

Journal Pre-proof

Model Maturity-Based Model Service Composition in Cloud
Environments

Ying Liu , Lin Zhang , Yongkui Liu , Yuanjun Laili , Weicun Zhang

PII: S1569-190X(21)00096-4
DOI: https://doi.org/10.1016/j.simpat.2021.102389
Reference: SIMPAT 102389

To appear in: Simulation Modelling Practice and Theory

Received date: 21 February 2021
Revised date: 2 August 2021
Accepted date: 3 August 2021

Please cite this article as: Ying Liu , Lin Zhang , Yongkui Liu , Yuanjun Laili , Weicun Zhang , Model
Maturity-Based Model Service Composition in Cloud Environments, Simulation Modelling Practice and
Theory (2021), doi: https://doi.org/10.1016/j.simpat.2021.102389

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.simpat.2021.102389
https://doi.org/10.1016/j.simpat.2021.102389

 1

Model Maturity-Based Model Service Composition

in Cloud Environments*

Ying Liu
1, 2, 3

, Lin Zhang
1, 2, 3*

, Yongkui Liu
4
, Yuanjun Laili

1, 2, 3
, Weicun Zhang

5

1
School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, China

2
 Engineering Research Center of Complex Product Advanced Manufacturing Systems Ministry of

Education, Beijing, China
3

Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
4
School of Mechano-Electronic Engineering, Xidian University, Xi’an, China

5
School of Automation and Electrical Engineering University of Science and Technology Beijing,

Beijing, China

Abstract: With the development of cloud computing (CC), service-oriented architecture (SOA), and

container technology, modeling and simulation (M&S) resources, such as simulation software and

different sorts of models, can be shared and reused in a cloud environment. Modeling and Simulation as a

Service (MSaaS), as a new paradigm, supports sharing simulation models or modeling tools and has

enabled a wide range of model reuse. However, reusing or combining some immature models may result in

inefficient M&S activities or even false simulation results. To make sure the appropriate reuse and

composition of simulation models in cloud environments, which is also termed as model service

composition for simulation (MSCS), this paper incorporates model maturity with service cooperation as a

metric to evaluate the quality of model composition in cloud. Then, as a multi-objective optimization

problem with multiple constraints, the MSCS problem and its process are described in detail. To solve the

MSCS problem, a novel evolutionary algorithm named CA-AO-NSGAII is proposed. In the algorithm,

adaptive crossover and mutation operators, as well as probabilistic initialization are developed.

Furthermore, a half-local search algorithm in an elitist mechanism is designed for efficient

decision-making. To validate the performance of CA-AO-NSGAII, experiments with respect to four

different cases are conducted. Results show that the proposed method for addressing MSCS issue is

effective and feasible.

Key words: Modeling and Simulation (M&S), Cloud Computing, MSaaS, Model Service Composition for

Simulation (MSCS), Model Maturity, Evolutionary Algorithm

1. Introduction

In recent years, with the rapid increase of simulation scale and simulation requirements, the number

of simulation models and simulation systems is gradually expanding, accompanied by high cost,

inefficiency, low quality and reliability in the development of models and simulation systems. Model reuse

is an effective way to solve the above problems, and model composition is one of the most used ways to

realize model reuse. In order to achieve the composition of models in the simulation field, from the earliest

DEVS (Discrete Event System Specification) architecture [1, 2] to the current service-oriented architecture

(SOA) for model development [3], the study of model composition has experienced a long time. However,

it is still a difficult and hotspot problem. So far, the current trend is that the simulation models are

* Corresponding author email: johnlin9999@163.com.

 2

combined as cloud services to fulfill the different simulation requirements. And there are lots of

architectures and patterns to implement the composition and reuse of simulation models with the

combination of SOA and cloud computing, such as Web-based Simulation (WBS) [4], Cloud-based

Simulation (CSim) [5], Cloud Simulation Platform (CSP) [6], Modeling and Simulation as a Service

(MSaaS) [7], Simulation Software-as-a-Service (SimSaaS) [8], etc. These paradigms can unify and

effectively manage the decentralized modeling and simulation (M&S) resources, use and share them

on-demand at multiple granularities in the form of M&S services, especially model services.

Currently, the most widely used and studied pattern is MSaaS. There are mainly four paradigms in

MSaaS: modeling as a service, model as a service, V&V as a service, and simulation as a service.

Meanwhile, many platforms with MSaaS patterns are developed to provide coarse-grained and

fine-grained M&S services. This paper mainly focuses our research on the paradigm of model as a service,

which means that users can share simulation models in the cloud by accessing them through services. As

the granularity of services in cloud becomes more and more refined, simulation models become more and

more single-function and precise. Meanwhile, selecting reliable, high-quality, and mature model services

from the candidate model services and putting them together in a specific process to accomplish a

simulation task efficiently, i.e., model service composition for simulation (MSCS), becomes an important

issue.

Issues of service composition in cloud manufacturing and other cloud environments exist as well. The

difference is that MSCS needs to take into account the state of models at a given moment. Furthermore, the

model service composition is usually temporally and spatially consistent, concurrently interactive, and

collaborative. In addition, the model service composition needs to maintain a consistent interface between

model services and configure the simulation engine to run simulations on one RTI (run time infrastructure)

based on time or event. In addition, the credibility of the combined model services also needs to be

evaluated. Therefore, there is more need to study the specific processes of MSCS from both functional and

non-functional perspectives.

Before composition, model credibility is a metric commonly used to assess the quality of one single

model. After composition, it is very difficult to accurately determine the credibility of a combination model

based on every single model's credibility. More importantly, model credibility might change as demands

change when models are reused in the form of model services. Model maturity [9] is an important

complement to evaluate the model quality. It assesses the model's whole lifecycle process (model

construction, model use, and model management), and is a suitable metric to evaluate the quality of models

in MSCS. It considers the model standardization, portability, scalability, and other features that have an

important impact on model use and reuse, which model credibility does not address. Model maturity does

not change with demands exactly but changes with time and model evolution, which is well suitable for the

QoS evaluation of MSCS. Compared to other common QoS metrics (e.g., time, cost, reliability, etc.),

model maturity can highlight the differences between candidate model services, which allows us to

identify appropriate combinations of model services more efficiently. Therefore, this paper considers the

issue of MSCS based on model maturity from the non-functional perspective.

Due to the diversity and complexity of the simulation process in SoS (system of systems) [10],

simulation tasks can be classified into two categories: 1) single simulation service request task (S-SSRT),

which can be completed by invoking only one model service. 2) multiple simulation request task

(M-SSRT), which has to be completed by invoking several model services to execute simulation together

in a particular sequence with one RTI or simulation environment. The optimal model service selection for

M-SSRT is more complex than the selection for S-SSRT, because of its characteristics of multi-objectives,

 3

multiple constraints, and multi-candidate sub-services. M-SSRT needs large-scale model service

composition and optimal selection (MSCOS) to give an optimal solution. So MSCOS, just as service

composition and optimal selection (SCOS) problem [11], is a typical NP-hard problem with dynamic,

complexity, and uncertainty characteristics. Consequently, MSCS, as one of the MSCOS issues, is also an

NP-hard problem.

However, most research and commercial applications in MSCOS mainly focus on functional

composition, such as architectures, middleware, and simulation tools or platforms for model service

composition. Furthermore, most of the service composition and optimal-selection approaches neglect the

relationship among model services and do not consider the characteristics of the model composition in

simulation. There are still three main issues that need to be addressed, which are as follows: 1) The process

of simulation-oriented model service composition is different from the process of service composition in

cloud manufacturing or other cloud computing services. There are no explanations or descriptions about

the process and characteristics of the model service composition for simulation in detail. 2) There is no

consideration about the cooperation relationship between the model services in the MSCS problem for

simulation requirements. 3) Existing common QoS properties (e.g., Simulation execution time, Simulation

Cost, Simulation Result Reliability, etc.) are not suitable for the evaluation of the MSCS problem.

With the consideration of the above issues, the process of model service composition in cloud for

simulation application requirements is illustrated in detail. A simulation model service scenario in the

medical area considering the cooperation relationship between the model services in MSCS is given.

Furthermore, a new intelligent evolutionary algorithm named cooperation-aware NSGA-II algorithm using

adaptive crossover and mutation operators (CA-AO-NSGA-II) is developed for solving MSCS issues

based on model maturity. In this algorithm, the probabilistic initialization population algorithm is

introduced to speed up the convergence of the algorithm. Then, the local search algorithm and adaptive

crossover and mutation operators are designed to increase Pareto fronts and improve the quality and

convergence speed of the optimal solution. The experimental results demonstrate that the

CA-AO-NSGA-II provides better feasible solutions of the model service composition in cloud with lower

time consumption for solving the MSCS issue with two objectives, especially as the number of cooperation

constraints and subtask increases.

The key contributions of this work are as follows:

• This paper introduces model maturity as a metric for QoS evaluation to provide a comprehensive

assessment of the whole lifecycle of the simulation model in cloud environments,

• This paper employs the cooperation relationship between model services as a parametric indicator to

dynamically calculate the value of the overall maturity of the combined model,

• This paper proposes an improved algorithm based on NSGA-II to solve the MSCS issue for the

composition and optimization selection of model services in cloud environments.

The rest of this paper is organized as follows. In Section 2, related works about model composition in

simulation, MSCS, and some multi-objective evolutionary algorithms for solving MSCS issue are

reviewed briefly. In Section 3, the process of model service composition in cloud, and a medical simulation

application scenario are described. Then, the formulation of the multi-objective MSCS is given in Section

4. Furthermore, a novel algorithm termed CA-AO-NSGAII for solving MSCS based on model maturity is

proposed in Section 5. Section 6 presents experiment results and analysis to show the feasibility and

effectiveness of the proposed method. Finally, conclusions and future works are summarized.

2. Related Work

There are mainly two directions for the model service composition and optimization research, i.e.,

 4

whether the model services can be combined, and whether the combined services can satisfy the

expectations. The corresponding methods usually are, a. filtering the model services from the perspective

of syntax or semantics, i.e., functional composition. b. Using QoS methods to judge whether the combined

effect has achieved the expected demands, i.e., non-functional composition. The related research work will

be briefly reviewed from the following three aspects.

2.1 Model Composition in Simulation

The research is mainly carried out from three aspects: model description language, modeling methods

for model composition, model composability validation. From a perspective of a description language,

Zeigler et al. [1] proposed discrete event system specification (DEVS), and gave the description of the

atomic model and coupled model, which are used to build top-down hierarchical structures to construct

composable models. Friedenthal et al. [12] provided a practical guide to SysML, a unified system

modeling language. Generality and extensibility features make the models built through the language

highly composable. From a perspective of modeling methods for model composition, Tolk et al. [13]

proposed a conceptual interoperability model from the perspective of simulation model interoperability

and divided the interoperability into five levels according to the nature of the exchanged data and the level

of standardization of the interface, and then performed hierarchical modeling of model composition.

Wittman et al. [14] proposed the product line architecture framework (PLAF), which incorporated the

application, product, and component layers, and provided a combining mechanism to combine different

product components into composite product components, such as simulation models. In the validation

perspective, Pitty et al. [15] proposed semantic composability theory (SCT) to integrate simulation

components into new simulation applications. SCT validates if model combinations are accurate from a

syntactic and semantic perspective.

In addition, from other perspectives, Kang et al. [16] proposed a composition model based on

hierarchy color Petri net (HCPN) to model command and control procedure of surface air defense by

reusing existent simulation models. Alpdemir [17] proposed SiMA: a simulation construction environment

that supports simulation models' composability through a simulation construction toolchain. Mittal [18]

designed DEVS/SOA architecture, which provides the crucial feature of run-time composability of coupled

systems using SOA. Pitty et al. [19] designed different software frameworks for model composition, which

are intended to simplify assembling a complex model or simulation system to promote the reuse of the

component models. Cayirci [7] surveyed the MSaaS architectures and deployment strategies, and gave the

differences between MSaaS and software as a service.

From the above research, we can see that from the functional composition aspect, select and match

the right models that can be combined usually using methods of semantic composability of model services,

interoperability of model services, and validation of model service combinations. However, few studies

give the specification on the non-functional requirements of the model composition. They are studied

mainly from the perspective of whether the syntax or semantics of models meet the requirement of

composability. Moreover, the form of the model composition has also transitioned from an SOA-based

architecture to a cloud-based model service composition.

2.2 Model Service Composition in Cloud

Many techniques and methods, such as architectures, middleware, and simulation tools, are used to

determine whether or not model services are composable from a functional perspective. Among them, most

researches have been done on MSaaS. Taylor et al. [20] presented business models based on CloudMSE

platform experiences supporting MSaaS, which can provide simulation services. Wang et al. [21] built an

MSaaS middleware called CloudRISE to simplify the management of a variety of M&S resources.

 5

Bocciarelli [22] designed an available MSaaS platform named SOASim based on microservice to achieve

a fine-grained combination of model resources. Wainer [23] et al. gave a novel architecture MAMSaaS.

Wang [24] also introduced an architecture named SAMSaaS to deploy and compose M&S resources as

services, so as to improve model reuse through model composition based on semantic.

In model service composition research, the concept, architecture, and technical implementation of

MSaaS are becoming more and more mature. However, there is no specific optimal algorithm for the

combination of model services in MSaaS. Most of the literature focuses on connecting and collaborating

between model services from a technical or architectural perspective. It does not give much researches on

model service composition algorithms from the QoS perspective. Model services are different from

manufacturing services and computing services, which have their features and characteristics. They should

be studied based on the differences between them, under different constraints, to provide high-quality

model services. Considering the above situations, the process and a model for MSCS from the perspective

of QoS based on model maturity are conducted in detail in the following sections.

2.3 Service Composition and Optimal-Selection Algorithms

In recent years, cloud service composition has drawn much attention mainly to its architecture

(Graph-based, agent-based service composition, WS-BPEL), dynamically composition and

optimal-selection algorithms, and services correlation relationships. Some researches and results have been

achieved. From the perspective of composition and optimal-selection algorithms, Alrifai et al. [25]

proposed a hybrid approach that decomposed the best of global QoS constraints into local constraints with

mixed-integer programming to address optimal problems. Chhun et al. [26] presented a QoS ontology with

functional and non-functional properties for service selection and reuse. Liang et al. [27] proposed a

logistics-involved QoS-aware DRL-based CMfg-SC, and designed a dueling Deep Q-Network (DQN) with

prioritized replay named PD-DQN, which demonstrated the effectiveness and advantages of DRL in

solving the CMfg-SC issue. From the perspective of services correlation relationships, Wang et al. [28]

considered two composability-oriented and quality-oriented correlations, and proposed a many-objective

algorithm named HypE-C to solve CASC problem in cloud manufacturing. Deng et al. [29] proposed a

novel method of service selection called the cooperation-aware service pruning (CASP) to manage QoS

correlations by accounting for all services. Luo et al. [30] proposed a business correlation framework in the

ecosystem.

Hence, the solution for optimal selection of service composition is primarily based on QoS evaluation

methods and metrics, and the effectiveness of the combination also depends on the selection and

appropriate improvements of the evolutionary algorithms.

However, there are no optimal algorithms about solving MSCS issue to address the simulation

requirements. Furthermore, few studies specify how the cooperation and constraints affect the feasibility

and quality of the model service composition in simulation application fields. Therefore, we leverage a

service composition optimization approach to address the problem of MSCS based on model maturity and

consider the cooperation relationship between model services to select a more suitable model composition

that meets the simulation requirements.

3. The Process of Model Service Composition in Cloud for Simulation and Application

Scenario

3.1 The Process of Model Service Composition in Cloud for Simulation

According to the report about MSaaS described by NATO MSG-131 [31], there are various kinds of

services for simulation, including modeling services, V&V services, model services, and simulation

 6

application services, and so on. All of these services for simulation are submitted by service suppliers who

own many simulation resources. In this paper, we only consider the model services for simulation.

Generally, one model service can fulfill the demands of one single simulation task. However, it cannot

execute a complex simulation task, which needs several different model services to be combined to

complete a complex or a system-level simulation requirement. The more single function the model has, the

more efficiently the model runs. Fig.1 shows the process and framework of model service composition in

cloud environments, and the cloud service platform contains three main functional modules: Model service

certification and storage(C&S) module, Task decomposition, service matching and

optimal-selection(D&M&O-S) module, and Model service deployment and execution (DP&E) module.

Simulation

Requirements

Simulation Task

Decomposition

Model Service
Composition &
Optimization

1MS

1

1MS

2

1MS

1

kMS...
2MS

...
1

2MS
2

2MS

2

mMS

1

nMS

2

nMS

p

nMS

nMS

...

...

1T 2T nT...

Model Service
Eeployment
&Simulation

Execution

2

1MS
2

mMS
p

nMS

Results

Storage

Certification

Center

Model

Service

Library

Conceptual
Model

Meta Model

Domain Model

Models

Data

Runtime

Context

。
。
。

Candidate
Model Set

Candidate

Model Set

1...N

MSP

Data

Model

Service

Images

Servilization

C&S

Node 1 Node 3
...

RTI

TTask

Subtask

D&M&SO

DP&E

Model

Resources

Candidate model

service set
Assignment
& Invoke

MSU

Cloud Service

Platform

MSO
Configuration MonitoringChoreography

Figure 1. The process and framework of model service composition in cloud

 Model Service Certification and Storage(C&S)

The module of model service certification and storage (C&S) performs the authentication and storage

of model service resources. After model resource servitization, the models uploaded by MSP need to be

certified usually by a third-party authority to check whether it can meet specific quality standards, whether

it can perform certain functions, and whether it is credible. After certification, the models will be stored

into the model service repository in cloud with different granularity (e.g., conceptual model, meta-model,

domain model) or classification of different functions to form model service candidate sets. At the same

time, the data, runtime, and contextual information related to the models are also stored.

 Task decomposition, service matching and optimal-selection(D&M&O-S)

Firstly, the task or requirement description submitted by MSU should be decomposed, the

decomposition process needs to go through the process of functional requirements analysis, process

requirements analysis, and finally form an abstract combination of services, i.e., subtasks

* + . Then, through service matching techniques such as similarity computation,

interface/function matching, process matching, and semantic matching, the corresponding candidate

sub-services * + are selected for each subtask from the candidate service sets stored

 7

in the model library. Finally, selecting the specific model services {

} that meet the

user's demands by a service composition and optimal algorithm based on different optimization objective

functions.

 Model service deployment and execution (DP&E)

After forming a model service composition solution or path, the model service needs to be deployed

and configured. The deployment optimization algorithm specifies which nodes are assigned to which

model services and the relevant operating parameters of the model configured. Each node host is deployed

to run several different model service mirrors using container technology to get the final computation

result. In addition, before the entire simulation run, model transformation (e.g., PyBPMN-to-UML,

SysML-to-HLA, HLA-to-Code, etc.), which is used to generate models as well as the code that implements

executable services from abstract models is required, so as to ensure the uniform and regular operation of

the entire combined model services. Each model service is deployed on cloud infrastructure or middleware

like SOASim [32], CloudRISE [21] to make them better operated and supervised. Finally, the orchestration

service is deployed to properly manage the execution of the simulation models with one RTI or some

simulators [33]. MSO is responsible for monitoring the operational status of the model services and

managing the feedback of the simulation results to the MSU. After getting the results, MSU can provide

feedback to the platform.

In addition, we also need to perform VV&A on single or combined models. Generally, dynamic

testing methods include spectral analysis methods and feature-based difference verification methods for

VV&A. At the model service configuration and execution level, the platform needs to support VV&A

activities [34] and other validation methods [35] for each model to ensure accurate interaction between

model services and meet the simulation requirements tasks.

In summary, we should try to upload single, fine-grained models to the platform and store them in a

reusable model repository. It can minimize the problem of difficult reuse and combination of model

services caused by the strong coupling with the simulation environment, the incompatibility between

model architectures due to the complexity and versatility of the model services themselves.

3.2 Application Scenario

In order to describe MSCS problem more clearly, an example of simulation service scenario in the

healthcare field based on DTH [36] is presented. As shown in Figure 2, a simulation task for healthcare

service contains five subtasks, which need to invoke monitoring model service (MMS), examining model

service (EMS), diagnostic model service (DMS), resource scheduling model service (RSMS),

rehabilitation model service (RMS). Each of these five models corresponds to the main five processes that

a complete healthcare service needs to go through, respectively. From the second to the last model service,

each service receives input data from the previous service for processing the subtask. Finally, after a

complete run, the user gets the final simulation results. The service demanders or users mainly include two

kinds of people. One category is patients, who want to get some valuable suggestions through the whole

simulation service. The other category is simulation participants, who want to get some simulation data for

making some decisions. Each subtask can be selected from the candidate service sets stored in the model

library in cloud with different functions.

 8

HS-

requirements

Diagnostic

model service

（DMS）

Rehabilitation

model service

(RMS)

Resource
scheduling

model service
（RSMS）

Monitoring

model service

（MMS）

Basic

information Examining

model service

（EMS）

Treatment

options

Symptom data Examination

result

Treatment

completeness

and timeRehabilitation

records

PHR Data

[Model j, ,

Model m]

[Model a(apple),

Model b(amazon)]

[Model c, ,

Model e]
[Model h, Model i]

[Model o,

Model p]

Patients

Simulation

participants

Constraint: MM>= 3

No cooperation

Figure 2. A scenario of DTH model services composition in precision healthcare

The purpose of model service composition is to select an appropriate model service from the

candidate service sets for each subtask to complete one simulation task to meet the user’s requirements

when combined and executed together. However, the candidate model services are not independent of each

other, except that the interfaces should be identical. They must also satisfy the relevant constraints to

combine them and serve their purpose. There are two examples shown in Figure 2. Below, we describe

each of the three scenarios in detail.

Firstly, in the candidate model service sets of MMS, if we choose model service b, assuming its

provider is Amazon, and it does not cooperate with the model service provider e in EMS due to

commercial competition or other factors, so we cannot choose model service b and model service e

together at the same time. Secondly, if we choose model service c of EMS, and it requires the following

service provider of DMS to provide the model with a model maturity level [9] of Level 3 or higher (e.g.,

MM>=3); otherwise, the accuracy and quality of the whole task cannot be guaranteed. Therefore, the

selection of model services for subtasks should not only consider the static QoS metrics (e.g., time and cost)

when they are composed, but also should record some dynamic metrics such as model maturity, multiple

constraint relationships, and so on. And judge if they are feasible when they are selected and combined.

In this paper, the above two kinds of relationships are termed multiple constraints, which only occur

between two adjacent services and will not occur across services. That means the first service in a

sequence of service composition has no constraints unless the user has constraint requirements on it. If

there is a constraint conflict between two neighbored services, then they will not be able to be composed to

perform a simulation task.

4. Formulation of the Multi-Objective MSCS in Cloud

In this section, the formulation of multi-objective MSCS in cloud from the perspective of QoS is

presented. And due to the characteristics of the model services for simulation and the importance of the

indicator parameters, two objectives of QoS indicators, namely model maturity (MM) and model resource

energy consumption (ME), are selected to build the mathematical model for the MSCS problem. The

topology of model service composition usually consists of four types, i.e., sequence, parallel, selective and

circular. In this paper, we mainly consider the models of the sequential topology of model service

composition.

 9

Table 1: Notations and explanations

Notations Explanations

 simulation task submitted by users

 𝑖 th subtask of task

 total number of subtasks of task

 candidate service set for the 𝑖 th subtask

𝑘 The total number of candidate model services in

 The 𝑗 th candidate service of for the subtask

 (

) Vlue of the 𝑗 th model maturity of the

 (

) Vlue of the 𝑗 th energy consumption of the

 Alternative service set of

The index of collaborations between service

 and

service

The number of the cooperation between service

 and

service

 The cooperation index value of the 𝑖 th sub-service in

the cooperation relationship matrix N*N

Notations and specific explanations of some key terms in MSCS model are given in table 1. Let

 * +. denotes a simulation task in which is the total number of the subtasks

decomposed by cloud platform, and is the th () subtask of . It is assumed that

there are candidate model services available for , and the corresponding candidate service set is

 {

 } , where

 is the 𝑗 th candidate service of for the

subtask .Therefore, theoretically, there are a total of ∏

 possible compositions without any

constraints. Usually, due to the enormous variety and number of services in cloud environments, using a

brute force search to select the optimal combination is infeasible.

In this paper, the main QoS properties of the model service we considered are, model maturity (MM)

and model resource energy consumption (ME). Why choose the two objectives? There are four reasons for

this.

Firstly, for the candidate model sub-services that perform the same subtask with the same function at

the same granularity, their cost and time are not very different and cannot effectively select appropriate

model sub-services by those metrics for a simulation requirement. Secondly, the model services are

verified with the VV&A operations by the certification center and then stored in the model repository to

provide candidate model services, so the indicators such as availability, reliability, and credibility do not

vary as much as those of cloud manufacturing services. These indicators will not change during

implementation and even affect the final QoS evaluation. Thirdly, model maturity is an evaluation

indicator of the whole lifecycle of a model service. Considering the multiple constraints, the differences in

the overall model maturity exhibited by different combinations of the models can be relatively large.

Fourth, due to the development and application of container technology and other New IT technologies,

the simulation time to execute the model service will not be much different. However, the resource

consumption to execute the model service will be very different, especially when the resources are

consumed by different subtasks, which also significantly impacts the whole model composition. In

 10

summary, considering the characteristics of the model service composition, two metrics, model maturity,

and model resource consumption, are very suitable to be chosen as QoS assessment metrics for the MSCS

issue.

4.1 The optimization objectives and multiple constraints

4.1.1 Model Maturity

Model maturity is another indicator of model quality evaluation, the same as model credibility and

model fidelity [35]. It pays much attention to record the status and changes of a model in its whole life

cycle. It can have a better evaluation for an evolving model during the whole lifecycle of the model [9]. It

measures how well a model meets the expected effects and application goals along with the time and

frequency of using the model increase. With the help of an index system for model maturity assessment,

we evaluate the process of model construction, model use, and model management, then a combination of

qualitative and quantitative methods can be used to give the maturity value of a model at a certain stage.

The value range of the model maturity is [0,1]. There are 5 levels to evaluate the state of a model during

the whole life cycle named initial level, verified level, reusable level, collaboration level, optimal level,

respectively. And the corresponding value ranges are [0,0.15], (0.15,0.3], (0.3,0.15], (0.5,0.75], (0.75,1].

According to this hierarchy, the models are generally at level 3-the reusable level, so all the candidate

models in the model repository have a maturity value of at least 0.3.

Model maturity is different from the CMMI model and SaaS maturity model [37]. The CMMI model

emphasizes the software development capability of a software development organization, and it is a

certification system for the management and R&D (research and development) capability of an enterprise

or organization. The object of the assessment is the enterprise or organization. The SaaS maturity model is

a metric for software architecture in a cloud environment. It evaluates the software architecture capabilities

based on the metrics of configurability, high performance, and scalability to determine whether the design

capabilities of the software architecture meet the expected results, and the object of the assessment is the

capability of software architecture design in cloud. The object of model maturity assessment is simulation

model, and the evolution state of the whole life cycle of the model is studied, including the model

construction stage, the model use stage, and the model management stage. The three of them have different

assessment targets and different scope and responsibilities of assessment.

4.2 Model Resource Energy Consumption

Model resource energy consumption mainly refers to the computational resource energy consumption

of the model service to execute a simulation task using the model. The energy consumption of computing

resources comes mainly from the occupation and consumption of CPU and memory, so ME can also be

represented as:

 𝐸(

) 𝐸 𝑒 𝑜𝑟𝑦(

)+ 𝐸𝑐 𝑢(

) (1)

The energy consumed by each model service is different with each other and multiple different model

services could be allocated on one compute node in one host, thus, there is a need to limit the individual

energy consumption of each model service, and in this paper, we set the ME of each model service to be

less than 140.

4.3 The Multiple Constraints between Model Services

Multiple constraints between model services can have a large impact on selecting candidate model

services, and the presence of conditional constraints in the services is consistent with the actual situation,

 11

so the relevant conditional constraints need to be taken into account. This paper mainly considers two

kinds of multiple constraint relations, as mentioned in 3.2, which are exclusion constraints and conditional

constraints [28]. The first one: the exclusion constraint, which means model services are not combinable,

i.e., the model service

 cannot be combined with the model service

 due to business conflicts

of interest or other restrictions, (). The second one: conditional constraint, maturity level

requirements, i.e., model services require that the maturity level of the next candidate services must be

larger than 2 (or 3), that is, the maturity level must be 3 or 4 (a total of 0 to 4).

Thus, in addition to the last service in the sequence of composite model services, each of the other

execution services for subtasks may have 0 to 2 constraints for the following neighboring service. If

service

 for subtask is selected, and any other services in this composite service do not belong to the

alternate candidate set for

, then, this model service composition will not be feasible.

4.2 The Objective Function and Constraints of MSCS

4.2.1 Objective Function

Reducing the energy consumption and maintaining a high maturity of the model service composition

simultaneously in the cloud is a challenging problem, especially when it goes with multiple constraints,

which is a long-term challenge. Also, there are lots of kinds of constraints in model service composition. In

this paper, we use a multi-objective optimization algorithm to solve the problem with the two objectives.

Thus, MSCS problem is formalized as

 1 2
max () ((), ())f x f x f x (2)

Where () denotes the value of the overall model maturity of the model service composition.

 () denotes the value of the sum of ME of the model service compositions. And ()

is the solution vector which represents one possible composite service path, and it must also satisfy the

multiple constraints.

In the two objectives, the positive indicator is MM, and the negative indicator is ME. We should

convert all indicators into positive indicators so that the larger the value of (), the better the overall

effect of the model service composition.

One of the efficient ways to solve multi-objective optimization problems is to convert multi-objective

problems into single-objective problems and then solve the single-objective problems using the common

methods such as Weighted Sum Method, ε-Constraint Method, and Min-Max Approach. In the paper, we

use the linear weighting method, i.e., Weighted Sum Method, to convert this multi-objective problem into

a single-objective problem, the fitness function () of single-objective is defined as follows:

1

2

1

0 ,

* (S) 1
* ,

()

i i

j
N

f i

f j

i i

if s C S

w N or Mf x
w N or else

N E S

 (3)

Subject to:

 m ax

1

0 () , 1, 2, , 1, 2,
ik

j

i i

j

M E M S M E i N j k

 (4)

 12

 0 () 1, 1, 2, , 1, 2,

j

i i
g MM MS i N j k

(5)

0.3 () 1, 1, 2, , 1, 2,

j

i i
M M M S i N j k

(6)

0 () 140 1, 2, , 1, 2,

j

i i
M E M S i N j k ，

(7)

Where and are the weights of MM and ME, respectively. And + . is the

alternative model service set of with multiple constraints.

If the composite service is infeasible, i.e., , its fitness values of the two objectives are set as

0. Among them, N is the number of subtasks for one simulation task. Function ((

)) in formula

(5) represents the value of the overall maturity of the composed model services. Formula (5) and (6) imply

that the model maturity value ranges in [0,1], and the value of MM of one single candidate model service

must be larger than 0.3. And formula (6) means that ME of one model service should not exceed the

maximum value.

Due to the diversity of QoS assessment metrics, the units of each metric are different and need to be

unified to the same interval unit to facilitate our research. In this paper, we use the critical value method to

normalize the data, the formalization as follows.

m in()
,

m ax() m in()
()

m ax()
,

m ax() m in()

ij ij

ij

ij ij

ij ij

ij

ij ij

q q
if q ST

q q
N or

q q
if q ST

q q

 (8)

 denotes q is a positive factor set including MM, while

 denotes q is a negative

factor set which involves ME and other domain attributes for simulation.

Thus, the fitness function of the two objectives is as follows, respectively.

1

1

(ss)
()

N j

ii
Nor M M

f x
N

(9)

where () denotes the value of the overall model maturity after the effective composition of model

services for one simulation task.

 2 1

1
()

(ss)

N

ji

i

f x Nor
M M

(10)

where () denotes the value of the overall model energy consumption after the effective

composition of model services for one simulation task.

There are many ways to calculate the MM value of the overall composable model, Eq. 5 is only one

of them. And the following describes a way to calculate the weights of MM that considers the service

cooperation of each model service for subtasks, which makes the value of the overall model maturity

closer to the actual situation.

4.2.2 Variable-Weight Objective Function of MM

Model service composition is a series of model services assembled in accordance with specific

processes and rules to work together to complete a simulation task, so the existence of some model service

 13

relationships will have an impact on the whole process of service composition, especially on the quality of

the entire model service composition (composition reliability, composition model maturity, success rate,

etc.). In this paper, the purpose of the MSCS is to choose the optimal solution for the model service

composition under the sequential structure. It requires that the overall maturity of the composed model

should be high, so determining the overall maturity of the composed model services by the maturity value

of the individual models is also an important issue worth investigating. We give a way to get the solution

of overall maturity of the composed model services as other QoS properties as shown in formulation 11,

i.e., the weighted average method. However, it might be inaccurate to use this approach to solve MSCS

issue due to different cooperation situations between model services. Consequently, we introduced a metric

called the cooperation index (i.e.,

 in table 1) to indicate the number of times and the effectiveness

of cooperation between two adjacent services, indicating the strength of the correlation between the

services and the impact of this group of services on the overall service composition.

The weight value of each model service for subtasks in each feasible solution consists of two parts.

One is mean weight in formulation 12, and the other is correlation weight 𝑐 shown in formulation

13, and then the weight value is calculated by formulation 11.

() ()

2

j j

j aw i cw i

M i

w M S w M S
w M S

(11)

1

()=
j

aw i
w M S

N
 (12)

1

()=
j i

cw i N

ii

M c
w M S

M c

 (13)

1 0.5 0 0 0

0.5 1 0.2 0 0

0 0.2 1 0.7 0

0 0 0.7 1 0.4

0 0 0 0.4 1

(14)

Suppose the matrix of cooperation index between model services in a set of feasible solutions is

shown in formula 13, then the value for each model service is the sum of the values of row 𝑖 or

column 𝑖, i.e., 1.5, 1.7, 1.9, 2.1,1.4. Then, the weights of each model in this combined solution are 0.17,

0.20, 0.22, 0.25, 0.16 according to Eq. 11, 12, 13.

5. Multi-Objective Algorithm CA-AO-NSGA-II

Evolutionary algorithms have undergone three main generations of research. The first generation of

evolutionary multi-objective optimization algorithms is mainly based on non-dominated ranking and small

habitat techniques to solve multi-objective optimization problems. The representative algorithms are

MOGA, NSGA and NPGA. The second generation of evolutionary multi-objective optimization

algorithms is marked by elite retention strategy. Many excellent algorithms have been born, such as SPEA,

SPEA2, PAES, PESA-II, NSGA-II and so on. The third generation is dominated by the study of

high-dimensional multi-objective optimization, such as MOEA/D-DE, NSGA-III, HypE, and other

 14

algorithms. Since only the two multi-objectives are involved in this paper, the classical algorithm NSGA-II

performs very well when there are fewer multi-objectives. On the contrary, some high-dimensional

multi-objective algorithms do not perform as good as the NSGA-II algorithm on low-dimensional

objectives. Therefore, we try to use the NSGA-II algorithm and improve NSGA-II algorithm to solve the

model maturity-based MSCS problem.

5.1 A Brief Introduction of NSGAII

Genetic operator

Elitist mechanism

Start

Initialization
population P

Fast non-
dominated

sorting

Parent

population

Pn,n=0

gen+1

gen<=MaxIt
optimal

solution

selection

Offspring Dn

constraint
filtering

Fast non-
dominated

sorting

crowding-
distance
sorting

new parent
population

Pn+1

Population

merge to Qn

crossover and
mutation

YES NO

Figure 3. A flowchart of NSGAII algorithm

As a second-generation evolutionary algorithm, NSGAII algorithm is one of the most cited classical

algorithms in the field of evolutionary multi-objective optimization by SCI [38]. It reduces the

computational complexity of the problem by introducing three algorithms: fast non-dominant sorting, elite

strategy, and crowding distance sorting, as shown in Figure 3, while making the individuals in the Pareto

fronts as uniformly distributed as possible and maintaining good individuals, and improve the overall

evolutionary level of the population. This paper only considers two objectives, i.e., MM and ME, and it

can efficiently achieve better optimization results by using NSGAII algorithm. In addition, the cooperation

relations between model services must also be considered. Therefore, an improved algorithm called

CA-AO-NSGAII is proposed to optimize goals better and solve the MSCS issue efficiently.

5.2 The Proposed Algorithm CA-AO-NSGAII

The core thrust of evolutionary algorithm improvement is the balance of local search and global

search. Taking the improvement of genetic algorithm (GA) as an example, the improvement mainly

includes three major types of methods: 1) adaptive methods, the strategies for adaptive control

improvement of parameters of the algorithm. 2) local search methods, including local search strategies and

immune heuristic strategies etc. 3) global search methods, including chaotic variation strategies and small

habitat strategies, improving global search ability and convergence speed. Currently, there are many

studies in the literature on evolutionary algorithms that focus on improving these three points. In this paper,

 15

we improved the traditional algorithm (NGSA-II algorithm) in three main aspects: 1) the inclusion of

adaptive parameters, we added the adaptive method of crossover and variational operators to jump out the

local optimums quickly; 2) the global search strategy, we initialized the population selection based on

probability; 3) the local search strategy, we used the fold-and-half local search algorithm to find the local

optimal for the population. These improvements can be applied to other composition optimization

problems as well.

Genetic operator

Elitist mechanism

Start

Initialization
population P
with variable
probability

Local search

Fast non-
dominated

sorting

Parent

population

Pn,n=0

n+1

n<=MaxIt
optimal

solution

selection

Offspring Dn

Local search

Fast non-
dominated

sorting

crowding-
distance
sorting

new parent
population

Pn+1

Population

merge to Qn

Adaptive
crossover and

mutation

YES NO

Figure 4. A flowchart of the proposed algorithm CA-AO-NSGAII

The flowchart of CA-AO-NSGAII is presented in Figure 4. Firstly, to ensure that the population

evolves in a good direction, improve the quality of the population solution, and increase the evolution

speed, a population initialization method based on variable probability is proposed to replace the random

population initialization method. Secondly, before sorting the initial population , a local search algorithm

is used to make the initial parent populations feasible solutions that satisfy the multiple constraints of

model services. This improvement aims to accelerate the convergence speed, and the local search

algorithm is also used in the process of elitist mechanism. Thirdly, the crossover and mutation operators

need to be dynamically adjusted according to the differences in the individual performance of the

population so that the evolutionary process of the population will not be in a stagnant state and generate a

competitive offspring , enabling the algorithm to jump out of the local optimal solution to obtain the

global optimal solution. Therefore, the adaptive crossover-mutation operator based on the cooperation

index is proposed. These three improvements will be described in detail in the following sections.

5.2.1 The Encoding Method

Considering the complexity of the relationship between adjacent services in the MSCS problem and

the dynamics of the number of model services in the candidate model service sets, we use the integer

coding method to design chromosome genes, i.e., is a positive integer and the value of it ranges in [1,

𝑘]. The serial number of represents the serial number of model services in the candidate service sets,

 16

as shown in Figure 5.

 𝑘 (15)

...

...

...
...

��

Chromosome

Candidate

Model service set

mk

NMS

2

NMS

1

NMS
1

1MS

2

1MS

1

1

k
MS

1

2MS

2

2MS

2

2

k
MS

1X 2X
iX NX

Figure 5. The encoding method of the proposed algorithm CA-AO-NSGAII

Taking an example, we set the number of the subtasks as 5, and the number vector of candidate model

services of each subtask is [2,3,2,4,2]. One of the chromosomes encoding for a feasible solution of MSCS

is [2,1,2,1,1], i.e., the feasible solution X of model service composition is *

 +.

5.2.2 The Probabilistic Initialization Population Algorithm

Generally, according to the constraint relationship between adjacent services, the selection of the first

model service has a great impact on the selection of subsequent services. The more the first service

constraints on the next service, the smaller the feasible solution space is. And the entire service

composition has no constraints on the candidate services of the first subtask. Therefore, in the population

initialization process, try to select the candidate service of the first subtask without multiple constraints so

that the entire search space for feasible solutions will be relatively large and much more. The brief flow of

the algorithm is as follows.

Step 1. Import the data in the cooperation relationship mapping table of the candidate service set of

the first subtask.

Step 2. Calculate the proportion 𝑢𝑐 of services without any constraints in the candidate service set

of the first subtask.

Step 3. Use 𝑢𝑐 as the probability of selecting the first unconstrained gene in the initial population.

Step 4. Randomly selecting the numbers of the other gene positions.

Step 5. Output the initial population.

5.2.3 The Fold-and-Half Local Search Algorithm

The purpose of designing this algorithm is to reduce the problem of non-directional population

evolution and slow convergence speed caused by large search space and many multiple constraints

between model services. It is to perform a local search and adjustment of the parent population , so that

each individual in the population can satisfy the multiple constraints, and then participate into the

evolution of the population, thereby avoiding more evolutionary time and avoiding falling into the local

optimum. The algorithm steps are described in algorithm 1 in detail with pseudo code. Suppose there is a

 17

model service

 belongs to individual * + in population , it has

some constraints with the next service. Firstly, starting from the first half of the individual , determine

whether the services are composable, and if not, replace the first half of the model service with a

random model service that has no constraints. Secondly, starting from the second half of the individual ,

determine whether the services are composable, and if not, replace model service with a random

model service that satisfies all the multiple constraints of . Finally, until all individuals are composable,

the loop ends.

Algorithm 1: Fold-and-half local search algorithm

1: For each composite service solution * + in

2:
'

n
P P // initialize P’

3: …loop

4: …do forward algorithm, yielding replace in * +

5:
……for z 1 (1) 2to N do

6:
… ... …if

, 1 , 11
, 1,

j i j iS i MS
CS MS CS i z

 then

7:
… ... … …update to

i
M S : random ()

i i
M S As , where

, 1j ii m MS
As CS CS

8: … ... …end if

9:
……for z (1) 2N to N do

10:
… ... …if

, 1 , 11
, 1,

j i j iMS i MS
CS MS CS i z

 then

11:
… …update to

1i
M S

:

+1
random ()

i i
M S As , where

, 1j ii m MS
As CS CS

12: … ... …end if

13: ……end for

 …end loop

14: ' (')P clearall P // clear array P’

5.2.4 The Adaptive Crossover and Mutation Operators

The uniform crossover operator (UCO) is performed to cross the individual gene. In the UCO, the

genes of the offspring are randomly obtained from the parent with equal probability, two parents are

denoted as parent 1 and parent 2, and two offspring are denoted as offspring 1 and offspring 2 as shown in

the Figure 6.

 18

56 1 27 19 73

9 36 51 67 78

30 45

12 20

56 36 27 67 78 30 20

9 1 51 19 73 12 45

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 6. The uniform crossover operator for CA-AO-NSGAII

Fig. 7 shows the process of the simple mutation operator. It performs mutation on the values of one or

a few randomly designated genes in parent 1 according to the mutation probability, and the value of gene

in offspring 1 after mutation must be in the range of [1, 𝑘]. To ensure the feasibility of the offspring, the

gene value of the new individuals should be checked through a local search algorithm.

10 69 27 58 73 30 42

10 69 13 58 73 60 42

Parent 1

Offspring 1

Range from 1 to ik

Mutation point Mutation point

Figure 7. The uniform mutation operator for CA-AO-NSGAII

When the fitness value is lower than the average fitness value, the individual is a poor performer, and

a large cross and variation rate should be applied to the group. Suppose the adaptation degree is higher

than the average adaptation degree. In that case, it means that the individual is a good performer, and a

lower cross and variation rate should be applied to it according to its fitness value. In this paper, we

improve the adaptive crossover and mutation probability by adaptively adjusting the crossover mutation

probability according to the fitness value, and then adding the parameter of the average value of the

cooperation index between model services, the higher the cooperation index of the feasible solution, the

lower the probability of their crossover and mutation. In this way, evolution will not be in a stagnant state,

which allows the solutions to jump out of the local optimal solution to obtain the global optimal solution.

 max

1
* ,

_ /

,

avg

avg

cM ax avgf f

f f
c

cM ax avg

P f f

P
sum c N e

P f f

 (16)

 19

 m ax

1
* ,

_ /

,

avg

avg

m M ax avgf f

f f
m

m M ax avg

P f f

P
sum c N e

P f f

 (17)

As shown in formulas (16) and (17), represents the sum of the cooperation index of the

neighboring model services, and is the fitness value of the individual in the population. If 𝑐 ,

then 𝑐 . And we set 𝑐 , .

6. Experiments and Analysis

In order to verify the effectiveness and feasibility of the proposed method CA-AO-NSGAII for MSCS

issues as in the case of Section 3.2, three experiments about the multiple constraints and the algorithm are

performed on a PC with Intel core i7+ 2.0GHz, 8GB RAM, Windows 10, and MATLAB R2016a. For all

experiments, we set population number equals to 100, and =0.6, =0.4. The first experiment is

conducted to verify the impact of multiple constraints between model services with three different ratios of

constraints. The second experiment compares the performance of CA-AO-NSGAII algorithm with two

other classical algorithms, namely, Strength Pareto Evolutionary Algorithm 2 (SPEA2), Non-Dominated

Sorting Genetic Algorithm II (NSGA-II). The third one is conducted to show that using different objective

functions of the MM, different optimal solutions will be obtained, so that we can enable backpropagation

using the new algorithm to compare which objective function of MM yielded a better accuracy of the

overall model maturity.

6.1 Experiment I: Impact of Multiple Constraints between Model Services

Figure 8. The infeasible ratio of the population with different constraint ratio

As discussed in Section 4, each model service may have 0-2 constraints with the next neighboring

service, so it is worth exploring how the proportion of different constraints affects the evolutionary

selection of the entire population. In all the experiments, we set the number of candidate model service sets

range in [0,80], which means that each subtask has a minimum of 0 candidate services and a maximum of

80 services to choose. The proportion of multiple constraints is the proportion of each type of the

relationship in the set of candidate model services for each subtask. As shown in Figure 8, the horizontal

coordinate represents the number of different subtasks. The vertical coordinate represents the ratio of

infeasible solutions in a random population, which is 100.

 20

There are three cases with different constraint ratios tested (i.e., 5%, 10%, 15%), as shown in Figure 8,

as the number of subtasks increases, the proportion of infeasible solutions becomes higher and higher. At

the same time, as the constraint ratio increases, there are more infeasible solutions for each type of

subtasks, maximum of the ratio is up to 86%. Therefore, it is evident that the multiple constraints of model

services greatly influence the selection of feasible solutions. In order to ensure the optimal solution of

Pareto, the multiple constraints for composability cannot be ignored.

6.2 Experiment II: Comparisons with other Algorithms

In this section, we will evaluate the performance of 3 algorithms in three ways: 1) hypervolume (HV)

indicator values of the three algorithms with the different number of subtasks, 2) Maximum objective

values obtained by the three algorithms, and 3) the average time consumption of the three algorithms.

The parameter values and some operators of SPEA2, NSGA-II, CA-AO-NSGA-II in the comparison

experiments are listed in Table 2. The crossover and mutation operators in the algorithm of NSGA-II,

CA-AO-NSGA-II are the same as described in section 5.2.4.

Table 2: Notations and explanations Parameters and operators of the three algorithms

Algorithm Parameters Value

SPEA2 Crossover rate 0.95

 Mutation rate 0.15

 Selection operator Binary Tournament

 External archive set size 100

 Constraint filtering 0

NSGA-II Crossover rate 0.95

 Mutation rate 0.15

 Constraint filtering 0

CA-AO-NSGA-II Crossover rate 0.95

 Mutation rate 0.15

The formula for the HV indicator in the case of two objective functions is shown in Eq. 18. First, we

sort the Pareto frontier solutions in ascending order according to the value of the first objective function

and then calculate HV value according to Eq. 18. The above equation S denotes the set of Pareto frontier

solutions, nPop is the number of initial populations. 𝑗 () denotes the value of the 𝑗 th point of on

the 𝑖 th objective in the set, where 𝑗 () is set initially 𝑗 (), and denotes the position of the

reference point, in this paper, we set reference point values equals to [0.3, 0.1*N] for four different

scales/subtasks.

 2 2 1 1 1

1

() () () () ()

nPop

i i i

i

HV S obj p obj ref obj p obj p

 (18)

To compare the performance of the three algorithms on MSCS issues with different number of

subtasks, we set the multiple constraint ratio at 5%, and the number of subtasks N takes 5, 10, 15, and 20

with 800 iterations of evolution for each computation. Each subtask has a set of candidate model services,

of which the number ranges in [0,80]. Boxplots of the HV values in 30 runs for the above three algorithms

are shown in Figure 9 and Figure 10. The Figures show that the HV boxplots of CA-AO-NSGA-II are

 21

obviously higher than the other two algorithms with four different scales/subtasks under 5% and 15%

constraints. And as the number of tasks increases, the HV values of the three algorithms increase due to the

initial value of the reference point. The result shows that CA-AO-NSGA-II get Pareto optimal solutions

with better convergence and diversity for the MSCS problems with different subtask numbers.

Table 3 shows the maximum values of the two objectives obtained by objective functions with

different algorithms under the multiple constraint ratio of 5%, and 15%. ‘+’, ‘=’, ‘-’ represent that the

CA-AO-NSGA-II algorithm is superior, similar, and inferior to other algorithms, respectively. ‘5%_5_800’

means that the multiple constraint ratio is 5%, the number of subtasks is 5, and the iteration times is 800. In

these 16 sets of experiment data, SPEA2 and NSGA-II have only 1 set of data be higher than the new

algorithm, SPEA2 has 3 sets of data that are close to CA-AO-NSGA-II algorithm, NSGA-II has 4 sets of

data that are close to CA-AO-NSGA-II algorithm. And for most of the remaining data, CA-AO-NSGA-II

performs better.

(a) (b)

 (c) (d)

Figure 9. An example road network and the data structure in the GPU memory HV values boxplot of 3

algorithms with 5% multiple constraints. (a) HV values under 5 subtasks. (b) HV values under 10

subtasks. (c) HV values under 15 subtasks (d) HV values under 20 subtasks. 1-CA-AO-NSGA-II,

2-SPEA2, 3-NSGA-II.

 22

(a) (b)

 (c) (d)

Figure 10. An example road network and the data structure in the GPU memory HV values boxplot of 3

algorithms with 15% multiple constraints. (a) HV values under 5 subtasks. (b) HV values under 10

subtasks. (c) HV values under 15 subtasks (d) HV values under 20 subtasks. 1-CA-AO-NSGA-II,

2-SPEA2, 3-NSGA-II.

Table 3: Comparison of the maximum values of different objective functions under three algorithms

Scale CA-AO-NSGA-II

1
f

2
f

NSGA-II

1
f

2
f

SPEA2

1
f

2
f

5%_5_500 0.5961 1.1914 0.5975= 1.1801- 0.5932= 1.1842-

5%_10_500 0.5895 2.1295 0.5784- 2.1144- 0.5767- 2.1298=

5%_15_500 0.5695 3.1597 0.5748+ 3.1518- 0.5596- 3.1303-

5%_20_500 0.5729 4.1910 0.5687- 4.1888= 0.5427- 4.1425-

15%_5_500 0.5926 1.1934 0.5869- 1.1884- 0.6000+ 1.1842-

15%_10_500 0.5852 2.1284 0.5809= 2.1233- 0.5602- 2.1161-

15%_15_500 0.5731 3.1520 0.5626- 3.1503= 0.5731= 3.1249-

 23

15%_20_500 0.5736 4.1979 0.5669- 4.1757- 0.5438- 4.1159-

 +/=/- +/=/- 1/2/5 0/2/6 1/2/5 0/1/7

From the perspective of time consumption, the average time consumed by the CA-AO-NSGA-II

algorithm is less than that of NSGA-II, and is little more than that of SPEA2 due to consumption by the

more recurrent local searches, as shown in Figure 11. However, in terms of overall performance, the new

algorithm performs better than the other two algorithms for addressing the MSCS issue.

From the above Figures, it can be seen that when a local search algorithm is used in the elitist strategy,

it helps to search for feasible solutions quickly and improve the convergence speed, saving lots of time.

Moreover, with the addition of the adaptive crossover and mutation operators, it is better for us to preserve

the optimal solutions and quickly jump out of the local optimum. The convergence and stability of the new

algorithm is higher than the other two algorithms.

Figure 11. Average time consumptions of 3 algorithms in 200 iterations under 4 different subtasks.

6.3 Experiment III: Comparisons of the Solutions Obtained by CA-AO-NSGA-II Using Different

Weighting Methods with 5 Subtasks

Table 4: Optimal solutions with different weight methods

Scale Weight method Standard deviation

Optimal

combination

solution

5%_5_800
1

2

1

2

0.0278

0.0236

0.0273

0.0182

49-64-36-42-17

 49-64-36-42-17

15%_5_800 49-2-36-42-17

 49-64-40-42-17

In this section, two different weighting methods are used to get the feasible solutions with the new

algorithm CA-AO-NSGA-II, as shown in table4. Method 1 uses Equation 1 and Method 2 uses Equation 2.

In order to save space, we give only feasible solutions for the 5 subtasks with 5% and 15% multiple

 24

constraints. From the table, we can see that when the multiple constraints ratio is 5%, the feasible solutions

obtained by both weight functions are the same. The standard deviation of the fitness values obtained using

the method 2 and Eq. 3 is slightly smaller. And when the constraints ratio comes to 15%, the feasible

solutions obtained with the two methods are different. The cooperation index between the services

corresponding to feasible solution [49-2-36-42-17] is [0.6,0.3,0,0.4] and the overall value of model

maturity is 0.5486. And cooperation index between the services corresponding to feasible solution

[49-64-40-42-17] is [0.8,0.8,0.5,0.4] and the overall value of model maturity is 0.5693.

Moreover, the standard deviation of the fitness value obtained by weight method 2 is much smaller

than the standard deviation obtained by weight method 1. Therefore, the results show that the correlation

between services is affected by the cooperation index. The feasible solution obtained using method 2 is

more realistic when the fitness values are closer.

6.4 Experiment IV: A Case Study of Model Service Composition in Healthcare Field

Refer to the scenario in subsection 3.2, this paper gives a case study of a medical simulation model

service composition. After the medical emergency simulation task about personal monitoring and warning

is submitted to the cloud medical platform, the model service middleware in the service management

module in Figure 1 is responsible for completing the simulation task parsing, service search, and matching,

etc. It is responsible for selecting the set of candidate model services that satisfy several subtasks of the

simulation task. The number of services in the set of candidate model services for each subtask is different.

In this paper, the upper limit of the number of candidate services is set to 80, and the candidate services for

each subtask are shown in Table 5.

Table 5: Candidate services corresponding to each subtask

Subtasks Candidate services name Candidate services sets

T1 Monitoring Model Service (MMS)
 ,

 , … ,

T2 Examining Model Service (EMS)
 ,

 , … ,

T3 Diagnostic Model Service (DMS)
 ,

 , … ,

T4 Resource Scheduling Model Service (RSMS)
 ,

 , … ,

T5 Rehabilitation Model Service (RMS)
 ,

 , … ,

Through the digital twin medical model simulation, different model service composition paths for the

same model service under different algorithms can be obtained, as shown in Figure 12. From the Figure, it

can be seen that due to the limited amount of model service in the experiment, the solutions obtained by

three algorithms do not differ much and are the same composition solutions that all can satisfy the optimal

solution. However, at the same time, it can also be seen that different algorithms get different service

compositions for the model service provided by the same simulation task under the same request. The

model maturity for each subtask under the CA-AO-NSGA-II algorithm is [0.95, 0.89, 0.92, 0.99, 0.94],

and the overall value of the combined model maturity is 0.5961. The model maturity of each subtask under

NSGA-II algorithm is [0.95, 0.89, 0.90, 0.99, 0.94], and the overall value of combined model maturity is

0.5869. The model maturity of each subtask under SPEA-2 algorithm is [0.95, 0.89, 0.90, 0.90, 0.94]. The

overall value of combined model maturity is 0.5911. It can be seen that the new algorithm obtains slightly

better results for the model service composition, and the overall maturity value of the combined model is

also slightly higher.

 25

49

T1 T2 T3 T4 T5

64 36 42 17CA-AO-NSGA-II

49 64 40 42 17NSGA-II

49 64 40 16 17SPEA2

Figure 12. Model service composition solutions under three different algorithms

In addition, Figure 13 represents the comparison of the worst, best, and average values of the overall

fitness after the combination of model services obtained under the three algorithms for the case of five

subtasks. In Figure 13, it can be seen that the new algorithm CA-AO-NSGA-II slightly outperforms the

other two classical algorithms both in terms of individual values and mean values. It also illustrates the

effectiveness of the improved effect of the new algorithm proposed in this paper in solving the model

service combination problem based on model maturity.

Figure 13. The comparison of the overall fitness values under three different algorithms

7. Conclusions and Future Work

With large-scale M&S applications running in cloud environments, highly efficient and accurate

methods are desired strongly to solve MSCS issue. In this paper, a novel evolutionary algorithm, named

CA-AO-NSGA-II, for addressing MSCS issue in cloud environments was proposed. Considering the large

solution space and complexity of multiple constraints between model services, the new adaptive crossover

and mutation operators and local search algorithm were designed for more and higher-quality Pareto front

solutions. For improving the operational efficiency of the algorithm, probability-based methods for

initializing populations were also used in the CA-AO-NSGA-II. Compared with the other three traditional

evolutionary algorithms, the average fitness value and time efficiency of CA-AO-NSGA-II were better in

solving MSCS issue, especially with the subtask number and constraints ratio increase. In addition, the

selection of variable objective functions based on model maturity also provided a new idea to evaluate the

quality of the model service composition.

Unlike other service compositions (manufacturing services, computing services, etc.) problems, the

model service composition is special. It needs to be validated and evaluated in the whole lifecycle of the

model to ensure the credibility of the entire composition model. Therefore, in future research, except the

 26

indicator of model maturity, a study on the other QoS characteristics of M&S is required. From the

algorithm's perspective, parameter adjustment and code refactoring are required to improve the operational

efficiency of the proposed CA-AO-NSGA-II. Moreover, more variable objective functions of model

maturity need to be explored further in order to find appropriate ways to evaluate it.

Acknowledgements

This work is partly supported by National Key R&D Program of China (2018YFB1701600) and by

the National Natural Science Foundation of China (NSFC) under Grant Nos.61873014 and 61973243.

8. REFERENCES

[1] Mittal, Saurabh, J. L. Risco-Martin, and B. P. Zeigler, DEVS/SOA: A cross-platform framework for

net-centric modeling and simulation in DEVS unified process, Simulation: Transactions of The

Society for Modeling and Simulation International, 85(7) (2009) 419-450.

[2] Song, X, Zhang, L, He, DJ, Ren, ZY, A DEVS Based Modelling and Methodology-COSIM, Applied

Mathematics & Information Sciences, 6(2) (2012) 417-423.

[3] Song, Xiao, F. Li, and L. Zhang, A Survey and Preliminary Research on Service Federation Based

Modeling and Simulation, 2015 IEEE 39th Annual Computer Software and Applications Conference

(COMPSAC) IEEE, 2015.

[4] Byrne, James, C. Heavey, and P. J. Byrne, A review of Web-based simulation and supporting tools,

Simulation Modelling Practice & Theory, 18(3) (2010) 253-276.

[5] Li Bohu et al, Networked Modeling & Simulation Platform Based on Concept of Cloud Computing

Cloud Simulation Platform, Journal of System Simulation (in Chinese), 21(17) (2009) 5292-5299.

[6] Liu, Xiaocheng, et al, Cloud-Based Simulation: The State-of-the-Art Computer Simulation Paradigm,

Acm/ieee/scs Workshop on Principles of Advanced & Distributed Simulation ACM, Zhangjiajie,

China, 2012.

[7] Cayirci, E, Modeling and simulation as a cloud service: a survey, In Proc of. the 2013 Winter

Simulation Conference, WSC’13, San Diego, CA, USA, 2013, pp. 389-400.

[8] Wei-Tek Tsai et al, SimSaaS: simulation software-as-a-service, Int. Conf. Spring Simulation

Multi-conference DBLP, 2011, pp. 77-86.

[9] Zhang, Lin, Ying, Liu, et al, Model maturity towards modeling and simulation: Concepts, index

system framework and evaluation method, International Journal of Modeling Simulation and scientific

Computing, 11(3) (2020) 2040001.1-21.

[10] Marvasti, A. K., et al, Optimal Operation of Active Distribution Grids: A System of Systems

Framework, IEEE Transactions on Smart Grid, 5(3) (2014) 1228-1237.

[11] Y. Wu, X. Song, G. Gong, Real-time load balancing scheduling algorithm for periodic simulation

models, Simulation Modelling Practice and Theory, 52(1) (2015) 123-134.

[12] Friedenthal S, Alan M, 2011. A Practical Guide to SysML: The Systems Modeling Language. In: A

Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA. https://doi.org/10.1115/DETC2004-57751.

[13] Brutzman D, Tolk A, Jsb composability and web services interoperability via extensible modeling

simulation framework (xmsf), model driven architecture (mda), component repositories, and

web-based visualization. Technical Report. U.S. Air Force, Joint Synthetic Battlespace Analysis of

Technical Approaches (ATA) Studies Prototyping, USA, 2003.

 27

[14] Wittman R, Harrison C, Onesaf: A product line approach to simulation development. Technical

Report. MITRE CORP ORLANDO FL, USA, 2001.

[15] Petty M, Weisel E, A formal basis for a theory of semantic composability. Proceedings of the Spring

2003 Simulation Interoperability Workshop, Kissimmee, FL, 2014, pp.416-423.

[16] Xiaoyu Kang, et al, CPN-Based Composition in Modeling Command and Control of Surface Air

Defense, Communications and Information Processing, Springer Berlin Heidelberg, 2012.

[17] Alpdemir, M Nedim, SiMA: a discrete event system specification-based modelling and simulation

framework to support model composability, Journal of Defense Modeling & Simulation, 9(2) (2012)

147-160.

[18] Mittal, Saurabh, J. L. Risco-Martin, and B. P. Zeigler, DEVS/SOA: A cross-platform framework for

net-centric modeling and simulation in DEVS unified process, SIMULATION: Transactions of The

Society for Modeling and Simulation International, 85(7) (2009) 419-450.

[19] Petty, Mikel D., et al, Software frameworks for model composition, Modelling and Simulation in

Engineering, 2014(2015):4.

[20] Taylor, S. J., T. Kiss, A. Anagnostou, et al, The CloudSME simulation platform and its applications: A

generic multi-cloud platform for developing and executing commercial cloud-based simulations,

Future Generation Computer Systems, 88(1) (2018) 524-539.

[21] Wang, Sixuan, and Gabriel Wainer, Modeling and simulation as a service architecture for deploying

resources in the Cloud, International Journal of Modeling, Simulation, and Scientific Computing, 7(1)

(2016) 1-38.

[22] Balalaie, Armin, A. Heydarnoori, and P. Jamshidi, Microservices Architecture Enables DevOps:

Migration to a Cloud-Native Architecture, IEEE Software, 33(3) (2016) 42-52.

[23] Wainer, Gabriel, and S. Wang, A Mashup Architecture with Modeling and Simulation as a Service,

Journal of Computational Science, 21(2015) (2015) 113-131.

[24] Wainer, Gabriel, and S. Wang, MAMS: Mashup architecture with modeling and simulation as a

service, Journal of Computational Science, 21(2017) (2017) 113-131.

[25] Alrifai, M., et al, Ahybrid approach for efficient Web service composition with end-to-end QoS

constraints, ACM Transactions on the Web, 6(2) (2012) 1–31.

[26] Chhun, Sophea, Moalla, Néjib, and Y. Ouzrout, QoS ontology for service selection and reuse, Journal

of Intelligent Manufacturing, 27(1) (2016) 187-199.

[27] Liang H, Wen X, Liu Y, 2021. Logistics-involved qos-aware service composition in cloud

manufacturing with deep reinforcement learning. ROBOT CIM-INT MANUF, 67(2021) 1-15.

[28] Wang, Fei, Y. Laili, and L. Zhang, A many-objective memetic algorithm for correlation-aware service

composition in cloud manufacturing, International Journal of Production Research, (2020) 1-19.

[29] Deng, S. G., et al, Service Selection for Composition with QoS Correlations, IEEE Transactions on

Services Computing, 9(2) (2016) 291-303.

[30] Luo, Yihang, Yushun Fan, and Haoyi Wang, Business Correlation-Aware Modelling and Services

Selection in Business Service Ecosystem, International Journal of Computer Integrated

Manufacturing,26(8) (2013) 772–785.

[31] Hannay, Jo Erskine, and T. V. D. Berg, The NATO MSG-136 Reference Architecture for M&S as a

Service, Nato Modelling & Simulation Group Symp on M&S Technologies & Standards for Enabling

Alliance Interoperability & Pervasive M&s Applications, 2017.

[32] Shahin, Mojtaba, M. Ali Babar, and Muhammad Aufeef Chauhan, Architectural Design Space for

Modelling and Simulation as a Service: A Review, Journal of Systems and Software (2020): 110752.

 28

[33] Mahmood, Imran, et al, An Integrated Modeling, Simulation and Analysis Framework for Engineering

Complex Systems, IEEE Access, 99(2019) 1-1.

[34] Eek, Magnus, et al, A Concept for Credibility Assessment of Aircraft System Simulators, Journal of

Aerospace Computing Information & Communication, 54(6) (2016) 1-15.

[35] Laili, Yuanjun, Lin Zhang, and Yongliang Luo, Pattern-based validation metric for simulation models,

Science China Information Sciences, 63(5) (2020) 159203:1-159203:3.

[36] Liu Ying, Zhang Lin, Yang Yuan, et al. A novel cloud-based framework for the elderly healthcare

services using digital twin, IEEE Access, 7(2019) 49088-49101.

[37] Chen Y, Tsai W T. Service-oriented computing and web software integration: from principles to

development (5th Edition), Kendall/Hunt Publishing Co., 2015.

[38] Gong, Maoguo, et al, Multiobjective immune algorithm with nondominated neighbor-based selection,

Evolutionary Computation, 16(2) (2014) 225-255.

