation for simulation

The partial code generation for the DEVS-Suite simulator is focused on transforming AADL models with DA specifications into
their DEVS-Suite atomic and coupled counterparts. Although the structure of the DA sublanguage is based on the DEVS formalism,
the DA specifications must be transformed to the code for the simulator. This requires generating appropriate DEVS-Suite code,
as Java classes, from the AADL models. To ease behavior modeling, the DA seamlessly integrates with the AADL core language
and does not require re-definition of the structural and interface elements defined in the type classifiers. The use of the AADL
for structural and data modeling requires developing syntax translator from DA in OSATE to their counterparts in the DEVS-Suite
simulator. To support code syntax translation, we have implemented ADCoDE — an AADL to DEVS CoDe generation Engine. This
engine is implemented as a plugin for OSATE and can be activated for an implementation classifier of a component (annotated with
DA specifications) in the OSATE Eclipse Outline view.

As depicted in Fig. 2, upon activation for a particular AADL component with the data, structure, and DA behavior specifications,
code generation through ADCoDE is a three-step process. First, in the data classes generation step, appropriate Java classes (and objects
of the primitive data types) are generated for the compound integer and double range data types (see section 3.3.1 in [20]). Second,
in the structural code generation step, structural and interface code for input and output ports is generated based on the type classifier
of the AADL component. Third, in the behavioral code generation, behavioral code is generated based on the DA specifications in the

1 The keyword infn, as used in an earlier version of the DEVS Annex introduced in [19], is now replaced with the intest to improve readability and
6
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Fig. 2. AADL to DEVS CoDe Generation Engine (ADCoDE) workflow.

implementation classifier of a particular component. All the generated code segments are then combined according to the structure
of the 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐 template provided in the simulator. Code generation for one AADL component results in one 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐
class. All the generated 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐 classes in an AADL package are included in the Model folder (package) while the generated
data classes are organized in a separate folder named the same as the AADL package in which the data components are defined.
Contents of all these folders are dynamically updated if any changes are made to the models.

ADCoDE also realizes code generation for coupled DEVS models. Upon activation for a composite AADL component with DA
(for example a thread group), a model class extending the 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐷𝑖𝑔𝑟𝑎𝑝ℎ class is generated along with required data and model
classes for each AADL subcomponent (for example thread components). This hierarchical organization of the generated simulation
models improves their use and understanding.

In the following subsections, the above (i) data (Algorithm 1), (ii) structure (Algorithm 2), and (iii) behavior (Algorithm
3) code generation sequential steps are described in detail (see Fig. 2).

4.1. Data classes generation

AADL allows both primitive and compound data types for data modeling, hence the ADCoDE must also have the capability to
map them with respect to the DEVS-Suite data types. Although the primitive data types that are pre-defined in the AADL Data
Modeling Annex [24] and Base_Types, they must be mapped to their counterparts in the simulator. This requires extending data
modeling in the simulator. Such an extension must be realized via inheriting from the entity class as the simulator only allows
transmitting objects (messages sent and received) either entity or any of its subclasses. AADL to DEVS transformation requires the
AADL data types representing input and output to be mapped to DEVS-Suite entity data types. The input and output entities are the
events sent and received among atomic and coupled models. Predefined package Base_Types contains common data types as data
component classifiers.

For the primitive data types, the Java entity class is extended with stringEnt, booleanEnt, intEnt, and doubleEnt data types
for their AADL string, Boolean, integer, float counterparts, respectively. The core of the DEVS-Suite simulator has also been extended
with the new classes IntRange and DoubleRange for the Integer_Range, and Real_Range data types, respectively. For each compound
data type used in an AADL component’s type or implementation classifier, a separate Java class is generated.

Algorithm 1 presents the main steps to generate data objects and classes. Here, C.TYPE and C.IMPL are the type and implemen-
tation classifiers, respectively, for an atomic AADL component C. Starting with the variables section of the DA specification, where
C.IMPL.VARS is the set of variable declarations, for every variable var the data type of the variable var.type is extracted. If var.type
is Base (string, Boolean, integer, float) or Range (Integer_Range, Real_Range) then the var is declared as an object of the appropriate
extended classes for primitive and range data types.

In case of a compound data type (a user-defined data type with multiple elements of primitive and/or range types), a data class
(if it has not been previously generated) is generated with the name same as var.type. Data type e.type, for every element e, is then
extracted from a data component in the current project and the appropriate objects are declared in the same way as for var.type.
Appropriate getters and setters are generated along with constructors for each class.

In an AADL model, data types can also be specified with ports to model the type of data to be sent or received. For every port,
in the set of ports C.TYPE.PORTS, either data object or data class is generated in the same way as explained for the variable var.
7
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Algorithm 1 Data objects and classes generation for AADL data types
Require: Data types specified with ports (in the type classifier C.TYPE) and variables (in the DEVS Annex specification in the

implementation classifier C.IMPL) for an atomic AADL component C
nsure: Generate appropriate objects and Java classes for data types
1: for all var ∈ C.IMPL.VARS do
2: if var.type class does not exist then
3: if var.type is in Base or Range then
4: declare var as an object of appropriate class from stringEnt, booleanEnt, intEnt, doubleEnt, Integer_Range,
5: Real_Range
6: else
7: generate Java class var.type
8: find data component var.type in the current Project
9: for all e ∈ Elements of var.type do

10: find e.type in the Property List of e
11: repeat steps 3 − 4 for e.type
12: create Getters and Setters for e
13: end for
14: create appropriate constructors for the Java class var.type
15: end if
16: end if
17: end for
18: for all port ∈ C.TYPE.PORTS do
19: find port.type
20: repeat steps 2 − 16 for port.type
21: end for

Algorithm 2 Structural code generation for atomic and composite AADL components
Require: Interface specification (in the type classifier C.TYPE) in case of an atomic AADL component C and subcomponents and

connections specification (in the implementation classifier C.IMPL) in case of a composite AADL component C
nsure: Generate ViewableAtomic Java class with structural code for each atomic (sub)component C and generate ViewableDigraph

Java class for composite component C (if C is composite component )
1: if C is a composite component then
2: generate ViewableDigraph class for C.IMPL with required import and package info
3: declare addInport and addOutport methods to add in and out port for C
4: for all subCom ∈ C.IMPL.SUBCOMPONENTS do
5: if subCom is an atomic component then
6: do steps 17 − 24 for subCom
7: else if subCom is a composite component then
8: do steps 2 − 9 for subCom
9: end if

10: create instance of the ViewableAtomic class generated for subCom in C
11: generate add method with the instance from the previous step
12: end for
13: for all conn ∈ C.IMPL.CONNECTIONS do
14: generate addCoupling method for conn with conn.source and conn.destination ports for EIC, EOC, and IC
15: end for
16: else if C is an atomic component then
17: generate ViewableAtomic class for C.IMPL with required import and package info
18: for all port ∈ C.TYPE.PORTS do
19: if port.in then
20: generate addInport method for port
21: else if port.out then
22: generate addOutport method for port
23: end if
24: end for
25: end if
8
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4.2. Structural code generation

The structure of an AADL component is composed of its type and implementation classifier. The type classifier contains the
nterfaces of a component while the implementation classifier models the internal realization.

Algorithm 2 specifies the main steps for structural code generation through ADCoDE. This algorithm uses the AADL model
ierarchy starting from the highest levels to the lowest level to generated code for all atomic and coupled DEVS models. Here,
.TYPE and C.IMPL are the type and implementation classifiers, respectively, for an AADL (atomic or composite) component C.

In AADL, the structure of a composite component is formed through the port definitions in the features section of the type
classifier, and subcomponent definitions in subcomponents section and connections among the ports of the subcomponents (and
the composite component itself) in the connections section of the implementation classifier. Subcomponents are instances of the
pre-defined implementations to exploit design alternatives.

Upon the activation for a composite AADL component (for example a thread group), ADCoDE generates code for DEVS
models. Firstly, a model class extending the 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐷𝑖𝑔𝑟𝑎𝑝ℎ class is generated for C.IMPL. Traversing through the subcomponents
C.IMPL.SUBCOMPONENTS, separate 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐 class is generated for each AADL atomic subcomponent (for example thread)
y performing steps 17–24. For each composite subcomponent subCom, a 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐷𝑖𝑔𝑟𝑎𝑝ℎ class is generated. The code generation
terates until no more subcomponents are left to be processed.

Instances of these classes are then created and added using the add method. The code for the input and output ports of the
omposite component are generated based on the input and output ports of all the subcomponents. The code generation relies on
he AADL to ensure semantically identical input/output interfaces for atomic and coupled models.

Code generation for the required coupling categories (steps 13–14 of Algorithm 2) in any composite AADL component is based on
ts port connection specifications in the connections section. The external input coupling (EIC) is realized based on the connections
f the composite component’s input ports with the input ports of its subcomponents. The external output coupling (EOC) is realized
ased on the connections of the subcomponents’ output ports to the composite component’s output ports, while the internal coupling
IC) is realized based on the subcomponents’ output ports to the input ports of other subcomponents. Appropriate addCoupling
ethods are generated for each of the specified coupling with the ports added in step 14.

.3. Behavioral code generation

The behavior for an AADL component is specified using the DEVS Annex (DA). Behavioral code generation, the third step of the
DCoDE code generation, uses the external, internal, output functions and test input declarations specified in the behavior section
f a DA subclause. Hence, no explicit code is generated for the states section needed for the outfn function as well as the time
eriod required for the deltext and deltint functions. Algorithm 3 lists the steps followed by the ADCoDE for code generation.
elow we describe code generation for the variables section and the functions and declarations used in the behavior section of a
A subclause.

ariable. Each local variable defined in the variables section has a data type and an initial value. Code is generated for each
ariable var according to Algorithm 1.

eclaration intest. The input test declarations in the simulator are defined as addTestInput for both atomic and coupled DEVS models.
s shown in Algorithm 3 (steps 8–10), code generation for an intest is an addTestInput with an input port name and a data value.

unction deltint. It specifies the transition from source to destination states and some behavior action. The internal state transition
appens when the elapsed time (e) progresses and reaches to the time advance function (ta) (𝑒 = 𝑡𝑎). Internal transition function
n the simulator is specified as the public method deltint. As shown in Algorithm 3 (steps 11–17), method deltint is generated
o structure the code generated for various occurrences of the deltint. Code generation for internal transition function is based
n combining all its occurrences (C.IMPL.DELTINTS) using a control structure (e.g., if-else statement) supported in the Java
rogramming language. For each deltint, the source state is then identified and used in the method phaseIs for controlling the change
n the state of the model. The string containing the behavior action is then added as it is. The destination state and its time to next
vent (i.e., sigma) are extracted from the states section and used in the holdIn method. The holdIn is appended at the end of the
eltint and deltext methods.

unction deltext. It specifies the external transition and is composed of a port name, a received input value, and a variable to store
he input value. The behavior action to be performed as a part of the external transition is defined as a string. External transitions
n the simulator are realized through a public method deltext which accepts an object of the message class defined in the simulator.
s messages are implemented as bags so method messageOnPort is used to explore the bag to find a message received on a particular
ort and then the required behavior actions are executed accordingly.

As shown in Algorithm 3 (steps 18–24), code generation for deltext function starts with deltext method generation, with message
ag x, to structure the code generated for each occurrence of the deltext. The rest of the code generation is based on combining all
he occurrences (C.IMPL.DELTEXTS) using a control structure (e.g., if-else statement) supported by the Java programming language.
or each deltext, the source state is identified and used in a method phaseIs to structure the control. The method messageOnPort
s then used to explore the message bag on the input port specified in the function. The string containing the behavior action
eltext.behavior_action is then added as it is. The destination state and its time advance function extracted from the states section
re used in the holdIn function to set the next state and time advance function for this state.
9
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Algorithm 3 Behavioral code generation for an atomic AADL component
Require: Implementation classifier (C.IMPL) with the DEVS Annex specification of an atomic AADL component C
nsure: Append ViewableAtomic Java class previously created for atomic AADL component C using Algorithm 2
1: for all var ∈ C.IMPL.VARS do
2: if var.type is Base or Range then
3: declare var as instance of stringEnt, booleanEnt, intEnt, doubleEnt, Integer_Range, or Real_Range class
4: else
5: declare var as instance of a Java class previously generated in Algorithm 1
6: end if
7: end for
8: for all intest ∈ C.IMPL.INTESTS do
9: declare addTestInput for intest with intest.port and intest.value

10: end for
11: generate deltint method for internal transitions
12: for all deltint ∈ C.IMPL.DELTINTS do
13: generate control structure for deltint
14: generate phaseIs method with deltint.source_state
15: generate behavior action code with deltint.behavior_action
16: generate holdIn method with deltint.destination_state and deltint.destination_state.sigma
17: end for
18: generate deltext method with message bag x for external transitions
19: for all deltext ∈ C.IMPL.DELTEXTS do
20: generate control structure for deltext
21: generate messageOnPort method with x and deltext.port
22: generate behavior action code with deltext.behavior_action
23: generate holdIn method with deltext.destination_state and deltext.destination_state.sigma
24: end for
25: generate out method with parameter message for output function
26: for all outfn ∈ C.IMPL.OUTFNS do
27: generate control structure for outfn with phaseIs and outfn.guard_condition
28: generate method add with method makeContent, outfn.source_state, and outfn.message
29: end for

Function outfn. It specifies the output messages to be transmitted through named output ports. This output generation can be further
restricted through conditional expressions using the Java programming language. The output functions are specified in a public
method out in the simulator which returns a message bag defined as a message class. A bag contains one or more content, each
defined as an output port name and a value pair. Output values can be objects of the entity class or its sub-classes. The method
makeContent is used to create the output port name and value pairs.

As shown in Algorithm 3 (steps 25–29), code generation for an outfn function is based on combining all defined outputs
(C.IMPL.OUTFNS) using a control structure (e.g., if-else statement) supported in the Java programming language. Method out is
generated to structure the generated code. Then, for every outfn, a state is chosen and used in the method phaseIs. The guard_condition,
if present, is used to further constrain the output generation. The method add of the message class is then used to add content to
the message bag using the makeContent method.

.4. Hierarchical models

A key advantage of AADL-DEVS models is their hierarchical nature. A complex multi-component system can be specified as
oupled models, each of which can have other coupled models and atomic models. The implementation of the above algorithms
upports code generation for such hierarchical combined AADL and DEVS models. The modeled Isolette Thermostat System (see
ection 5) is replicated and used to create a hierarchical coupled model having twelve coupled models, each of which has two
oupled models containing three atomic models. From the AADL perspective, the model has four layers. The topmost layer has
2 processes, each of which has 2 thread groups with each having 3 threads. This AADL-DEVS model has 108 components, out of
hich 72 are atomic models with the rest being coupled models. The code generation for the AADL-DEVS models for the DEVS-Suite

imulator takes a few seconds on a 64-bit Windows 10 OS and Eclipse LUNA IDE with i7-5500U@2.4 GHz processor and 4 GB of
emory.

. The isolette thermostat system: An example

This section presents the use of the AADL-DEVS framework for modeling and simulation of a part of the Isolette Thermostat
10

ystem, an infant incubator described comprehensively in the Requirement Engineering Management Handbook (REMH) published
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Fig. 3. Manage Regulator Interface component.

by the Federal Aviation Administration (FAA) [12]. This system serves to demonstrate the application of the proposed AADL-
DEVS methodology and its realization for non-trivial time-sensitive and safety–critical systems. The Manage Regulator Interface, a
computational sub-system of the Isolette system referred, is briefly introduced. In the following subsections, this sub-system is used
to describe step-by-step combined AADL-DEVS model specification and code generation for selected data, structure, and behavior
snippets (refer to [20] for a complete exposition).

As illustrated in Fig. 3, the Manage Regulator Interface obtains the Desired Temperature Range, Current Temperature, and
Regulator Mode and reports back the Regulator Interface Failure, Desired Range, Regulator Status, and Display Temperature.
It is further divided into four parts; Interface Failure, Display Temperature, Regulator Status, and Desired Range to manage the
respective controlled and internal variables of the Isolette Thermostat system. For brevity, only the details of the data and functional
requirements and architectural modeling & code generation (for DEVS-Suite) of the Display Temperature (as atomic component)
and the Manage Regulator Interface (as coupled component) are described in this section. A complete set of the variables used in
the Manage Regulator Interface are specified in section 4.1 in [20].

For the Display Temperature component, the variables Regulator Mode of type enumeration (with possible values Init, NORMAL,
FAILED), Current Temperature of type structure with real range (68.0..105.0) and status (with possible values Init, On, Failed)
elements, and Display Temperature of type integer range (68..105) are used. The Display Temperature, control variable, depends
on the Regulator Mode variable. It is the rounded value of the Current Temperature within the accuracy of 0.6 ◦F based on the
following requirements:

REQ-MRI-4: If the Regulator Mode is NORMAL, the Display Temperature shall be set to the value of the Current
Temperature rounded to the nearest integer.

REQ-MRI-5: If the Regulator Mode is not NORMAL, the value of the Display Temperature is UNSPECIFIED.

The following sections are dedicated to demonstrate model specification with code generation for the Display Temperature
sub-component and the Manage Regulator Interface component. The AADL models are extended with the DEVS Annex and then
transformed to executable code for the DEVS-Suite simulator. The AADL described below uses snippets from the OSATE example
model [10]. A complete model of the Manage Regulator Interface component with its three sub-components is provided in [20].

5.1. Structure and data modeling

The graphical AADL model of the composite Manage Regulator Interface component is depicted in Fig. 4. Based on the functional
requirements to set controlled and internal variables, the architectural model consists of three threads which are combined
into a thread group manage_regulator_interface. The thread manage_status is specified to model Regulator Status. The thread
manage_display_temperature, specified for the Display Temperature, is described below. The Desired Range and the Regulator
Interface Failure are specified as a single thread named manage_interfaceFailure_desiredRange. The structure and data models
for these threads are provided in Section 5.1 of [20].

The type classifier of Listing 1 declares the input and output interfaces of the manage_display_temperature thread component.
The input data ports regulator_mode receives the regulator mode and current_temperature receives the current temperature from
11
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Fig. 4. Manage Regulator Interface AADL model.

Listing 1: Specification for Manage Display Temperature Component
thread manage_display_temperature
features
regulator_mode: in data port Iso_Types::regulator_mode;
current_temperature: in data port Iso_Types::current_temperature;
display_temperature: out data port Iso_Types::display_temperature;
unspecified_temp : out data port Iso_Types::unspecified_value;

properties
Dispatch_protocol => Periodic;
Period => 100 ms;

end manage_display_temperature;

the Manage Regulator Mode component. The output data port display_temperature has the temperature to be displayed. The
output data port unspecified_temp has either ‘‘UNSPECIFIED’’ when the Regulator Mode is not Normal or nothing otherwise.2 The
properties section specifies that manage_display_temperature is a Periodic thread with execution period of 100 ms.

Properties for these data types are defined using the Data Model annex. For example, the Data component current_temperature,
as shown below, specifies the Current Temperature as a structure with two elements; t to represent the temperature value, and
status to represent the status value.

data current_temperature
properties
Data_Model::Data_Representation => Struct;
Data_Model::Element_Names => ( "t" , "status ");
Data_Model::Base_Type => (classifier (Iso_Types::measured_temperature_range),

classifier(Iso_Types::valid_flag));
end current_temperature;

Listing 2 presents the extracts from the type and implementation classifiers specified for the manage_regulator_interface thread
group component (see Fig. 4). Interfaces (e.g., current_temperature and display_temperature) are defined in the features section
of the type classifier to establish EIC and EOC for the coupled component in the connections section of the implementation classifier.
Section subcomponents has references to the respective implementation classifiers of the thread components. For example, the
instance with manage_display_temperature is a reference to the thread implementation manage_display_temperature.impl. Similar
identifiers are used to aid with understandability. A complete data modeling for the coupled component manage_regulator_interface
is presented in Section 5.1 of [20].

Listing 2: A Partial Specification of the Manage Regulator Interface Component and Implementation
features
current_temperature : in data port Iso_Types::current_temperature;
display_temperature : out data port Iso_Types::display_temperature;
...
subcomponents
manage_display_temperature: thread manage_display_temperature.impl;
...
connections
EOC5 : port manage_display_temperature.display_temperature ->display_temperature;

2 The external data components, ports, and variables are defined within the scope of Iso_Types and imported using the AADL with clause (see [20])
12
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5.2. Behavior modeling

This section describes component behavior modeling with the DEVS Annex (DA). The implementation classifier of
anage_display_temperature thread annotated with DA subclause is explained in detail while the implementation classifiers of
he other two threads, specified following the same method and not shown here, are completely described in Section 5.2 of [20].

The DA subclause of the implementation classifier specifies the detailed behavior of the manage_display_temperature thread
component (see Listing 3). In the variables section, the variable rgm with initial value INIT is of type regulator_mode and represents
the regulator mode. Variable crt is of type current_temperature with initial value 68.0 for the first element and Valid for the second
element. The variable ust is of type Boolean with the initial value false and is used as a flag to indicate the unspecified temperature
according to REQ-MRI-5. The variable pd is of type Float and is set to 100.0, representing the period of the thread. The variable
unspecified_value is defined to transmit unspecified_value when required.

Listing 3: Specification for Manage Display Temperature Component Implementation
thread implementation manage_display_temperature.impl
annex devs {**

variables
rgm : Iso_Types::regulator_mode => "INIT " ;
crt : Iso_Types::current_temperature => (68.0, "Valid ");
ust : Iso_Type::Bool => false;
pd : Base_Types::Float => 100.0;
unspecified_value : Iso_Types::unspecified_value => "unspecified_value " ;

states
Start: initial 0.0;
Chk_Mode: pd;
Set_Vars: 0.0;

behavior
deltint [ Start ]-> Chk_Mode {} ;
deltint [Chk_Mode]-> Set_Vars {};
deltint [Set_Vars]-> Chk_Mode {};

deltext [Chk_Mode, regulator_mode?rgm]-> Chk_Mode {};
deltext [Chk_Mode, current_temperature?crt]-> Set_Vars {

"if(rgm.getv() == \ "NORMAL\ ")
{ust.setv(false);}

else if(rgm.getv() == \ "INIT \ " || rgm.getv() == \ "FAILED\ ")
{ust.setv(true)} "

};

outfn [Set_Vars, (ust != true)]-> display_temperature!crt.t {};
outfn [Set_Vars, (ust == true)]-> unspecified_temp!unspecified_value {};

intest [regulator_mode, "NORMAL "];
intest [regulator_mode, "INIT "];
intest [regulator_mode, "FAILED "];
intest [current_temperature, (102.0, "Valid " )];

**};

end manage_display_temperature.impl;

The states section in Listing 3 contains the declarations for the admissible states of the manage_display_temperature thread.
The Start state with 𝑡𝑎 = 0.0 is an initial state and represents an instantaneous starting state. The state Chk_Mode with 𝑡𝑎 = pd is
a transient state declared to update the variable ust based on the regulator mode. The state Set_Vars is also an instantaneous state
with 𝑡𝑎 = 0.0. The state variables ust and Set_Vars are used for generating outputs.

In the behavior section, three deltint state transitions are specified. The first state transition has Start as the source state
and Chk_Mode as the destination state. The second and third state transitions are similarly defined. The empty braces indicate no
behavior is required to be specified.

Two state transitions deltext associated with two input messages and Chk_Mode as the source state are defined. One has Chk_Mode
as destination state while the other has Set_Vars as the destination state. The external message used in the first state transition
specifies that the message received on the input port regulator_mode is stored in variable rgm while the second state transition
specifies the message received on the input port current_temperature is stored in the variable crt. No other behavior is defined
for the first state transition. The second state transition contains the additional behavior defined as an if-else statement for setting
a value for the ust variable. If the Regulator Mode is Normal, then the variable ust is assigned true otherwise it is assigned false
to satisfy the requirements REQ-MRI-4 and REQ-MRI-5.

Two output functions outfn are specified for the Set_Vars state. For the first output function, the value of the first element t,
temperature range, of the crt is transmitted through the display_temperature output port if the condition (ust != true) holds as
per requirement REQ-MRI-4. The second output function is specified for requirement REQ-MRI-5 and transmits unspecified_value
through the output port unspecified_temp if the condition (ust == true) holds.
13
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Listing 4: Code Snippet of Generated Data Class for current_temperature
package Iso_Types;

import GenCol.*;
import structuredEntities.*;

public class current_temperature extends entity {

private DoubleRange t = new DoubleRange(68.0, 105.0);
private String status;

public current_temperature() {

}

...
}

In Listing 3, three test input intest declarations are specified to provide test inputs for the regulator_mode input port with all
ossible values ‘‘NORMAL’’, ‘‘INIT’’, and ‘‘FAILED’’. One test input declaration is defined for the current_temperature input
ata port with values (102.0, ‘‘Valid’’). The first element in this composite value represents the current temperature while the
econd element represents the status of the current temperature.

In AADL, behavior of a composite component is defined strictly by the behavior of the subcomponents and the connection
etween them. Thus, the implementation classifier specification of the manage_regulator_interface in Listing 2 has no DA
ubclause.

.3. Code generation for DEVS-suite simulator

This section specifies code generation using the AADL to DEVS CoDE generation Engine (ADCoDE) as explained in Section 4.
odes are generated for one thread component manage_display_temperature and the thread group component
anage_regulator_interface as examples of the atomic and coupled parallel DEVS models. Code generation for the other two
hread components, completed using the same method, is not included for brevity. The generated code for these can be found in
ection 5.3 of [20].

Data classes are organized in a package Iso_Types with the same name as the AADL file containing the data components modeling
he data types while the model classes are organized in the package Model. The name of every model is extended with ‘‘_sim’’ to
ark it as one that can be simulated.

rimitive and composite data. Listing 4 presents the code snippet of class current_temperature generated for data type Current
emperature (specified as the data component current_temperature) using Algorithm 1. It extends the DEVS-Suite Java class entity
nd has two private variables. The variable t is of type DoubleRange with 68.0 and 105.0 as minVal and maxVal, respectively. As

AADL enumeration is mapped to String in Java, the variable status has type String.

Parallel atomic and coupled DEVS models. Listing 5 contains the excerpt of the model class for the thread manage_display_temperature
using Algorithms 2 and 3. Defined in the package RegulateTemperature (which contains all the data and model classes), the
class manage_display_temperature_impl_sim imports the packages structuredEntities and Iso_Types that contain DEVS-Suite
extension and the generated data classes, respectively (not shown in Listing 5). The rest of the imports declarations are required for
the DEVS-Suite simulator.

The input and output ports and the test inputs are added as addInport, addOutport, and addTestInput (e.g., regular_mode,
display_temperature and current_temperature(102.0, ‘‘Valid’’)).

The internal transition function deltint has a control structure with the method phaseIs to map the internal transition functions
defined in Listing 3. For example, if the phaseIs(‘‘Start’’) (i.e., the current state is Start), the destination state changes to
Chk_Mode with ta = pd.

The external transition function deltext in Listing 5, is generated for the external transition functions defined in Listing 3 and a
control structure provided in the DEVS-Suite simulator. As shown, if the phaseIs(‘‘Chk_Mode’’) and a message is received on the
regulator_mode input data port, the content of the message is traversed using the method messageOnPort and the last examined
value is set for the rgm variable. The control stays in Chk_Mode for pd time units.

Listing 6 contains code snippet of generated model class for the respective thread group manage_regulator_interface. In the
package RegulateTemperature, the manage_regulator_interface_impl_sim class extends the ViewableDigraph with the required
input and output ports specified in Listing 2.

Three instances (e.g., manage_display_temperature) are generated for the already generated 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐 classes. The
input and output ports extracted from the atomic models are added using the addInport and addOutport methods. All the test
14
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Listing 5: Generated ViewableAtomic Model Class for manage_display_temperature_impl

...

public class manage_display_temperature_impl_sim extends ViewableAtomic {

private current_temperature crt = new current_temperature(68.0, "Valid ");
...
public manage_display_temperature_impl_sim(String name) {

addInport ( "regular_mode ");
addOutport ( "display_temperature ");
...
addTestInput ( "current_temperature" , new current_temperature(102.0, "Valid"));
...

}

public void deltint() {
if (phaseIs ( "Start ")) {

holdIn ( "Chk_Mode" , pd.getv());
}
...

}

public void deltext(double e, message x) {
Continue(e);

if (phaseIs ( "Chk_Mode ")) {
for(int i=0; i<x.getLength(); i++) {
if(messageOnPort(x, "regulator_mode" , i)) {
rgm = (stringEnt) x.getValOnPort ( "regulator_mode" , i);
holdIn ( "Chk_Mode" , pd.getv());

}
}

}

public message out() {
message m = new message();

if (phaseIs ( "Set_Vars "))
{

...
}

}
}

input ports are also extracted from 𝑉 𝑖𝑒𝑤𝑎𝑏𝑙𝑒𝐴𝑡𝑜𝑚𝑖𝑐 classes and added using the addTestInput method. For example, in the
addTestInput(‘‘regulator_mode’’, new stringEnt(‘‘NORMAL’’)), the input port regulator_mode can accept the value defined
as new stringEnt(‘‘NORMAL’’), which is an instance of the stringEnt class. All the required addCoupling methods are then
enerated for the external input and external output connections (EICs and EOCs) specified in the implementation classifier of
he manage_regulator_interface thread group. Note that there are no internal connections since the Interface Failure and Desired
Range sub-components in the Manage Regulator Interface component are specified as a non-decomposable thread.

. Simulation using DEVS-suite

The Manage Regulator Interface model developed in the AADL-DEVS environment can be simulated in the DEVS-Suite simulator.
he componentized visualization of the Manage Regulator Interface function is depicted in Fig. 5. This is a hierarchical model that
as three atomic models. This model has input and output ports with external input and external output couplings. The three
tomic models produce two output messages; these are compound DEVS-Suite data types. The output events, shown in Fig. 5,
re due to the coupled model receiving simultaneously inputs on the test input ports current_temparature, regulator_mode, and
pper_desired_temperature. Defining, conducting, and evaluating simulation experiments for the Manage Regulator Interface model
re outside the scope of this paper.
Atomic Model Simulation: The DEVS-Suite simulator has two simulation protocols supporting the execution of atomic and coupled

odels. The atomic simulator protocol defines the order of executions of the external, internal, confluent, and output functions
f any atomic model. For example, considering the manage_display_temperature atomic model, once an event is received on

the regulator_mode input port, the external transition function retrieves and evaluates its value to set the value of the display
temperature. When the value of the received input event is NORMAL, manage_display_temperature is set to Set_Vars (see Listing
). Since sigma for processing the external events is 0.0, the output event 68.0 (current temperature value modeled with cVal of
oubleRange element t of variable crt) is dispatched immediately on the display_temperature output port.

Fig. 5 shows the simulation result when the manage_display_temperature atomic component receives the temperature 102.0 via
he current_temperature input port through test input declaration (see Listing 5). After the dispatching of the output, the phase
15
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Listing 6: Generated ViewableDigraph Model Class for manage_regulator_interface_impl

...
public class manage_regulator_interface_impl_sim extends ViewableDigraph() {

public manage_regulator_interface_impl_sim() {
super ( "manage_regulator_interface ");

ViewableAtomic manage_display_temperature = new
manage_display_temperature_impl_sim ( "manage_display_temperature ");

add(manage_display_temperature);
...
addInport ( "current_temperature ");
addOutport ( "regulator_status ");
...
addTestInput ( "regulator_mode" , new stringEnt ( "NORMAL"));
addCoupling(manage_display_temperature, "display_temperature" , this, "display_temperature ");

}
}

Fig. 5. Manage Regulate Interface Coupled DEVS model.

is set to Chk_Mode using the internal transition function. Each atomic model can be independently simulated using test input ports
such as addTestInput(‘‘regulator_model’’, new stringEnt(‘‘Normal’’)).

Coupled Model Simulation: The coupled simulator protocol is responsible for execution of all atomic and coupled models as well
as all input/output communications (i.e., transmitting events amongst to and from every eligible atomic and coupled models). The
coupled simulator delegates the execution of the atomic models to their respective independent simulators. In the first step of
the simulation depicted in Fig. 5, the test input ports are used to inject input events to the atomic models via the input ports of
the manage_regulator_interface coupled model. All atomic models can simultaneously receive their input events and execute their
external transition functions in parallel. In this step, each model’s input events are evaluated and processed (i.e., independently their
states are updated and the time for their next internal events are set). In the second step, each model’s output function followed by
its internal transition function are executed in the order given. The output events are produced and then transmitted concurrently
to the output ports of the manage_regulator_interface coupled model. For each model’s internal transition function, the state and
its time to next internal event are updated.

The coupled model manage_regulate_interface shown in Fig. 5 corresponds to the manage_regulator_interface.impl speci-
fied in Listing 2. Its atomic models corresponding to the sub-components specified in the subcomponents section. The inputs
new stringEnt(‘‘NORMAL’’) and new current_temperature(102.0, ‘‘Valid’’) are injected to the coupled model’s input ports
regulator_mode and current_temperature, respectively. These inputs are transmitted through two external input couplings to the
input ports of the manage_status and manage_display_temperature atomic models.

The On value on the output port regulator_status of the manage_status atomic model is transmitted via an external output
coupling to the output port regulator_status of the manage_regulator_interface coupled model. Similarly, the 102.000 value
on the output port display_temperature of the manage_display_temperature atomic model is transmitted via an external output
coupling to the output port display_temperature of the couple model manage_regulator_interface.

A complete set of AADL-DEVS models for Isolette (see Section 5) with corresponding Java classes automatically generated using
the ADCoDE tool, and the example DEVS-Suite models are available at https://github.com/ehah/AADL-DEVS-Framework.
16
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7. Related works

Numerous efforts, spanning a wide range of approaches, frameworks, and tools, are related to the contributions presented in
his paper in varying degrees. These existing works are the outcomes obtained by many researchers from different communities,
sually with overlapping needs and interests. Some works focus on architecture and design specifications with the aim of using
hem to build actual software-centric systems. Other researchers aim to develop architecture and design specifications for creating
imulations of actual systems. We describe a summary of the related works in relation to this paper from two overlapping aspects.
he first focuses on the frameworks purposed to develop architectural and design models systematically. The second considers
elected model development environments that support automatic code generation.
Modeling Frameworks: The developments of structural and behavioral specifications are supported by a variety of modeling

approaches and frameworks. Among these is CHARMY, a framework for iterative modeling and validation using model checking
and simulation [25]. The UML state diagrams and SPIN can be used for behavior specification and model checking. Early works
have utilized meta-programmable and model-integrated computing for virtual systems-of-systems evaluations [26].

Hybrid system modeling of the AADL models with Simulink/Stateflow has been explored [27]. The structure is modeled in
AADL, the discrete behavior is modeled using the BLESS annex, and the continuous behavior is modeled in Simulink. The AADL
Inspector proprietary software provides schedulability analysis and simulation of AADL models with MARZIN simulation engine.
Schedulability analysis and simulation of AADL models can be achieved using the Furness toolset [28]. SystemC based simulation
of AADL models is also explored in frameworks such as AADS that is developed for POSIX and lending itself to multiple RTOS [29].

Event-driven simulation of AADL models is supported using ADeS tool; an Eclipse plugin for OSATE [30]. DEVS simulation
is also used with AADL for verification of TT-Ethernet modeled using AADL [13]. The use of the DEVS modeling is advocated
for AUTOSAR [31], a standard for automotive software architecture [32]. The research demonstrates simulating safety–critical
component models for controllers operating DC motors of an electronic control unit. It describes the use of hierarchical DEVS
models a power window case study [33] and co-simulation for deployment purposes.

Compared to these approaches, the proposed AADL-DEVS framework is grounded in combining the AADL and DEVS modeling
methods. A first prototype of the DA supporting logical-time simulation using the DEVS-Suite simulator is developed as a plugin for
OSATE [19]. The DA provides a basis for combined static and dynamic testing, verification, and validation. From the simulation
standpoint, the time constraints defined for the AADL-compliant model can be used to extend the DA grammar to support Action-
Level, Real-Time DEVS (ALRT-DEVS) [34,35] modeling formalism. Such an extension can support simulation under real-time
constraints defined in the model and enforced by the DEVS-Suite simulator’s host computing platform [6]. The Constrained-DEVS
models can be specified and model checked using the DEVS-Suite simulator [36].

Code Generation Tools: One of the goals of Model-Based Engineering (MBE) is to support code generation at various stages of
system model development. A syntax-compliant code skeleton is generated for a target programming language for implementation
or the source models are filtered to generate specific constructs to enable analysis/simulation using a particular tool. For example,
different Architecture Description Languages can be used to generate code for requirement validation and system implementa-
tion [37]. Considering DEVS models, they can be translated to code for target simulators (e.g., EMF-DEVS [38], DEVS Natural
Language (DNL) [3], and [39]). Ptolemy, based on the Actor Model, is a modeling and simulation tool supporting C-code generation
for RTOS [1]. Nonetheless, automatic code generation from hybrid design specifications remains challenging, especially as model
complexity grows.

The AADL and Simulink models are translated to C language code and then manually combined with communication code
annotations for co-simulation [27]. A framework for automatic code generation from architectural specification, with different views,
for situational-aware CPS is proposed in [40]. The executable code, generated through model transformations, is simulated using
CupCarbon for power consumption and traffic load analysis. Other exemplar studies proposing different frameworks for self-adaptive
systems [41,42], building adaptive web Applications [43], concern-driven modularity measurement [44], and service-oriented
embedded systems [45].

Studies investigating code generation from AADL models are more closely related to our work. The OSATE, a realization of the
AADL in the Eclipse framework, enables the development of plugins and tools for code generation. An example is the code generator
for Ravenscar Profile restriction on architecture models with the OCARINA tool-suite [46]. The generated C and Ada code are used
for schedulability and safety analyses. RAMSES is proposed and developed for automatic code generation for different operating
systems [47].

System-level co-simulation of integrated systems with Polychrony is studied in [48]. The synchronous sub-set of AADL with
Simulink can be exploited for functional behavior modeling while the system-level architecture is modeled using AADL. Automatic
code generation without human intervention, for example in C language, is a key aspect of MBE [49]. Respective code is
automatically generated for the AADL process, thread, sub-program, and data components. Template-based code generation can
be exploited to facilitate multi-platform execution [50]. Rules are defined for code generation for different object platforms based
on predefined templates. Code can be generated from AADL models based on model transformation with Model-driven Architecture
methodology for a Real-time Operating System (RTOS) [51].

Considering the above approaches and frameworks, code generation in the AADL-DEVS framework is for simulation needs. Java
code, compliant with the DEVS-Suite simulator, is generated from the combined AADL and DA specifications. Required data and
model classes are generated for data types (specified using data components) and software components, respectively. Structural
code is generated using the interface specification in the AADL type classifier, while the behavioral code is generated for different
17
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8. Conclusion and future work

Systems that have time-sensitive and safety–critical computational components are pervasive. Due to their high degree of
omposing components, the development of such systems is challenging. To help with satisfying this need, we have presented
methodology for developing combined AADL and DEVS specifications powered with code generation supporting discrete-event

imulation. The core AADL is extended with the DEVS Annex for behavior modeling and simulation. The OSATE supported with
n annex for parallel DEVS with implementation in DEVS-Suite simulator and ADCoDE results in automating the development of
ime-based models and simulating them. Such models play a key role in the analysis and design of many complex dynamical systems.

Future work includes using the DEVS Annex for modeling and simulating systems such as Transactive energy and automotive
ransportation. Toward this goal, one future work is on the capability for the combined AADL and DEVS Annex models to be
imulated in real-time, in addition to logical-time. Another direction is to support continuous behavior modeling and simulation
n the mold of the DEVS Annex. These research topics should aid in developing, simulating, and evaluating the architectures and
esigns of system-of-systems that must satisfy accurate time and safety requirements.
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