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Abstract: With the development of cloud computing (CC), service-oriented architecture (SOA), and 

container technology, modeling and simulation (M&S) resources, such as simulation software and 

different sorts of models, can be shared and reused in a cloud environment. Modeling and Simulation as a 

Service (MSaaS), as a new paradigm, supports sharing simulation models or modeling tools and has 

enabled a wide range of model reuse. However, reusing or combining some immature models may result in 

inefficient M&S activities or even false simulation results. To make sure the appropriate reuse and 

composition of simulation models in cloud environments, which is also termed as model service 

composition for simulation (MSCS), this paper incorporates model maturity with service cooperation as a 

metric to evaluate the quality of model composition in cloud. Then, as a multi-objective optimization 

problem with multiple constraints, the MSCS problem and its process are described in detail. To solve the 

MSCS problem, a novel evolutionary algorithm named CA-AO-NSGAII is proposed. In the algorithm, 

adaptive crossover and mutation operators, as well as probabilistic initialization are developed. 

Furthermore, a half-local search algorithm in an elitist mechanism is designed for efficient 

decision-making. To validate the performance of CA-AO-NSGAII, experiments with respect to four 

different cases are conducted. Results show that the proposed method for addressing MSCS issue is 

effective and feasible. 

Key words: Modeling and Simulation (M&S), Cloud Computing, MSaaS, Model Service Composition for 

Simulation (MSCS), Model Maturity, Evolutionary Algorithm 

1. Introduction 

In recent years, with the rapid increase of simulation scale and simulation requirements, the number 

of simulation models and simulation systems is gradually expanding, accompanied by high cost, 

inefficiency, low quality and reliability in the development of models and simulation systems. Model reuse 

is an effective way to solve the above problems, and model composition is one of the most used ways to 

realize model reuse. In order to achieve the composition of models in the simulation field, from the earliest 

DEVS (Discrete Event System Specification) architecture [1, 2] to the current service-oriented architecture 

(SOA) for model development [3], the study of model composition has experienced a long time. However, 

it is still a difficult and hotspot problem. So far, the current trend is that the simulation models are 
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combined as cloud services to fulfill the different simulation requirements. And there are lots of 

architectures and patterns to implement the composition and reuse of simulation models with the 

combination of SOA and cloud computing, such as Web-based Simulation (WBS) [4], Cloud-based 

Simulation (CSim) [5], Cloud Simulation Platform (CSP) [6], Modeling and Simulation as a Service 

(MSaaS) [7], Simulation Software-as-a-Service (SimSaaS) [8], etc. These paradigms can unify and 

effectively manage the decentralized modeling and simulation (M&S) resources, use and share them 

on-demand at multiple granularities in the form of M&S services, especially model services. 

Currently, the most widely used and studied pattern is MSaaS. There are mainly four paradigms in 

MSaaS: modeling as a service, model as a service, V&V as a service, and simulation as a service. 

Meanwhile, many platforms with MSaaS patterns are developed to provide coarse-grained and 

fine-grained M&S services. This paper mainly focuses our research on the paradigm of model as a service, 

which means that users can share simulation models in the cloud by accessing them through services. As 

the granularity of services in cloud becomes more and more refined, simulation models become more and 

more single-function and precise. Meanwhile, selecting reliable, high-quality, and mature model services 

from the candidate model services and putting them together in a specific process to accomplish a 

simulation task efficiently, i.e., model service composition for simulation (MSCS), becomes an important 

issue. 

Issues of service composition in cloud manufacturing and other cloud environments exist as well. The 

difference is that MSCS needs to take into account the state of models at a given moment. Furthermore, the 

model service composition is usually temporally and spatially consistent, concurrently interactive, and 

collaborative. In addition, the model service composition needs to maintain a consistent interface between 

model services and configure the simulation engine to run simulations on one RTI (run time infrastructure) 

based on time or event. In addition, the credibility of the combined model services also needs to be 

evaluated. Therefore, there is more need to study the specific processes of MSCS from both functional and 

non-functional perspectives. 

Before composition, model credibility is a metric commonly used to assess the quality of one single 

model. After composition, it is very difficult to accurately determine the credibility of a combination model 

based on every single model's credibility. More importantly, model credibility might change as demands 

change when models are reused in the form of model services. Model maturity [9] is an important 

complement to evaluate the model quality. It assesses the model's whole lifecycle process (model 

construction, model use, and model management), and is a suitable metric to evaluate the quality of models 

in MSCS. It considers the model standardization, portability, scalability, and other features that have an 

important impact on model use and reuse, which model credibility does not address. Model maturity does 

not change with demands exactly but changes with time and model evolution, which is well suitable for the 

QoS evaluation of MSCS. Compared to other common QoS metrics (e.g., time, cost, reliability, etc.), 

model maturity can highlight the differences between candidate model services, which allows us to 

identify appropriate combinations of model services more efficiently. Therefore, this paper considers the 

issue of MSCS based on model maturity from the non-functional perspective. 

Due to the diversity and complexity of the simulation process in SoS (system of systems) [10], 

simulation tasks can be classified into two categories: 1) single simulation service request task (S-SSRT), 

which can be completed by invoking only one model service. 2) multiple simulation request task 

(M-SSRT), which has to be completed by invoking several model services to execute simulation together 

in a particular sequence with one RTI or simulation environment. The optimal model service selection for 

M-SSRT is more complex than the selection for S-SSRT, because of its characteristics of multi-objectives, 
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multiple constraints, and multi-candidate sub-services. M-SSRT needs large-scale model service 

composition and optimal selection (MSCOS) to give an optimal solution. So MSCOS, just as service 

composition and optimal selection (SCOS) problem [11], is a typical NP-hard problem with dynamic, 

complexity, and uncertainty characteristics. Consequently, MSCS, as one of the MSCOS issues, is also an 

NP-hard problem. 

However, most research and commercial applications in MSCOS mainly focus on functional 

composition, such as architectures, middleware, and simulation tools or platforms for model service 

composition. Furthermore, most of the service composition and optimal-selection approaches neglect the 

relationship among model services and do not consider the characteristics of the model composition in 

simulation. There are still three main issues that need to be addressed, which are as follows: 1) The process 

of simulation-oriented model service composition is different from the process of service composition in 

cloud manufacturing or other cloud computing services. There are no explanations or descriptions about 

the process and characteristics of the model service composition for simulation in detail. 2) There is no 

consideration about the cooperation relationship between the model services in the MSCS problem for 

simulation requirements. 3) Existing common QoS properties (e.g., Simulation execution time, Simulation 

Cost, Simulation Result Reliability, etc.) are not suitable for the evaluation of the MSCS problem. 

With the consideration of the above issues, the process of model service composition in cloud for 

simulation application requirements is illustrated in detail. A simulation model service scenario in the 

medical area considering the cooperation relationship between the model services in MSCS is given. 

Furthermore, a new intelligent evolutionary algorithm named cooperation-aware NSGA-II algorithm using 

adaptive crossover and mutation operators (CA-AO-NSGA-II) is developed for solving MSCS issues 

based on model maturity. In this algorithm, the probabilistic initialization population algorithm is 

introduced to speed up the convergence of the algorithm. Then, the local search algorithm and adaptive 

crossover and mutation operators are designed to increase Pareto fronts and improve the quality and 

convergence speed of the optimal solution. The experimental results demonstrate that the 

CA-AO-NSGA-II provides better feasible solutions of the model service composition in cloud with lower 

time consumption for solving the MSCS issue with two objectives, especially as the number of cooperation 

constraints and subtask increases. 

The key contributions of this work are as follows:  

• This paper introduces model maturity as a metric for QoS evaluation to provide a comprehensive 

assessment of the whole lifecycle of the simulation model in cloud environments, 

• This paper employs the cooperation relationship between model services as a parametric indicator to 

dynamically calculate the value of the overall maturity of the combined model, 

• This paper proposes an improved algorithm based on NSGA-II to solve the MSCS issue for the 

composition and optimization selection of model services in cloud environments. 

The rest of this paper is organized as follows. In Section 2, related works about model composition in 

simulation, MSCS, and some multi-objective evolutionary algorithms for solving MSCS issue are 

reviewed briefly. In Section 3, the process of model service composition in cloud, and a medical simulation 

application scenario are described. Then, the formulation of the multi-objective MSCS is given in Section 

4. Furthermore, a novel algorithm termed CA-AO-NSGAII for solving MSCS based on model maturity is 

proposed in Section 5. Section 6 presents experiment results and analysis to show the feasibility and 

effectiveness of the proposed method. Finally, conclusions and future works are summarized. 

2. Related Work 

There are mainly two directions for the model service composition and optimization research, i.e., 
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whether the model services can be combined, and whether the combined services can satisfy the 

expectations. The corresponding methods usually are, a. filtering the model services from the perspective 

of syntax or semantics, i.e., functional composition. b. Using QoS methods to judge whether the combined 

effect has achieved the expected demands, i.e., non-functional composition. The related research work will 

be briefly reviewed from the following three aspects. 

2.1 Model Composition in Simulation 

The research is mainly carried out from three aspects: model description language, modeling methods 

for model composition, model composability validation. From a perspective of a description language, 

Zeigler et al. [1] proposed discrete event system specification (DEVS), and gave the description of the 

atomic model and coupled model, which are used to build top-down hierarchical structures to construct 

composable models. Friedenthal et al. [12] provided a practical guide to SysML, a unified system 

modeling language. Generality and extensibility features make the models built through the language 

highly composable. From a perspective of modeling methods for model composition, Tolk et al. [13] 

proposed a conceptual interoperability model from the perspective of simulation model interoperability 

and divided the interoperability into five levels according to the nature of the exchanged data and the level 

of standardization of the interface, and then performed hierarchical modeling of model composition. 

Wittman et al. [14] proposed the product line architecture framework (PLAF), which incorporated the 

application, product, and component layers, and provided a combining mechanism to combine different 

product components into composite product components, such as simulation models. In the validation 

perspective, Pitty et al. [15] proposed semantic composability theory (SCT) to integrate simulation 

components into new simulation applications. SCT validates if model combinations are accurate from a 

syntactic and semantic perspective.  

In addition, from other perspectives, Kang et al. [16] proposed a composition model based on 

hierarchy color Petri net (HCPN) to model command and control procedure of surface air defense by 

reusing existent simulation models. Alpdemir [17] proposed SiMA: a simulation construction environment 

that supports simulation models' composability through a simulation construction toolchain. Mittal [18] 

designed DEVS/SOA architecture, which provides the crucial feature of run-time composability of coupled 

systems using SOA. Pitty et al. [19] designed different software frameworks for model composition, which 

are intended to simplify assembling a complex model or simulation system to promote the reuse of the 

component models. Cayirci [7] surveyed the MSaaS architectures and deployment strategies, and gave the 

differences between MSaaS and software as a service. 

From the above research, we can see that from the functional composition aspect, select and match 

the right models that can be combined usually using methods of semantic composability of model services, 

interoperability of model services, and validation of model service combinations. However, few studies 

give the specification on the non-functional requirements of the model composition. They are studied 

mainly from the perspective of whether the syntax or semantics of models meet the requirement of 

composability. Moreover, the form of the model composition has also transitioned from an SOA-based 

architecture to a cloud-based model service composition. 

2.2 Model Service Composition in Cloud 

Many techniques and methods, such as architectures, middleware, and simulation tools, are used to 

determine whether or not model services are composable from a functional perspective. Among them, most 

researches have been done on MSaaS. Taylor et al. [20] presented business models based on CloudMSE 

platform experiences supporting MSaaS, which can provide simulation services. Wang et al. [21] built an 

MSaaS middleware called CloudRISE to simplify the management of a variety of M&S resources. 
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Bocciarelli [22] designed an available MSaaS platform named SOASim based on microservice to achieve 

a fine-grained combination of model resources. Wainer [23] et al. gave a novel architecture MAMSaaS. 

Wang [24] also introduced an architecture named SAMSaaS to deploy and compose M&S resources as 

services, so as to improve model reuse through model composition based on semantic.  

In model service composition research, the concept, architecture, and technical implementation of 

MSaaS are becoming more and more mature. However, there is no specific optimal algorithm for the 

combination of model services in MSaaS. Most of the literature focuses on connecting and collaborating 

between model services from a technical or architectural perspective. It does not give much researches on 

model service composition algorithms from the QoS perspective. Model services are different from 

manufacturing services and computing services, which have their features and characteristics. They should 

be studied based on the differences between them, under different constraints, to provide high-quality 

model services. Considering the above situations, the process and a model for MSCS from the perspective 

of QoS based on model maturity are conducted in detail in the following sections. 

2.3 Service Composition and Optimal-Selection Algorithms 

In recent years, cloud service composition has drawn much attention mainly to its architecture 

(Graph-based, agent-based service composition, WS-BPEL), dynamically composition and 

optimal-selection algorithms, and services correlation relationships. Some researches and results have been 

achieved. From the perspective of composition and optimal-selection algorithms, Alrifai et al. [25] 

proposed a hybrid approach that decomposed the best of global QoS constraints into local constraints with 

mixed-integer programming to address optimal problems. Chhun et al. [26] presented a QoS ontology with 

functional and non-functional properties for service selection and reuse. Liang et al. [27] proposed a 

logistics-involved QoS-aware DRL-based CMfg-SC, and designed a dueling Deep Q-Network (DQN) with 

prioritized replay named PD-DQN, which demonstrated the effectiveness and advantages of DRL in 

solving the CMfg-SC issue. From the perspective of services correlation relationships, Wang et al. [28] 

considered two composability-oriented and quality-oriented correlations, and proposed a many-objective 

algorithm named HypE-C to solve CASC problem in cloud manufacturing. Deng et al. [29] proposed a 

novel method of service selection called the cooperation-aware service pruning (CASP) to manage QoS 

correlations by accounting for all services. Luo et al. [30] proposed a business correlation framework in the 

ecosystem. 

Hence, the solution for optimal selection of service composition is primarily based on QoS evaluation 

methods and metrics, and the effectiveness of the combination also depends on the selection and 

appropriate improvements of the evolutionary algorithms.  

However, there are no optimal algorithms about solving MSCS issue to address the simulation 

requirements. Furthermore, few studies specify how the cooperation and constraints affect the feasibility 

and quality of the model service composition in simulation application fields. Therefore, we leverage a 

service composition optimization approach to address the problem of MSCS based on model maturity and 

consider the cooperation relationship between model services to select a more suitable model composition 

that meets the simulation requirements. 

3. The Process of Model Service Composition in Cloud for Simulation and Application 

Scenario 

3.1 The Process of Model Service Composition in Cloud for Simulation 

According to the report about MSaaS described by NATO MSG-131 [31], there are various kinds of 

services for simulation, including modeling services, V&V services, model services, and simulation 
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application services, and so on. All of these services for simulation are submitted by service suppliers who 

own many simulation resources. In this paper, we only consider the model services for simulation. 

Generally, one model service can fulfill the demands of one single simulation task. However, it cannot 

execute a complex simulation task, which needs several different model services to be combined to 

complete a complex or a system-level simulation requirement. The more single function the model has, the 

more efficiently the model runs. Fig.1 shows the process and framework of model service composition in 

cloud environments, and the cloud service platform contains three main functional modules: Model service 

certification and storage(C&S) module, Task decomposition, service matching and 

optimal-selection(D&M&O-S) module, and Model service deployment and execution (DP&E) module. 
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Figure 1. The process and framework of model service composition in cloud 

 

 Model Service Certification and Storage(C&S) 

The module of model service certification and storage (C&S) performs the authentication and storage 

of model service resources. After model resource servitization, the models uploaded by MSP need to be 

certified usually by a third-party authority to check whether it can meet specific quality standards, whether 

it can perform certain functions, and whether it is credible. After certification, the models will be stored 

into the model service repository in cloud with different granularity (e.g., conceptual model, meta-model, 

domain model) or classification of different functions to form model service candidate sets. At the same 

time, the data, runtime, and contextual information related to the models are also stored. 

 Task decomposition, service matching and optimal-selection(D&M&O-S) 

Firstly, the task or requirement description submitted by MSU should be decomposed, the 

decomposition process needs to go through the process of functional requirements analysis, process 

requirements analysis, and finally form an abstract combination of services, i.e., subtasks 

*            + . Then, through service matching techniques such as similarity computation, 

interface/function matching, process matching, and semantic matching, the corresponding candidate 

sub-services *               + are selected for each subtask from the candidate service sets stored 
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in the model library. Finally, selecting the specific model services {   
       

       
 
} that meet the 

user's demands by a service composition and optimal algorithm based on different optimization objective 

functions. 

 Model service deployment and execution (DP&E) 

After forming a model service composition solution or path, the model service needs to be deployed 

and configured. The deployment optimization algorithm specifies which nodes are assigned to which 

model services and the relevant operating parameters of the model configured. Each node host is deployed 

to run several different model service mirrors using container technology to get the final computation 

result. In addition, before the entire simulation run, model transformation (e.g., PyBPMN-to-UML, 

SysML-to-HLA, HLA-to-Code, etc.), which is used to generate models as well as the code that implements 

executable services from abstract models is required, so as to ensure the uniform and regular operation of 

the entire combined model services. Each model service is deployed on cloud infrastructure or middleware 

like SOASim [32], CloudRISE [21] to make them better operated and supervised. Finally, the orchestration 

service is deployed to properly manage the execution of the simulation models with one RTI or some 

simulators [33]. MSO is responsible for monitoring the operational status of the model services and 

managing the feedback of the simulation results to the MSU. After getting the results, MSU can provide 

feedback to the platform. 

In addition, we also need to perform VV&A on single or combined models. Generally, dynamic 

testing methods include spectral analysis methods and feature-based difference verification methods for 

VV&A. At the model service configuration and execution level, the platform needs to support VV&A 

activities [34] and other validation methods [35] for each model to ensure accurate interaction between 

model services and meet the simulation requirements tasks. 

In summary, we should try to upload single, fine-grained models to the platform and store them in a 

reusable model repository. It can minimize the problem of difficult reuse and combination of model 

services caused by the strong coupling with the simulation environment, the incompatibility between 

model architectures due to the complexity and versatility of the model services themselves. 

3.2 Application Scenario 

In order to describe MSCS problem more clearly, an example of simulation service scenario in the 

healthcare field based on DTH [36] is presented. As shown in Figure 2, a simulation task for healthcare 

service contains five subtasks, which need to invoke monitoring model service (MMS), examining model 

service (EMS), diagnostic model service (DMS), resource scheduling model service (RSMS), 

rehabilitation model service (RMS). Each of these five models corresponds to the main five processes that 

a complete healthcare service needs to go through, respectively. From the second to the last model service, 

each service receives input data from the previous service for processing the subtask. Finally, after a 

complete run, the user gets the final simulation results. The service demanders or users mainly include two 

kinds of people. One category is patients, who want to get some valuable suggestions through the whole 

simulation service. The other category is simulation participants, who want to get some simulation data for 

making some decisions. Each subtask can be selected from the candidate service sets stored in the model 

library in cloud with different functions. 
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Figure 2. A scenario of DTH model services composition in precision healthcare 

The purpose of model service composition is to select an appropriate model service from the 

candidate service sets for each subtask to complete one simulation task to meet the user’s requirements 

when combined and executed together. However, the candidate model services are not independent of each 

other, except that the interfaces should be identical. They must also satisfy the relevant constraints to 

combine them and serve their purpose. There are two examples shown in Figure 2. Below, we describe 

each of the three scenarios in detail. 

Firstly, in the candidate model service sets of MMS, if we choose model service b, assuming its 

provider is Amazon, and it does not cooperate with the model service provider e in EMS due to 

commercial competition or other factors, so we cannot choose model service b and model service e 

together at the same time. Secondly, if we choose model service c of EMS, and it requires the following 

service provider of DMS to provide the model with a model maturity level [9] of Level 3 or higher (e.g., 

MM>=3); otherwise, the accuracy and quality of the whole task cannot be guaranteed. Therefore, the 

selection of model services for subtasks should not only consider the static QoS metrics (e.g., time and cost) 

when they are composed, but also should record some dynamic metrics such as model maturity, multiple 

constraint relationships, and so on. And judge if they are feasible when they are selected and combined. 

In this paper, the above two kinds of relationships are termed multiple constraints, which only occur 

between two adjacent services and will not occur across services. That means the first service in a 

sequence of service composition has no constraints unless the user has constraint requirements on it. If 

there is a constraint conflict between two neighbored services, then they will not be able to be composed to 

perform a simulation task. 

4. Formulation of the Multi-Objective MSCS in Cloud 

In this section, the formulation of multi-objective MSCS in cloud from the perspective of QoS is 

presented. And due to the characteristics of the model services for simulation and the importance of the 

indicator parameters, two objectives of QoS indicators, namely model maturity (MM) and model resource 

energy consumption (ME), are selected to build the mathematical model for the MSCS problem. The 

topology of model service composition usually consists of four types, i.e., sequence, parallel, selective and 

circular. In this paper, we mainly consider the models of the sequential topology of model service 

composition. 
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Table 1: Notations and explanations 

Notations Explanations 

  simulation task submitted by users 

   𝑖 th subtask of task   

  total number of subtasks of task   

    candidate service set for the 𝑖 th subtask   
 

𝑘  The total number of candidate model services in     

   
 
 The 𝑗 th candidate service of      for the subtask    

  (   
 
) Vlue of the 𝑗 th model maturity of the     

  (   
 
) Vlue of the 𝑗 th energy consumption of the     

    Alternative service set of     

        
   

 

The index of collaborations between service     
 

 and 

service      
 

 

   
   

 

     
 

 
The number of the cooperation between service    

 
 and 

service      
 

 

    The cooperation index value of the 𝑖 th sub-service in  

the cooperation relationship matrix N*N 

Notations and specific explanations of some key terms in MSCS model are given in table 1. Let 

  *                +. denotes a simulation task in which   is the total number of the subtasks 

decomposed by cloud platform, and    is the   th (               ) subtask of  . It is assumed that 

there are    candidate model services available for   , and the corresponding candidate service set is 

    {   
         

        
 
        

  } , where    
 
 is the 𝑗  th candidate service of    for the 

subtask    .Therefore, theoretically, there are a total of ∏   
 
    possible compositions without any 

constraints. Usually, due to the enormous variety and number of services in cloud environments, using a 

brute force search to select the optimal combination is infeasible. 

In this paper, the main QoS properties of the model service we considered are, model maturity (MM) 

and model resource energy consumption (ME). Why choose the two objectives? There are four reasons for 

this.   

Firstly, for the candidate model sub-services that perform the same subtask with the same function at 

the same granularity, their cost and time are not very different and cannot effectively select appropriate 

model sub-services by those metrics for a simulation requirement. Secondly, the model services are 

verified with the VV&A operations by the certification center and then stored in the model repository to 

provide candidate model services, so the indicators such as availability, reliability, and credibility do not 

vary as much as those of cloud manufacturing services. These indicators will not change during 

implementation and even affect the final QoS evaluation. Thirdly, model maturity is an evaluation 

indicator of the whole lifecycle of a model service. Considering the multiple constraints, the differences in 

the overall model maturity exhibited by different combinations of the models can be relatively large. 

Fourth, due to the development and application of container technology and other New IT technologies, 

the simulation time to execute the model service will not be much different. However, the resource 

consumption to execute the model service will be very different, especially when the resources are 

consumed by different subtasks, which also significantly impacts the whole model composition. In 
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summary, considering the characteristics of the model service composition, two metrics, model maturity, 

and model resource consumption, are very suitable to be chosen as QoS assessment metrics for the MSCS 

issue. 

4.1 The optimization objectives and multiple constraints 

4.1.1 Model Maturity 

Model maturity is another indicator of model quality evaluation, the same as model credibility and 

model fidelity [35]. It pays much attention to record the status and changes of a model in its whole life 

cycle. It can have a better evaluation for an evolving model during the whole lifecycle of the model [9]. It 

measures how well a model meets the expected effects and application goals along with the time and 

frequency of using the model increase. With the help of an index system for model maturity assessment, 

we evaluate the process of model construction, model use, and model management, then a combination of 

qualitative and quantitative methods can be used to give the maturity value of a model at a certain stage. 

The value range of the model maturity is [0,1]. There are 5 levels to evaluate the state of a model during 

the whole life cycle named initial level, verified level, reusable level, collaboration level, optimal level, 

respectively. And the corresponding value ranges are [0,0.15], (0.15,0.3], (0.3,0.15], (0.5,0.75], (0.75,1]. 

According to this hierarchy, the models are generally at level 3-the reusable level, so all the candidate 

models in the model repository have a maturity value of at least 0.3. 

Model maturity is different from the CMMI model and SaaS maturity model [37]. The CMMI model 

emphasizes the software development capability of a software development organization, and it is a 

certification system for the management and R&D (research and development) capability of an enterprise 

or organization. The object of the assessment is the enterprise or organization. The SaaS maturity model is 

a metric for software architecture in a cloud environment. It evaluates the software architecture capabilities 

based on the metrics of configurability, high performance, and scalability to determine whether the design 

capabilities of the software architecture meet the expected results, and the object of the assessment is the 

capability of software architecture design in cloud. The object of model maturity assessment is simulation 

model, and the evolution state of the whole life cycle of the model is studied, including the model 

construction stage, the model use stage, and the model management stage. The three of them have different 

assessment targets and different scope and responsibilities of assessment. 

4.2 Model Resource Energy Consumption 

Model resource energy consumption mainly refers to the computational resource energy consumption 

of the model service to execute a simulation task using the model. The energy consumption of computing 

resources comes mainly from the occupation and consumption of CPU and memory, so ME can also be 

represented as: 

  𝐸(   
 
)   𝐸 𝑒 𝑜𝑟𝑦(   

 
)+ 𝐸𝑐 𝑢(   

 
) (1) 

The energy consumed by each model service is different with each other and multiple different model 

services could be allocated on one compute node in one host, thus, there is a need to limit the individual 

energy consumption of each model service, and in this paper, we set the ME of each model service to be 

less than 140. 

4.3 The Multiple Constraints between Model Services 

Multiple constraints between model services can have a large impact on selecting candidate model 

services, and the presence of conditional constraints in the services is consistent with the actual situation, 
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so the relevant conditional constraints need to be taken into account. This paper mainly considers two 

kinds of multiple constraint relations, as mentioned in 3.2, which are exclusion constraints and conditional 

constraints [28]. The first one: the exclusion constraint, which means model services are not combinable, 

i.e., the model service    
 
 cannot be combined with the model service      

 
 due to business conflicts 

of interest or other restrictions, (               ). The second one: conditional constraint, maturity level 

requirements, i.e., model services require that the maturity level of the next candidate services must be 

larger than 2 (or 3), that is, the maturity level must be 3 or 4 (a total of 0 to 4). 

Thus, in addition to the last service in the sequence of composite model services, each of the other 

execution services for subtasks may have 0 to 2 constraints for the following neighboring service. If 

service    
 
 for subtask is selected, and any other services in this composite service do not belong to the 

alternate candidate set     for    
 
, then, this model service composition will not be feasible. 

4.2 The Objective Function and Constraints of MSCS 

4.2.1 Objective Function 

Reducing the energy consumption and maintaining a high maturity of the model service composition 

simultaneously in the cloud is a challenging problem, especially when it goes with multiple constraints, 

which is a long-term challenge. Also, there are lots of kinds of constraints in model service composition. In 

this paper, we use a multi-objective optimization algorithm to solve the problem with the two objectives. 

Thus, MSCS problem is formalized as  

 1 2
max ( ) ( ( ), ( ))f x f x f x  (2) 

Where   ( ) denotes the value of the overall model maturity of the model service composition. 

  ( ) denotes the value of the sum of ME of the model service compositions. And   (          ) 

is the solution vector which represents one possible composite service path, and it must also satisfy the 

multiple constraints. 

In the two objectives, the positive indicator is MM, and the negative indicator is ME. We should 

convert all indicators into positive indicators so that the larger the value of  ( ), the better the overall 

effect of the model service composition. 

One of the efficient ways to solve multi-objective optimization problems is to convert multi-objective 

problems into single-objective problems and then solve the single-objective problems using the common 

methods such as Weighted Sum Method, ε-Constraint Method, and Min-Max Approach. In the paper, we 

use the linear weighting method, i.e., Weighted Sum Method, to convert this multi-objective problem into 

a single-objective problem, the fitness function  ( ) of single-objective is defined as follows: 

    
1

2

1

0 ,

* (S ) 1
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 0 ( ) 1, 1, 2, , 1, 2,

j

i i
g MM MS i N j k      

(5) 

 
0.3 ( ) 1, 1, 2, , 1, 2,

j

i i
M M M S i N j k      

(6) 

 
0 ( ) 140 1, 2, , 1, 2,

j

i i
M E M S i N j k    ，  

(7) 

Where     and      are the weights of MM and ME, respectively. And    +     .     is the 

alternative model service set of    with multiple constraints. 

If the composite service is infeasible, i.e.,        , its fitness values of the two objectives are set as 

0. Among them, N is the number of subtasks for one simulation task. Function  (  (   
 
)) in formula 

(5) represents the value of the overall maturity of the composed model services. Formula (5) and (6) imply 

that the model maturity value ranges in [0,1], and the value of MM of one single candidate model service 

must be larger than 0.3. And formula (6) means that ME of one model service should not exceed the 

maximum value. 

Due to the diversity of QoS assessment metrics, the units of each metric are different and need to be 

unified to the same interval unit to facilitate our research. In this paper, we use the critical value method to 

normalize the data, the formalization as follows. 
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  denotes q is a positive factor set including MM, while       

  denotes q is a negative 

factor set which involves ME and other domain attributes for simulation. 

Thus, the fitness function of the two objectives is as follows, respectively. 
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where   ( ) denotes the value of the overall model maturity after the effective composition of model 

services for one simulation task.  
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(10) 

where   ( ) denotes the value of the overall model energy consumption after the effective 

composition of model services for one simulation task.  

There are many ways to calculate the MM value of the overall composable model, Eq. 5 is only one 

of them. And the following describes a way to calculate the weights of MM that considers the service 

cooperation of each model service for subtasks, which makes the value of the overall model maturity 

closer to the actual situation. 

4.2.2 Variable-Weight Objective Function of MM 

Model service composition is a series of model services assembled in accordance with specific 

processes and rules to work together to complete a simulation task, so the existence of some model service 
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relationships will have an impact on the whole process of service composition, especially on the quality of 

the entire model service composition (composition reliability, composition model maturity, success rate, 

etc.). In this paper, the purpose of the MSCS is to choose the optimal solution for the model service 

composition under the sequential structure. It requires that the overall maturity of the composed model 

should be high, so determining the overall maturity of the composed model services by the maturity value 

of the individual models is also an important issue worth investigating. We give a way to get the solution 

of overall maturity of the composed model services as other QoS properties as shown in formulation 11, 

i.e., the weighted average method. However, it might be inaccurate to use this approach to solve MSCS 

issue due to different cooperation situations between model services. Consequently, we introduced a metric 

called the cooperation index (i.e.,         
   

 in table 1) to indicate the number of times and the effectiveness 

of cooperation between two adjacent services, indicating the strength of the correlation between the 

services and the impact of this group of services on the overall service composition. 

The weight value of each model service for subtasks in each feasible solution consists of two parts. 

One is mean weight     in formulation 12, and the other is correlation weight  𝑐  shown in formulation 

13, and then the weight value is calculated by formulation 11. 
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1 0.5 0 0 0

0.5 1 0.2 0 0

0 0.2 1 0.7 0

0 0 0.7 1 0.4

0 0 0 0.4 1

 

 

 

 

 

 

 
                                 

(14) 

Suppose the matrix of cooperation index between model services in a set of feasible solutions is 

shown in formula 13, then the     value for each model service is the sum of the values of row 𝑖 or 

column 𝑖, i.e., 1.5, 1.7, 1.9, 2.1,1.4. Then, the weights of each model in this combined solution are 0.17, 

0.20, 0.22, 0.25, 0.16 according to Eq. 11, 12, 13. 

5.  Multi-Objective Algorithm CA-AO-NSGA-II 

Evolutionary algorithms have undergone three main generations of research. The first generation of 

evolutionary multi-objective optimization algorithms is mainly based on non-dominated ranking and small 

habitat techniques to solve multi-objective optimization problems. The representative algorithms are 

MOGA, NSGA and NPGA. The second generation of evolutionary multi-objective optimization 

algorithms is marked by elite retention strategy. Many excellent algorithms have been born, such as SPEA, 

SPEA2, PAES, PESA-II, NSGA-II and so on. The third generation is dominated by the study of 

high-dimensional multi-objective optimization, such as MOEA/D-DE, NSGA-III, HypE, and other 
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algorithms. Since only the two multi-objectives are involved in this paper, the classical algorithm NSGA-II 

performs very well when there are fewer multi-objectives. On the contrary, some high-dimensional 

multi-objective algorithms do not perform as good as the NSGA-II algorithm on low-dimensional 

objectives. Therefore, we try to use the NSGA-II algorithm and improve NSGA-II algorithm to solve the 

model maturity-based MSCS problem. 

5.1 A Brief Introduction of NSGAII 
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Figure 3. A flowchart of NSGAII algorithm 

As a second-generation evolutionary algorithm, NSGAII algorithm is one of the most cited classical 

algorithms in the field of evolutionary multi-objective optimization by SCI [38]. It reduces the 

computational complexity of the problem by introducing three algorithms: fast non-dominant sorting, elite 

strategy, and crowding distance sorting, as shown in Figure 3, while making the individuals in the Pareto 

fronts as uniformly distributed as possible and maintaining good individuals, and improve the overall 

evolutionary level of the population. This paper only considers two objectives, i.e., MM and ME, and it 

can efficiently achieve better optimization results by using NSGAII algorithm. In addition, the cooperation 

relations between model services must also be considered. Therefore, an improved algorithm called 

CA-AO-NSGAII is proposed to optimize goals better and solve the MSCS issue efficiently. 

5.2 The Proposed Algorithm CA-AO-NSGAII 

The core thrust of evolutionary algorithm improvement is the balance of local search and global 

search. Taking the improvement of genetic algorithm (GA) as an example, the improvement mainly 

includes three major types of methods: 1) adaptive methods, the strategies for adaptive control 

improvement of parameters of the algorithm. 2) local search methods, including local search strategies and 

immune heuristic strategies etc. 3) global search methods, including chaotic variation strategies and small 

habitat strategies, improving global search ability and convergence speed. Currently, there are many 

studies in the literature on evolutionary algorithms that focus on improving these three points. In this paper, 
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we improved the traditional algorithm (NGSA-II algorithm) in three main aspects: 1) the inclusion of 

adaptive parameters, we added the adaptive method of crossover and variational operators to jump out the 

local optimums quickly; 2) the global search strategy, we initialized the population selection based on 

probability; 3) the local search strategy, we used the fold-and-half local search algorithm to find the local 

optimal for the population. These improvements can be applied to other composition optimization 

problems as well. 
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Figure 4. A flowchart of the proposed algorithm CA-AO-NSGAII 

The flowchart of CA-AO-NSGAII is presented in Figure 4. Firstly, to ensure that the population 

evolves in a good direction, improve the quality of the population solution, and increase the evolution 

speed, a population initialization method based on variable probability is proposed to replace the random 

population initialization method. Secondly, before sorting the initial population  , a local search algorithm 

is used to make the initial parent populations feasible solutions that satisfy the multiple constraints of 

model services. This improvement aims to accelerate the convergence speed, and the local search 

algorithm is also used in the process of elitist mechanism. Thirdly, the crossover and mutation operators 

need to be dynamically adjusted according to the differences in the individual performance of the 

population so that the evolutionary process of the population will not be in a stagnant state and generate a 

competitive offspring   , enabling the algorithm to jump out of the local optimal solution to obtain the 

global optimal solution. Therefore, the adaptive crossover-mutation operator based on the cooperation 

index is proposed. These three improvements will be described in detail in the following sections. 

5.2.1 The Encoding Method 

Considering the complexity of the relationship between adjacent services in the MSCS problem and 

the dynamics of the number of model services in the candidate model service sets, we use the integer 

coding method to design chromosome genes, i.e.,    is a positive integer and the value of it ranges in [1, 

𝑘 ]. The serial number of    represents the serial number of model services in the candidate service sets, 

                  



 16 

as shown in Figure 5. 

    
 
             𝑘  (15) 
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Figure 5. The encoding method of the proposed algorithm CA-AO-NSGAII 

Taking an example, we set the number of the subtasks as 5, and the number vector of candidate model 

services of each subtask is [2,3,2,4,2]. One of the chromosomes encoding for a feasible solution of MSCS 

is [2,1,2,1,1], i.e., the feasible solution X  of model service composition is *   
     

     
     

     
  +. 

5.2.2 The Probabilistic Initialization Population Algorithm 

Generally, according to the constraint relationship between adjacent services, the selection of the first 

model service has a great impact on the selection of subsequent services. The more the first service 

constraints on the next service, the smaller the feasible solution space is. And the entire service 

composition has no constraints on the candidate services of the first subtask. Therefore, in the population 

initialization process, try to select the candidate service of the first subtask without multiple constraints so 

that the entire search space for feasible solutions will be relatively large and much more. The brief flow of 

the algorithm is as follows. 

Step 1.  Import the data in the cooperation relationship mapping table of the candidate service set of 

the first subtask.  

Step 2.  Calculate the proportion  𝑢𝑐 of services without any constraints in the candidate service set 

of the first subtask.  

Step 3.  Use  𝑢𝑐 as the probability of selecting the first unconstrained gene in the initial population.  

Step 4.  Randomly selecting the numbers of the other gene positions.  

Step 5.  Output the initial population. 

 

5.2.3 The Fold-and-Half Local Search Algorithm 

The purpose of designing this algorithm is to reduce the problem of non-directional population 

evolution and slow convergence speed caused by large search space and many multiple constraints 

between model services. It is to perform a local search and adjustment of the parent population   , so that 

each individual in the population    can satisfy the multiple constraints, and then participate into the 

evolution of the population, thereby avoiding more evolutionary time and avoiding falling into the local 

optimum. The algorithm steps are described in algorithm 1 in detail with pseudo code. Suppose there is a 
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model service    
 
 belongs to individual     *                        + in population   , it has 

some constraints with the next service. Firstly, starting from the first half of the individual    , determine 

whether the services are composable, and if not, replace the first half of the model service     with a 

random model service that has no constraints. Secondly, starting from the second half of the individual    , 

determine whether the services are composable, and if not, replace model service      with a random 

model service that satisfies all the multiple constraints of    . Finally, until all individuals are composable, 

the loop ends. 

 

Algorithm 1: Fold-and-half local search algorithm 

1: For each composite service solution    *                        + in    

2: 
'

n
P P  // initialize P’ 

3: …loop 

4: …do forward algorithm, yielding replace in    *                        + 

5: 
……for z 1 ( 1) 2to N   do 

6: 
… ... …if  

, 1 , 11
, 1,

j i j iS i MS
CS MS CS i z

 
     then 

7: 
… ... … …update to 

i
M S : random ( )

i i
M S As , where  

, 1j ii m MS
As CS CS



    

8: … ... …end if 

9: 
……for z ( 1) 2N to N   do 

10: 
… ... …if  

, 1 , 11
, 1,

j i j iMS i MS
CS MS CS i z

 
     then 

11: 
… ... ... …update to 

1i
M S


:

+1
random ( )

i i
M S As , where  

, 1j ii m MS
As CS CS



  

12: … ... …end if 

13: ……end for 

 …end loop 

14: ' ( ')P clearall P  // clear array P’ 

 

5.2.4 The Adaptive Crossover and Mutation Operators 

The uniform crossover operator (UCO) is performed to cross the individual gene. In the UCO, the 

genes of the offspring are randomly obtained from the parent with equal probability, two parents are 

denoted as parent 1 and parent 2, and two offspring are denoted as offspring 1 and offspring 2 as shown in 

the Figure 6. 
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Figure 6. The uniform crossover operator for CA-AO-NSGAII 

Fig. 7 shows the process of the simple mutation operator. It performs mutation on the values of one or 

a few randomly designated genes in parent 1 according to the mutation probability, and the value of gene 

in offspring 1 after mutation must be in the range of [1, 𝑘 ]. To ensure the feasibility of the offspring, the 

gene value of the new individuals should be checked through a local search algorithm. 

10 69 27 58 73 30 42

10 69 13 58 73 60 42

Parent 1

Offspring 1

Range from 1 to ik

Mutation point Mutation point

 

Figure 7. The uniform mutation operator for CA-AO-NSGAII 

When the fitness value is lower than the average fitness value, the individual is a poor performer, and 

a large cross and variation rate should be applied to the group. Suppose the adaptation degree is higher 

than the average adaptation degree. In that case, it means that the individual is a good performer, and a 

lower cross and variation rate should be applied to it according to its fitness value. In this paper, we 

improve the adaptive crossover and mutation probability by adaptively adjusting the crossover mutation 

probability according to the fitness value, and then adding the parameter of the average value of the 

cooperation index between model services, the higher the cooperation index of the feasible solution, the 

lower the probability of their crossover and mutation. In this way, evolution will not be in a stagnant state, 

which allows the solutions to jump out of the local optimal solution to obtain the global optimal solution. 
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As shown in formulas (16) and (17),       represents the sum of the cooperation index of the 

neighboring model services, and   is the fitness value of the individual    in the population. If  𝑐     , 

then  𝑐     . And we set  𝑐        ,           . 

6.  Experiments and Analysis 

In order to verify the effectiveness and feasibility of the proposed method CA-AO-NSGAII for MSCS 

issues as in the case of Section 3.2, three experiments about the multiple constraints and the algorithm are 

performed on a PC with Intel core i7+ 2.0GHz, 8GB RAM, Windows 10, and MATLAB R2016a. For all 

experiments, we set population number equals to 100, and    =0.6,    =0.4. The first experiment is 

conducted to verify the impact of multiple constraints between model services with three different ratios of 

constraints. The second experiment compares the performance of CA-AO-NSGAII algorithm with two 

other classical algorithms, namely, Strength Pareto Evolutionary Algorithm 2 (SPEA2), Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II). The third one is conducted to show that using different objective 

functions of the MM, different optimal solutions will be obtained, so that we can enable backpropagation 

using the new algorithm to compare which objective function of MM yielded a better accuracy of the 

overall model maturity. 

6.1 Experiment I: Impact of Multiple Constraints between Model Services 

 

Figure 8. The infeasible ratio of the population with different constraint ratio 

As discussed in Section 4, each model service may have 0-2 constraints with the next neighboring 

service, so it is worth exploring how the proportion of different constraints affects the evolutionary 

selection of the entire population. In all the experiments, we set the number of candidate model service sets 

range in [0,80], which means that each subtask has a minimum of 0 candidate services and a maximum of 

80 services to choose. The proportion of multiple constraints is the proportion of each type of the 

relationship in the set of candidate model services for each subtask. As shown in Figure 8, the horizontal 

coordinate represents the number of different subtasks. The vertical coordinate represents the ratio of 

infeasible solutions in a random population, which is 100. 
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There are three cases with different constraint ratios tested (i.e., 5%, 10%, 15%), as shown in Figure 8, 

as the number of subtasks increases, the proportion of infeasible solutions becomes higher and higher. At 

the same time, as the constraint ratio increases, there are more infeasible solutions for each type of 

subtasks, maximum of the ratio is up to 86%. Therefore, it is evident that the multiple constraints of model 

services greatly influence the selection of feasible solutions. In order to ensure the optimal solution of 

Pareto, the multiple constraints for composability cannot be ignored. 

6.2 Experiment II: Comparisons with other Algorithms 

In this section, we will evaluate the performance of 3 algorithms in three ways: 1) hypervolume (HV) 

indicator values of the three algorithms with the different number of subtasks, 2) Maximum objective 

values obtained by the three algorithms, and 3) the average time consumption of the three algorithms. 

The parameter values and some operators of SPEA2, NSGA-II, CA-AO-NSGA-II in the comparison 

experiments are listed in Table 2. The crossover and mutation operators in the algorithm of NSGA-II, 

CA-AO-NSGA-II are the same as described in section 5.2.4. 

Table 2: Notations and explanations Parameters and operators of the three algorithms 

Algorithm Parameters Value 

SPEA2 Crossover rate 0.95 

 Mutation rate 0.15 

 Selection operator Binary Tournament 

 External archive set size 100 

 Constraint filtering 0 

NSGA-II Crossover rate 0.95 

 Mutation rate 0.15 

 Constraint filtering 0 

CA-AO-NSGA-II Crossover rate 0.95 

 Mutation rate 0.15 

The formula for the HV indicator in the case of two objective functions is shown in Eq. 18. First, we 

sort the Pareto frontier solutions in ascending order according to the value of the first objective function 

and then calculate HV value according to Eq. 18. The above equation S denotes the set of Pareto frontier 

solutions, nPop is the number of initial populations.   𝑗 (  ) denotes the value of the 𝑗 th point of    on 

the 𝑖 th objective in the set, where   𝑗 (  ) is set initially  𝑗 (   ), and     denotes the position of the 

reference point, in this paper, we set reference point values equals to [0.3, 0.1*N] for four different 

scales/subtasks. 
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To compare the performance of the three algorithms on MSCS issues with different number of 

subtasks, we set the multiple constraint ratio at 5%, and the number of subtasks N takes 5, 10, 15, and 20 

with 800 iterations of evolution for each computation. Each subtask has a set of candidate model services, 

of which the number ranges in [0,80]. Boxplots of the HV values in 30 runs for the above three algorithms 

are shown in Figure 9 and Figure 10. The Figures show that the HV boxplots of CA-AO-NSGA-II are 
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obviously higher than the other two algorithms with four different scales/subtasks under 5% and 15% 

constraints. And as the number of tasks increases, the HV values of the three algorithms increase due to the 

initial value of the reference point. The result shows that CA-AO-NSGA-II get Pareto optimal solutions 

with better convergence and diversity for the MSCS problems with different subtask numbers. 

Table 3 shows the maximum values of the two objectives obtained by objective functions with 

different algorithms under the multiple constraint ratio of 5%, and 15%. ‘+’, ‘=’, ‘-’ represent that the 

CA-AO-NSGA-II algorithm is superior, similar, and inferior to other algorithms, respectively. ‘5%_5_800’ 

means that the multiple constraint ratio is 5%, the number of subtasks is 5, and the iteration times is 800. In 

these 16 sets of experiment data, SPEA2 and NSGA-II have only 1 set of data be higher than the new 

algorithm, SPEA2 has 3 sets of data that are close to CA-AO-NSGA-II algorithm, NSGA-II has 4 sets of 

data that are close to CA-AO-NSGA-II algorithm. And for most of the remaining data, CA-AO-NSGA-II 

performs better. 

 

(a)                                     (b) 

 

 (c)                                    (d) 

Figure 9. An example road network and the data structure in the GPU memory HV values boxplot of 3 

algorithms with 5% multiple constraints. (a) HV values under 5 subtasks. (b) HV values under 10 

subtasks. (c) HV values under 15 subtasks (d) HV values under 20 subtasks. 1-CA-AO-NSGA-II, 

2-SPEA2, 3-NSGA-II. 
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(a)                                      (b) 

 

 (c)                                       (d) 

Figure 10. An example road network and the data structure in the GPU memory HV values boxplot of 3 

algorithms with 15% multiple constraints. (a) HV values under 5 subtasks. (b) HV values under 10 

subtasks. (c) HV values under 15 subtasks (d) HV values under 20 subtasks. 1-CA-AO-NSGA-II, 

2-SPEA2, 3-NSGA-II. 

Table 3: Comparison of the maximum values of different objective functions under three algorithms 

Scale CA-AO-NSGA-II 

1
f  

2
f  

 

NSGA-II 

1
f  

2
f  

 

SPEA2 

1
f  

2
f  

 

5%_5_500 0.5961 1.1914 0.5975= 1.1801- 0.5932= 1.1842- 

5%_10_500 0.5895 2.1295 0.5784- 2.1144- 0.5767- 2.1298= 

5%_15_500 0.5695 3.1597 0.5748+ 3.1518- 0.5596- 3.1303- 

5%_20_500 0.5729 4.1910 0.5687- 4.1888= 0.5427- 4.1425- 

 

15%_5_500 0.5926 1.1934 0.5869- 1.1884- 0.6000+ 1.1842- 

15%_10_500 0.5852 2.1284 0.5809= 2.1233- 0.5602- 2.1161- 

15%_15_500 0.5731 3.1520 0.5626- 3.1503= 0.5731= 3.1249- 
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15%_20_500 0.5736 4.1979 0.5669- 4.1757- 0.5438- 4.1159- 

 +/=/- +/=/- 1/2/5 0/2/6 1/2/5    0/1/7 

From the perspective of time consumption, the average time consumed by the CA-AO-NSGA-II 

algorithm is less than that of NSGA-II, and is little more than that of SPEA2 due to consumption by the 

more recurrent local searches, as shown in Figure 11. However, in terms of overall performance, the new 

algorithm performs better than the other two algorithms for addressing the MSCS issue. 

From the above Figures, it can be seen that when a local search algorithm is used in the elitist strategy, 

it helps to search for feasible solutions quickly and improve the convergence speed, saving lots of time. 

Moreover, with the addition of the adaptive crossover and mutation operators, it is better for us to preserve 

the optimal solutions and quickly jump out of the local optimum. The convergence and stability of the new 

algorithm is higher than the other two algorithms. 

 

Figure 11. Average time consumptions of 3 algorithms in 200 iterations under 4 different subtasks. 

6.3 Experiment III: Comparisons of the Solutions Obtained by CA-AO-NSGA-II Using Different 

Weighting Methods with 5 Subtasks 

 

Table 4: Optimal solutions with different weight methods 

Scale Weight method Standard deviation 

Optimal  

combination 

solution 

5%_5_800 
1 

2 

1 

2 

0.0278 

0.0236 

0.0273 

0.0182 

49-64-36-42-17 

 49-64-36-42-17 

15%_5_800 49-2-36-42-17 

 49-64-40-42-17 

 

In this section, two different weighting methods are used to get the feasible solutions with the new 

algorithm CA-AO-NSGA-II, as shown in table4. Method 1 uses Equation 1 and Method 2 uses Equation 2. 

In order to save space, we give only feasible solutions for the 5 subtasks with 5% and 15% multiple 
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constraints. From the table, we can see that when the multiple constraints ratio is 5%, the feasible solutions 

obtained by both weight functions are the same. The standard deviation of the fitness values obtained using 

the method 2 and Eq. 3 is slightly smaller. And when the constraints ratio comes to 15%, the feasible 

solutions obtained with the two methods are different. The cooperation index between the services 

corresponding to feasible solution [49-2-36-42-17] is [0.6,0.3,0,0.4] and the overall value of model 

maturity is 0.5486. And cooperation index between the services corresponding to feasible solution 

[49-64-40-42-17] is [0.8,0.8,0.5,0.4] and the overall value of model maturity is 0.5693. 

Moreover, the standard deviation of the fitness value obtained by weight method 2 is much smaller 

than the standard deviation obtained by weight method 1. Therefore, the results show that the correlation 

between services is affected by the cooperation index. The feasible solution obtained using method 2 is 

more realistic when the fitness values are closer. 

6.4 Experiment IV: A Case Study of Model Service Composition in Healthcare Field 

Refer to the scenario in subsection 3.2, this paper gives a case study of a medical simulation model 

service composition. After the medical emergency simulation task about personal monitoring and warning 

is submitted to the cloud medical platform, the model service middleware in the service management 

module in Figure 1 is responsible for completing the simulation task parsing, service search, and matching, 

etc. It is responsible for selecting the set of candidate model services that satisfy several subtasks of the 

simulation task. The number of services in the set of candidate model services for each subtask is different. 

In this paper, the upper limit of the number of candidate services is set to 80, and the candidate services for 

each subtask are shown in Table 5. 

Table 5: Candidate services corresponding to each subtask 

Subtasks Candidate services name Candidate services sets 

T1 Monitoring Model Service (MMS)   
 ,   

 , … ,   
     

   

T2 Examining Model Service (EMS)   
 ,   

 , … ,   
     

   

T3 Diagnostic Model Service (DMS)   
 ,   

 , … ,   
     

   

T4 Resource Scheduling Model Service (RSMS)   
 ,   

 , … ,   
     

   

T5 Rehabilitation Model Service (RMS)   
 ,   

 , … ,   
     

   

 

Through the digital twin medical model simulation, different model service composition paths for the 

same model service under different algorithms can be obtained, as shown in Figure 12. From the Figure, it 

can be seen that due to the limited amount of model service in the experiment, the solutions obtained by 

three algorithms do not differ much and are the same composition solutions that all can satisfy the optimal 

solution. However, at the same time, it can also be seen that different algorithms get different service 

compositions for the model service provided by the same simulation task under the same request. The 

model maturity for each subtask under the CA-AO-NSGA-II algorithm is [0.95, 0.89, 0.92, 0.99, 0.94], 

and the overall value of the combined model maturity is 0.5961. The model maturity of each subtask under 

NSGA-II algorithm is [0.95, 0.89, 0.90, 0.99, 0.94], and the overall value of combined model maturity is 

0.5869. The model maturity of each subtask under SPEA-2 algorithm is [0.95, 0.89, 0.90, 0.90, 0.94]. The 

overall value of combined model maturity is 0.5911. It can be seen that the new algorithm obtains slightly 

better results for the model service composition, and the overall maturity value of the combined model is 

also slightly higher. 
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49

T1 T2 T3 T4 T5

64 36 42 17CA-AO-NSGA-II

49 64 40 42 17NSGA-II

49 64 40 16 17SPEA2

 

Figure 12. Model service composition solutions under three different algorithms 

In addition, Figure 13 represents the comparison of the worst, best, and average values of the overall 

fitness after the combination of model services obtained under the three algorithms for the case of five 

subtasks. In Figure 13, it can be seen that the new algorithm CA-AO-NSGA-II slightly outperforms the 

other two classical algorithms both in terms of individual values and mean values. It also illustrates the 

effectiveness of the improved effect of the new algorithm proposed in this paper in solving the model 

service combination problem based on model maturity. 

 

Figure 13. The comparison of the overall fitness values under three different algorithms 

 

7. Conclusions and Future Work 

With large-scale M&S applications running in cloud environments, highly efficient and accurate 

methods are desired strongly to solve MSCS issue. In this paper, a novel evolutionary algorithm, named 

CA-AO-NSGA-II, for addressing MSCS issue in cloud environments was proposed. Considering the large 

solution space and complexity of multiple constraints between model services, the new adaptive crossover 

and mutation operators and local search algorithm were designed for more and higher-quality Pareto front 

solutions. For improving the operational efficiency of the algorithm, probability-based methods for 

initializing populations were also used in the CA-AO-NSGA-II. Compared with the other three traditional 

evolutionary algorithms, the average fitness value and time efficiency of CA-AO-NSGA-II were better in 

solving MSCS issue, especially with the subtask number and constraints ratio increase. In addition, the 

selection of variable objective functions based on model maturity also provided a new idea to evaluate the 

quality of the model service composition. 

Unlike other service compositions (manufacturing services, computing services, etc.) problems, the 

model service composition is special. It needs to be validated and evaluated in the whole lifecycle of the 

model to ensure the credibility of the entire composition model. Therefore, in future research, except the 
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indicator of model maturity, a study on the other QoS characteristics of M&S is required. From the 

algorithm's perspective, parameter adjustment and code refactoring are required to improve the operational 

efficiency of the proposed CA-AO-NSGA-II. Moreover, more variable objective functions of model 

maturity need to be explored further in order to find appropriate ways to evaluate it. 
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