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A B S T R A C T

Many real-life systems in production and transportation logistics are complex, large-scale, and
stochastic in nature. As a consequence, simheuristic approaches – which integrate simulation
inside a metaheuristic framework – are becoming increasingly popular in the optimization and
simulation communities. In a simheuristic algorithm, time-consuming simulation runs are re-
quired in order to: (i) obtain accurate results on the stochastic performance of solutions gener-
ated by the metaheuristic; and (ii) provide feedback that can be useful to better guide the me-
taheuristic search. If the underlying system is complex, discrete-event simulation might be
needed, and then the simulation component could easily overrun the computational time of the
metaheuristic component. Thus, for each new solution generated by the metaheuristic, several
related questions arise: (i) should the simulation component be applied to that solution? – i.e., is
that solution ‘promising’ enough to invest additional computational time on retrieving in-
formation about its performance in a stochastic environment?; and (ii) if so, how many simu-
lation runs are needed in order to obtain useful information (i.e., statistics with a minimum level
of accuracy)? This paper discusses these issues and proposes several concepts that allow to im-
prove the efficiency (in terms of computational time) of simheuristic algorithms. A case study,
based on a typical manufacturing system, is introduced. In order to illustrate and test different
speeding-up techniques, the system is optimized by using a simheuristic that integrates a genetic
algorithm with discrete-event simulation.

1. Introduction

Factors such as globalization and personalized customer orders lead to increasingly complex production and transportation
systems. Understanding these needs and incorporating them during the design and operation of these systems are challenging tasks
that can only be accomplished by experts. These experts have to consider multiple possibilities when it comes to decision making,
e.g.: whether to accept an order or not and, if so, how to manage the necessary resources – including the existing and purchasable
means of production and workers. Introducing a new resource into a production system directly influences the rest of it, since it might
require the assignment of material and qualified staff that, in consequence, cannot be dedicated to other tasks. As a result, even
experts need support in their decision making to fully assess and understand the consequences of their choices.

In order to efficiently support decision making under uncertainty conditions, simulation methods, heuristic-based optimization
approaches, and their combination as a simheuristic framework can be employed [31]. In the context of production systems, discrete-
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event simulation can be utilized for evaluating the system with respect to stochastic processes. Using metaheuristic optimization,
different combinations for a production system can be created, evaluated, and changed according to previous results. Inside the wide
family of simulation-optimization methods [12,41], the simulation component of a simheuristic algorithm is integrated into a me-
taheuristic framework in order to: (i) evaluate the performance of solutions provided by the metaheuristic component; and (ii) guide
the perturbation and the local search processes. The latter can be achieved by updating the ‘reference’ solution(s) (e.g., the base
solution in the case of a single-solution metaheuristic or the population of solutions in the case of a population-based one), and by
prioritizing some operators over others. The fundamentals of simheuristic algorithms were discussed in [29]. Hence, this paper
focuses on two relevant aspects of these algorithms that were previously unexplored: how to filter out unpromising solutions and how
to decide about the number of simulation runs. In effect, with respect to stochastic influences, multiple simulation runs are necessary
for obtaining statistically significant results. As the simulation component is included within the simheuristic framework, a rea-
sonably large number of simulation runs has to be applied in order to find a suitable configuration of the production system.
Unfortunately, this usually leads to high computational times. Most of this time is employed by the simulation component, leading to
a risk that results are not obtained within a reasonable period. There are two basic approaches for reducing these computational
times. First, by decreasing the number of solutions that are sent to the simulation component for evaluation, which decreases the
coverage of the solution space. Secondly, by decreasing the number of simulation runs required to assess the quality or feasibility of
each proposed solution, which could affect the statistical significance of the results.

Despite the high number of successful applications of simheuristics in a wide range of fields, there is a need for developing
algorithmic-design concepts that allow to reduce the computational time required to achieve high-quality solutions. Likewise, there is
a lack of simheuristics combining genetic algorithms [6,36] with discrete-event simulation [46]. Hence, the main contributions of this
paper are: (i) to propose different design strategies, based on statistics concepts [4,22], which contribute to efficiently reduce
computational times in a simheuristic algorithm without affecting the quality of the final solution obtained; and (ii) to illustrate and
test these design concepts throughout a detailed case study that combines discrete-event simulation with a genetic algorithm (GA) to
optimize a stochastic system. All in all, we consider that these concepts can be quite useful to other authors when designing GA-based
simheuristics or even other simulation-optimization frameworks.

The remaining of this paper is structured as follows: Section 2 provides a brief introduction to simulation and optimization
methods, as well as to their combination. Section 3 explains how a simheuristic algorithm works, and puts into context the afore-
mentioned design issues. Section 4 offers a literature review on recent applications of simheuristics in different fields. Section 5
briefly describes the applied GA. Section 6 proposes different ways of filtering out the non-promising solutions. Section 7 discusses
how the required number of runs can be determined. Section 8 illustrates, with a numerical case study, the use of the proposed design
concepts. Section 9 performs an analysis of the results. Finally, Section 10 highlights the main conclusions of this paper and identifies
potential lines for future research.

2. Basic concepts on simulation-Optimization

In Operations Research (OR), simulation and optimization methods are typically used for analyzing systems (or processes) that are
of high complexity. On the one hand, simulation is typically employed whenever the system shows stochastic behavior (e.g., sto-
chastic processing or transportation times, random customer demands, stochastic failure and repair times) or dynamic complexity
(e.g., many processes interacting over time). On the other hand, optimization methods allow to obtain optimal or near-optimal
configuration solutions, i.e., configurations that offer the best possible values for some performance indicators [43]. This section gives
a short introduction to both approaches as well as to their combination.

2.1. Simulation

Simulation has a wide range of applicability, e.g.: designing and analyzing manufacturing systems, determining hardware re-
quirements, re-engineering business processes, and many more. In this paper, simulation will be applied for evaluating configurations
for production systems. There are three major simulation techniques that can be used for this purpose [33]:

• Continuous Simulation (CS) refers to the modeling of a system with random variables that change continuously over time.
Typically, it is based on differential equations and employs a numerical approach for solving them. It can be used, for instance, in
simulating processes like bending, cutting, or heating [5].
• Monte Carlo simulation (MCS) employs random sampling for addressing certain stochastic problems that do not evolve over time
(static systems). It is frequently used for dealing with stochastic optimization problems that are not analytically tractable [2].
• Discrete-Event Simulation (DES) refers to the modeling of a system with random variables that change over time (dynamic systems)
but only in a discrete manner, i.e., just when specific events occur over time. It is used, for example, to analyze manufacturing
systems and supply chains [11].

Each of these techniques is employed for evaluating a given scenario with a specific set of parameters. Thus, they can be utilized
for analyzing ‘what-if’ scenarios. In production and transportation logistics, DES is probably the most-used simulation technique,
since it can be considered that these systems only change when relevant events occur at discrete moments of time, such as when the
production of an item is completed, or when an item has been delivered [44].
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2.2. Optimization

Differently from simulation, optimization searches for a set of parameters for which a system performs best. One can distinguish
between exact and approximate (e.g., heuristic-based) optimization methods. Exact methods guarantee the optimality of the solution
returned for a given problem. However, with rising complexity the time necessary for finding an optimal solution also increases –
sometimes in a near-exponential way – with the size of the problem. In order to perform faster, metaheuristic methods do not aim at
finding necessarily an optimal solution, but a near-optimal one instead [32]. Applications of optimization in the field of production
and transportation logistics are, for example, related to the scheduling of customer orders [21] or related to route planning [13]. Also,
the hybridization of exact methods with metaheuristics is gaining popularity [27].

Metaheuristic algorithms can be classified into population-based (e.g., genetic algorithms, particle swarm optimization, or ant
colony optimization), and single-solution (e.g., tabu search, simulated annealing, or iterated local search, just to name a few). A
survey on metaheuristics can be found in [26]. Also, excellent introductory books on the field have been authored by [45] and [34].

2.3. Combining simulation and optimisation

According to [35], four different classes can be distinguished when combining simulation with optimization techniques:

• Optimization integrated in simulation: In this case, the simulation pauses and uses the optimization to evaluate a specific problem.
The result is returned to the simulation, which then resumes its activity. For example, an ordering of jobs could be re-scheduled
according to the current state of the simulation.
• Simulation as objective function: Here, the optimization provides a possible solution vector that is evaluated through the simulation.
The results are then used within the optimization to generate alternative solutions. This can be applied, for instance, to determine
the staff assignment for a given job scheduling.
• Simulation results as start for optimization: Using this combination, the simulation is conducted before the optimization. Hence, the
simulation provides the initialization parameters for the optimization. An example is to determine the staff needed for production
and, afterwards, using the optimization to allocate this staff.
• Optimization for configuring simulation: Here, the simulation is used to evaluate the feasibility of a solution found by the optimi-
zation.

The approach considered in this paper assumes that a DES component is employed to compute the value of the objective function
associated with a solution provided by the metaheuristic component. Typically, in a simheuristic algorithm the simulation feedback
can also be used to guide the search (e.g., by selecting the ‘proper’ parents for the next generation in a GA). The DES component might
lead to a huge amount of time-consuming simulation runs to be conducted. First, a metaheuristic optimization needs to generate
many ‘promising’ or ‘sufficient’ solutions in order to conveniently explore the solution space. Secondly, in order to assess the per-
formance of each promising solution in a stochastic environment, a simulation experiment is required. In order to receive valid results
from a stochastic simulation experiment, multiple replications have to be conducted. Thus, a reliable solution value can be computed
as an average value of all performed replications. Compared to the computing time used for generating solutions by the optimization
that have to be analyzed, DES takes a lot more time for performing a single replication. This results in the need for reducing the
number of replications to be performed and to filter out the solutions that are sent to the DES component. These challenges, and the
related design concepts discussed in the next sections, are independent of the simulation techniques employed. Hence, our discussion
also applies to simheuristics relying on MCS or CS.

3. The logic behind simheuristic algorithms

A simheuristic algorithm is a particular simulation-optimization approach oriented to efficiently tackle an optimization problem
that typically contains stochastic elements. These stochastic elements can either be located in the objective function (e.g., stochastic
customer demands, random processing and transportation times, etc.), or in the set of constraints (e.g., customer demands that must
be satisfied with a given probability, deadlines that must be met with a given probability, etc.). In particular, a simheuristic algorithm
is aimed at solving a combinatorial optimization problem of the form:

=f s g C sMinimize ( ) ( ( )) (1)

Subject to:

…P q s l k i n( ( ) ) {1, 2, , }i i i (2)

…h s r j m( ) {1, 2, , }j j (3)

s S (4)

Where:

• s represents a solution candidate.
• S represents the space of possible solutions s associated with the optimization problem.
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• =C C s( ) represents a stochastic objective function.
• g(C(s)) represents a parameter of interest associated with the objective function, e.g.: the expected value of C(s).
• Equation (2) represents probabilistic constraints related to the problem, e.g.: the probability that the service quality q(s) reaches a
given threshold l is above a user-defined value k.
• Equation (3) represents typical constraints in deterministic optimization problems.

Notice that the optimization problem could also consists in maximizing an objective function, and that some ≤ could be ≥ or
vice versa. In simheuristic applications it is frequently assumed that, at least in scenarios with moderate variance, high-quality
solutions for the deterministic version of an optimization problem are also likely to be high-quality solutions for its corresponding
stochastic version. As discussed in [28] and [29], this assumption seems to be reasonable in most practical applications. Of course,
this does not imply that the best solution for the deterministic optimization problem has to be the best solution for the stochastic
version. In scenarios with extreme variance levels, individual outcomes can be extremely diverse and, therefore, it might make no
sense to optimize traditional measures such as the expected cost or the expected revenue. This ‘relationship assumption’ allows us to
generate several ‘promising’ solutions for the stochastic version of the optimization problem through the generation of a number of
high-quality solutions for the deterministic version. As depicted in Fig. 1, given a stochastic instance, its deterministic counterpart is
considered. This can be done, for instance, by replacing all random variables by their expected values. In cases in which the
variability of some random variables is relatively high, or for variables with heavy-tailed distributions, randomly generated ob-
servations (different at each iteration of the algorithm) could be employed instead of expected values to better represent the un-
derlying stochastic behavior. Then, a metaheuristic-driven algorithm is run in order to perform an efficient search inside the solution
space associated with the deterministic version. This iterative search process aims at finding a set of high-quality feasible solutions for
the deterministic version.

During the iterative search process, the algorithm has to assess or estimate the quality (or feasibility) of each of these promising
solutions when they are considered as solutions of the stochastic version of the problem. One natural way to do this is by taking
advantage of the capabilities that simulation methods offer to manage randomness in complex systems. During the interactive
searching process, only promising solutions (i.e., those that perform well in the deterministic environment) are sent to the simulation
component. Moreover, for each promising solution, just a reduced number of replications are run, since only rough estimates are
necessary at this stage. This strategy allows for controlling the computational effort employed by simulation during the interactive
searching process, thus leaving enough time to the metaheuristic to perform an intensive search of the solution space. The estimated
values provided by the simulation can then be used to keep a ranked list of elite solutions for the stochastic problem. Equally
important, they can also provide feedback to the metaheuristic, so that it intensifies the exploration of promising searching areas.
Once the computational time assigned to the iterative searching process has expired, a reduced set of ‘elite’ solutions are provided.
More accurate estimates can be obtained for these elite solutions by employing simulations with a larger number of replications.
These new estimates can then be used to re-rank the solutions. A remarkable fact is that simulation runs can also be used to obtain
additional information on the probability distribution of the stochastic performance values associated with each solution. This
complementary information can then be used to introduce risk-analysis criteria in the decision-making process. In effect, since the
objective function is stochastic, a decision maker might not only be interested in obtaining the solution that optimizes its expected
value, but she might also be interested in analyzing the probability distribution of the values generated by several alternative
solutions with similar expected values. Thus, for example, in cost-minimization problems a solution with a lower variability in its
costs might be preferred over a solution with a higher variability. Similarly, a solution with a higher probability of being completed
before a given deadline might be preferred over a solution with a lower probability.

4. A Review On recent simheuristic applications

This section reviews some recent applications of simheuristic algorithms in the solving of stochastic optimization problems across
different OR-related areas. We are mainly interested in applications published since 2014, so the reader is addressed to [29] for
publications on simheuristics – and related simulation-optimization methodologies – that were published before that date. In order to
facilitate the reading, the reviewed papers have been classified by application area:

• Scheduling Problems: In the context of scheduling, [28] present a simheuristic approach for solving the permutation flow-shop
problem with stochastic processing times. In this work, simulation is integrated within an iterated local search framework to find
the permutation of jobs that minimizes the expected makespan. Reliability analysis concepts are also used in their approach, since
the goal is to select a low-risk solution among those with similar expected makespan[15]. propose a simheuristic algorithm for
solving a distributed-assembly flow-shop problem with stochastic processing times. The authors argue that only by combining
simulation with metaheuristics it is possible to solve such realistic but complex optimization problems in reasonable computing
times. Also in this context, [23] analyze the optimal setting of starting times in stochastic parallel flow-shop problems.
• Vehicle and Arc Routing Problems: [14] use a simheuristic for solving the arc routing problem with stochastic demands, while [10]
proposes a DES-based heuristic to cope with a vehicle routing problem with synchronized pick-up and delivery actions. Different
from the vehicle routing problem, in the arc routing problem the demands are located on the edges instead of on the nodes, and
the graph is not necessarily complete, which implies that an edge might be traversed more than once by the same vehicle. [20]
introduce a simheuristic algorithm for the two-dimensional vehicle routing problem with stochastic travel times[42]. discuss the
electric-vehicle routing problem with stochastic travel times and limited driving ranges, for which they propose a simheuristic
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algorithm.
• Inventory Routing Problems: [30], [18], and [17] propose several simheuristic algorithms for solving inventory routing problems
with stock-outs – some of these problems considering a multi-period horizon. The authors propose the combined use of MCS with
a metaheuristic to minimize global inventory and routing cost when serving a set of retail centers that are subject to stochastic
demands. The goal of minimizing the total expected cost is complemented with the idea of obtaining solutions with a low
variability or risk.
• Facility Location Problems: In [8], the authors extend a metaheuristic framework into a simheuristic to solve the uncapacitated
facility location problem with stochastic costs. This work includes a complete discussion on how solutions in a stochastic en-
vironment should be compared based on different performance measures, i.e.: not only expected cost, but also variance-related
statistics. Moreover, the authors propose a framework where the simulation provides feedback to the metaheuristic search, i.e., it
is a simulation-driven metaheuristic[37]. also apply a simheuristic approach to the design of a distribution network in an e-
commerce environment. These authors test the performance of the simheuristic by comparing the results it generates against the
ones obtained by a classical stochastic programming approach. As expected, the simheuristic can deal with large-size instances
that cannot be solved by the stochastic programming approach in reasonable computing times.
• Internet Computing: In the context of volunteer computing, [3] combine a discrete-event simulation with a heuristic approach to
deal with the design of reliable services deployed over distributed computer networks.
• Logistics Networks: [40] propose a combination of a logistics network discrete-event simulation model with deep reinforcement
learning. The authors represent the state of the simulation model as an image where all relevant information for the deep
reinforcement learning agent are represented with the color values and arrangement of the pixels in the image. The image and the

Fig. 1. Basic scheme of a simheuristic framework.
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simulation results for the corresponding simulation model are given to the deep reinforcement learning agent, which can apply
changes to the underlying data model to manipulate the simulation model and, therefore, generate new solution candidates.
• Waste Collection Management: [16] and [19] develop simheuristic approaches for supporting stochastic waste-collection man-
agement in urban areas. While the latter proposes a variable neighborhood search framework to deal with the single version of the
problem, the former deals with a more complex multi-depot scenario.
• Others: [38] study a project portfolio selection problem under uncertainty conditions. Finally, [9] analyze how the popular and
easy-to-implement GRASP metaheuristic framework can be extended into a simheuristic to deal with stochastic combinatorial
optimization problems.

5. The optimization component: A Genetic algorithm

In this paper, the methaheuristic component is a standard GA [6], which is described in Algorithm 1. It should be noticed that the
GA is used as an example in order to demonstrate the proposed enhancements. In cases in which feasibility is an issue, the GA has to
be adapted – or even exchanged with another optimization method – in order to guarantee the generation of feasible solutions. For
the considered example, however, feasible solutions are easy to achieve (either directly or by repairing the solution). The applied GA
strictly conducts jmax generations (iterations) using p individuals (solutions). The algorithm starts with generating p random solution
candidates that are evaluated next. Now j 1max additional generations will be created and evaluated before returning the best
solution found. Each generation is created based on the pparents best solutions found in the previous generation. Two random parents
will be selected, from which valid children, using a uniform crossover, will be generated. This is repeated until the population size
reaches p solution candidates. Before being evaluated, each solution candidate may be mutated with a probability of m.

6. Technique 1: Filtering-out unpromising solutions

In order to reduce the computational effort requested by simulation runs, it is useful to filter out unpromising solutions and not to
run an expensive simulation for them. For example, a surrogate (simpler) model of the problem could be used for estimating the
results of a simulation [7]. Such a model can be fast with respect to computational times and, thus, very effective [39]. Unfortunately,
this adds a second model to the problem, a model that also needs to be maintained. Furthermore, this model has to match the
stochastic simulation model and needs to be good in performance, which leads to additional overall complexity for the problem. One
option could be to use a simplified simulation model to obtain initial estimates. This can be achieved by replacing all the stochastic
variables by their expectation values. As a result, only a single run needs to be performed for obtaining an estimate, since in a
deterministic scenario each run gives exactly the same result. Like the result of an analytical function, a threshold can be used to
decide whether to run an expensive simulation experiment or not. Such a threshold has to be defined prior to the simulations, which
is hard to do. For example, if chosen too low, no simulation experiments will be performed and, therefore, the simheuristic will
provide no feasible solution. If chosen too high, all solution candidates will pass and even unpromising solutions will be evaluated.
For this reason, the simheuristic shall learn on its own which solution candidate should be passed to the stochastic simulation
experiment.

One way to obtain this threshold is to run the deterministic version and the stochastic simulation experiment for the initial
solution in a single-solution-based metaheuristic, or for each individual i of the first generation in a population-based metaheuristic
(e.g., in a GA). Here, we only describe the strategy for the second case, since the strategy for the first can be easily derived from it.
Dropping all results that have violated constraints, such as threshold costs or due dates, it is possible to compute a reference solution,

=c f C s( * ( )),r ij using the deterministic objective function C* applied to each new solution sij of the remaining individuals of the
current generation j. For the next iteration within the optimization, only solution candidates will be passed to the stochastic simu-
lation whenever the corresponding deterministic solution =c C s* * ( )ij ij fulfills <c c*ij r . Since the optimization is aiming to find better
solutions, there is no need for evaluating unpromising solutions. After each iteration performed by the optimization, cr is updated.

Since it cannot be guaranteed that only solution candidates with <c c*ij r lead to better stochastic results, this hard criterion should
be softened. Therefore, also some solution candidates with c c*ij r will be passed to the stochastic simulation. [24] propose an
acceptance criterion that may be used to filter those solutions. They compute the relative percentage difference between the per-
formance of a reference solution (cr) and the one being considered (c *ij ) as: =r

c c

c

*ij r

r
. Then, the solution is labeled as promising if

r ≤ 0 or, otherwise, with a probability of e r . Alternatively, other simulated-annealing methods could be employed for filtering out
the solutions [1].

7. Technique 2: Adjusting the number of required runs

This section gives a short introduction on how to determine the right number of replications. It also shows how deterministic
approaches can be utilized as a first approximation.

7.1. Determining the number of replications

The analysis of a single scenario within a simulation experiment consists of multiple simulation runs. Of course, the higher the
number of runs, the more computational time is required. Therefore, it is necessary to determine the suitable number of runs to be
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applied, i.e., one that ensures a good approximation of the desired objective parameters. [43] proposes three ways for selecting the
necessary number of runs:

• Rule of thumb: It is recommended to perform at least three to five replications. This is obviously not an exact estimation. In
particular, it does not take into account the characteristics of the simulation model and its output, but it shows that more than one
replication needs to be done for obtaining results with a minimum level of accuracy.
• Graphical method: Here, the mean value of the desired parameter is plotted against the number of replications. The required
number of replications is the one corresponding to the part in which the graph becomes flat. More replications will only lead to
marginal improvements.
• Confidence interval method: Using this method, a confidence interval for the desired parameter is computed. The smaller the
interval, the more accurate the estimate will be. The number of replications is selected at the point where the interval reaches and
remains below the desired level of deviation.

[25] utilize the confidence interval method for a completely automated estimation of necessary replications. They define a
precision d and a number of replications k (window of reliability), where the computed precision dn after replication n needs to fulfill
the required precision drequired.

7.2. Deterministic vs. stochastic runs

For conducting only as many replications as necessary in a simheuristic framework, we proceed as follows: (i) first, a deterministic
replication is applied; (ii) only if this deterministic run leads to a promising solution, then stochastic replications are performed until
a given stopping criterion is met. In our case, the replications will continue until the size of the confidence interval (the one associated
with the simulation outcome) is lower than a pre-established threshold. This strategy builds on the approaches proposed by [29] and
[25] to dynamically determine the number of replications.

The proposed procedure is summarized in Algorithm 2. It relies on the confidence interval for a population mean value when the
standard deviation is unknown, thus assuming normality or existence of large samples. The parameters are: the confidence level
(1 , being α the significance level), the required precision (drequired), the minimum size of the reliability window (klimit), and the
maximum number of runs (nmax).

Initially, a first deterministic run is applied. Next, the deterministic objective function C* is evaluated. If this solution is labeled as
promising, a simulation of the solution is started. Otherwise, the evaluation is aborted, since it is unlikely to obtain a high-quality
result from it. The stochasticity analysis starts with klimit replications, to guarantee a minimum reliability. Now, a loop is entered that
ensures a dynamic number of replications to be performed. After computing the cumulative mean cn and the standard deviation sn,
the currently achieved precision dn for the n-th replications is computed, where tn 1, /2 is the t-student value for n 1 degrees of
freedom and a significance level of α. In order to ensure a good window of reliability, k is computed based on the current number of
replications n and respecting the minimum reliability window (klimit). Thus, a minimum of replications is ensured, by also taking the
number of performed replications into account (cp. line 12 in Algorithm 2).

Once these values have been computed, it can be decided whether further replications have to be performed. Two conditions have
to be met: (i) at least k replications were performed (k≤ n), where k is at minimum klimit; and (ii) replications n k to n have at least
a precision of drequired, i.e.: di ≤ drequired, + …i n k n k n{ , 1, , }. If both conditions are fulfilled, no further replications will be
conducted. Otherwise, an additional replication is performed and a new iteration is started. Finally, the confidence interval for the
objective parameter is computed, and the algorithm returns the parameter estimate, its confidence interval, and the number of
simulation runs executed.

Algorithm 2 can be applied to simulations that use a completely new run for each replication, as well as to simulations that only
consist of a single long batch run with multiple replications. In the later, the simulations needs to be paused after each replication, in
order to decide whether to continue or not.

8. A Numerical Case study

A comprehensive set of computational experiments are carried out in order to assess the effect of the speeding-up procedures
proposed in the previous sections. After introducing the case study, the experimental design is explained. A comprehensive analysis of
the results is provided in Section 9.

8.1. Example of a manufacturing system

The example used is based on a typical manufacturing system described in Law [33, p. 694] and illustrated in Fig. 2. This
manufacturing system contains five workstations and a location module for receiving and shipping items that need to be processed as
jobs (circles) by any of the machines (squares) located inside the workstations. The number of machines inside each workstation is a
decision variable ranging from 1 to 5. Let J denote the set of jobs to be processed. The inter-arrival times (in minutes) of jobs to the
system follow an exponential probability distribution with = 1/4 (i.e., on the average a new job arrives to the system every 4
minutes). There are three classes of jobs, i.e., =J J J J1 2 3. Table 1 shows the specific data for each job type, including: percentage
of occurrence, workstations where the job has to be processed (with the order in which these workstations have to be visited), and
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average processing time, tjw, of a job j ∈ J in an idle machine inside workstation …w {1, 2, , 5}. More specifically, the processing time
of j in an available machine inside w is given by the random variable Tjw, which is assumed to follow a gamma distribution with = 2
and = t jw

. In our parametrization, the gamma distribution is given by the following probability density function:

=f x x e( ; , ) ,x
( )

1 for x > 0 and α, β > 0.
Each workstation has an input queue of infinite capacity, from which the first idle machine accepts the job that has to be

processed next. The transportation of jobs between workstations is conducted through forklift trucks, which have a traveling speed of
1.524 m/s and transport the jobs between the workstations according to the processing order given in Table 1. For transportation the
forklift truck nearest to the jobs workstation is requested. Individual positions of the machines within the workstation are not taken
into account. If no forklift truck is available, the machine that finished the job is blocked until the job is being picked up. After
finishing a transport, a forklift truck checks whether there are transportation requests or not. In case there is no request, the forklift
truck will wait at its current position. If there are multiple requests, the closest one will be processed. There is no additional root
planning performed. The number of forklift trucks in the system is a decision variable ranging between 1 and 5. The distances
between workstations are given in Table 2.

In this scenario, a system configuration consists in determining the number of machines associated with each workstation as well
as the number of forklift trucks inside the system. Since the system contains up to 5 possible forklift trucks and 5 workstations with up
to 5 machines each, a configuration can be represented by a vector = …s s s s( , , , )1 2 30 . Then, …i {1, 2, ,25}, =s 1i if the machine i is

Fig. 2. Example manufacturing system, based on Law [33, p. 694].

Table 1
Processing orders and times.

Job type Occurrence Workstations Average processing times (in hours)

J1 30% 3, 1, 2, 5 0.25, 0.15, 0.10, 0.30
J2 50% 4, 1, 3 0.15, 0.20, 0.30
J3 20% 2, 5, 1, 4, 3 0.15, 0.10, 0.35, 0.20, 0.20

Table 2
Distances between workstations in meters.

Station WS 1 WS 2 WS 3 WS 4 WS 5 R/S

WS 1 0 45.72 64.92 102.41 91.44 45.72
WS 2 45.72 0 45.72 91.44 102.41 64.92
WS 3 64.92 45.72 0 45.72 64.92 45.72
WS 4 102.41 91.44 45.72 0 45.72 64.92
WS 5 91.44 102.41 64.92 45.72 0 45.72
R/S 45.72 64.92 45.72 64.92 45.72 0
WS: workstation
R/S: receiving/shipping
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incorporated to the corresponding workstation and =s 0i otherwise. Similarly, …i {26, 27, ,30}, =s 1i if the corresponding forklift
truck is incorporated to the system and =s 0i otherwise. Hence, the number of possible configurations is about =2 107374182430 .
Notice that some configurations (e.g., the ones leading to zero machines in a workstation or to zero forklift trucks in the system) are
not allowed, which reduces the number of possible configurations. Also, notice that if homogeneous machines (in processing times)
and homogeneous forklifts (in speed) are considered, then the solution space is significantly reduced, and it is possible to find a
simpler vector representation for a solution. However, we have chosen the binary representation since: (i) it is simpler to use in our
GA; (ii) it is valid even in a more general scenario with heterogeneous machines and forklifts; and (iii) it allows us to test the proposed
methodologies.

For a given configuration s, the concept of system ‘flow factor’, =o o s( ), is defined as follows:

=o s
J

P j
p j

( ) 1
| |

( )
* ( )j J (5)

In Equation (5), P(j) represents the actual total time that job j has been in the system (including processing times in workstations,
transportation times between workstations, and waiting times for available machines or forklift trucks), while p*(j) represents the
total time that job j would have been in the system under the following ‘ideal’ circumstances: (i) job j is the only job in the system
(i.e., there are not waiting times); and (ii) =T t ,jw jw …w {1, 2, , 5} (i.e., assuming average processing times in each workstation).
Hence, the factor P j

p j
( )

* ( )
represents the actual time that job j has been in the system over the time it would have been under ‘perfect’

conditions, so the higher this factor is, the farther away the system is from an ‘ideal’ status. All these factors are averaged over the set
of jobs J, and thus o(s) represents the average factor. In our case, we will assume a target value v for this average flow factor, and will
try to minimize the difference (in absolute value) between this target factor v and the actual one, o(s). Therefore, the optimization
problem consists in finding a configuration s that minimizes the difference between the system flow factor, o(s), and a target value v
(with =v 3 in our numerical experiments), i.e.:

=f s v o sMinimize ( ) ( ) (6)

Subject to:

…
= +

+
s k1 {0, 1, ,5}

i k

k

i
1 5

5( 1)

(7)

…s i{0, 1} {1, 2, ,30}i (8)

Notice that Equation (7) ensures that the configuration contains at least one forklift truck and at least one machine per work-
station.

8.2. Experimental design

The objective of these experiments is to assess the performance of the proposed procedures, which control the required number of
simulation runs to speed up the simheuristic algorithm. Firstly, a base value is computed without employing any of the two tech-
niques proposed in this paper. Secondly, the experiment is repeated using a deterministic version of the system, and employing the
results as estimates for the stochastic version (first control technique). As explained in Section 6, this allows to filter out unpromising
solution candidates by using a reference value cr (i.e., unpromising solutions with a deterministic cost exceeding the cr threshold are
not sent to the simulation component). Thirdly, a new experiment is conducted in which the number of runs is dynamically computed
based on the simulation results (second control technique), as discussed in Section 7.1. Finally, both control techniques are si-
multaneously applied to measure their combined effect. As described in Equations (9) to (11), while using the first control technique
different reference values =c c S( , )r r are tested, where ε > 0 is a design parameter and S represents the set of solutions generated so
far (which implies that cr is updated at each iteration of the algorithm):

= +c f smin{ ( )}r
s S (9)

= +c f s(1 )·min{ ( )}r
s S (10)

= +c f s f s·var{ ( )} min{ ( )}r
s S s S (11)

Equation (9) adds a predefined value, ε, to the best-found deterministic solution. Equation (10) uses ε as a relative offset. Finally,
in Equation (11) a multiple of the variance is used for computing the applied reference value. Whenever a promising solution is sent
to the simulation module, the number of simulation runs can be dynamically computed according to Algorithm 2. This allows to
evaluate how much time can be saved when: (i) applying different versions of the cr value; and (ii) using a dynamically-computed
number of simulation runs. Table 3 gathers all investigated options for the reference value. The resulting combinations are shown in
Table 4, which also includes the applied values for ε and the resulting solution values provided by the GA.

Finally, the following design parameters have been used for the GA and the simulation component:

M. Rabe, et al. Simulation Modelling Practice and Theory 103 (2020) 102089

11



• population size: =p 40
• number of parents: =p 20parents

• probability for mutation: =m 0.5
• number of generations: =j 10max

• significance level: = 0.025
• precision: =d 0.1required

• number of runs: =n 50max

• minimum window of reliability: =k 3limit

9. Analysis of results

As can be seen in Table 4, when filtering out unpromising solutions most combinations lead to reasonably good solution values –
i.e., most configurations provide a value close to 0.50. Notice that combination 1-1-1 (which corresponds to c ,r no acceptance
criterion, and = 0) is slightly worse than others. This can be explained by the fact that, after the first iteration of the algorithm
(generation 1), any new solution s* is sent to the simulation component only if < =f s c f s( *) min{ ( )}r

s S
. Hence, many solutions are

filtered out and never sent to the simulation component. In particular, as shown in Fig. 3, about 50% of the newly generated solutions
(individuals) are excluded from being evaluated by the simulation component, since the results from their deterministic replication is

Fig. 3. Development for the number of promising solutions for reference value type 1 without and with acceptance criterion (Table 3).
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not promising. As a consequence of this restrictive filter, the GA converges quite slowly due to the lack of new candidates to be
assessed in a stochastic environment (Fig. 4).

By raising the value of ε (e.g., combinations 1-1-2, 1-1-3, 1-2-2, and 1-2-3), more newly generated solutions are sent to the
simulation component. Furthermore, activating the acceptance criterion also increases the number of solutions that pass the filter.
This raises the overall number of simulation runs being performed, but also improves the convergence of the GA, hence leading to
better results. As a compromise, a medium value for ε should be selected, saving about 25% of the replications and still providing
good results. Additionally, the GA could be stopped earlier, thus, saving even more computing time. Fig. 4 shows the development of
the solution value for ten iterations (generations) of the GA. Even for the combination 1-1-1, the GA is able to find good solutions in
just a few iterations. However, the GA converges faster in combination 1-1-2, where a higher value of ε is considered. Likewise,
combination 1-2-1 (which uses the acceptance criterion) also shows a faster convergence than combination 1-1-1.

Figs. 5 and 6 show similar results for some of the remaining combinations: 3-1-1, 3-1-2, and 3-1-3, which are associated with the

Table 3
Experiment configurations.

Reference value Apply acceptance criterion Epsilon (ε)

1: cr 1: No 1: Low
2: cr 2: Yes 2: Medium

3: cr
3: High

Table 4
Experiment combinations according to the rows of Table 3 and resulting solution.

Combination ε Solution Combination ε Solution Combination ε Solution

1-1-1 0 1.12 2-1-1 0.1 0.70 3-1-1 0.1 0.60
1-1-2 50 0.52 2-1-2 0.5 0.51 3-1-2 0.5 0.53
1-1-3 100 0.52 2-1-3 1.0 0.59 3-1-3 1.0 0.45
1-2-1 0 0.45 2-2-1 0.1 0.43 3-2-1 0.1 0.45
1-2-2 50 0.45 2-2-2 0.5 0.60 3-2-2 0.5 0.59
1-2-3 100 0.44 2-2-3 1.0 0.43 3-2-3 1.0 0.53

Fig. 4. Development of solution values for reference value type 1 (see Table 3).
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Fig. 5. Development for the number of promising solutions for reference value type 3 (see Table 3).

Fig. 6. Development of solution values for reference value type 3 (see Table 3).
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reference value cr . Notice that the GA converges faster for combinations that make use of intermediate ε values. Figs. 3 and 5 show
that, depending on the selected reference value cr, up to 50% of the solutions are not stochastically evaluated. Even with less
restrictive versions of the reference value, savings of 10% to 25% can be achieved. Thus, filtering out unpromising solutions seems to
be a useful approach.

Furthermore, as Figs. 7 and 8 show, dynamically determining the number of replications does also save a significant amount of
time. The examples show that, on the average, only about 30 instead of 50 replications have been performed, saving about 40% in
computing time.

All in all, both tested techniques save a significant amount of time, leading to a faster optimization. When applying both tech-
niques together, we have observed savings of up to 70% in computing times. This is primarily achieved by reducing the number of
performed simulations and, thus, reducing the effort spend for simulation. Hence, the time saved can be used to better search the
solution space or to receive the results faster without having to compromise the solution quality.

10. Conclusions and further research

This paper provides an approach for reducing the computational effort required by the simulation component in a simheuristic
that combines a genetic algorithm with discrete-event simulation. Two complementary procedures to achieve this goal have been
discussed: (i) filtering out unpromising solutions based on predictive models or rules of thumb; and (ii) adjusting the number of
required runs. The adjustment of the number of replications is achieved using a combined strategy. First, the result of a single
deterministic replication is employed as an initial estimate of the solution quality. Then, if this quality is above a given threshold, the
number of stochastic replications is dynamically determined by using confidence intervals. This allows for faster evaluations with
reasonable precision of the objective being investigated. If the simulation component is based on time-consuming simulations (like
those typically associated with discrete-event simulation), the use of our methodology can represent noticeable savings in computing
time. Our approach was adopted to directly work within a simheuristic framework. It uses only a few crucial parameters. First, it
needs to be defined when the result of the deterministic replication is promising. This obviously requires some experience and
knowledge about the evaluated system. Secondly, the required precision has to be set, since it directly influences the number of
stochastic replications to be performed. Third, the look-ahead value needs to be defined. As the precision, this has a direct influence
on the number of performed simulation replications.

These design concepts have been illustrated and tested on a manufacturing system. Results show that unpromising solution
candidates can be filtered out – thus not being evaluated through a stochastic simulation experiment –, which allows to save a
noticeable amount of computing time. Also, once the reference and solution values are close to zero (the goal in this example), almost

Fig. 7. Development of performed replications for reference value type 1 (see Table 3).
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no solution candidates are filtered out. As a consequence, if the optimization is converging slowly a lot of simulation effort can be
saved by selecting the best filtering mechanism. If the optimization is converging fast, it is more important that the stochastic
experiment runs as few replications as possible, because only a few solution candidates will be filtered out.

Several interesting lines of future research stem from this work. For instance, the potential of statistical learning techniques in
simheuristic frameworks may be further explored, attempting to reduce computing times or to improve the quality of the solutions –
e.g., by learning from the ones already generated and from the simulation to better guide the search. Exploring the differences
between the best stochastic and deterministic solutions, or identifying those scenarios that contribute to differentiate among high-
and poor-quality solutions constitute specific examples. Another potential line is to analyze the design of suitable visualization
techniques to summarize and help the decision maker, so she can easily gain insights into the results of simheuristic algorithms. Yet
an additional question to be fully explored is how the information generated by the simulation component can be efficiently em-
ployed to enhance the metaheuristic search. Finally, the concepts proposed in this paper may be tested on a higher number of
different simheuristic frameworks and applications to gain more insights in the development of these simulation-optimization al-
gorithms.
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