
Simulation Modelling Practice and Theory 77 (2017) 141–156

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

A hierarchical composite framework of parallel discrete event

simulation for modelling complex adaptive systems

Feng Zhu

a , b , Yiping Yao

a , Wenjie Tang

a , Jun Tang

a , c , ∗

a College of Information System and Management, National University of Defense Technology, Changsha, China
b Department of Computing, Imperial College London, London, UK
c Department of Telecommunication and System Engineering, Universitat Autònoma de Barcelona, Sabadell, Spain

a r t i c l e i n f o

Article history:

Received 15 January 2017

Revised 20 May 2017

Accepted 31 May 2017

Keywords:

Complex adaptive systems

Parallel discrete event simulation

Composite modelling framework

Three-level architecture

a b s t r a c t

As complex adaptive systems(CAS) continue to grow in scale and complexity, and the need

for system adaptability increases, systems modelling has become an essential concern. Par-

allel discrete event simulation became a preferred choice as logical process world view,

which bridges complex system modelling and high-performance computing. To resolve the

shortcoming of this world view identified with respect to modularity and scalability. A

hierarchical composite modelling framework was proposed, which is a three-level archi-

tecture intended to support the composition and integration of sub-models. The bottom

layer is simulation model component(SMC), which is not a model but implement some

simulation-specific support functionality. The middle layer is logical process model(LP),

which describes an agent which can react to the current situation by executing a sequence

of SMCs. The top layer is CAS system model, which defines a CAS model consist of several

LPs and also the interactions between these LPs. The hierarchical composite modelling pro-

cess and parallel simulation execution strategy are discussed to support the modelling and

simulation of a CAS. In order to verify its effectiveness, a complex social opinion system

model is proposed based on this hierarchical composite modelling framework. The exper-

imental results confirms the viability of utilizing multi-level architecture for simulating

large scale complex adaptive systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Whether designed to predict the spread of an epidemic, understand the potential impacts of climate change, or model

the acoustical signature of a newly designed battle plane, computer simulation is an essential tool. By using simulation

models that capture the complex behaviour of the real world, scientists can explore system dynamics that are too costly to

test experimentally and too complicated to analyse theoretically.

Complex adaptive systems (CAS) [1] are such systems that have a large number of agents that adapt and interact. CAS

problems are pervasiveness, such as encouraging innovation in dynamic economies, providing for sustainable human growth,

predicting changes in global trade, understanding markets and so on. Mostly CAS share the features of modularity, adapta-

tion, and evolution [2] . To understand their intricate dynamics it is often beneficial or necessary to use different kinds of
∗ Corresponding author Jun Tang, Email: tangjun018@gmail.com. Thank you very much!"? > .

E-mail address: tangjun018@gmail.com (J. Tang).

http://dx.doi.org/10.1016/j.simpat.2017.05.010

1569-190X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.simpat.2017.05.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/simpat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2017.05.010&domain=pdf
mailto:tangjun018@gmail.com
http://dx.doi.org/10.1016/j.simpat.2017.05.010

142 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

models to represent each sub-system [3] , then the structures and behaviours could be easy to adjust to change as the sys-

tems may continuously reconfigure themselves to adapt to different situations [4] . For example, a social ecological system

typically evolves over time to adjust to the new environment. Therefore, to model this type of complex systems, a composite

modelling framework is needed, as it greatly enhances the modelling capability.

A composite framework is an architecture or infrastructure intended to support and enable the integration and interop-

eration of individual sub-models [5] . It may consist of concepts, standards, control mechanisms, interfaces, and processes

aimed to facilitate the efficient, and flexible assembly of systems from sub-models in a possible setting [6] . Component-

based, standardized, multi-formalism modelling, system theory, and logical process world view are popular approaches for

describing composite dynamic systems. Different modelling paradigms are suitable for various kinds of needs. Component-

based simulation systems are immensely helpful to users who wish to build complex systems by composing existing soft-

ware components, thereby shielding them from the underlying complexity of component resources. Discrete-event System

Specification(DEVS) supports component-based modelling and simulation by emphasizing the theory of hierarchical mod-

elling. The structure of input and output data is complicated as data for DEVS models are specified in terms of messages

each defined in terms of port and value pairs. A standardized modelling approach is the High Level Architecture(HLA), which

is aimed at handling interoperability needs with some limited capability for model composability as supported by the Ob-

ject Model Template. Multi-formalism modelling approach composes different models using a model which handles the

differences between modelling formalisms, but common forms of data transformation are inherently supported.

On the other hand, CAS can be modelled by a vast numbers of agents that interact by sending and receiving messages.

The agents produce scores of interactive messages, and the actions of agents in a CAS usually depend on the messages they

receive. Moreover, the complexity of CAS rises above the handling capacity of monolithic sub-models [7,8] . Therefore, the

composite modelling framework is also needed to cope with the requirement for scalable modelling capability and high-

performance simulation power.

Parallel discrete event simulation(PDES) became a preferred choice for studying complex systems as logical process

worldview, which bridges complex system modelling and high-performance simulation [9] . A PDES program can be viewed

as a collection of logical processes(LP). For example, a physical process such as a battle plane or a water station is modelled

by a LP, and interactions between physical processes are modelled by scheduling events [10] . Each event contains a times-

tamp that represents a point in simulation time at which the state of a LP changes. The state variables that capture the state

of the system being modelled changes when a corresponding event computation occurs. Recently studies into the parallel

simulation of LP-based models has usually attempted to overcome the performance bottleneck. There has been useful work

on algorithm optimization, but few effective methods for composite modelling methodology of CAS. Research on modelling

CAS using LP paradigm currently suffers from: (1) event scheduling and event processing within a LP couples tightly, so

that a LP is hard to achieve flexible composition of sub-models; (2) LP couples tightly, so that it is difficult to enable the

efficient, and flexible assembly of a CAS-oriented simulation system from LPs.

To resolve the above problems, this paper proposed a hierarchical composite modelling framework, which is a three-

level architecture intended to support the composition and integration of sub-models. The hierarchical composite modelling

process and the parallel simulation execution strategy is discussed to support the modelling and simulation of a CAS. To

verify its effectiveness, a com plex social opinion system model(SOSM) is proposed based on this hierarchical composite

modelling framework. The experimental results confirms the viability of utilizing multi-level architecture for simulating

large scale complex adaptive systems. The main contributions of this paper are as follows:

(1) Encapsulate a group of action rules of an agent into a SMC. It enables flexible assembly of an agent from SMCs; thus,

an agent reacts to the current situation by executing a sequence of SMCs.

(2) Decouple the interaction between agents. An agent only contains the behaviour processing logic. The interaction be-

tween agents implements by configuring the interactive relationship in a possible setting.

(3) Mapping an agent to a LP and mapping the interactions between agents to scheduling interactive events between LPs,

which enables the high-performance collaborative execution of a CAS model on existing PDES platforms.

The remaining of this paper is organized as follows. Section 2 gives the background and related works. Section 3 intro-

duces the three-level architecture and the formal definition of sub-models in each level. Section 4 depicts the hierarchical

composite modelling process for CAS and the execution of a CAS model. Section 5 analyses a case study of social opinion

system and illustrates the merits of our framework. Finally, our conclusion will be made with an indication of the future

work in Section 6 .

2. Background and related work

There has been useful work on simulation platforms of multi-agent modelling for complex systems and complex net-

works. GAMA [11] aims at providing field experts, modellers, and computer scientists with a complete modelling and sim-

ulation development environment for building spatially explicit multi-agent simulations. RepastHPC [12] is a useful and

useable agent-based modelling and simulation system explicitly focusing on larger-scale distributed computing platforms. It

allows the use of different structures (Networks, Grids) which can be coupled in a same simulation to represent different

types of interactions. However, one of the limitations in RepastHPC is no communication is allowed between remote agents.

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 143

SARL [13] is a general-purpose agent-oriented programming language. SARL provides a set of agent-oriented first-class ab-

stractions directly at the language level. SARL models can be executed on Janus platform, and it also can be linked with

other existing agent platforms and frameworks. Janus [14] integrates and benefits from the new patterns of Object-oriented

programming like Inversion of Control, event-driven communication, distributed objects, etc.

About layer architecture of agent-based simulation, D’Angelo et al. [15] proposed a two level simulator where Level

0 simulator and Level 1 simulator communicate with each other through the use of a TCP connection. It is available for

simulating large-scale decentralized and heterogeneous scenarios (e.g. mobility models, wireless/wired communications and

so on). Holonic structures [16] offer a powerful abstraction for modelling complex systems. Holons are composed of other

holons, referred as super-and sub-holons respectively. Holonic MAS represent an attempt to tackle a general problem of

how to treat collections of agent as higher-order entities. MaMA-S [17] is a methodological approach for the creation of

simulation models of complex and distributed systems. It facilitates the modelling and the simulation of decision-making

processes, but synchronization of the simulation models still need to be resolved.

In a logical process world view, a simulation system is carried out by having some LPs each keep track of the state of

different parts of the system. Based on this world view, several distinct types of modelling framework have been developed.

The mechanisms used to implement a framework may vary in protocols, standards, interface definitions, data translators

and so on. Several frameworks for model composition in discrete event simulation are discussed as follow:

DEVS framework is founded on system-theoretic principles including component-based hierarchical modelling [18] . The

framework defines two types of models - atomic model and coupled model; atomic models are the basic modelling con-

structs whereas coupled model represents a group of atomic or coupled modes. The framework supports hierarchical model

development through the use of one coupled model as a fundamental component in another coupled model [19] . Based

on DEVS, several modelling and simulation platform have been developed, such as DEVSJAVA [20] , CELL-DEVS [21] and DE-

VSNET [22] . However, the hierarchical assembly of DEVS-based system models is implemented by using input/output ports

and message couplings; thus the complexity will increase obviously when the system modeller adds a new layer of a system

model.

Event Graph [23] modelling paradigm can be used to build discrete-event simulation model, but it does not facilitate

composability of sub-models. LEGO [24] was designed to encapsulate an Event Graph as an object using the listener pattern

as a means of loosely connecting them. Each LEGO is responsible for the events and state transitions that modify its state

variables and produce its state trajectories. Viskit [25] is a graphical editor for creating, editing, and composing discrete event

simulation models using Event Graphs and the LEGO framework. DEG [26] extends classical event graphs for component-

based models in discrete event simulation. PEG [27] extends classical Event Graph towards a formal specification for LP-

based PDES models. However, the Event Graph-based composite modelling frameworks as mentioned above did not refer to

hierarchical assembly of different LPs from low-layer components.

Kesaraju [28] proposed a sequential simulation framework that integrates process-driven and event-driven approaches.

Modellers can manage the complexity of real-world systems through process-driven orientation while retaining the control

logic through event-driven orientation. Rizvi [29] proposed a LP-based simulation model for distributed simulation systems,

which provides the internal architecture of each LP and its coordination with the other LPs through some communication

protocols.

In summary, the above discrete-event composite modelling frameworks either did not refer to assembly of different LPs

from low-layer components or lack of a hierarchical architecture to clearly depict how to compose LPs to build a complex

system model.

3. Three-level architecture for CAS model

Combining different sub-models poses a variety of challenges depending on the system being modelled. A real system

can be described with a hierarchical style. The System Level where each identified a real system consist of various agents

interacting with others. The Agent Level where each identified the agent of the CAS system is associated with a class of

possible agent templates. The Component Level where each identified the component of the agent is associated with a class

of possible component templates. Partitioning a CAS model into layers, each of which consists of a set of sub-models, is a

crucial step in a hierarchical modelling framework. In this paper, a three-level representation is proposed for CAS models, in

particular, steps 1 through 3. These steps convert the real CAS to a CAS model as shown in Fig. 1 . In a layered architecture,

one or more CAS models are built up from lower-level components. The bottom layer is SMC (Simulation Model Component),

which is not a model but implement some rule-specific support functionality. The middle layer is LP (Logical Process Model),

which defines that an agent can react to the current situation by executing a sequence of SMCs. The top layer is CSM(CAS

System Model), which defines that a CAS model consists of several LPs and also the interactions between these LPs.

3.1. Simulation model component

A SMC is a component that can be integrated and used with other components only through well-defined interfaces. SMC

defines the details of the component’s interface and structure that used to implements the subroutines consist of groups of

action rules. The service interfaces of a component define a set of methods. The external service interfaces are provided to

be invoked by agent frameworks. A SMC changes the values of the variables that describe the agent state. A SMC can be

144 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

Fig. 1. Three-level representation for CAS.

represented as a nine-tuple.

SMC = < Children, T , X, Y, �t, �, �, �, Φ > (3-1)

Where

Children is the set of low-level SMCs;

T is the set of simulation time;

X is the set of parameters denoting the possible inputs;

Y is the set of parameters denoting the possible outputs;

�t is the real number that represents the minimal time of SMC iteration;

� is the action rule function set of an agent;

� = { (t −, x) | t − ∈ T , x ∈ X} is the input sequence, t − is the time corresponding to the input sequence;

� = { (t + , y) | t + ∈ T , y ∈ Y } is the output sequence, t + is the time corresponding to the output sequence;

� = { f | f i , f d , f p , f o } is the external service interfaces set, which is used to be invoked by an agent model, where

• f i = input (t −, x i) , which is the input interface. It provides inputs for the SMC during its execution. t − is the current

simulation time and x i represents the inputs;

• f d = dri v en (t −, x d) , which is the dynamic data-driven interface. It provides dynamic inputs for the SMC during its exe-

cution. t − is the current time and x d represent the dynamic inputs.

• f p = process (t +) , which is the business processing interface for agent behaivour rules. After its execution, the local sim-

ulation time of an agent will advance to t + .
• f o = out put (t + , y o) , which is the output interface. It outputs the results after business processing. t + is the current sim-

ulation time and y o represents an output sequence after the SMC’s execution.

3.2. Logical process model

An agent in CAS can be modelled by a LP class which is composed of an initial method, several event process procedures,

and a series of variables. Each initial function gives the initial value for the LP and then schedule some necessary events for

simulation execution. A LP changes the values of the variables that describe the agent state through processing events. The

computation in the event process function is implemented by invoking a series of SMCs. Processing events will change the

states of a LP and schedule some new events. A LP model can be represented as a ten-tuple.

LP = < I, Q, M, E α, V, S α, C, T , O, B > (3-2)

Where

I is the initial method;

Q is the set of all possible states that the LP can be in;

M is the set of SMCs that possibly used to be invoked by the event process procedures;

E α is local event set, which contains the events that are scheduled by the same LP;

V = { < e, in v oke < m, i, c, b >> | e ∈ E α, m ∈ M, i ∈ N

+ , c ∈ C, b ∈ B } is the invoked sequence for SMCs by the event process

procedure related to the simulation event e , where i represents the invoking index;

S α = { < e, schedule < e next , c, t, o, b >> | e, e next ∈ E α, c ∈ C, �t ∈ T , o ∈ O, b ∈ B } is local event scheduling relationship which

means the simulation event e will schedule event e next in the same LP with incremental time �t , condition c , priority o , and

input parameters b ;

C = { c e | c e : S → { 0 , 1 } , ∀ e ∈ E α} is condition set for scheduling local events;

T = { �t e | �t e ∈ R +
0
, ∀ e ∈ E α} is incremental time set for scheduling local events;

O = { o e | o e ∈ Z +
0

, ∀ e ∈ E α} is priority set for processing local events;

B = { b| b ⊆ Q} is parameter set of denoting the possible inputs.

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 145

Fig. 2. Hierarchical composite modelling flow for CAS.

3.3. CAS system model

A CAS model can be described as the composition of several LPs. The interaction between LPs is modelled by scheduling

events. The CSM layer describes the LPs that composed of the CAS model and the interactive relationship between these

LPs, which can be represented as an eight-tuple

CSM = < �, E β, S β, L, C, T , O, B > (3-3)

Where

� is the set of LPs used to assembly of a CSM;

E β is interactive event set, which contains the events that are scheduled by other LPs;

S β = { < e, schedule < e netx , l, c, �t, o, b >> | e, e netx ∈ E β , l ∈ L, c ∈ C, �t ∈ T , o ∈ O, b ∈ B } is the interactive event scheduling

relationship which means the simulation event e will schedule event e next belonging to another LP with incremental time

�t , condition c , priority o , and input parameters b ;

L is decision-making function set, which can be used to decide the simulation event e next of which LP will be schedule

by simulation event e ;

C = { c e | c e : S → { 0 , 1 } , ∀ e ∈ E β} is condition set for scheduling interactive events;

T = { �t e | �t e ∈ R +
0
, ∀ e ∈ E β} is incremental time set for scheduling interactive events;

O = { o e | o e ∈ Z +
0

, ∀ e ∈ E β} is priority set for processing interactive events;

B = { b| b ⊆ Q ∩ Q ∈ �} is parameter set denoting the possible inputs.

4. Hierarchical composite modelling and simulation

The hierarchical composite modelling framework is aimed to provide a CAS model where a collection of SMCs can be

coupled to create new and useful capabilities and automate the process as much as possible. Based on the three-level archi-

tecture, the hierarchical composite modelling and simulation for CAS includes two parts: hierarchical composite modelling

for CAS and parallel simulation execution of a CAS model.

4.1. Hierarchical composite modelling for CAS

Hierarchy and decoupling are useful approaches to composing a CAS model. In this paper, assembly of a CAS model can

be divided into the following steps(see Fig. 2):

• Step(1): SMCs that developed by domain experts are added into the SMC library. The SMC should be built in agreement

with the formal definition discussed in Section 3.1 . Structured descriptions can be used to guide the processes of se-

lecting SMCs for a particular purpose and determining if a set of SMCs can be composed [30] , thus the detail of a SMC

description shown in Table 1 should be given.

• Step(2–4): Required SMCs are selected to construct LPs, and the formal definition of LP models discussed in

Section 3.2 cannot be violated. In practice, it is often assumed that any SMC that had been placed in the library is

valid, but the validity of SMCs does not imply that a composition of them can be considered to be valid. Here validating

a composition of SMCs can use traditional validation methods, such as comparing output data to baseline data and can

146 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

Table 1

Knowledge description of a SMC.

Content Description detial

ID Unique identification of a SMC.

Domain Application domains should be considered when characterizing the context for a SMC, for

example, hydromechanics, aerodynamics, mechanical control, and so on.

Purpose SMC can be considered as replaceable building blocks of an agent. It includes the problem that the

SMC solves.

History History is a characteristic of a SMC that reflects its stability and maturity. When a SMC is first

introduced, there is a high risk associated with its usage.

Parameter This records the parameter description of the external service interfaces, including name, type, unit,

identification and funtion , especially for user defined parameter types. The parameters are passed

to the SMC when an agent schedules it.

Table 2

Knowledge description of a LP model.

Content Description detial

Class Each agent is associated with a class of possible LP templates.

Domain Application domains should be considered when characterizing the context for a LP, for example,

behaviour control agent, motion simulation agent, target selection agent, and so on.

History LP belongs to the middle-level system resource. The history of a LP is a characteristic of the LP

that reflects its stability and maturity. When a LP is first introduced, there is a high risk

associated with its usage.

Initial Initial data description is used for the initialization of a LP. At the beginning of simulation

execution, the initial method of each LP is scheduled to set the initial value for the variables of

each LP.

Subscribe Subscribe is a one-way relation between LPs and it is for declaring the interaction data interests in

LPs. The list of attributes that a subscriber LP requires to be notified about when a LP is

generated or updated during simulation execution.

Publish A publish association between two instances of LPs indicates that one LP is capable of generating

interactive data which is interested by the other LP. The list of the interested attributes of the LP

will be produced and updated during simulation execution.

Rules A set of SMCs composes the behaviour rules. An agent modelled by a LP can react to the current

situation by executing a sequence of rules.

also exploit the structure of the composition, such as automatically analyzing the domains of validity for each SMC with

the data they are receiving from other SMCs in the compositon [31] . To facilitate to select the LPs and configure the

interaction between different LPs, we define the knowledge description of each LP in Table 2 . Here interaction is the

ability of distinct LPs to share semantically compatible information.

• Step(5-6): Compose different LPs into a CAS model which is described by the formal definition discussed in Section 3.3 . A

event scheduling scheme was used to deliver the interactions among LPs. It requires that the modellers involved employ

compatible semantics and standard interpretations of the information they exchange.

• Step(6): Generate object-oriented code: for each LP , we build a class in C++ object-oriented language. Each internal

method of this class corresponds to an event processing function. The class of LP also contains a set of internal vari-

ables: there are several variables for the initial method of LP ; there are also several variables for each event processing

procedure of LP . All these variables are persistent meaning they maintain their values across the execution of the differ-

ent functions.

Fig. 3 illustrates the same LP is reused in different CAS models. In this case, CSM 1 (CAS Model 1) and CSM 2 (CAS Model

2) both contain the LP model AgentC . In CSM 1 , AgentC schedules the event of AgentB . In CSM 2 , AgentC schedules the event

of AgentE . The ConditionSet and [paralist] are derived from the computational results of SMCs execution. The C ++ code of

event processing function EventHandle () can be generated automatically according to the configuration of AgentC and the

interaction between AgentC and AgentB in CSM 1 . Meanwhile, the C ++ code of event processing function EventHandle () can

be generated automatically according to the configuration of AgentC and the interaction between AgentC and AgentE in CSM 2 .

Compare with the generated codes of different event processing functions EventHandle () in AgentC , the event processing and

local event scheduling in AgentC is the same, only the interactive event scheduling in AgentC is different. That means with

our composite modelling framework, event scheduling and event processing decouples in a LP model. A LP can be flexible

composed from a set of SMCs and a set of interactions, and the behaviour(a set of SMCs) of the specific LP can be reused in

different CAS models.

4.2. Parallel simulation execution of CAS model

In the logical process world view, the simulated system is partitioned into a set of LPs that communicate with each other

by sending and receiving time-stamped events. A CAS model composed of several types of LPs can be grouped into several

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 147

Fig. 3. A simple example of hierarchical composite CAS model.

partitions for parallel execution(see Fig. 4). The InitialDataSet obtained by parsing a lot of SampleFiles is used to initialize the

states of these LPs. During the simulation execution, the LPs are grouped into several partitions, each of which is mapped

onto a CPU core. To ensure that all of the events on different CPU cores are performed in accordance with time stamp order,

events are required to execute by LPs such that local causality constraint requirement must not be violated [32] . To do that,

each LP must know which events are safe to process. Since all LPs do not have a consistent view of the entire system, LPs

must exchange simulation time to synchronize with each other. Synchronization refers to the coordination of events that are

running simultaneously on different CPU cores. Nowadays, most PDES platforms provide two classes of time management al-

gorithms to synchronize simulation execution [33,34] , which are conservative and optimistic. Conservative algorithm allows

for the simultaneous execution of events only when the CAS model can guarantee that the events are not causal invalid, but

the strict ordering constraint can lead to deadlocks that must be discovered and broken. Optimistic algorithm relaxes the

148 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

Fig. 4. Mapping LP partitions into multi-core computing platform.

Fig. 5. Parallel simulation execution of CAS model.

strict enforcement of event stamp order. When causal violations occur, some recovery or repair mechanism may be used to

restore the simulation to an earlier state. Here we do not work on the optimization for time management algorithms, but

focus on how to execute the hierarchical CAS model based on PDES simulation platform.

During the simulation execution of a CAS model, event processing and event scheduling of different LPs drives the evo-

lution of the model (see Fig. 5). In the beginning, the simulation platform first processing the initial event 0 , which is usually

defined by an initial method. The initial method is responsible for the initialization of the state variables of the LPs. During

the execution, each LP partition will build a FEL (Future Event List) to receive the event messages from LPs. At the same

time, the simulation platform will process the event with minimum time order from the FEL . Each event message corre-

sponds to an event processing procedure which belongs to a specific LP. The execution of an event processing procedure of

a LP includes two different routines:

(1) Schedule SMCs to perform a series of calculations to update the state of the LP. Fig. 6 shows the execution flow of

a SMC, which is described in the following: 1) After the input sequence prepared, calling input interface input (t, x i)

to provide input data for a SMC. 2) If dynamic data is given, calling dynamic data-driven interface driven (t, x). The
d

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 149

Fig. 6. Execution flow of a SMC.

dotted lines represent the dynamic data is not always needed for computation each iteration. 3) The core of a SMC is

in the business processing interface process (t +) , which implements some important action operations defined by the

SMC. If the local simulation time t ∈ T satisfies t + < t + �t, the SMC will not be scheduled until the next input arrives.

Otherwise, the SMC advances the local simulation time in an iterative manner. 4) Call output interface out put (t + , y o)
to output the results after business processing.

(2) Schedule interactive events to communicate with other LP under the supporting of the simulation platform, which

notify the relative LP to process the event at what time and with what parameters. Scheduling interactive events

uses standard socket ports and Internet communication protocols [e.g., Transmission Control Protocol/Internet Protocol

(TCP/IP). It is not an extended version of some other existing message passing protocols, such as Message Passing

Interface (MPI), etc.

Priority constrain principle : The execution priority of a SMC should be higher than that of the event processing function

which invokes the SMC, i.e., if an event processing function start a thread to run the SMC, the performance of the event

processing function will be stopped until the SMC-thread finish its execution.

Proof : Simulation execution with the Priority Constrain Principle is able to guarantee the correct execution of a CAS

model.

Let ξ represents a LP, and e denotes a event processing function of ξ , which invokes several SMCs. Let � denotes the

SMC set of e . The execution of the SMCs will probably change the state of ξ . Meanwhile, after the SMCs invoked by e finish

the execution, the corresponding events including local events and interactive events will be scheduled. Thus, there may be

two kinds of data dependences, the state of the LPs may be caused error.

(1) The dependence between the SMCs.

Let ∃ A, B ∈ �(A

a −→ B) represents the execution of SMC A should prior to B , where a denotes the dependent variable

between A and B .

∃ smc, smc + ∈ �(smc
a −→ smc +) (4-1)

(2) The dependence between the SMC and the event scheduling routine.

Let ∃ A ∈ �, ∃ E ∈ (S
ξ
α ∨ S

ξ
β
)(A

a −→ E) represents the execution of SMC A should prior to the execution of event schedul-

ing routine E , where a denotes the dependent variable between A and E .

∃ smc ∈ �, ∃ sie ∈ (S
ξ
α ∨ S

ξ
β
)((smc

a −→ sie) ∨ (sie
a −→ smc)) (4-2)

Hence, if the execution of the event processing function is error, one of the followings should appear:

(1) The execution of the SMCs violates the dependence (4-1). Let ∃ A, B ∈ �(A ⇒ B) represents the execution of SMC A

prior to B in actual execution.

∃ smc, smc + ∈ �((smc
a −→ smc +) ∧ (smc + �⇒ smc)) (4-3)

However, this violates the principle that the execution of SMCs should comply with the input/output dependence.

(2) The execution of the SMCs and the event scheduling routine violate the dependence (4-2). According to Fig. 5 , the

execution of SMC is always preceded by the events scheduling routine in the same event processing function. Let

∃ A ∈ �, ∃ E ∈ (S
ξ
α ∨ S

ξ
β
)(B �⇒ A) represents the event scheduling routine E finish its execution prior to the execution

of SMC A in the actual performance,

∃ smc ∈ �, ∃ sie ∈ (S
ξ
α ∨ S

ξ
β
)((smc

a −→ sie) ∧ (sie �⇒ smc)) (4-4)

150 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

Fig. 7. Agents and interactions in SOSM.

Some event scheduling routine uses a variable a before that the SMC change it to a +

∃ smc ∈ �, ∃ sie ∈ (S
ξ
α ∨ S

ξ
β
)(

a −→ sie �⇒ . . . �⇒ smc
a + −→) (4-5)

Because the execution of SMC prior to the events scheduling routine, the reason of (4-5) may be that there is at least one

SMC starting multiple threads to run, and the priority of these threads is lower than that of event processing function. Thus,

it violates Priority Constrain Principle. Therefore, depending on reduction to absurdity, simulation execution with Priority

Constrain Principle can guarantee the correct execution of LPs.

5. Case study: social opinion system

Social opinion plays a significant role in the political sphere [35] . These have registered the distribution of opinions on a

wide variety of issues, have explored the impact of special interest groups on election outcomes and have contributed to our

knowledge about the effects of government propaganda and policy [36] . Social opinion system is a typical complex adaptive

system, with a significant overall emergence. The social opinion system model uses the multi-agent modelling method to

describe the dynamic behaviour of the national critical infrastructure, and to model the basic behaviours and interactions

of individuals, organizations and institutions in society. Through this model, we can study the impact of the destruction

of national critical infrastructure on political, economic and social life, the impact on the emergence and dissemination of

public opinion, and the impact on international political ecology. In our case study, we study the self-organization process

and the emergency of social public opinions by modelling the behaviour of a single entity, the interaction between these

entities, and the interaction between entities and environments.

The social opinion simulation model(SOSM) consists of the following LPs (see Fig. 7): (1) government , which takes mea-

sures to solve the destruction of infrastructures after receiving the opinion-decision results. (2) infrastructure , which is the

critical resources that support the normal life in the city, e.g. the water station or the power station. (3) region , which is an

abstraction of the city structure. The city can be divided into several regions, such as the hospital, the college, the factory

and the living area. They change their supply requirements according to the scheduled stimulus events, which affects the

people in the corresponding living area. (4) media , which publish the information such as the destruction of an infrastruc-

ture and the measures taken by the government . It should be noted that different medias influence different individuals . (5)

individual , which is the major research object in SOSM. individuals directly releases his/her opinion after the comprehen-

sive analysis of the destruction of the infrastructure , the opinions from other individuals , and the measures taken by the

government .

The interactions occur among the above LPs shown in Fig. 7 : (1) government interacts with infrastructure when the ex-

ternal stimulus event is scheduled according to the simulation scenario; (2) infrastructure interacts with media when the

infrastructure is destroyed; (3-5) media publishes the stimulus events. According to the region of individuals , different indi-

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 151

viduals receive events from different media ; (6-7) the interactions occur among the individuals in the same region; (8) media

periodically counts the political opinion tendencies of individuals .

Interpersonal relationships usually occur between two individuals with more common factors. Often individuals have

similar characteristics of age, gender, educational level, values, political attitudes and geographical location. These common

features are the factors that need to be considered by the interpersonal network. In the interpersonal network model, we

will consider the common factor as the “common” weight of the relationship network between individuals. In the process

of generating interpersonal networks, each common factor of the individual is quantified. For example, for a culture that

includes a set of factors, we sort each category and set an integer value to quantify it. For age, we quantify the age values

directly. For geography, we use coordinates. The common weight between two individuals i and j is calculated using the

following formula:

ω(i, j) =

m ∑

k =1

αk ρk | y ik − y jk | (5-1)

Where m denotes the number of factors; k denotes the label of a factor; αk represents the weight of the k th factor (0 <

αk < 1); y ik represents the k th factor of the individual i; ρk denotes the normalized distance between a certain factor k of

the entities i and j , such as the normalized distance of the geographical position.

According to the goals of individuals , SOSM simulates the evolution of political tendency by scheduling LPs’ execution.

In the evolutionary process, individuals ’ opinions will aggregate according to their tendencies . At the same time, the ag-

gregation of public opinion has dynamic characteristics, and the occurrence of certain stimulus events leads to the split

of aggregation. In this way, through the stimulation of the external stimulus events to the individuals and the interaction

between the individuals , the specific trend of public opinion of a region is simulated.

5.1. Hierarchical composite modelling

In SOSM, the opinion decision of the individual is determined by three kinds of SMCs : (1) d e v elopment _ ind ex _ component,

when the individual’s d e v elopment _ ind ex decreases, it is more likely to oppose T endency _ A, and when the individual’s

d e v elopment _ ind ex rises, it is more likely to support T endency _ A, but ultimately opinion also consider other indica-

tors. (2) security _ index _ component, which computes the security _ index when a danger seems to a real probability, such

as the destruction of a water station or a power station. When the security _ index of individual decrease, he/she may

support T endency _ C, otherwise he/she will oppose T endency _ C; (3) decision _ making _ component, which comprehensively

analyse the individuals’ decisions of government ’s measure depending on the results of security _ index _ component and

d e v elopment _ ind ex _ component . The decision-making of an individual is also influenced by the opinions of other individu-

als; thus the individual will put the opinions of other individuals together to consider the situation.

To illustrate the flexible assembly of SOSM, we assemble the SMCs developed by domain experts to construct the LP (in-

dividual), and then integrate the above LPs to build the SOSM for different simulation requirements. In LP design mode(see

Fig. 8 (a)), a new LP is created by drawing the Event Graph with several message-ports and filling in parameters, so that

the simulation modeller need not be a sophisticated programmer. The initial event (oval-shape with tab Init) and sev-

eral events (circular-shape with tab LE and SE) constitute the LP, InidividualEntity . Three circular-shapes in the LP graphical

editor respectively represent d e v elopment _ ind ex _ component, security _ index _ component, and decision _ making _ component . The

quadrilateral-shape and the triangle-shape represent the input and output port respectively, which are utilized to depict the

event scheduling channel with other LPs. These events are connected with bidirectional active lines which represent the

local event scheduling relationship in the same LP. In LP composition mode(see Fig. 8 (b)), LPs are hooked together to create

a complex system model. A rectangular block with a small picture represents a LP. The LPs can be dragged and dropped

from the left LP resource panel to construct the SOSM. They are connected with bidirectional active lines which represent

the interactive event scheduling relationship between different LPs.

5.2. Parallel simulation execution

To illustrate the scalability of SOSM, the LPs used to assemble SOSM including the government , the infrastructures , the

regions , the medias and the individuals , are divided into several partitions, and each LP partition will be dispatched to a CPU

core. The underline simulation platform is SUPE [8] . All experiments will run on a single computing node of a Linux Cluster.

The node is equipped with 2.93 GHz Intel Xeon Processors X5670, with 6 cores. The operating system is Redhat Enterprise

Server 5.5, with kernel 2.6.18. The experimental configuration is shown in Table 3 . The experiment set up a simulation time

corresponds to the physical time of 10 min to study the actual system of public opinion changes within the next 10 days, so

each simulation to promote the logical simulation time of 1440. The strangers means the indivials in different environments .

Interaction occur between strangers at a certain probability.

5.2.1. Emergence of SOSM

The SOSM consists of the following sub-models: the national infrastructure models and the social group behaviour mod-

els. Among them, the national infrastructure models include communication network model, power network model, traffic

152 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

Fig. 8. Hierarchical composite modelling SOSM: (a) composite the three SMCs to construct the LP Individual ; (b) composite the LPs to build the SOSM.

network model, natural gas network model and so on. The social behaviour models include agent model and decision algo-

rithm (individual behaviour), interpersonal network model and abstract social layer , urban layer model.

The SOSM can be used to describe the emerging behaviour of individuals in a hotspot region, such as political trends,

spread of rumours, individual behavioural motivations and decision preferences. This case analyses the impact of certain

types of crisis events (such as damage to infrastructure) on specific public opinion trends in hotspots. In the virtual social

environment of the hotspot area, the individual model(agent) is constructed, and the behaviour of the group is driven by

the constant stimulation of the individuals, as well as the individual evolution and the interaction between the individuals.

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 153

Table 3

Simulation scenario configuration.

Experimental parameters Description/Value

Number of individuals [10 0 0, 32,0 0 0]

Number of cities 10

Number of infrastructures 50

Number of medias 50

Number of environments 10 0 0

Number of stimuli events 10

Probability of interaction among strangers [5%, 20%]

Number of LP partitions [1, 6]

Time management algorithm Conservative

Lookahead 10

Simulation run time 1440

Fig. 9. Percentage of public opinions after simulation execution.

Supposing that there are three kinds of public opinions, T endency _ A, T endency _ B and T endency _ C, individuals are most

concerned about their own development . When a positive event of this type occurs, individuals tend to support T endency _ A

with a certain probability, when such a negative event of this type occurs, individuals are more likely to oppose T endency _ A .

At the same time, individuals are also concerned about their own security . When a positive event of such type occurs,

individuals have a certain probability of supporting T endency _ C. When such negative events occur, individuals are more likely

to oppose the T endency _ C. Of course, development events do not necessarily lead to T endency _ A . For example, maybe some

positive events of development occur, but contrary to a reason(this is often related to the reasonable factors of age, gender,

culture degree, occupation, economic status, etc.), so that an individual may oppose the T endency _ A, and tend to other

tendencies. The simulation experiment was designed like that after 100 units of simulation time applied a positive security

events (i.e. 10 0, 20 0, 30 0, 40 0, 50 0, a total of 5 times), while randomly generate the development events, the simulation

results are shown in Fig. 9 . We can see that when individuals are stimulated by external security events, the overall trend of

public opinions will be beneficial to the direction of the stimulus events.

5.2.2. Performance evaluation

First of all, we execute the SOSM in a sequential setup(simulation execution on 1 CPU core). Fig. 10 reports the simulation

execution time with different configurations of probability of interaction between strangers . The number of individuals has

been set in the range[10 0 0, 32,0 0 0]. For each configuration, the execution time has been adjusted to maintain a fixed density

of individuals . The figure shows that the interactions between strangers strongly affects the scalability of the SOSM.

From Fig. 10 , we can see that the sequential setup shows a limited scalability. In this case, we use more than two of the

available CPU cores to process the SOSM evolution. The set of LPs was partitioned among the CPU cores and SUPE platform

was used to deliver the interactions among LPs. Fig. 11 shows the performance for executing SOSM with different CPU cores.

We can see that the execution time slight increases when the number of CPU cores increases from 5 to 6 in the scenarios

with 32,0 0 0. That is because SUPE platform will generate a LP manager during the simulation execution, which is used

to create, manage, and delete LPs. The LP manager will take up the multi-core computing resources. Resource competition

leads to a decline in the efficiency of simulation execution with larger scale. Apart from this factor, we can draw the trend

of SOSM can adapt to the growth of the number of CPU cores.

154 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

1

2

3

4

5

6

7

8

9

10
x 1010

Number of Individuals

E
xe

cu
tio

n
tim

e(
m

ic
ro

se
co

nd
s)

#Probability of interaction among strangers=5%
#Probability of interaction among strangers=10%
#Probability of interaction among strangers=20%

Fig. 10. Scalability evaluation: increasing number of individuals , sequential execution, different probabilities of interaction between strangers .

Fig. 11. Scalability evaluation: increasing number of LP partitions, parallel execution, different number of individuals.

Table 4 shows the experimental results that can be obtained by different configurations of individuals and LP partitions.

The result indicates that SOSM developed based on the hierarchical composite framework can well support higher numbers

of individuals . As far as we know, every parallel execution is limited by the characteristics of the simulated model. In fact, the

SOSM is characterized by a huge amount of interactions among multiple agents. Fig. 12 shows that the number of processed

interactive events is dominated by an exponential dependence with the increasing number of individuals . With this kind of

simulated model, a linear speedup for parallel execution can not be expected.

6. Conclusions and future work

Parallel discrete event simulation provides an important experimental approach to study the sophisticated issues about

CAS. To support decomposition and modularity for modelling CAS, we proposed the three-level hierarchical architecture and

gave the formal definition of each layer including SMC, LP and CSM. Then The hierarchical composite modelling process

and the parallel simulation execution strategy is discussed to support the modelling and simulation of a CAS. A complex

social opinion system model named SOSM is proposed based on this hierarchical composite modelling framework. The

experimental results confirms the viability of utilizing multi-level architecture for simulating large scale complex adaptive

systems.

F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156 155

Table 4

Experimental results of parallel executing SOSM (× 10 3 microseconds).

CPU cores Execution Time with different number of individuals

10 0 0 20 0 0 40 0 0 80 0 0 16,0 0 0 25,0 0 0 32,0 0 0

1 18,563 38,492 78,286 215,804 1,352,914 2,171,175 3,582,011

2 11,323 24,175 50,115 147,979 1,165,841 1,512,753 3,411,439

3 7360 15,132 32,623 123,957 884,009 127,935 2,502,244

4 5602 12,436 26,459 114,849 805,306 907,095 2,381,630

5 4729 10,636 22,726 102,093 652,626 882,890 1,911,520

6 4291 9726 20,484 86,942 629,262 884,550 2,014,301

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

0.5

1

1.5

2

2.5
x 107

Number of Individuals

N
um

be
r o

f p
ro

ce
ss

ed
 in

te
ra

ct
iv

e
ev

en
ts

#LP Partition = 2
#LP Partition = 4
#LP Partition = 6

Fig. 12. Interaction measurement: with the increasing of individuals, parallel execution, different number of LP partitions.

As to our future work, we plan to study the validation of a composition of different SMCs. That’s because it is often

assumed that any SMC that had been placed in the repository is valid in practice, but the validity of SMCs does not imply

that a composition of them can be assumed to be valid.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 71601181).

References

[1] J.S. Lansing , Complex adaptive systems, Annu. Rev. Anthropol. (2003) 183–204 .
[2] J.H. Holland , Studying complex adaptive systems, J. Syst. Sci. Complexity 19 (1) (2006) 1–8 .

[3] J. Tang , M.A. Piera , T. Guasch , Coloured Petri net-based traffic collision avoidance system encounter model for the analysis of potential induced colli-

sions, Trans. Res. part C: Emerg. Technol. 67 (2016) 357–377 .
[4] X. Hu , B.P. Zeigler , S. Mittal , Variable structure in devs component-based modeling and simulation, Simul.: Trans. Soc. Model. Simul. Int. 80 (2) (2005)

91–102 .
[5] H.S. Sarjoughian , Model composability, in: Proceedings of the 2006 Winter Simulation Conference, 2006, pp. 149–158 .

[6] M.D. Petty , J. Kim , S.E. Barbosa , Software frameworks for model composition, Model. Simul. Eng. 2014 (1) (2014) 1–18 .
[7] K.S. Perumalla , S.K. Seal , Discrete event modeling and massively parallel execution of epidemic outbreak phenomena, Simul.: Trans. Soc. Model. Simul.

Int. 88 (7) (2012) 768–783 .

[8] B. Hou , Y. Yao , B. Wang , Modeling and simulation of large-scale social networks using parallel discrete event simulation, Simul.: Trans. Soc. Model.
Simul. Int. 89 (10) (2013) 1173–1183 .

[9] J. Liu , J.J. Cochran , L.A. Cox , Parallel discrete-event simulaiton, John Wiley & Sons, Inc., Hoboken, NJ, 2011 .
[10] R.M. Fujimoto , Research challenges in parallel and distributed simulation, Acm Trans. Model. Comput.Simul. 26 (4) (2016) 1–29 .

[11] P. Taillandier , D. Vo , E. Amouroux , A. Drogoul , Gama: A simulation platform that integrates geographical information data, agent-based modeling and
multi-scale control, in: Principles and Practice of Multi-Agent Systems: International Conference on Principles and Practice of Multi-Agent Systems,

Springer Berlin Heidelberg, 2012, pp. 242–258 .

[12] N. Collier , M. North , Repasthpc: a platform for large-scale agent-based modeling, Large-Scale Computing Techniques for Complex System Simulations
(2011) 81–110 .

[13] S. Rodriguez , N. Gaud , S. Galland , Sarl: a general-purpose agent-oriented programming language, in: International Conference on Intelligent Agent
Technology, Warsaw, Poland, 2014, pp. 156–163 .

[14] S. Galland , N. Gaud , S. Rodriguez , Janus: Another yet general-purpose multiagent platform, Seventh AOSE Technical Forum, Paris, 2010 .
[15] G. D’Angelo , S. Ferretti , V. Vittorio , Multi-level simulation of internet of things on smart territories, Simul. Modell. Pract. Theory 73 (2017) 3–21 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0001
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0001
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0002
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0002
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0006
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0006
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0006
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0006
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0007
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0007
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0007
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0008
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0008
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0008
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0008
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0010
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0010
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0013
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0013
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0013
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0013
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0015
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0015
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0015
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0015

156 F. Zhu et al. / Simulation Modelling Practice and Theory 77 (2017) 141–156

[16] S. Rodriguez, V. Hilaire, N. Gaud, S. Galland, A. Koukan, Self-organizing Software: From Natural to Artificial Adaptation, Springer Berlin Heidelberg, pp.
238–263.

[17] S. Galland, F. Grimaud, P. Beaune, J.P. Campagne, Supply Chain Optimisation: Product/Process Design, Facility Location and Flow Control, Springer Berlin
Heidelberg, pp. 277–288.

[18] B.P. Zeigler , H. Praehofer , T.G. Kim , Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, Aca-
demic Press, Hoboken, NJ, 20 0 0 .

[19] S. Palaniappan , H.S. Sarjoughian , Application of the devs framework in construction simulation, in: Proceedings of the 2006 Winter Simulation Con-

ference, 2006, pp. 2077–2086 .
[20] J. Mather , The DEVSJAVA Simulation Viewer: A Modeler GUI that Visualizes the Structure and Behavior of Hierarchical DEVS Models, The University of

Arizona, Arizona, USA, 2003 .
[21] G.A. Wainer , Modeling and simulation of complex systems with cell-devs, in: Proceedings of the 2004 Winter Simulation Conference, 2004, pp. 49–60 .

[22] B. Cobanoglu , A. Zengin , F. Celik , Implementation of devs based distributed network simulator for large-scale networks, Int. J. Simul. Modell. 13 (2)
(2014) 147–158 .

[23] L. Schruben , Simulation modeling with event graphs, Commun. ACM 26 (11) (1983) 957–963 .
[24] A. Buss , P.J. Sanchez , Modeling very large scale systems: building complex models with legos, in: Proceedings of the 2002 Winter Simulation Confer-

ence, 2002, pp. 732–737 .

[25] A. Buss , Composability and component-based dicrete event simulation, in: Proceedings of the 2007 Winter Simulation Conference, 2007, pp. 694–702 .
[26] J. Lara , Distributed event graphs:formalizing component-based modelling and simulation, Electron. Notes Theor. Comput. Sci. 127 (2005) (2005)

145–162 .
[27] B. Wang , B. Deng , F. Xing , Partitioned event graph: formalizing lp-based modelling of parallel discrete-event simulation, Math. Comput. Model. Dyn.

Syst. 21 (2) (2014) 153–179 .
[28] V. Kesaraju , F. Ciarallo , Integrated simulation combining process-driven and event-driven models, J. Simul. 2012 (6) (2012) 9–20 .

[29] S.S. Rizvi , A logical process simulation model for conservative distributed simulation systems, Int. J. Simul. Modell. 12 (2) (2013) 69–81 .

[30] K.L. Morse , M.D. Petty , P.F. Reynolds , Findings and recommendations from the 2003 composable mission space environments workshop, in: Proceedings
of the Simulation Interoperability Workshop, Arlington, USA, 2004, pp. 313–323 .

[31] M.D. Petty , Verification, validation, and accreditation, in: Modeling and Simulation Fundamental: Theoretical Underpinnings and Practical Domains,
Hoboken, USA, 2010, p. 325C372 .

[32] R.M. Fujimoto , Parallel and Distributed Simulation Systems, John Wiley & Sons, Inc., Hoboken, NJ, 20 0 0 .
[33] D.M. Nicol , The cost of conservative synchronization in parallel discrete event simulations, J. ACM 40 (2) (1990) 304–333 .

[34] D.M. Nicol , J. Liu , Composite synchronization in parallel discrete-event simulation, IEEE Trans. Parallel Distrib. Syst. 13 (5) (2002) 433–446 .

[35] W. Buckley , Society as a complex adaptive system, Emergence Complexity Organiz. 10 (3) (1998) .
[36] J.H. Millerand , S.E. Page , Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press, 2008 .

http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0016
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0016
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0016
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0016
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0017
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0017
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0017
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0021
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0021
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0023
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0023
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0024
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0024
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0029
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0029
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0030
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0030
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0031
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0031
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0032
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0032
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0032
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0033
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0033
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0034
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0034
http://refhub.elsevier.com/S1569-190X(17)30092-8/sbref0034

	A hierarchical composite framework of parallel discrete event simulation for modelling complex adaptive systems
	1 Introduction
	2 Background and related work
	3 Three-level architecture for CAS model
	3.1 Simulation model component
	3.2 Logical process model
	3.3 CAS system model

	4 Hierarchical composite modelling and simulation
	4.1 Hierarchical composite modelling for CAS
	4.2 Parallel simulation execution of CAS model

	5 Case study: social opinion system
	5.1 Hierarchical composite modelling
	5.2 Parallel simulation execution
	5.2.1 Emergence of SOSM
	5.2.2 Performance evaluation

	6 Conclusions and future work
	 Acknowledgements
	 References

