

Speeding Up Computational Times in Simheuristics Combining Genetic Algorithms with Discrete-Event Simulation

Journal Pre-proof

Speeding Up Computational Times in Simheuristics Combining
Genetic Algorithms with Discrete-Event Simulation

M. Rabe, M. Deininger, A.A. Juan

PII: S1569-190X(20)30027-7
DOI: https://doi.org/10.1016/j.simpat.2020.102089
Reference: SIMPAT 102089

To appear in: Simulation Modelling Practice and Theory

Received date: 22 August 2019
Revised date: 25 February 2020
Accepted date: 2 March 2020

Please cite this article as: M. Rabe, M. Deininger, A.A. Juan, Speeding Up Computational Times in
Simheuristics Combining Genetic Algorithms with Discrete-Event Simulation, Simulation Modelling
Practice and Theory (2020), doi: https://doi.org/10.1016/j.simpat.2020.102089

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.simpat.2020.102089
https://doi.org/10.1016/j.simpat.2020.102089

Speeding Up Computational Times in Simheuristics Combining

Genetic Algorithms with Discrete-Event Simulation

M. Rabea and M. Deiningera and A. A. Juanb

aIT in Production and Logistics, TU Dortmund University, 44227 Dortmund, Germany
bIN3 – Computer Science Dept., Open University of Catalonia, 08860 Castelldefels, Spain

ARTICLE HISTORY

Compiled March 9, 2020

ABSTRACT
Many real-life systems in production and transportation logistics are complex, large-
scale, and stochastic in nature. As a consequence, simheuristic approaches – which
integrate simulation inside a metaheuristic framework – are becoming increasingly
popular in the optimization and simulation communities. In a simheuristic algo-
rithm, time-consuming simulation runs are required in order to: (i) obtain accurate
results on the stochastic performance of solutions generated by the metaheuristic;
and (ii) provide feedback that can be useful to better guide the metaheuristic search.
If the underlying system is complex, discrete-event simulation might be needed, and
then the simulation component could easily overrun the computational time of the
metaheuristic component. Thus, for each new solution generated by the metaheuris-
tic, several related questions arise: (i) should the simulation component be applied
to that solution? – i.e., is that solution ‘promising’ enough to invest additional
computational time on retrieving information about its performance in a stochas-
tic environment?; and (ii) if so, how many simulation runs are needed in order to
obtain useful information (i.e., statistics with a minimum level of accuracy)? This
paper discusses these issues and proposes several concepts that allow to improve the
efficiency (in terms of computational time) of simheuristic algorithms. A case study,
based on a typical manufacturing system, is introduced. In order to illustrate and
test different speeding-up techniques, the system is optimized by using a simheuristic
that integrates a genetic algorithm with discrete-event simulation.

KEYWORDS
simulation-optimization; simheuristics; statistical techniques; metaheuristics

1. Introduction

Factors such as globalization and personalized customer orders lead to increasingly
complex production and transportation systems. Understanding these needs and in-
corporating them during the design and operation of these systems are challenging
tasks that can only be accomplished by experts. These experts have to consider mul-
tiple possibilities when it comes to decision making, e.g.: whether to accept an order
or not and, if so, how to manage the necessary resources – including the existing
and purchasable means of production and workers. Introducing a new resource into a
production system directly influences the rest of it, since it might require the assign-
ment of material and qualified staff that, in consequence, cannot be dedicated to other

Corresponding author: A. A. Juan. Email: ajuanp@uoc.edu

tasks. As a result, even experts need support in their decision making to fully assess
and understand the consequences of their choices.

In order to efficiently support decision making under uncertainty conditions, simu-
lation methods, heuristic-based optimization approaches, and their combination as a
simheuristic framework can be employed (Juan et al., 2018). In the context of produc-
tion systems, discrete-event simulation can be utilized for evaluating the system with
respect to stochastic processes. Using metaheuristic optimization, different combina-
tions for a production system can be created, evaluated, and changed according to
previous results. Inside the wide family of simulation-optimization methods (Fu et al.,
2005; Rani and Moreira, 2010), the simulation component of a simheuristic algorithm
is integrated into a metaheuristic framework in order to: (i) evaluate the performance
of solutions provided by the metaheuristic component; and (ii) guide the perturbation
and the local search processes. The latter can be achieved by updating the ‘reference’
solution(s) (e.g., the base solution in the case of a single-solution metaheuristic or the
population of solutions in the case of a population-based one), and by prioritizing some
operators over others. The fundamentals of simheuristic algorithms were discussed in
Juan et al. (2015). Hence, this paper focuses on two relevant aspects of these algo-
rithms that were previously unexplored: how to filter out unpromising solutions and
how to decide about the number of simulation runs. In effect, with respect to stochastic
influences, multiple simulation runs are necessary for obtaining statistically significant
results. As the simulation component is included within the simheuristic framework,
a reasonably large number of simulation runs has to be applied in order to find a
suitable configuration of the production system. Unfortunately, this usually leads to
high computational times. Most of this time is employed by the simulation component,
leading to a risk that results are not obtained within a reasonable period. There are
two basic approaches for reducing these computational times. First, by decreasing the
number of solutions that are sent to the simulation component for evaluation, which
decreases the coverage of the solution space. Secondly, by decreasing the number of
simulation runs required to assess the quality or feasibility of each proposed solution,
which could affect the statistical significance of the results.

Despite the high number of successful applications of simheuristics in a wide range
of fields, there is a need for developing algorithmic-design concepts that allow to reduce
the computational time required to achieve high-quality solutions. Likewise, there is a
lack of simheuristics combining genetic algorithms (Chambers, 2019; Mirjalili, 2019)
with discrete-event simulation (Wainer, 2017). Hence, the main contributions of this
paper are: (i) to propose different design strategies, based on statistics concepts (Calvet
et al., 2016; Hastie et al., 2009), which contribute to efficiently reduce computational
times in a simheuristic algorithm without affecting the quality of the final solution
obtained; and (ii) to illustrate and test these design concepts throughout a detailed
case study that combines discrete-event simulation with a genetic algorithm (GA)
to optimize a stochastic system. All in all, we consider that these concepts can be
quite useful to other authors when designing GA-based simheuristics or even other
simulation-optimization frameworks.

The remaining of this paper is structured as follows: Section 2 provides a brief
introduction to simulation and optimization methods, as well as to their combination.
Section 3 explains how a simheuristic algorithm works, and puts into context the
aforementioned design issues. Section 4 offers a literature review on recent applications
of simheuristics in different fields. Section 5 briefly describes the applied GA. Section 6
proposes different ways of filtering out the non-promising solutions. Section 7 discusses
how the required number of runs can be determined. Section 8 illustrates, with a

2

numerical case study, the use of the proposed design concepts. Section 9 performs an
analysis of the results. Finally, Section 10 highlights the main conclusions of this paper
and identifies potential lines for future research.

2. Basic Concepts on Simulation-Optimization

In Operations Research (OR), simulation and optimization methods are typically used
for analyzing systems (or processes) that are of high complexity. On the one hand,
simulation is typically employed whenever the system shows stochastic behavior (e.g.,
stochastic processing or transportation times, random customer demands, stochastic
failure and repair times) or dynamic complexity (e.g., many processes interacting over
time). On the other hand, optimization methods allow to obtain optimal or near-
optimal configuration solutions, i.e., configurations that offer the best possible values
for some performance indicators (Robinson, 2004). This section gives a short intro-
duction to both approaches as well as to their combination.

2.1. Simulation

Simulation has a wide range of applicability, e.g.: designing and analyzing manufac-
turing systems, determining hardware requirements, re-engineering business processes,
and many more. In this paper, simulation will be applied for evaluating configurations
for production systems. There are three major simulation techniques that can be used
for this purpose (Law, 2007):

• Continuous Simulation (CS) refers to the modeling of a system with random
variables that change continuously over time. Typically, it is based on differential
equations and employs a numerical approach for solving them. It can be used,
for instance, in simulating processes like bending, cutting, or heating (Cellier
and Kofman, 2006).
• Monte Carlo simulation (MCS) employs random sampling for addressing certain

stochastic problems that do not evolve over time (static systems). It is frequently
used for dealing with stochastic optimization problems that are not analytically
tractable (Bianchi et al., 2009).
• Discrete-Event Simulation (DES) refers to the modeling of a system with random

variables that change over time (dynamic systems) but only in a discrete manner,
i.e., just when specific events occur over time. It is used, for example, to analyze
manufacturing systems and supply chains (Fishman, 2013).

Each of these techniques is employed for evaluating a given scenario with a specific
set of parameters. Thus, they can be utilized for analyzing ‘what-if’ scenarios. In
production and transportation logistics, DES is probably the most-used simulation
technique, since it can be considered that these systems only change when relevant
events occur at discrete moments of time, such as when the production of an item is
completed, or when an item has been delivered (Tako and Robinson, 2012).

2.2. Optimization

Differently from simulation, optimization searches for a set of parameters for which
a system performs best. One can distinguish between exact and approximate (e.g.,

3

heuristic-based) optimization methods. Exact methods guarantee the optimality of the
solution returned for a given problem. However, with rising complexity the time nec-
essary for finding an optimal solution also increases – sometimes in a near-exponential
way – with the size of the problem. In order to perform faster, metaheuristic methods
do not aim at finding necessarily an optimal solution, but a near-optimal one instead
(Krug and Rose, 2011). Applications of optimization in the field of production and
transportation logistics are, for example, related to the scheduling of customer orders
(Hasan et al., 2011) or related to route planning (Gomez et al., 2004). Also, the hy-
bridization of exact methods with metaheuristics is gaining popularity (Jourdan et al.,
2009).

Metaheuristic algorithms can be classified into population-based (e.g., genetic algo-
rithms, particle swarm optimization, or ant colony optimization), and single-solution
(e.g., tabu search, simulated annealing, or iterated local search, just to name a few).
A survey on metaheuristics can be found in Hussain et al. (2019). Also, excellent
introductory books on the field have been authored by Talbi (2009) and Luke (2013).

2.3. Combining Simulation and Optimisation

According to März and Krug (2011), four different classes can be distinguished when
combining simulation with optimization techniques:

• Optimization integrated in simulation: In this case, the simulation pauses and
uses the optimization to evaluate a specific problem. The result is returned to
the simulation, which then resumes its activity. For example, an ordering of jobs
could be re-scheduled according to the current state of the simulation.
• Simulation as objective function: Here, the optimization provides a possible so-

lution vector that is evaluated through the simulation. The results are then used
within the optimization to generate alternative solutions. This can be applied,
for instance, to determine the staff assignment for a given job scheduling.
• Simulation results as start for optimization: Using this combination, the simu-

lation is conducted before the optimization. Hence, the simulation provides the
initialization parameters for the optimization. An example is to determine the
staff needed for production and, afterwards, using the optimization to allocate
this staff.
• Optimization for configuring simulation: Here, the simulation is used to evaluate

the feasibility of a solution found by the optimization.

The approach considered in this paper assumes that a DES component is employed
to compute the value of the objective function associated with a solution provided by
the metaheuristic component. Typically, in a simheuristic algorithm the simulation
feedback can also be used to guide the search (e.g., by selecting the ‘proper’ parents
for the next generation in a GA). The DES component might lead to a huge amount of
time-consuming simulation runs to be conducted. First, a metaheuristic optimization
needs to generate many ‘promising’ or ‘sufficient’ solutions in order to conveniently
explore the solution space. Secondly, in order to assess the performance of each promis-
ing solution in a stochastic environment, a simulation experiment is required. In order
to receive valid results from a stochastic simulation experiment, multiple replications
have to be conducted. Thus, a reliable solution value can be computed as an average
value of all performed replications. Compared to the computing time used for generat-
ing solutions by the optimization that have to be analyzed, DES takes a lot more time

4

for performing a single replication. This results in the need for reducing the number
of replications to be performed and to filter out the solutions that are sent to the DES
component. These challenges, and the related design concepts discussed in the next
sections, are independent of the simulation techniques employed. Hence, our discussion
also applies to simheuristics relying on MCS or CS.

3. The Logic Behind Simheuristic Algorithms

A simheuristic algorithm is a particular simulation-optimization approach oriented to
efficiently tackle an optimization problem that typically contains stochastic elements.
These stochastic elements can either be located in the objective function (e.g., stochas-
tic customer demands, random processing and transportation times, etc.), or in the set
of constraints (e.g., customer demands that must be satisfied with a given probability,
deadlines that must be met with a given probability, etc.). In particular, a simheuristic
algorithm is aimed at solving a combinatorial optimization problem of the form:

Minimize f(s) = g(C(s)) (1)

Subject to:

P (qi(s) ≥ li) ≥ ki ∀i ∈ {1, 2, . . . , n} (2)

hj(s) ≤ rj ∀j ∈ {1, 2, . . . ,m} (3)

s ∈ S (4)

Where:

• s represents a solution candidate.
• S represents the space of possible solutions s associated with the optimization

problem.
• C = C(s) represents a stochastic objective function.
• g(C(s)) represents a parameter of interest associated with the objective function,

e.g.: the expected value of C(s).
• Equation (2) represents probabilistic constraints related to the problem, e.g.: the

probability that the service quality q(s) reaches a given threshold l is above a
user-defined value k.
• Equation (3) represents typical constraints in deterministic optimization prob-

lems.

Notice that the optimization problem could also consists in maximizing an objective
function, and that some ≤ could be ≥ or vice versa. In simheuristic applications it
is frequently assumed that, at least in scenarios with moderate variance, high-quality
solutions for the deterministic version of an optimization problem are also likely to be
high-quality solutions for its corresponding stochastic version. As discussed in Juan
et al. (2014a) and Juan et al. (2015), this assumption seems to be reasonable in most
practical applications. Of course, this does not imply that the best solution for the
deterministic optimization problem has to be the best solution for the stochastic ver-
sion. In scenarios with extreme variance levels, individual outcomes can be extremely
diverse and, therefore, it might make no sense to optimize traditional measures such
as the expected cost or the expected revenue. This ‘relationship assumption’ allows

5

Figure 1. Basic scheme of a simheuristic framework.

us to generate several ‘promising’ solutions for the stochastic version of the optimiza-
tion problem through the generation of a number of high-quality solutions for the
deterministic version. As depicted in Figure 1, given a stochastic instance, its deter-
ministic counterpart is considered. This can be done, for instance, by replacing all
random variables by their expected values. In cases in which the variability of some
random variables is relatively high, or for variables with heavy-tailed distributions,
randomly generated observations (different at each iteration of the algorithm) could
be employed instead of expected values to better represent the underlying stochastic
behavior. Then, a metaheuristic-driven algorithm is run in order to perform an effi-
cient search inside the solution space associated with the deterministic version. This
iterative search process aims at finding a set of high-quality feasible solutions for the
deterministic version.

During the iterative search process, the algorithm has to assess or estimate the
quality (or feasibility) of each of these promising solutions when they are considered
as solutions of the stochastic version of the problem. One natural way to do this is
by taking advantage of the capabilities that simulation methods offer to manage ran-
domness in complex systems. During the interactive searching process, only promising

6

solutions (i.e., those that perform well in the deterministic environment) are sent to
the simulation component. Moreover, for each promising solution, just a reduced num-
ber of replications are run, since only rough estimates are necessary at this stage. This
strategy allows for controlling the computational effort employed by simulation dur-
ing the interactive searching process, thus leaving enough time to the metaheuristic
to perform an intensive search of the solution space. The estimated values provided
by the simulation can then be used to keep a ranked list of elite solutions for the
stochastic problem. Equally important, they can also provide feedback to the meta-
heuristic, so that it intensifies the exploration of promising searching areas. Once the
computational time assigned to the iterative searching process has expired, a reduced
set of ‘elite’ solutions are provided. More accurate estimates can be obtained for these
elite solutions by employing simulations with a larger number of replications. These
new estimates can then be used to re-rank the solutions. A remarkable fact is that
simulation runs can also be used to obtain additional information on the probability
distribution of the stochastic performance values associated with each solution. This
complementary information can then be used to introduce risk-analysis criteria in the
decision-making process. In effect, since the objective function is stochastic, a decision
maker might not only be interested in obtaining the solution that optimizes its ex-
pected value, but she might also be interested in analyzing the probability distribution
of the values generated by several alternative solutions with similar expected values.
Thus, for example, in cost-minimization problems a solution with a lower variability
in its costs might be preferred over a solution with a higher variability. Similarly, a
solution with a higher probability of being completed before a given deadline might
be preferred over a solution with a lower probability.

4. A Review on Recent Simheuristic Applications

This section reviews some recent applications of simheuristic algorithms in the solving
of stochastic optimization problems across different OR-related areas. We are mainly
interested in applications published since 2014, so the reader is addressed to Juan
et al. (2015) for publications on simheuristics – and related simulation-optimization
methodologies – that were published before that date. In order to facilitate the reading,
the reviewed papers have been classified by application area:

• Scheduling Problems: In the context of scheduling, Juan et al. (2014a) present
a simheuristic approach for solving the permutation flow-shop problem with
stochastic processing times. In this work, simulation is integrated within an iter-
ated local search framework to find the permutation of jobs that minimizes the
expected makespan. Reliability analysis concepts are also used in their approach,
since the goal is to select a low-risk solution among those with similar expected
makespan. Gonzalez-Neira et al. (2017) propose a simheuristic algorithm for solv-
ing a distributed-assembly flow-shop problem with stochastic processing times.
The authors argue that only by combining simulation with metaheuristics it is
possible to solve such realistic but complex optimization problems in reasonable
computing times. Also in this context, Hatami et al. (2018) analyze the optimal
setting of starting times in stochastic parallel flow-shop problems.
• Vehicle and Arc Routing Problems: Gonzalez-Martin et al. (2018) use a

simheuristic for solving the arc routing problem with stochastic demands, while
Fikar et al. (2016) proposes a DES-based heuristic to cope with a vehicle rout-

7

ing problem with synchronized pick-up and delivery actions. Different from the
vehicle routing problem, in the arc routing problem the demands are located on
the edges instead of on the nodes, and the graph is not necessarily complete,
which implies that an edge might be traversed more than once by the same
vehicle. Guimarans et al. (2018) introduce a simheuristic algorithm for the two-
dimensional vehicle routing problem with stochastic travel times. Reyes-Rubiano
et al. (2019) discuss the electric-vehicle routing problem with stochastic travel
times and limited driving ranges, for which they propose a simheuristic algo-
rithm.
• Inventory Routing Problems: Juan et al. (2014b), Gruler et al. (2018), and Gruler

et al. (2020) propose several simheuristic algorithms for solving inventory routing
problems with stock-outs – some of these problems considering a multi-period
horizon. The authors propose the combined use of MCS with a metaheuristic to
minimize global inventory and routing cost when serving a set of retail centers
that are subject to stochastic demands. The goal of minimizing the total expected
cost is complemented with the idea of obtaining solutions with a low variability
or risk.
• Facility Location Problems: In De Armas et al. (2017), the authors extend a

metaheuristic framework into a simheuristic to solve the uncapacitated facility
location problem with stochastic costs. This work includes a complete discussion
on how solutions in a stochastic environment should be compared based on differ-
ent performance measures, i.e.: not only expected cost, but also variance-related
statistics. Moreover, the authors propose a framework where the simulation pro-
vides feedback to the metaheuristic search, i.e., it is a simulation-driven meta-
heuristic. Pagès-Bernaus et al. (2019) also apply a simheuristic approach to the
design of a distribution network in an e-commerce environment. These authors
test the performance of the simheuristic by comparing the results it generates
against the ones obtained by a classical stochastic programming approach. As ex-
pected, the simheuristic can deal with large-size instances that cannot be solved
by the stochastic programming approach in reasonable computing times.
• Internet Computing: In the context of volunteer computing, Cabrera et al. (2014)

combine a discrete-event simulation with a heuristic approach to deal with the
design of reliable services deployed over distributed computer networks.
• Logistics Networks: Rabe et al. (2017) propose a combination of a logistics net-

work discrete-event simulation model with deep reinforcement learning. The au-
thors represent the state of the simulation model as an image where all relevant
information for the deep reinforcement learning agent are represented with the
color values and arrangement of the pixels in the image. The image and the
simulation results for the corresponding simulation model are given to the deep
reinforcement learning agent, which can apply changes to the underlying data
model to manipulate the simulation model and, therefore, generate new solution
candidates.
• Waste Collection Management: Gruler et al. (2017a) and Gruler et al. (2017b)

develop simheuristic approaches for supporting stochastic waste-collection man-
agement in urban areas. While the latter proposes a variable neighborhood search
framework to deal with the single version of the problem, the former deals with
a more complex multi-depot scenario.
• Others: Panadero et al. (2018) study a project portfolio selection problem under

uncertainty conditions. Finally, Ferone et al. (2019) analyze how the popular
and easy-to-implement GRASP metaheuristic framework can be extended into

8

a simheuristic to deal with stochastic combinatorial optimization problems.

5. The Optimization Component: A Genetic Algorithm

In this paper, the methaheuristic component is a standard GA (Chambers, 2019),
which is described in Algorithm 1. It should be noticed that the GA is used as an ex-
ample in order to demonstrate the proposed enhancements. In cases in which feasibility
is an issue, the GA has to be adapted – or even exchanged with another optimization
method – in order to guarantee the generation of feasible solutions. For the considered
example, however, feasible solutions are easy to achieve (either directly or by repairing
the solution). The applied GA strictly conducts jmax generations (iterations) using p
individuals (solutions). The algorithm starts with generating p random solution can-
didates that are evaluated next. Now jmax − 1 additional generations will be created
and evaluated before returning the best solution found. Each generation is created
based on the pparents best solutions found in the previous generation. Two random
parents will be selected, from which valid children, using a uniform crossover, will be
generated. This is repeated until the population size reaches p solution candidates.
Before being evaluated, each solution candidate may be mutated with a probability of
m.

Algorithm 1 Applied Genetic Algorithm

1: procedure Genetic Algorithm(p, pparents,m, jmax)
. p: number of individuals in population

. pparents: number of parents for new generations
. m: probability for mutation

. jmax: maximum number of generations
2: randomly generate p valid solution candidates si1 as generation 1
3: for all solution candidates si1 in generation 1 do
4: evaluate si1
5: end for
6: for j = 2 to jmax do
7: determine pparents best individuals and use them as new generation j
8: while (number of solution candidates in generation j < p) do
9: randomly select two parents

10: generate two new children using uniform crossover
11: drop not valid individuals
12: end while
13: for all solution candidates sij in generation j do
14: mutate sij with a probability of m by changing a single element in sij
15: evaluate sij
16: end for
17: end for
18: return best solution candidate s+

19: end procedure

9

6. Technique 1: Filtering-out Unpromising Solutions

In order to reduce the computational effort requested by simulation runs, it is useful
to filter out unpromising solutions and not to run an expensive simulation for them.
For example, a surrogate (simpler) model of the problem could be used for estimating
the results of a simulation (Cozad et al., 2014). Such a model can be fast with respect
to computational times and, thus, very effective (Qian et al., 2006). Unfortunately,
this adds a second model to the problem, a model that also needs to be maintained.
Furthermore, this model has to match the stochastic simulation model and needs to
be good in performance, which leads to additional overall complexity for the problem.
One option could be to use a simplified simulation model to obtain initial estimates.
This can be achieved by replacing all the stochastic variables by their expectation
values. As a result, only a single run needs to be performed for obtaining an estimate,
since in a deterministic scenario each run gives exactly the same result. Like the
result of an analytical function, a threshold can be used to decide whether to run an
expensive simulation experiment or not. Such a threshold has to be defined prior to
the simulations, which is hard to do. For example, if chosen too low, no simulation
experiments will be performed and, therefore, the simheuristic will provide no feasible
solution. If chosen too high, all solution candidates will pass and even unpromising
solutions will be evaluated. For this reason, the simheuristic shall learn on its own
which solution candidate should be passed to the stochastic simulation experiment.

One way to obtain this threshold is to run the deterministic version and the stochas-
tic simulation experiment for the initial solution in a single-solution-based metaheuris-
tic, or for each individual i of the first generation in a population-based metaheuristic
(e.g., in a GA). Here, we only describe the strategy for the second case, since the strat-
egy for the first can be easily derived from it. Dropping all results that have violated
constraints, such as threshold costs or due dates, it is possible to compute a reference
solution, cr = f (C∗(sij)), using the deterministic objective function C∗ applied to
each new solution sij of the remaining individuals of the current generation j. For the
next iteration within the optimization, only solution candidates will be passed to the
stochastic simulation whenever the corresponding deterministic solution c∗ij = C∗(sij)
fulfills c∗ij < cr. Since the optimization is aiming to find better solutions, there is
no need for evaluating unpromising solutions. After each iteration performed by the
optimization, cr is updated.

Since it cannot be guaranteed that only solution candidates with c∗ij < cr lead
to better stochastic results, this hard criterion should be softened. Therefore, also
some solution candidates with c∗ij ≥ cr will be passed to the stochastic simulation.
Hatami et al. (2015) propose an acceptance criterion that may be used to filter those
solutions. They compute the relative percentage difference between the performance

of a reference solution (cr) and the one being considered (c∗ij) as: r =
c∗ij−cr
cr

. Then,

the solution is labeled as promising if r ≤ 0 or, otherwise, with a probability of e−r.
Alternatively, other simulated-annealing methods could be employed for filtering out
the solutions (Aarts et al., 2005).

7. Technique 2: Adjusting the Number of Required Runs

This section gives a short introduction on how to determine the right number of
replications. It also shows how deterministic approaches can be utilized as a first
approximation.

10

7.1. Determining the Number of Replications

The analysis of a single scenario within a simulation experiment consists of multiple
simulation runs. Of course, the higher the number of runs, the more computational
time is required. Therefore, it is necessary to determine the suitable number of runs
to be applied, i.e., one that ensures a good approximation of the desired objective
parameters. Robinson (2004) proposes three ways for selecting the necessary number
of runs:

• Rule of thumb: It is recommended to perform at least three to five replications.
This is obviously not an exact estimation. In particular, it does not take into
account the characteristics of the simulation model and its output, but it shows
that more than one replication needs to be done for obtaining results with a
minimum level of accuracy.
• Graphical method: Here, the mean value of the desired parameter is plotted

against the number of replications. The required number of replications is the
one corresponding to the part in which the graph becomes flat. More replications
will only lead to marginal improvements.
• Confidence interval method: Using this method, a confidence interval for the

desired parameter is computed. The smaller the interval, the more accurate the
estimate will be. The number of replications is selected at the point where the
interval reaches and remains below the desired level of deviation.

Hoad et al. (2007) utilize the confidence interval method for a completely automated
estimation of necessary replications. They define a precision d and a number of repli-
cations k (window of reliability), where the computed precision dn after replication n
needs to fulfill the required precision drequired.

7.2. Deterministic vs. Stochastic Runs

For conducting only as many replications as necessary in a simheuristic framework, we
proceed as follows: (i) first, a deterministic replication is applied; (ii) only if this deter-
ministic run leads to a promising solution, then stochastic replications are performed
until a given stopping criterion is met. In our case, the replications will continue until
the size of the confidence interval (the one associated with the simulation outcome)
is lower than a pre-established threshold. This strategy builds on the approaches pro-
posed by Juan et al. (2015) and Hoad et al. (2007) to dynamically determine the
number of replications.

The proposed procedure is summarized in Algorithm 2. It relies on the confidence
interval for a population mean value when the standard deviation is unknown, thus
assuming normality or existence of large samples. The parameters are: the confidence
level (1 − α, being α the significance level), the required precision (drequired), the
minimum size of the reliability window (klimit), and the maximum number of runs
(nmax).

Initially, a first deterministic run is applied. Next, the deterministic objective func-
tion C∗ is evaluated. If this solution is labeled as promising, a simulation of the so-
lution is started. Otherwise, the evaluation is aborted, since it is unlikely to obtain a
high-quality result from it. The stochasticity analysis starts with klimit replications,
to guarantee a minimum reliability. Now, a loop is entered that ensures a dynamic
number of replications to be performed. After computing the cumulative mean cn and
the standard deviation sn, the currently achieved precision dn for the n-th replications

11

Algorithm 2 Simulation experiment using deterministic and stochastic replications

1: procedure Evaluate(sij , α, drequired, klimit, nmax)
. sij : solution candidate (including simulation model)

. 1− α: confidence level
. drequired: precision

. klimit: minimum size of window of reliability
. nmax: maximum number of runs

2: run 1 deterministic replication for sij
3: calculate c∗ij
4: if (c∗ij is promising) then
5: run klimit stochastic replications for sij
6: n← klimit
7: stop← false
8: while (not stop and n < nmax) do
9: calculate mean cn

10: calculate standard deviation sn
11: calculate precision dn ← sn

cn·
√
n
· tn−1,α

2
· 100

12: calculate window of reliability k ← max
(
klimit,

⌊
n · klimit100

⌋)

13: if (k ≤ n) and (∀ni=n−kdi ≤ drequired) then
14: stop← true
15: else
16: run 1 stochastic replication for sij
17: n← n+ 1
18: end if
19: end while
20: cij ← cn
21: else
22: cij ← NULL
23: end if
24: end procedure

is computed, where tn−1,α/2 is the t-student value for n− 1 degrees of freedom and a
significance level of α. In order to ensure a good window of reliability, k is computed
based on the current number of replications n and respecting the minimum reliabil-
ity window (klimit). Thus, a minimum of replications is ensured, by also taking the
number of performed replications into account (cp. line 12 in Algorithm 2).

Once these values have been computed, it can be decided whether further replica-
tions have to be performed. Two conditions have to be met: (i) at least k replications
were performed (k ≤ n), where k is at minimum klimit; and (ii) replications n−k to n
have at least a precision of drequired, i.e.: di ≤ drequired, ∀i ∈ {n− k, n− k + 1, . . . , n}.
If both conditions are fulfilled, no further replications will be conducted. Otherwise,
an additional replication is performed and a new iteration is started. Finally, the con-
fidence interval for the objective parameter is computed, and the algorithm returns
the parameter estimate, its confidence interval, and the number of simulation runs
executed.

Algorithm 2 can be applied to simulations that use a completely new run for each
replication, as well as to simulations that only consist of a single long batch run
with multiple replications. In the later, the simulations needs to be paused after each

12

Figure 2. Example manufacturing system, based on Law (2007, p. 694).

replication, in order to decide whether to continue or not.

8. A Numerical Case Study

A comprehensive set of computational experiments are carried out in order to assess
the effect of the speeding-up procedures proposed in the previous sections. After intro-
ducing the case study, the experimental design is explained. A comprehensive analysis
of the results is provided in Section 9.

8.1. Example of a Manufacturing System

The example used is based on a typical manufacturing system described in Law (2007,
p. 694) and illustrated in Figure 2. This manufacturing system contains five worksta-
tions and a location module for receiving and shipping items that need to be processed
as jobs (circles) by any of the machines (squares) located inside the workstations. The
number of machines inside each workstation is a decision variable ranging from 1 to
5. Let J denote the set of jobs to be processed. The inter-arrival times (in minutes) of
jobs to the system follow an exponential probability distribution with λ = 1/4 (i.e.,
on the average a new job arrives to the system every 4 minutes). There are three
classes of jobs, i.e., J = J1 ∪J2 ∪J3. Table 1 shows the specific data for each job type,
including: percentage of occurrence, workstations where the job has to be processed
(with the order in which these workstations have to be visited), and average processing
time, tjw, of a job j ∈ J in an idle machine inside workstation w ∈ {1, 2, . . . , 5}. More
specifically, the processing time of j in an available machine inside w is given by the
random variable Tjw, which is assumed to follow a gamma distribution with α = 2
and β = α

tjw
. In our parametrization, the gamma distribution is given by the following

probability density function: f(x;α, β) = βα

Γ(α)x
α−1e−βx, for x > 0 and α, β > 0.

Each workstation has an input queue of infinite capacity, from which the first idle

13

Table 1. Processing orders and times.

Job type Occurrence Workstations Average processing times (in hours)

J1 30 % 3, 1, 2, 5 0.25, 0.15, 0.10, 0.30
J2 50 % 4, 1, 3 0.15, 0.20, 0.30
J3 20 % 2, 5, 1, 4, 3 0.15, 0.10, 0.35, 0.20, 0.20

machine accepts the job that has to be processed next. The transportation of jobs
between workstations is conducted through forklift trucks, which have a traveling
speed of 1.524 m/s and transport the jobs between the workstations according to
the processing order given in Table 1. For transportation the forklift truck nearest
to the jobs workstation is requested. Individual positions of the machines within the
workstation are not taken into account. If no forklift truck is available, the machine
that finished the job is blocked until the job is being picked up. After finishing a
transport, a forklift truck checks whether there are transportation requests or not. In
case there is no request, the forklift truck will wait at its current position. If there
are multiple requests, the closest one will be processed. There is no additional root
planning performed. The number of forklift trucks in the system is a decision variable
ranging between 1 and 5. The distances between workstations are given in Table 2.

Table 2. Distances between workstations in meters.

Station WS 1 WS 2 WS 3 WS 4 WS 5 R/S

WS 1 0 45.72 64.92 102.41 91.44 45.72
WS 2 45.72 0 45.72 91.44 102.41 64.92
WS 3 64.92 45.72 0 45.72 64.92 45.72
WS 4 102.41 91.44 45.72 0 45.72 64.92
WS 5 91.44 102.41 64.92 45.72 0 45.72
R/S 45.72 64.92 45.72 64.92 45.72 0

WS: workstation
R/S: receiving/shipping

In this scenario, a system configuration consists in determining the number of ma-
chines associated with each workstation as well as the number of forklift trucks inside
the system. Since the system contains up to 5 possible forklift trucks and 5 work-
stations with up to 5 machines each, a configuration can be represented by a vector
s = (s1, s2, . . . , s30). Then, ∀i ∈ {1, 2, . . . , 25}, si = 1 if the machine i is incorporated to
the corresponding workstation and si = 0 otherwise. Similarly, ∀i ∈ {26, 27, . . . , 30},
si = 1 if the corresponding forklift truck is incorporated to the system and si = 0
otherwise. Hence, the number of possible configurations is about 230 = 1 073 741 824.
Notice that some configurations (e.g., the ones leading to zero machines in a worksta-
tion or to zero forklift trucks in the system) are not allowed, which reduces the number
of possible configurations. Also, notice that if homogeneous machines (in processing
times) and homogeneous forklifts (in speed) are considered, then the solution space
is significantly reduced, and it is possible to find a simpler vector representation for
a solution. However, we have chosen the binary representation since: (i) it is simpler
to use in our GA; (ii) it is valid even in a more general scenario with heterogeneous
machines and forklifts; and (iii) it allows us to test the proposed methodologies.

For a given configuration s, the concept of system ‘flow factor’, o = o(s), is defined
as follows:

o(s) =
1

|J |
∑

j∈J

P (j)

p∗ (j)
(5)

14

In Equation (5), P (j) represents the actual total time that job j has been in the sys-
tem (including processing times in workstations, transportation times between work-
stations, and waiting times for available machines or forklift trucks), while p∗(j) rep-
resents the total time that job j would have been in the system under the following
‘ideal’ circumstances: (i) job j is the only job in the system (i.e., there are not waiting
times); and (ii) Tjw = tjw, ∀w ∈ {1, 2, . . . , 5} (i.e., assuming average processing times

in each workstation). Hence, the factor P (j)
p∗(j) represents the actual time that job j has

been in the system over the time it would have been under ‘perfect’ conditions, so the
higher this factor is, the farther away the system is from an ‘ideal’ status. All these
factors are averaged over the set of jobs J , and thus o(s) represents the average factor.
In our case, we will assume a target value v for this average flow factor, and will try to
minimize the difference (in absolute value) between this target factor v and the actual
one, o(s). Therefore, the optimization problem consists in finding a configuration s
that minimizes the difference between the system flow factor, o(s), and a target value
v (with v = 3 in our numerical experiments), i.e.:

Minimize f(s) = |v − o(s)| (6)

Subject to:

5(k+1)∑

i=1+5k

si ≥ 1 ∀k ∈ {0, 1, . . . , 5} (7)

si ∈ {0, 1} ∀i ∈ {1, 2, . . . , 30} (8)

Notice that Equation (7) ensures that the configuration contains at least one forklift
truck and at least one machine per workstation.

8.2. Experimental Design

The objective of these experiments is to assess the performance of the proposed
procedures, which control the required number of simulation runs to speed up the
simheuristic algorithm. Firstly, a base value is computed without employing any of
the two techniques proposed in this paper. Secondly, the experiment is repeated using
a deterministic version of the system, and employing the results as estimates for the
stochastic version (first control technique). As explained in Section 6, this allows to
filter out unpromising solution candidates by using a reference value cr (i.e., unpromis-
ing solutions with a deterministic cost exceeding the cr threshold are not sent to the
simulation component). Thirdly, a new experiment is conducted in which the number
of runs is dynamically computed based on the simulation results (second control tech-
nique), as discussed in Section 7.1. Finally, both control techniques are simultaneously
applied to measure their combined effect. As described in Equations (9) to (11), while
using the first control technique different reference values cr = cr(ε, S) are tested,
where ε > 0 is a design parameter and S represents the set of solutions generated so

15

far (which implies that cr is updated at each iteration of the algorithm):

c′r = ε+ min
s∈S
{f(s)} (9)

c′′r = (1 + ε) ·min
s∈S
{f(s)} (10)

c′′′r = ε · var
s∈S
{f(s)}+ min

s∈S
{f(s)} (11)

Equation (9) adds a predefined value, ε, to the best-found deterministic solution.
Equation (10) uses ε as a relative offset. Finally, in Equation (11) a multiple of the
variance is used for computing the applied reference value. Whenever a promising
solution is sent to the simulation module, the number of simulation runs can be dy-
namically computed according to Algorithm 2. This allows to evaluate how much time
can be saved when: (i) applying different versions of the cr value; and (ii) using a
dynamically-computed number of simulation runs. Table 3 gathers all investigated op-
tions for the reference value. The resulting combinations are shown in Table 4, which
also includes the applied values for ε and the resulting solution values provided by the
GA.

Table 3. Experiment configurations.

Reference value Apply acceptance criterion Epsilon (ε)

1: c′r 1: No 1: Low
2: c′′r 2: Yes 2: Medium
3: c′′′r 3: High

Table 4. Experiment combinations according to the rows of Table 3 and resulting solution.

Combination ε Solution Combination ε Solution Combination ε Solution

1-1-1 0 1.12 2-1-1 0.1 0.70 3-1-1 0.1 0.60
1-1-2 50 0.52 2-1-2 0.5 0.51 3-1-2 0.5 0.53
1-1-3 100 0.52 2-1-3 1.0 0.59 3-1-3 1.0 0.45
1-2-1 0 0.45 2-2-1 0.1 0.43 3-2-1 0.1 0.45
1-2-2 50 0.45 2-2-2 0.5 0.60 3-2-2 0.5 0.59
1-2-3 100 0.44 2-2-3 1.0 0.43 3-2-3 1.0 0.53

Finally, the following design parameters have been used for the GA and the simu-
lation component:

• population size: p = 40
• number of parents: pparents = 20
• probability for mutation: m = 0.5
• number of generations: jmax = 10
• significance level: α = 0.025
• precision: drequired = 0.1
• number of runs: nmax = 50
• minimum window of reliability: klimit = 3

9. Analysis of Results

As can be seen in Table 4, when filtering out unpromising solutions most combinations
lead to reasonably good solution values – i.e., most configurations provide a value

16

close to 0.50. Notice that combination 1-1-1 (which corresponds to c′r, no acceptance
criterion, and ε = 0) is slightly worse than others. This can be explained by the fact
that, after the first iteration of the algorithm (generation 1), any new solution s∗

is sent to the simulation component only if f(s∗) < c′r = min
s∈S
{f(s)}. Hence, many

solutions are filtered out and never sent to the simulation component. In particular,
as shown in Figure 3, about 50 % of the newly generated solutions (individuals) are
excluded from being evaluated by the simulation component, since the results from
their deterministic replication is not promising. As a consequence of this restrictive
filter, the GA converges quite slowly due to the lack of new candidates to be assessed
in a stochastic environment (Figure 4).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-1
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-2
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-3
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-2-1
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-2-2
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-2-3
Sufficient Not sufficient

Figure 3. Development for the number of promising solutions for reference value type 1 without and with
acceptance criterion (Table 3).

By raising the value of ε (e.g., combinations 1-1-2, 1-1-3, 1-2-2, and 1-2-3), more
newly generated solutions are sent to the simulation component. Furthermore, acti-
vating the acceptance criterion also increases the number of solutions that pass the

17

filter. This raises the overall number of simulation runs being performed, but also im-
proves the convergence of the GA, hence leading to better results. As a compromise, a
medium value for ε should be selected, saving about 25 % of the replications and still
providing good results. Additionally, the GA could be stopped earlier, thus, saving
even more computing time. Figure 4 shows the development of the solution value for
ten iterations (generations) of the GA. Even for the combination 1-1-1, the GA is able
to find good solutions in just a few iterations. However, the GA converges faster in
combination 1-1-2, where a higher value of ε is considered. Likewise, combination 1-2-1
(which uses the acceptance criterion) also shows a faster convergence than combination
1-1-1.

0

100

200

300

400

500

600

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-1
mean value

0

100

200

300

400

500

600

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-2
mean value

0

100

200

300

400

500

600

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-2-1
mean value

Figure 4. Development of solution values for reference value type 1 (see Table 3).

Figures 5 and 6 show similar results for some of the remaining combinations: 3-
1-1, 3-1-2, and 3-1-3, which are associated with the reference value c′′′r . Notice that
the GA converges faster for combinations that make use of intermediate ε values.
Figures 3 and 5 show that, depending on the selected reference value cr, up to 50 %
of the solutions are not stochastically evaluated. Even with less restrictive versions
of the reference value, savings of 10 % to 25 % can be achieved. Thus, filtering out
unpromising solutions seems to be a useful approach.

Furthermore, as Figures 7 and 8 show, dynamically determining the number of
replications does also save a significant amount of time. The examples show that, on
the average, only about 30 instead of 50 replications have been performed, saving
about 40 % in computing time.

All in all, both tested techniques save a significant amount of time, leading to a faster
optimization. When applying both techniques together, we have observed savings of
up to 70 % in computing times. This is primarily achieved by reducing the number of
performed simulations and, thus, reducing the effort spend for simulation. Hence, the

18

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
In

di
vi

du
al

s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-1
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-2
Sufficient Not sufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-3
Sufficient Not sufficient

Figure 5. Development for the number of promising solutions for reference value type 3 (see Table 3).

0

100

200

300

400

500

600

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-1
mean value

0

100

200

300

400

500

600

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-2
mean value

0

100

200

300

400

500

600

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-3
mean value

Figure 6. Development of solution values for reference value type 3 (see Table 3).

19

0

10

20

30

40

50

R
ep

lic
at

io
ns

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-1
mean value

0

10

20

30

40

50

R
ep

lic
at

io
ns

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-1-2
mean value

0

10

20

30

40

50

R
ep

lic
at

io
ns

1 2 3 4 5 6 7 8 9 10

Generation

Combination 1-2-1
mean value

Figure 7. Development of performed replications for reference value type 1 (see Table 3).

0

10

20

30

40

50

R
ep

lic
at

io
ns

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-1
mean value

0

10

20

30

40

50

R
ep

lic
at

io
ns

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-2
mean value

0

10

20

30

40

50

R
ep

lic
at

io
ns

1 2 3 4 5 6 7 8 9 10

Generation

Combination 3-1-3
mean value

Figure 8. Development of performed replications for reference value type 3 (see Table 3).

20

time saved can be used to better search the solution space or to receive the results
faster without having to compromise the solution quality.

10. Conclusions and Further Research

This paper provides an approach for reducing the computational effort required by
the simulation component in a simheuristic that combines a genetic algorithm with
discrete-event simulation. Two complementary procedures to achieve this goal have
been discussed: (i) filtering out unpromising solutions based on predictive models or
rules of thumb; and (ii) adjusting the number of required runs. The adjustment of
the number of replications is achieved using a combined strategy. First, the result of
a single deterministic replication is employed as an initial estimate of the solution
quality. Then, if this quality is above a given threshold, the number of stochastic
replications is dynamically determined by using confidence intervals. This allows for
faster evaluations with reasonable precision of the objective being investigated. If the
simulation component is based on time-consuming simulations (like those typically
associated with discrete-event simulation), the use of our methodology can represent
noticeable savings in computing time. Our approach was adopted to directly work
within a simheuristic framework. It uses only a few crucial parameters. First, it needs
to be defined when the result of the deterministic replication is promising. This obvi-
ously requires some experience and knowledge about the evaluated system. Secondly,
the required precision has to be set, since it directly influences the number of stochas-
tic replications to be performed. Third, the look-ahead value needs to be defined.
As the precision, this has a direct influence on the number of performed simulation
replications.

These design concepts have been illustrated and tested on a manufacturing system.
Results show that unpromising solution candidates can be filtered out – thus not
being evaluated through a stochastic simulation experiment –, which allows to save a
noticeable amount of computing time. Also, once the reference and solution values are
close to zero (the goal in this example), almost no solution candidates are filtered out.
As a consequence, if the optimization is converging slowly a lot of simulation effort can
be saved by selecting the best filtering mechanism. If the optimization is converging
fast, it is more important that the stochastic experiment runs as few replications as
possible, because only a few solution candidates will be filtered out.

Several interesting lines of future research stem from this work. For instance, the
potential of statistical learning techniques in simheuristic frameworks may be further
explored, attempting to reduce computing times or to improve the quality of the
solutions – e.g., by learning from the ones already generated and from the simulation
to better guide the search. Exploring the differences between the best stochastic and
deterministic solutions, or identifying those scenarios that contribute to differentiate
among high- and poor-quality solutions constitute specific examples. Another potential
line is to analyze the design of suitable visualization techniques to summarize and
help the decision maker, so she can easily gain insights into the results of simheuristic
algorithms. Yet an additional question to be fully explored is how the information
generated by the simulation component can be efficiently employed to enhance the
metaheuristic search. Finally, the concepts proposed in this paper may be tested on
a higher number of different simheuristic frameworks and applications to gain more
insights in the development of these simulation-optimization algorithms.

21

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science, Innova-
tion, and Universities (RED2018-102642-T). We also acknowledge the support of the
Erasmus+ Program (2019-I-ES01-KA103-062602).

References

Aarts, E., Korst, J., and Michiels, W. (2005). Simulated annealing. In Search methodologies,
pages 187–210. Springer.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2009). A survey on meta-
heuristics for stochastic combinatorial optimization. Natural Computing, 8(2):239–287.

Cabrera, G., Juan, A. A., Lázaro, D., Marquès, J. M., and Proskurnia, I. (2014). A simulation-
optimization approach to deploy internet services in large-scale systems with user-provided
resources. Simulation, 90(6):644–659.

Calvet, L., Juan, A. A., Serrat, C., and Ries, J. (2016). A statistical learning based approach for
parameter fine-tuning of metaheuristics. SORT-Statistics and Operations Research Trans-
actions, 40(1):201–224.

Cellier, F. E. and Kofman, E. (2006). Continuous system simulation. Springer Science &
Business Media.

Chambers, L. D. (2019). Practical handbook of genetic algorithms: complex coding systems,
volume 3. CRC press.

Cozad, A., Sahinidis, N. V., and Miller, D. C. (2014). Learning surrogate models for simulation-
based optimization. AIChE Journal, 60(6):2211–2227.

De Armas, J., Juan, A. A., Marquès, J. M., and Pedroso, J. P. (2017). Solving the deterministic
and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic.
Journal of the Operational Research Society, 68(10):1161–1176.

Ferone, D., Gruler, A., Festa, P., and Juan, A. A. (2019). Enhancing and extending the classical
grasp framework with biased randomisation and simulation. Journal of the Operational
Research Society, 70(8):1362–1375.

Fikar, C., Juan, A. A., Martinez, E., and Hirsch, P. (2016). A discrete-event driven metaheuris-
tic for dynamic home service routing with synchronised trip sharing. European Journal of
Industrial Engineering, 10(3):323–340.

Fishman, G. S. (2013). Discrete-event simulation: modeling, programming, and analysis.
Springer Science & Business Media.

Fu, M. C., Glover, F. W., and April, J. (2005). Simulation optimization: a review, new de-
velopments, and applications. In Proceedings of the 2005 Winter Simulation Conference,
pages 83–95. IEEE Press.

Gomez, J. F., Khodr, H. M., DeOliveira, P. M., Ocque, L., Yusta, J. M., Villasana, R., and
Urdaneta, A. J. (2004). Ant colony system algorithm for the planning of primary distribution
circuits. IEEE Transactions on Power Systems, 19(2):996–1004.

Gonzalez-Martin, S., Juan, A. A., Riera, D., Elizondo, M. G., and Ramos, J. J. (2018). A
simheuristic algorithm for solving the arc routing problem with stochastic demands. Journal
of Simulation, 12(1):53–66.

Gonzalez-Neira, E. M., Ferone, D., Hatami, S., and Juan, A. A. (2017). A biased-randomized
simheuristic for the distributed assembly permutation flowshop problem with stochastic
processing times. Simulation Modelling Practice and Theory, 79:23–36.

Gruler, A., Fikar, C., Juan, A. A., Hirsch, P., and Contreras-Bolton, C. (2017a). Support-
ing multi-depot and stochastic waste collection management in clustered urban areas via
simulation–optimization. Journal of Simulation, 11(1):11–19.

Gruler, A., Panadero, J., de Armas, J., Pérez, J., and Juan, A. A. (2020). A variable neigh-
borhood search simheuristic for the multiperiod inventory routing problem with stochastic

22

demands. International Transactions in Operational Research, 27(1):314–335.
Gruler, A., Panadero, J., de Armas, J., Pérez, J. A. M., and Juan, A. A. (2018). Combin-

ing variable neighborhood search with simulation for the inventory routing problem with
stochastic demands and stock-outs. Computers & Industrial Engineering, 123:278–288.

Gruler, A., Quintero-Araújo, C. L., Calvet, L., and Juan, A. A. (2017b). Waste collection under
uncertainty: A simheuristic based on variable neighbourhood search. European Journal of
Industrial Engineering, 11(2):228–255.

Guimarans, D., Dominguez, O., Panadero, J., and Juan, A. A. (2018). A simheuristic approach
for the two-dimensional vehicle routing problem with stochastic travel times. Simulation
Modelling Practice and Theory, 89:1–14, doi: 10.1016/j.simpat.2018.09.004.

Hasan, S. M. K., Sarker, R., and Essam, D. (2011). Genetic algorithm for job-shop scheduling
with machine unavailability and breakdowns. International Journal of Production Research,
49(16):4999–5015.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media.

Hatami, S., Calvet, L., Fernández-Viagas, V., Framiñán, J. M., and Juan, A. A. (2018). A
simheuristic algorithm to set up starting times in the stochastic parallel flowshop problem.
Simulation Modelling Practice and Theory, 86:55–71.

Hatami, S., Ruiz, R., and Andrés-Romano, C. (2015). Heuristics and metaheuristics for the
distributed assembly permutation flowshop scheduling problem with sequence dependent
setup times. International Journal of Production Economics, 169:76–88.

Hoad, K., Robinson, S., and Davies, R. (2007). Automating DES output analysis: How many
replications to run. In Proceedings of the 2007 Winter Simulation Conference, pages 505–
512. IEEE Press.

Hussain, K., Salleh, M. N. M., Cheng, S., and Shi, Y. (2019). Metaheuristic research: a
comprehensive survey. Artificial Intelligence Review, 52(4):2191–2233.

Jourdan, L., Basseur, M., and Talbi, E.-G. (2009). Hybridizing exact methods and metaheuris-
tics: A taxonomy. European Journal of Operational Research, 199(3):620–629.

Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., and Jorba, J. (2014a). A simheuristic
algorithm for solving the permutation flow shop problem with stochastic processing times.
Simulation Modelling Practice and Theory, 46:101–117.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., and Figueira, G. (2015). A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization
problems. Operations Research Perspectives, 2:62–72.

Juan, A. A., Grasman, S. E., Caceres-Cruz, J., and Bektaş, T. (2014b). A simheuristic algo-
rithm for the single-period stochastic inventory-routing problem with stock-outs. Simulation
Modelling Practice and Theory, 46:40–52.

Juan, A. A., Kelton, W. D., Currie, C. S., and Faulin, J. (2018). Simheuristics applications:
dealing with uncertainty in logistics, transportation, and other supply chain areas. In
Proceedings of the 2018 Winter Simulation Conference, pages 3048–3059. IEEE Press.

Krug, W. and Rose, O. (2011). Optimierung. In März, L., Krug, W., Rose, O., and Weigert,
G., editors, Simulation und Optimierung in Produktion und Logistik, pages 21–28. Springer-
Verlag, Berlin and Heidelberg.

Law, A. M. (2007). Simulation modeling and analysis. McGraw-Hill, New York, 4 edition.
Luke, S. (2013). Essentials of metaheuristics. Lulu Raleigh.
März, L. and Krug, W. (2011). Kopplung von Simulation und Optimierung. In März, L.,

Krug, W., Rose, O., and Weigert, G., editors, Simulation und Optimierung in Produktion
und Logistik, pages 41–45. Springer-Verlag, Berlin and Heidelberg.

Mirjalili, S. (2019). Genetic algorithm. In Evolutionary algorithms and neural networks, pages
43–55. Springer.

Pagès-Bernaus, A., Ramalhinho, H., Juan, A. A., and Calvet, L. (2019). Designing e-commerce
supply chains: a stochastic facility–location approach. International Transactions in Oper-
ational Research, 26(2):507–528.

Panadero, J., Doering, J., Kizys, R., Juan, A. A., and Fito, A. (2018). A variable neighborhood

23

search simheuristic for project portfolio selection under uncertainty. Journal of Heuristics,
doi: 10.1007/s10732-018-9367-z.

Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. J. (2006). Building
surrogate models based on detailed and approximate simulations. Journal of Mechanical
Design, 128(4):668–677.

Rabe, M., Dross, F., and Wuttke, A. (2017). Combining a discrete-event simulation model of a
logistics network with deep reinforcement learning. In Proceeding of the 2017 Metaheuritics
International Conference, pages 765–774.

Rani, D. and Moreira, M. M. (2010). Simulation–optimization modeling: a survey and potential
application in reservoir systems operation. Water Resources Management, 24(6):1107–1138.

Reyes-Rubiano, L., Ferone, D., Juan, A. A., and Faulin, J. (2019). A simheuristic for routing
electric vehicles with limited driving ranges and stochastic travel times. SORT-Statistics
and Operations Research Transactions, 1(1):3–24.

Robinson, S. (2004). Simulation: The practice of model development and use. Wiley, Chich-
ester, England.

Tako, A. A. and Robinson, S. (2012). The application of discrete event simulation and system
dynamics in the logistics and supply chain context. Decision Support Systems, 52(4):802–
815.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation, volume 74. John Wiley
& Sons.

Wainer, G. A. (2017). Discrete-event modeling and simulation: a practitioner’s approach. CRC
Press.

24

