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a b s t r a c t 

The architecture design of peta-scale computing systems is complex and presents lots of 

difficulties to designs, as current tools lack support for relevant features of future scenarios. 

Novel systems must be designed with great care and tools, such as manycore architecture 

simulators, must be adapted accordingly. However, current simulation tools are very slow, 

often specific-purpose-oriented, suffer from various issues and are rarely able to simulate 

thousands of cores. The emergence of peta-scale systems and the upcoming manycore era 

brings nevertheless new challenges to computing systems and architectures, adding fur- 

ther difficulties and requirements on the development of the corresponding simulators. 

Furthermore, the design of architecture simulators for manycore systems involve methods 

and techniques from various interdisciplinary research areas, which in turn brings more 

challenges in different aspects. As system complexity grows, the growth of the simula- 

tion capacity is being outpaced (reaching the so called simulation wall). In this paper, 

we present the challenges for simulating future large scale manycore environments, and 

we investigate the adequacy of current modeling and simulation tools, methodologies and 

techniques. The aim of this work is to highlight how current approaches can best deal with 

the identified problems, smoothing the challenges of research in future peta-scale systems. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Current trends in computation technology have focused in improving performance by increasing the number of cores per

die (parallelism) rather than by increasing the rate of clock frequency of each core, due to the exhaustion of the Moore’s law.

Many companies and academic communities pushed this trend, designing multicore and manycore systems with capacity

of tens to hundreds of cores per single die. These manycore processors are more like data-centers-on-a-chip than previous

single processors, as a complex communication network connects the different cores. It is predictable in a near future to

consider systems with a very large interconnect network in manycore machines with dimensions from thousands to millions

of cores. 

A consequence is that both system design and programming concepts must increasingly focus in heterogeneous paral-

lelism. Future parallel and distributed applications, compilers, operating systems and tools must be able to scale well with

the hardware nature of manycore and distributed execution. However, increasing the number of cores on a die increases the
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complexity of hardware designs, and has considerable impacts which result in enlargement of the potential design-space.

Moreover, it brings serious challenges particularly for memory hierarchies and on-die interconnect bandwidth, both within

the die and off die. 

Systems must then be designed with great care and tools, such as manycore architecture simulators, must be adapted

to address these disruptive challenges. Manycore simulators (i.e. manycore architecture simulators) can assist researchers

from different areas. These areas include software (such as programming models, operating systems, compilers, etc.), hard-

ware and computing architectures to model and assess future systems. The upcoming manycore era brings new challenges

to computer architects that must be paralleled by the development of adequate architecture simulators. Ideally, to simulate

a fully parallel system we can expect that an efficient architecture simulator should (at-least) be able to be parallelizable,

and use the benefit of concurrency, enabling faster evaluation of future systems. Moreover, architecture simulators should

provide a highly scalable, fast and accurate model to describe, emulate/simulate and measure the hardware details, memory

hierarchy and interconnection networks. Furthermore, they must meet the stringent requirements along the lines of pro-

ductivity, multi-modeling, synchronization, modularity, and event sampling capabilities. However, these properties are not

true for the majority of the currently available architecture simulators. As complexity grows, the performance of a single

simulated CPU core slows down, and the usage of these sequential simulators (i.e. architecture simulators) will be mainly

limited by the performance of simulating a single CPU. 

Note that, in this paper, we use the term “simulator” to refer to “architecture simulator” or “manycore architecture simu-

lator” which differs from its more general meaning. We use the term “manycore simulation tools” in a slightly more general

way to cover a wider range of contexts (methods and techniques). In other words, a simulator (architecture simulator) is a

type of manycore simulation tool. Furthermore, the term “emulator” (or architecture emulator), as used in this paper, also

differs from its general meaning in other research fields. In this paper, an emulator means a simulator which lacks support

for performance measurements. In fact, we associate an emulator with functional correctness only. This means that the no-

tion of time for an emulator is imprecise and often just a representation of the wall-clock time of the host. We use the term

“emulation” to refer both to “functional simulation” and to describe the act of an emulator. 

The rest of this paper is organized as follows. In Section 2 , we discuss why manycore architectural simulation is needed,

particularly for research on peta-scale systems. Section 3 presents in detail our taxonomy to addresses current modeling

and simulation tools, as well as the methodologies that could be exploited and enhanced in order to design next generation

efficient simulators. In Section 4 , we provide an overview of recently proposed simulation tools for architectural analysis,

which are able to simulate the entire execution cycle of application for the target systems. Other simulator types, such

as those that mainly focus on physical modeling aspects (e.g. power, energy and thermal) or interconnect simulators (e.g.

Network on Chip simulators), are out of the scope of paper for conciseness. In Section 5 , we extract and elaborate a set of

major problems and challenging issues created by manycore simulation. Finally, in Section 6 , we present our conclusions,

followed by a discussion of future directions for research. This includes possible approaches and solutions which can be

used to solve the problems and deal with the challenges identified. 

2. Simulation and peta-scale systems 

Peta-scale systems are defined as systems which are able to provide peta-FLOPS, millions of billions of FLoating OPera-

tions per Second, computational power [1,2] . They can be described as the increasingly massive and dynamic networks of

interconnected diverse processors and components (i.e. elements). Such as system, as a whole, exhibits a set of properties

and behaviors among the elements, which are not distinguishable from the properties of the individual processors and com-

ponents. These systems are only on its infancy currently, but in future peta-scale manycore systems, we can expect to have

computing nodes with more than 10,0 0 0 cores per node. We can also expect to have much more diversity (heterogeneity)

of cores, interconnections and architecture designs compared to today systems. 

Architectural simulation is a common method for studying and analyzing different architectures, designs and algorithms

for various target systems through imitating the operation of real-world processes, processors and systems over time. Archi-

tectural simulation acts as a low cost alternative to experimentation on real systems by representation of key characteristics,

behaviors and functions of the real systems. The objective of simulation is to provide capability to researchers and designers

to flexibly and efficiently explore a design space. This can include analyzing the performance of current systems (e.g. archi-

tecture assessment), acquiring and predicting processor/system behaviors and evaluating novel designs. Simulation enables

today’s designers to analyze and predict different aspects (such as performance, reliability and efficiency) of future’s ma-

chines. This means that simulation is a particularly useful tool when the desired target systems, such as peta-scale systems,

do not currently exist in reality. However, current simulation tools are very slow, often specific-purpose-oriented, suffer

from various issues and are rarely able to simulate more than 20 0 0 cores (we discuss current simulation tools further in

Section 4 ). Furthermore, introducing the concept of peta-scale system presents more requirements that must be fulfilled by

current simulation tools. We discuss these requirements and their corresponding issues further in Section 5 . 

Fig. 1 demonstrates a generic structure for (software-based) simulation. As it is shown in the figure, a simulator is an

application software which runs on single host or multiple networked host machines (distributed simulation). The target

system is the system which needs to be simulated by simulator. Depending on user requirements the target system might

be a partial system or a full system including target (simulated) OS. The term “target Instruction Set Architecture (or target

ISA)”, as used in this paper, refers to the ISA of the processor architecture simulated. Similarly, the term “host ISA” refers to
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Fig. 1. Overall simulation structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the ISA of the host machine which runs the simulation. Note that, it might be possible to have some similarities between

a target system and its host system (e.g. target ISA = host ISA or target OS = host OS). In such a case, a simulator can

alternatively employ a different simulation approach which might be faster (or easier to implement) (see Section 3 ). More

details of this structure are discussed in the next section. 

3. Manycore simulation 

Simulators are essential tools for the design and evaluation of computer and system architectures. Taking in considera-

tion the objective of the evaluation, there are a large variety of different simulation tools, techniques and methods in the

current literature. Fig. 2 presents a snapshot of the most important classifications for manycore simulation tools and related

technologies. Fig. 2 also presents example simulator for each category (note that a simulator can be in multiple categories).

We discuss these classifications and their related concepts in detail in Section 3.1 . 

3.1. Terminology and classifications 

There are plentiful tools, methods and techniques for manycore simulation in the current literature. These can be classi-

fied along many dimensions, such as: user/application-level vs full-system; functional vs timing; trace-driven vs execution-

driven; cycle-driven vs event-driven. In the following, we discuss and briefly explain the terminology and concepts associ-

ated with some of the most important classifications. 

Emulators vs Simulators: Emulators are tools able to demonstrate the functional behavior of the system, focused on the

exact reproduction for an external system. They repeat the function of a target platform on a host platform. Simulators

differ from the former because they consider an abstract, simplified model and do not try to replicate all the aspects of

a system. A simulator in addition to ensuring the functional correctness, must provide capability to study and analyze the

performance of proposed system/hardware designs by using accurate timing information. 

Functional vs timing/performance: According to our terminology (see Section 1 ), architecture emulators include only func-

tional models while simulators contain both functional and performance models. The functional model (functional partition)

is in charge for the correct execution of the target Instruction Set Architecture (ISA) (i.e. architectural modeling). In addition,

functional models may provide facility to observe the interactions among processors, memory and I/O peripherals without

modeling micro-architectural details. As examples of the tasks for a functional model we can mention aspects as decoding

instructions, updating simulator memory and verifying the floating point operations. 

The performance model (timing partition) is responsible to drive a functional model. This is done by providing accurate

timing information in a way that simulating a particular micro-architecture (at least in a specific aspect) would be possible

(i.e. micro-architectural modeling). In other words, a timing model is able to determine the time the target architecture

takes to execute an instruction. Examples of the tasks for the timing model include making decisions to select the next

instruction for execution, tracking branch mispredictions, and predicting the clock cycles to execute instructions. 

Creating a new functional model might be complex in terms of implementation, optimization and verification, but after

that, it can modularly be coupled and reused across various timing models. On the other hand, implementation of only

a timing model with capability to reuse an existing functional model can be much easier and less time consuming than
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Fig. 2. Simulation classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

developing a complete simulator (including both functional and timing models) from scratch. Unlike functional models, the

correctness of target architectures (in term of ISA functional) is not of primary concern for timing models. What matters is

to track and control the accuracy of micro-architecture-specific timing details [3] . 

Simulation scope: An architectural simulator is defined as a piece of software which mimics the behavior of a real com-

puter system with ability to estimate performance and outputs for a given input (application). It may model different com-

puter devices and components (i.e. only a single target microprocessor, or an entire computer system including processors,

memory system, and I/O devices) with different level of details. The simulation scope specifies the scope of target systems

that an architectural simulator can model. According to this, we classify the processor simulators (i.e. architectural simula-

tors) into two categories: full-system simulators and user/application level simulators (see Fig. 3 ). 

A full system simulator provides capability to run a detailed, complete and real software stack on the target (simulated)

system without any modification. The software stack might be OS, complex applications such as multithreaded and multi-

process workloads, or applications that highly exercise system calls, I/O and networking. The full system model generally

includes processor cores, memories, network and interconnection, buses, peripheral devices and privileged modes. However,

the supported models and the level of details for each model are various for different simulators. A full system simulator,

besides timing/performance modeling might also supports simulation of the physical models such as power, energy and

thermal. Gem5 [4] , Flexus (SimFlex) [5] , and MARSS [6] are some examples of full system simulators. 

Furthermore, full system simulators can be very important design tools, particularly for System-on-Chip (SoC) simula-

tion where it is necessary to efficiently cope with the huge hardware/software design space. SoC architecture integrates

all components of a (electronic/computing) system (including complex hardware/software) into a single integrated concept.

This provides capability to scale computing performance/power efficiency through combining (massively parallel and high
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Fig. 3. Full system simulator vs application level simulator. 

Fig. 4. Functional first organization – the gray elements (rollback and mismatch detection) are only supported by speculative-functional-first organization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performance) manycore processors, Network-on-Chip (including several network/interconnect communication protocols) and 

software (including OS and various computing intensive user applications) [7,8] . 

On the other hand, user/application level simulators model only the user side of applications without OS support. They

rely on the host machine (host OS) to service the system calls and execute a given user code of a benchmark on top of the

simulator. These simulators are easier to develop and use, since they do not boot an OS. But they are also limited to only

support specific workloads. In other words, they cannot run applications such as multithreaded and JVM workloads that fre-

quently use applications that are sensitive to system time like and client-server workloads. As examples of user/application

level simulators we can mention SimpleScalar [9] , BigSim [10] , Graphite [11] , Sniper [12] , ZSim [13] and PriME [14] . 

Simulator organization: Each simulator generally contains functional and timing partitions which interact in order to form

a complete simulation. According to whether the functional and the timing partitions are completely separated or not, sim-

ulators can be categorized into decoupled and coupled. Coupled simulators potentially can provide flexibility for developing

precise simulations (i.e. highly detailed simulation), due to speculative execution modeling (producing all the values and

possible side effects) and timing-dependent outcomes. However, this flexibility is reduced when there is need for frequent

modifications of functional or performance models. In other words, complexity arises due to new complex devices (func-

tional models), modern performance/timing models and their internal interactions. For coupled simulators, it is challenging

to address multiple different conflicting demands (such as simulation precision, accuracy, flexibility and performance) in a

single simulator component which integrates both functionality and timing modeling. On the other hand, decoupled simu-

lators aim to reduce this complexity by completely decoupling functional and timing models. Accordingly, they can achieve

better flexibility and potentially other advantages such as accuracy (through correctness verification) and modularity (which

can lead to faster development and easy modification) [15] . The drawback for this approach is to introduce redundancy

which may reduce the simulation performance. Moreover, decoupled simulators typically call an external simulator/emulator

to perform functional modeling. This might increase the difficulty for modeling interactions among functional and timing

models. 

Based on the type of interaction or the relationship between the functional model and the timing model, the simulators

can use different organizations. A taxonomy of microarchitectural simulator organizations is introduced in [15] and [16] . We

extend those taxonomies and classify the simulator organizations into the following five categories ( Table 1 presents the

advantages and disadvantages for each of the aforementioned simulator organizations): 

1- Functional first (Trace driven): The functional-first is a completely decoupled approach. The functional model is sepa-

rately executed first, and later, when the functional modeling is finished, the timing model is run. As demonstrated in Fig. 4 ,

the functional model executes instructions and produces traces that are streams of information about the execution. Traces

are then fed into the timing partition where the microarchitectural simulation is performed. Depending on whether specula-

tive execution is supported or not, the functional-first organization can be categorized into speculative and non-speculative.

The speculative functional-first assumes that all parts of execution (not just for branch control) are speculative. When

the timing partition detects that the execution in functional partition has differed from the timing partition, it asks the
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Table 1 

Advantages and disadvantages of various simulator organizations. 

Simulator Organization Pros Cons 

Functional-First 

(Non-Speculative) 

Easy implementation and parallelization, 

Highly-decoupled design, On-way data flow, 

Highly-Modular, Support for binary translation, direct 

execution and compiled-code simulation 

No support for speculative execution, Not able to 

model timing-dependent outcomes between threads, 

No corrections for the timing model , Mismatching 

functional execution and timing simulation (i.e. 

execution divergence) 

Functional-First (Speculative) Matching between functional execution and timing 

simulator, Support for speculative execution and 

multithreaded applications, Natural parallelism of the 

functional and timing simulator, On-way data flow 

The functional model must support speculation, The 

timing simulator needs to implement some of the 

functionality behaviors 

Functional-Directed Efficient trade-off between high speed functional 

modeling and high accurate timing simulation, 

Highly-adapted with sampling techniques, Support 

speculative execution and multithreading 

Periodical feedback has impact on the simulation 

accuracy. 

Timing-First Single timing-functional call per instruction, Fast 

development, Debuggability of the timing simulator, 

Matching between functional execution and timing 

simulator. 

No support for accurate modeling of interactions 

between threads, The timing simulator needs to 

implement almost all functionality behaviors. 

Timing-Directed Highly-accurate, Natural support for speculative 

execution and multithreading in timing partition, 

Potential support for memory and memory 

consistency modeling, easy validation of the timing 

simulator, matching between functional execution 

and timing simulator 

Highly-coupled design, complex functional modeling, 

Highly frequent inter-partition (timing-functional) 

communication which impacts the simulation speed, 

Multiple functional-timing calls per instruction. 

Fig. 5. Functional directed organization. 

Fig. 6. Timing first organization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

functional partition to undo or rollback the effects of wrong path for instruction execution, and to redirect fetch. Examples

of this approach include UTFast [17] , FastSim [18] , SimpleScalar [9] , Zesto [19] , ReSim [20] , BigSim [10] and Transformer [21] .

Unlike speculative approach, in non-speculative functional-first, rollback mechanism is not supported. This means that

the timing partition independently provides the timing model in a highly decoupled fashion and regardless of any potential

execution divergence (mismatching functional execution and timing model). Non-speculative approach might be easy for im-

plementation and parallelism through a highly modular and decouple design. However, it potentially suffers from execution

divergence issues which results in being inadequate for modeling timing-dependent execution behaviors (such as interac-

tions among threads in a multithreaded application). Examples of this approach include single thread work load simulators

(like PTCMP [22] ). 

2- Functional directed (Feedback driven or event driven): The functional-directed is a completely decoupled approach

where the functional model drives the timing model. The functional model is assumed to be accurate, but timing feedback

from the timing model is needed in order to correct the timing behavior. As we can see in Fig. 5 , using a timing feedback

mechanism, the timing model periodically adjusts the speed of functional execution to reflect the timing estimates. This

gives the running application a more-precise timing correction. COTSon [23] and Teraflux [24] use this approach. 

3- Timing first (instruction driven): The timing-first is a decoupled approach which uses the timing model to drive

the functional model. Fig. 6 demonstrates the timing-functional interactions for this organization. The timing model runs

ahead of the functional model and simulates the functional behavior (i.e. instruction execution) in addition to the timing
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Fig. 7. Timing directed organization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simulation. But the functional execution (for each instruction) must be checked and verified later by the functional model.

This means that the functional model is only used for checking; when a mismatch (execution divergence) is detected, the

timing model is notified by the functional model for the correction. In such a case, the architectural state of the timing

model is reloaded from the functional partition. Examples of timing-first organization include TFsim [15] , FeS2 [25] and

GEMS [26] . 

4- Timing directed (Execution driven or cycled riven): In timing-directed simulators, functional and timing models are

tightly coupled. As we can see in Fig. 7 , multiple interactions (per instruction) between timing and functional model raise

system complexity. The timing model processes the flow of instructions through micro-architectural timing simulation. In

each cycle, it directs the functional model with which step (e.g. fetch, decode, operand fetch, memory access, execute, write-

back) of which instruction should be executed. Accordingly, the functional model returns the execution information to the

timing model for each step. In timing-directed organization, the architectural state in both (timing and functional) partitions

are naturally matched with each other, thereby preventing execution divergence. Talisman [27] , Graphite [11] , ZSim [13] and

PriME [14] use this organization. 

Simulator execution: The execution of simulations on the host machines can be either sequential or parallel. Sequential

simulators are highly accurate but as the complexity of the target architecture increases the simulation speed significantly

decreases [28,29] . There are numerous examples of sequential emulators and simulators in the literature including QEMU

[30] , Embra [31] , Mambo [32] , SimNow [33] , SimpleScalar [9] , Simics [34] , SimOS [35] , Rsim [36] , Gem5 [4] and PROTEUS

[37] . While most of these tools are able to model multicore architectures and multi-processors (in parallel chips), they are

all limited to only utilizing a single processor on a single host machine which leads to significant slowdown in simulation

speed. Parallel emulators (e.g. PQEMU [38] , COREMU [39] , Parallel Mambo [40] , and Parallel Embra [41] ) and simulators

(e.g. FastMP [42] , SlackSim [43] , Wisconsin Wind Tunnel Simulators (WWT) [44,45] , CMPSim [46] , ZSim [13] , MARSS [6] ,

SimFlex [47] , GEMS [26] , COTSon [23] , Graphite [11] , Sniper [12,48] and BigSim [10] ) enhance the performance of simulation

(in terms of simulation speed) by dividing and distributing the simulation workload across multiple cores on multiple host

machines. However, parallelizing a simulator without sacrificing simulation accuracy is challenging. Furthermore, the execu- 

tion of functional and timing models might be different. For example, COTSon [23] uses SimNow [33] , a sequential emulator,

for functional modeling, while it benefits of a parallel timing model. 

Parallelization and synchronization strategies: Synchronization overhead is one of the major challenges for parallel sim-

ulation [49] . Different parallelization strategies and synchronization algorithms such as Parallel Discrete Event Simulation

(PDES) [50] , Lax synchronization [11] and Bound-Weave parallelization [13] have been proposed for parallel architectural

simulators. Along this line we can classify parallel simulators based on their parallelization techniques into PDES-based and

non-PDES-based simulators. 

I. PDES-based synchronization: PDES aims to facilitate fast execution of large simulation programs. It refers to the paral-

lelization strategies for distributed simulation through execution of a single discrete event simulation program on a parallel

computer [50] . Many of the conventional parallel micro-architectural simulators in the literature such as HORNET (conser-

vative) [51] , BigSim (Optimistic) [10] , SimK (conservative) [52] , SlackSim (hybrid) [43] and COTSon [23] are based on PDES.

Using PDES, the components of the simulator are divided across host threads. The time-stamped simulation events from

each component are distributed among multicores in parallel chips of multiple host machines. These events are executed

concurrently while maintaining the causality relationship (i.e. cause and effect relationship) between them. This means that
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some sequencing order between events executing in two separate processes must be maintained, although maintaining this

causality relationship is challenging while exploiting inherent parallelism for faster job scheduling [53] . 

PDES-based synchronizations can be broadly classified as conservative (pessimistic), optimistic and hybrid. Conservative

approaches, using pessimistic estimates, only process events when it is safe to do so. The events are scheduled in time stamp

order while avoiding deadlocks efficiently. The synchronization is performed every time an ordering violation (causality

error) may happen. On the other hand, in optimistic approaches, all events are executed speculatively and once an ordering

violation is detected, the recovery can be performed by invoking a rollback mechanism. 

There are several classic algorithms for conservative and optimistic synchronizations including asynchronous-conservative

[54] , Lower Bound Time Stamp (LBTS) [55] and optimistic time warp [56] . In asynchronous-conservative, there is no need to

perform any global synchronization. Instead, various deadlock avoidance algorithms can be applied to ensure that only safe

events in the future queue are processed. Using LBTS, in each cycle, the events in the future queue which have the lower

bounded time stamp are executed while time progressing is managed by a global reduction and synchronization mechanism.

In optimistic time warp, a causality error is detected whenever the time stamp of the received event message by a process

is smaller than the process’s clock. Many other PDES based synchronization mechanisms have been proposed in the last

decade such as conservative null message (or CMB) [57] , conservative forecast null message (FNM) [58] . 

PDES-based parallel simulators might support single or multiple synchronization algorithms. For example, Manifold

[59] supports multiple standard PDES algorithms including LBTS [55] , CMB [57] , FNM [58] and time quantum synchro-

nization [59] . 

Parallel simulators based on Optimistic-PDES generally suffer from poor scalability due to frequent roll-back and syn-

chronization. On the other hand, simulators based on conservative-PDES provide better scalability due to their simplicity

and less synchronization overhead in comparison with optimistic based simulators [51,60] . Nevertheless, both approaches

provide reasonable accuracy [13] . The scalabity for parallel simulators means that the simulation speedup constantly rises

when the number of allocated host processors for simulation is increased [61] . Over the decades of research in the field,

many optimization methods such as Lazy Cancellation [62] , Lazy Reevaluation [63] , Direct Cancellation [50] , Early Can-

cellation [64] , Space-time Simulation, Optimistic Time Windows [65] , Wolf Calls [66] and Time Warp Straggler Message

Identification [67] have been proposed to improve the overall performance of PDES based Simulators. However, PDES based

parallel simulators are not yet truly competitive with performant sequential simulators with respect to simulation accuracy

and scalability. 

II. Non-PDES-based synchronization: Non-PDES based parallel simulators such as Sniper [12,48] and Graphite [11] , relax

synchronization requirements to obtain scalability by permitting micro-architectural events to occur out of order. How-

ever, these approaches provide complexity to model the actual behavior of the target system components such as memory

controllers and shared caches while they sacrifice the simulation accuracy. In fact, Graphite leverages lax synchronization

models to enable trade-offs between simulation speed and simulation accuracy while Sniper (which is built on Graphite)

uses higher levels models by reducing accuracy compromise. ParTejas [68] , a more recent work, is a shared memory based

parallel simulator written in Java. Unlike Sniper and Graphite, ParTejas doesn’t rely on highly relaxed synchronization, but

rather it primarily relies on novel concurrent data structures. In fact, it uses a lock free parallel slot scheduler for syn-

chronizing the accesses of multiple threads at a shared resource while uses flexible barriers known as phasers to relax

synchronization within bounds. ZSim [13] is one of the latest parallel simulators that provides an alternative approach for

synchronization which is called Bound-Weave. ZSim simulation runs in time quanta where each time quanta is defined as a

small interval (e.g. 10 0 0 cycles). ZSim divides each time quanta (interval) into two parallel phases: bound phase and weave

phase. In the bound phase, similar to the lax synchronization, the cores are simulated without simulation of the interactions

among the cores (i.e. unordered simulation), but the core-memory access traces for all the cores are recorded. In the weave

phase, parallel event-driven simulation is performed by using the traces to simulate the memory accesses in order. Bound-

weave is proposed based on the assumption that path-altering interference is extremely rare. This is a right assumption but

only for cores that implicitly communicate through the cache hierarchy. Thus, bound-weave parallelization methods are not

applicable to other communication styles (e.g. extremely fine-grained message-passing across whole chip). Moreover, simu-

lating speculation (e.g. transactional memory) and complex workloads (e.g. kernel-intensive applications) would be difficult

since ZSim is a user-level simulator. ZSim also provides limitations to model multi-threaded cores, detailed NoC models and

virtual memory (TLBs). 

In summary, we can claim that non-PDES-based simulators provide better scalability than PDES-based simulators, but

they suffer from inaccuracy of simulation. 

Simulation engine: The simulation engine specifies the underlying strategy which each simulator uses to perform func-

tional modeling. As we already discussed at the beginning of this section, the main responsibility of the functional model is

the correct execution of the simulated ISA (i.e. emulation). But the ISA emulation might not be necessary when simulators

directly use the host’s ISA, instead, simulators can use instrumentation. This indeed eliminates the need for functional model

for such simulators and increases the simulation speed with the potential cost of limiting the ISA of the target machines to

only the host’s ISA. 

Depending on which strategy is used for the simulation engine, we classify the simulators into emulation-based (or

interpretation-based) and instrumentation-based. An emulation-based simulator either uses its internal emulator or lever-

ages an external simulator/emulator to model functional behavior. The simulator interprets the instruction and according

to the simulator’s organization, invokes both functional and timing model to execute the instruction for the simulated ISA.
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Fig. 8. General DBT framework and DBT types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emulation becomes the primary and even the optimal option, particularly when the simulated ISAs are supposed to be dif-

ferent from the host’s ISA, or when the simulators are expected to be portable. On the other hand, instrumentation, is faster

than emulation, since the instructions are directly executed on the host machine. The simulator adds instrumentation calls

to the simulated binary in order to interact with the timing model by calling the timing model before each basic block or

memory operation. Instrumentation provides facilities to understand the execution behavior of each instruction and mea-

suring the execution performance on the host machine. It returns a set of useful information about the execution which can

fed the timing model. This can be done by enabling transparent access to the state of host’s processor and memory after

each instruction execution. Furthermore, instrumentation can be very efficient, particularly when emulation and functional 

modeling become difficult for complex ISAs. Most of the current instrumentation-based simulators run on x86 hosts, since

x86 is common in both desktop and server segments, and the ISA’s impact is less relevant. Examples using emulation strate-

gies include MARSS [6] , Gem5 [4] , SimFlex, COTSon and BigSim while simulators such as CMPSim [46] , Graphite [11] , PriME

[14] , ZSim [13] and McSimA+ [69] benefit from instrumentation strategies. 

Binary (Code) translation: Binary translation is the core technology for both emulation and instrumentation strategies

through enabling translation techniques to translate binary codes from a simulated architecture to the host architecture.

The main difference is that, in emulation, all the functional and execution behavior of the applications for the simulated

architecture are modeled through a functional model. In instrumentation, they use instrumentation calls added to the trans-

lated binary. Thus, arbitrary statistics about the run-time actions of the executing application can be gathered from the

host which can be used to specify the functional behavior of the application for the target architecture without needing a

complete functional model. 

Two main types of binary translation techniques are static (ahead-of-time translation) and dynamic (translation at run

time). 

In Static Binary Translation (STB), all the binary code of an executable file is converted into code that can be executed

on the host architecture, and after that the translated code is run on the host. This might not be efficient, since discovering

some part of the code may depend on the run-time values (e.g. indirect branches, dynamically loaded libraries and self-

modifying code). Wisconsin Wind Tunnel (WWT) [70] is a simulator which uses static binary translation. 

On the other hand, Dynamic Binary Translation (DBT), relies on on-line code translation which means that that the

portions of the binary code (each short sequence of code or single basic block), are translated and executed one after

another in the order; the code is only translated as it is discovered. DBT suffers from large amount of overhead during

translation which leads to increased execution times. Code cache is a technique which reduces the translation overhead by

caching the translated code sequences for later usage when subsequent executions of the same code region can use the

already translated code. 

Fig. 8 presents the general framework of the DBT systems which includes four main components: dispatcher, just-in-

time compiler (JIT), emulation unit and software-based code cache. The dispatcher coordinates translation and execution of

the code through directing other components. It gets the address of the next program which is a segment of guest binary

code and determines whether a translated copy of that code is available in the code cache. If so, the execution is resumed

in the code cache, otherwise, the dispatcher kick-starts the JIT compiler to translate the untranslated guest code segment.

JIT fetches the code segment, and then optimizes and translates the code to the host binary in the software code cache.
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Optimization can be performed by adding, removing, inserting or replacing instructions to the code before translation. Using

this capability, JIT allows to inject various instrumentation instructions into code. Furthermore, the JIT’s granularity to fetch

and translate (i.e. amount of code which are proceed at a time) can be specified as a basic block, a trace, a treegion, or

an entire procedure. The emulation unit is also responsible to handle exceptions and interrupts (such as I/O interrupts for

full-system simulation and system calls for user/application level simulation) during execution. 

DBTs enable virtualization across ISAs by emulating a guest binary executable code in one ISA on a host machine with a

same or different ISA. Modern DBTs also employ dynamic recompilation techniques (e.g. just-in-time compilation). This way,

the translated code is instrumented to return information about the execution of each portion of the code which in turn can

be used to optimize the rest of the execution (e.g. incremental optimization of hot regions). DBT has been widely used for

many different purposes and applications (such as performance optimization, debugging, profiling, performance motoring

and application migration). DBT, depending on the simulated ISAs and the host’s ISA, can be classified as simulation engine

into three categories: same-ISA, cross-ISA and retargetable (see Fig. 8 ). For the same-ISA, the simulated ISA is identical to

the host’s ISA. In cross-ISA, guest ISA differs from the host ISA. In retargetable DBT, the guest ISA (simulated ISA) can be

retargeted for multiple different ISAs. Both same-ISA and cross-ISA can be considered as dedicated DBTs, since the guest

and host architecture are fixed. Dedicated DBTs are limited by assuming that the register set of the host architecture is the

same or richer than the guest architecture. This causes lack of translation flexibility and adaptation to highly heterogeneous

environments. 

Many of the current instrumentation-based simulators such as Graphite [11] , PriME [14] and ZSim [13] benefit from

DBT tools and libraries which leverage same-ISA DBT on x86 host architecture. Examples of these DBT systems include Pin

[71] , StarDBT [72] , and DynamoRIO [73] . Emulation-based simulator generally leverage cross-ISA and retargetable DBTs to

perform virtualization and emulation. IA-32 [74] and FX!32 [75] are examples of cross-ISA DBT systems. There are few DBTs

in the state of the art which have been designed for retargetability. Among them, QEMU [30] is a well-known emulator

which implements retargetability. It enables binary translation from several different guest ISAs such as x86, PowerPC, ARM

and SPARC on multiple common host architectures such as ARM, SPARC, Alpha, x86, MIPS and PowerPC. Retargetable DBTs

broadly suffers from large emulation overhead ahead of translation, since the guest architecture must be fully virtualized

by software in the memory, prior to translation. They also suffer from optimization overhead as well as code optimization

overhead. Furthermore, providing near native and high quality translated code is another challenging issue for retargetable

DBTs. 

Target memory architectures: Depending on the memory architecture of the target simulated systems, manycore simulators

can be categorized into shared memory, distributed memory and distributed shared memory. 

In shared memory architecture, all the simulated processors simultaneously have access to a common single memory

space in order to avoid data redundancy and facilitating inter-processor communications. In this way, the processors do

not need to know where data resides, but they might suffer from race conditions. In distributed memory architecture, each

simulated processor has its own private memory. Whenever communication is required (e.g. requesting a remote data),

the simulated processors can communicate with each other through simulating message passing techniques on top of the

simulated network and interconnect. Thus, it is necessary for every distributed memory simulator, to provide capability for

network modeling (such as on-chip network). For example, RAMP-Gold [76] is a shared memory simulator which doesn’t

provide any network model. But distributed memory simulators such as COTSon [23] and BigSim [10] support network

modeling. 

Distributed memory simulators are more flexible than shared memory simulators for parallel simulation, since every

simulated processor (i.e. a core) can independently be run on a different processor of a different host in the system. In

distributed shared memory architecture, each node of a cluster has access to a shared memory in addition to its non-

shared, private memory. Distributed shared memory simulators (e.g. SimK [52] and McSimA+ [69] ) are generally required to

support complex models of memory subsystems (i.e. memory and cache hierarchies) as well as communication networks. 

Implementation: Depending on the strategy to implement functional and timing models, simulators can be classified into

software-assisted simulators (i.e. simulators based on software simulation of the target architectures on CPU/GPU hosts),

hardware-assisted simulators (i.e. simulators based on implementation of the target architectures on FPGA hosts) and hybrid

simulators (i.e. simulators based on combination of both software and hardware simulation). 

Most of the current architectural simulators are software-assisted, since software simulation is low cost, easy to develop,

and flexible to explore various target architecture. COTSon, GEMS, SystemC [77] , SimFlex and BigSim use software based

simulation on CPU for both functional and performance models. In [78] , authors introduce a software based simulator which

runs on both CPU (by leveraging QEMU for functional modeling) and GPU (by proposing a GPU-based manycore accelerator).

The work presented in [79] is another recent example of software based simulators. It leverages QEMU for software based

functional modeling on CPU while uses a performance model, written in C and CUDA, designed to execute partly on the

host CPU and partly on the host GPU. 

On the contrary, hardware-assisted simulators are high cost and not flexible for architectural design exploration. They also

take significant amount of time, memory and effort to develop and use, but they provide faster simulation speed compared

to software-assisted simulators. Examples include RAMP Gold [76] , that uses FPGAs for both functional and timing models.

ProtoFlex [80] and FAST [18] are examples of hybrid simulators, where they use FPGAs to accelerate the performance model

while using software based simulation for functional models. Furthermore, hybrid simulators like HASim [81] use FPGAs for

functional modeling and CPU based software simulation for performance modeling. 
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Sampling: Sampling and reduction techniques enable faster simulation of large scale execution workloads through sim-

ulating representative portions of execution (i.e. samples) [82] . In this way, architectural simulators can be classified based

on their sampling strategies. There are various methods for execution sampling in the current literature. Examples include

random sampling [10] , dynamic sampling [23] and statistical sampling [47,83] such as SimPoint [82] and Sampling Micro-

ARchiTecture Simulation (SMARTS) [83] . Sampling techniques might reduce the simulation accuracy and precision in the

estimate. 

Assuming that a population is a complete set of elements (e.g. execution instructions of a complete workload) which

need to be simulated. Sampling means simulation of a sample workload, instead of a complete workload. Each sample

includes a subset of population (i.e. a set of sampling units) where a sampling unit is defined as a quantum of population.

An ideal sampling approach must create a sample with choosing a minimal but (highly) representative set of sampling units

in order to provide a reliable and quantifiable simulation (in terms of accuracy and speed). 

A random sampling is performed by selecting and simulating only a random sample from the entire workload (the whole

population) through a random selection of a fixed number of sampling units. The number of selected sampling units (or the

sample size) must be sufficiently large for obtaining reliable (in terms of accuracy and precision in the estimate) simulation

results (close to complete workload simulation). In a systematic (or periodical) sampling, sampling units are chosen from a

population at periodical intervals. A uniform sampling, perform this with equal selection probability for (all) sampling units

distributed in the entire population. In a representative sampling, sampling units are chosen from weighed regions of the

population. In a dynamic sampling, the sample intervals (and the duration of each interval) are determined dynamically

through monitoring the variation of execution behavior for the given benchmark [84] . 

Statistical sampling attempts to estimate (simulate) the execution behavior and characteristics of a given workload (i.e.

a population) by selecting and simulating an optimal sample. This can be done by examining the adequacy of potential

samples over the entire population using priori profiling (preprocessing), consisting statistical analysis (for example in terms

of total, mean, and proportion) of the code. In other words, an statistical sampling prescribes a specified and constructive

mechanism to determine an optimal sample (including a large number of tiny sampling units) in order to obtain a desired

confidence interval. The sample must be able to capture the inherent variations of the given stream of execution instruc-

tions [85] . Statistical sampling is an efficient approach in capturing average behavior. And also it can specially provide an

appropriate sampling when the population benefits from a clear internal control and contains a large number of similar

transactions. However, it might be more complex and time consuming compared to non-statistical sampling approaches

[86,87] . 

3.2. Virtual machines 

Systems based on Virtual Machine (VMs) hypervisors are typical tools to model the hardware. These provide an emulated

environment where the guest applications (particularly operating systems) can be executed virtually, very close to the way

that they are executed on real hardware. Generally, virtual machines are faster than architecture emulators. This happens

because the hypervisors create environments where substantial amount of instructions execute directly on the real under-

lying hardware without any overhead. VMs also permit execution times near to native speed. However, without support for

hardware virtualisation, performance may be severely degraded, and not all currently available processors support virtual-

isation. They should meet a set of requirements which are elaborated in [88] . Of course, these can only be used when the

system to test already exists, precluding the usage of VMs for many design space exploration tasks. 

3.3. Architecture emulators 

Architecture emulators are software tools which emulate the behavior and characteristics of a given CPU. They do not

directly run the instructions of the emulated processor on the underlying real host processor. Rather, they employ methods

of interpretation, or of dynamic translation, to translate the emulated instructions to a corresponding set of instructions

for the target platform. Then, they execute the translated instructions on the hardware of the host platform. Therefore,

architecture emulators generally decrease execution speed, but dynamic translation, a cache intensive technique, is used to

enhance the speed. 

Definitely architecture emulators are appropriate tools to be embedded in manycore full simulators for the purpose of

functional modeling due to their accuracy, and reasonable speed. Qemu [30] and SimNow [33,89] are common examples of

architecture emulators which have been employed in several full-system simulators. 

Qemu is an open source full system emulator which uses the dynamic translation technique. It provides capabilities

to emulate several types of CPU architectures (x86, PowerPC, ARM and Sparc) on several different hosts (x86, PowerPC,

ARM, Sparc, Alpha and MIPS) to virtually run a complete and unmodified operating system. It also offers three operation

modes: full system emulation mode, where the processor architecture and other peripheral devices are emulated; user mode

emulation, where Qemu can launch executables compiled for one processor on another host processor which could have a

completely different architecture; and finally Qemu acceleration mode, which executes most of the code directly on the

hardware without dynamic translation, resorting to different execution rings. 

AMD SimNow is a fast cycle, accurate full system emulator, using caching and dynamic compilation techniques. It can

support booting an real operating system and launch complex applications over it. The SimNow emulator supports the x86
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and x86-64 instruction sets, with support for other devices of a real system. It performs emulation of the real system with

(at least) 10x slowdown in comparison with the native execution. SimNow cores generate a series of event that are stored

in the asynchronous queues. COTSon provides timing feedback for SimNow instances, it parses asynchronous queues to

create higher level objects such as instructions. COTSon is a complete tool which provides timing information back to the

functional emulator in order to affect the behavior of the application. It also uses quantum based simulation [23,59] as

synchronization technique. Quantum is the smallest, atomistic timing entity. i.e. the dimension of length (“time”) as a single

entity is a quantum. In this way, every time a quantum starts, the timing module will get a notification about the staring

time and the quantum length. Similarly once a node ends a quantum, the timing module will let the other modules to know

about the network timing information which has been calculated during the past quantum. The functional simulation adds

extra latency to all packets submitted, because network packets are sent twice. The source Network Interface Card (NIC)

sends packets to the mediator timing module and the mediator will send the packets to the target NIC module. Additional

time is required to for the packet processing in the mediator, therefore COTSon uses a Quanta (Q) bigger than real latency

time between two nodes [90] . 

3.4. Network on chip, thermal and energy aspects 

Most full-system simulators can simulate the interconnection network (particularly the Network On Chip (NoC)) as well

as the entire processor and memory system. However, due to inherent limitations, they are not able to perform NoC sim-

ulations, in a very detailed level [91] . ASIM [92] is an example of this case. It is a full-system simulator, used in industrial

laboratories, that simulates the processing cores and memory hierarchy. It only models ring interconnects and it cannot

model other interconnects such as mesh, hypercube, x-tree, shuffle exchange, fully connected, butterfly, cube connected

cycles, etc. RSIM [93] and SESC [94] are other examples of full-system simulators, whose interconnection network is not

modeled precisely in these frameworks. On the other hand some of the simulators support modeling of the entire system,

including the on-chip network, to a significant degree of detail, such as PharmSim [95] . 

For the purpose of designing new manycore simulators and particularly with the objective of modeling the future peta-

scale parallel machines, we should consider a very efficient and accurate network-on-chip model. NoC is an integral part

of the memory system and not modeling its details leads to an unsatisfactory model. Today, there are several NoC only

simulators like NOXIM [96] and SICOSYS [93] which are used by the NoC community for experiments. However, these are

not able to be used to perform full-system modeling and simulation. 

In the current literature, SystemC [77] (refer to Section 4.3 ), a simulation framework, has been widely used to design

full system simulators and particularly for NoC simulators. SystemC-based NoC simulators [97–103] are powerful tools to

evaluate different NoC configurations by means of simulation. Xpipes [103] is an example of this type. It provides capability

to simulate both homogeneous/heterogeneous NoC architectures for multiprocessor SoCs through using a set of flexible

SystemC-based NoC macros, enabling to act as instance-specific network components at instantiation time. 

One of the efficient solutions to enhance the capability of a full-system simulator is leveraging other accurate and high-

performance network on chip simulators for NoC modeling instead of using a weak built-in network model. It is required

for each of the simulator component and tools to provide modularity. SICOSYS [93] is an example which has been plugged

into RSIM [36] for simulating symmetric multiprocessor systems. 

Energy consumption in uniprocessor architectures grows linearly with the clock rate frequency and quadratically with

voltage. Usually, lowering frequency permits operation at smaller voltages, and this has a cubic effect on energy savings.

As for multicore and manycore processors, the power consumption increases linearly with the number of cores while clock

frequency increases at a much slower pace [104] . Further, the use of identical processing elements in an homogeneous

architecture reduces the overall hardware complexity and verification process in the entire development cycle. 

Other than power consumption, thermal issues have a significant impact on the performance of manycore architectures.

Simulating the thermal behavior of the manycore processors is an important objective in many different aspects. The ar-

chitecture designers need to know and analyze the impact of their designs on the temperature of the processors. Similarly,

thermal modeling is required by the OS and system designers. The problem is that this kind of modeling is computationally

expensive. In processors, thermal time changes in time interval of the order of ten milliseconds. Thus, to simulate a very

complex thermal impact of a proposed design, it is required to simulate the system in a high level of details at least for

several seconds. 

In manycore architectures, thermal status of the individual cores are related to the actual computing workloads of each

core. Thus, analytical [105] and mathematical models as Fourier expansion [106] can be used to characterize and model

manycore processor workloads and foresee the accurate amount of the processors load. 

In the current literature, various tools and simulators have been proposed to investigate power consumption and en-

ergy efficiency of microprocessors and manycore architectural designs. Examples include Wattch [107] , SimplePower [108] ,

SoftWatt [109] , XTREM [110] , Orion [111] , Orion2 [112] , McPAT [113] , Sim-PowerCMP [114] , PrEsto [115] , Sniper/McPAT [116] ,

Manifold [59] and [117] , providing capability for power or thermal modeling of computing processors. However, since phys-

ical modeling (power, energy and thermal) of manycore systems is out of the scope of our interest in this paper, we do not

discuss the details of those approaches here. 



180 J. Zarrin et al. / Simulation Modelling Practice and Theory 72 (2017) 168–201 

Table 2 

General specifications of simulators, emulators and virtual machines (Execution info: Information about the execution behavior, func- 

tional results: execution results). 

Tools Engine Code translation Output information 

Virtual machines Mainly direct execution Same-ISA DBT Functional results 

Emulators Emulation (Interpretation) Cross-ISA & retargetable Functional results 

Emulation-based simulators Emulation (Interpretation) Cross-ISA & retargetable Functional results, execution info 

Instrumentation-based simulators Instrumentation Same-ISA DBT Functional results, execution info 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Architecture simulators 

Parallel and distributed simulation tools such as SimFlex [47] , GEMS [26,118] , FastMP [42] , SlackSim [43,60] , BigSim

[10] and COTSon framework [23,89] , have been created in order to enhance the performance of simulation by concurrently

distributing the simulator workloads among several parallel hosts. Furthermore, running parallel manycore simulators in ac-

celerated hardware platforms such as FPGAs, and more recently in general purpose GPUs, helps to increase the throughput

of the system simulation. 

Architectural simulators provide capability to simulate either the target microprocessors, or the full hardware and soft-

ware functionality of the target machines, as platforms, where platforms may consist of parallel processors, memory hier-

archy, storage devices, I/O devices, compiler, OS, etc. Along the line of the growing issues in manycore era architectures,

simulators have changed and they used new approaches to solve the problems and improve the system efficiency. They

started from a simple approximate uniprocessor simulator, and continually improved to the recent high efficient clustered

simulators. 

Table 2 provides a generic comparison of architecture simulators and other simulation tools. However, this comparison

is very general and depending on each specific tools it might differ. The table shows that simulators (both types) are the

more flexible tools to analyze and predict the behavior of future systems. Furthermore, emulation-based simulators are the

most powerful tools, since they can potentially simulate any type of architectures. On the other hand, instrumentation-based

simulators are faster, since they provide near-native execution speeds. 

In the remaining of this section, we discuss some of the most important architecture simulators that have been proposed

in the last decade. 

4.1. Simplescalar 

SimpleScalar [9] is one of the oldest uniprocessor serialized software simulators, which previously was widely used by

the research community focused in processing architectures. As well as other similar simulators, SimpleScalar was limited

to only run single-threaded, user-mode workloads. With the advances in manycore micro-architectures, researchers and 

designers are more interested to use simulators with the capability to run multi-threaded workloads, and to model large

number of processing cores along with the memory subsystem and interconnects. 

4.2. BigSim 

BigSim is a parallel simulator and performance modeling system which is particularly designed to study parallel program-

ming issues [10] . It can predict performance of parallel applications on machines (like IBM Blue-Gene/L systems) [119] with

a very large number of processors (i.e. large number of processing nodes). This is done by actual execution of real applica-

tions on smaller machines (i.e. small number of processing nodes). Indeed, BigSim can be used for the architecture design

of manycore-enabled HPC systems. It has been built on POSE [120] and includes several components. POSE is a general-

purpose optimistically synchronized PDES (parallel discrete event simulation) framework which is designed for scalability

of fine-grained parallel and distributed large-scale discrete event simulations. However, its load-balancing framework still 

needs to be improved. BigSim simulates the behaviors of communication and computation separately in two steps. At first,

it uses an emulator to execute an application, containing number of virtual processes, on a small number of physical pro-

cessors to generate trace logs. At the next step, a trace-based simulator uses the log files and simulates activities on a much

larger processing system. 

BigSim directly executes the application (in small scale) using its emulator and mimics the behavior of the target plat-

form (in large scale). The direct execution creates significant demands on host CPU and memory. For this reason, the sim-

ulator allows skipping computations and instead simulates latencies that would be resulted by executing those computa-

tions. But the problem is, this works only for data-independent applications, due to the fact that some part of the data

are not really computed. The simulator explores the inherent determinacy of several parallel applications. But still it is not

an application-independent performance modeling system and its functionality is limited to specific applications. Moreover, 

tracing in BigSim is specifically designed for its implementation language Charm++, and doesn’t support the message passing

applications. 
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BigNetSim, a BigSim’s component, uses a simple analytical model (e.g. SimGrid [121] ) to simulate interconnection net-

works by supporting detailed network models of various topologies. However it still doesn’t provide capability for packet-

level interconnections simulations (e.g. MPI-NetSim [122] ) which is the most precise approach (while it is very resource-

consuming) for network simulation. This leads to reduction in the overall system accuracy. In fact, the major drawback of

BigSim is that it suffers from inaccuracy (with respect to the expected behaviors of the real system) caused by log-based

postmortem simulation of the generated traces. 

4.3. SystemC 

The SystemC language [77] is an extension of C ++ , providing a cycle-accurate, event-driven, simulation interface for

system-level modeling by describing modules of a target architecture as a set of C ++ classes. It is a popular framework

for SoC architecture simulation, providing a powerful interface to describe HW/SW components as well as interconnections

between modules (ports and signals), facilitating description of interconnection between multiple SoC processors. SystemC

also provides support for integrating different Instruction Set Simulators (ISS) in a unified system simulation framework, as

it is able to plug an independent ISS into the entire simulation framework (as a new system module), where all system

modules can be activated and synchronized through a common reference clock. Furthermore, SystemC based simulators

(such as [123–127] ) can benefit from advantages of C ++ language as a hardware description language while bridging the

gap between hardware and software description languages [123] . In fact, one of the most important advantages of C/C ++
based description languages such as SystemC (or SpecC [128] , a similar alternative) is their capability to concurrently specify

both hardware and software components in the design (i.e. co-simulation of both hardware and software). This is a necessary

requirements for full system simulators (system level). 

In the current literature, SystemC has also been extensively used for designing NoC simulators, due to the powerful

capability of SystemC to describe various interconnections between hardware components. Examples of this include [97–

103] . 

SystemC based simulators are accurate and sufficient for validating hardware specifications. However, they might fail

to adequately support embedded software (in terms of writing or debugging), which is an important requirement for SoC

design [129] , are often slow compared to the traditional ISSs like SimpleScalar. 

MPARM [123,124] is an example of such simulators. It is a full-system SystemC-based architecture simulator, enabling to

model functional, performance, and power consumption aspects, as well as a complete OS for a Multi-Processor System-on-

a-Chip (MP-SoC), in a cycle accurate manner. Using SystemC, MPARM (or MP-ARM) can provide processor models, memory

models, the AMBA bus architecture (for communication between models through ports and signals) and support for parallel

programming. However, the MPARM simulator is slow and its models for processing cores are very abstract and relatively

simple, lacking detailed core modeling [130] . 

One of the conventional solutions to overcome the speed limitation of SystemC-based simulators is to integrate SystemC

with QEMU, making possible to simultaneously benefit from accuracy of SystemC and speed of QEMU. However, interfacing

between SystemC and QEMU might be challenging, since their combination must be capable of accessing all the hardware

modeled in QEMU and SystemC for co-simulation of HW/SW. For doing this, SystemC needs the QEMU support to provide I/O

operations (initiated by the processor), memory access interface, interrupt handling and also peripherals to access memory

directly [131] . Furthermore, there are timing aspects which need to be taken into account for synchronization between

SystemC and QEMU models [132] , making SystemC-QEMU combination a complex task. There are several research works in

the current state of the art, which perform this using different approaches [131,133–136] . Among these types of simulators,

Virtualsoc [8,137] is a recent work for many-core-based accelerators, allowing the execution of a full-fledged Linux operating

system. 

4.4. Graphite 

Graphite [11] was created for the exploration of large-scale manycore environments, as well as for research of isolated

applications. It can be used as a distributed, high-level parallel simulator. In order to deliver the high performance and

scalability needed for useful evaluations, it uses various methods such as direct execution, multi-machine distribution and

analytical modeling. In addition, it benefits from lax synchronization schemes like LaxP2P [138–140] (a distributed syn-

chronization technique, in which the progress of one core is periodically checked against another randomly selected core).

Graphite has other important capabilities, such as its flexible and extensible architecture, its compatibility with commodity

multicores and clusters, its ability to run off-the-shelf p-threads application binaries, and its support for a single shared

simulated address space despite running across several physical host machines. 

Graphite, unlike BigSim, FastMP and COTSon, allows the analysis of a much wider category of architectures. While it offers

the possibility to model distributed memory architectures, it also provides a coherent shared memory between the simulator

threads [11] . In addition, Graphite also models compute cores and interconnected networks while operates transparently

through providing a single shared address space to off-the-shelf applications. 

Graphite can simulate manycore target architectures with hundreds of cores launched on several parallel hosts, but the

problem is that the simulator accuracy resides in the application-level. It is not very successful to deal with speed/accuracy
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challenges. Graphite has three different methods for synchronization: base model (or Lax synchronization), barrier (LaxBar-

rier or Lax with quanta-based barrier synchronization) [140] and random-pairs (LaxP2P or Lax with point-to-point synchro-

nization). Lax lets the clocks differ and offers the highest performance and scalability. However, in order to keep the simu-

lated clocks in reasonable agreement, Graphite needs to deploy application events to make them synchronized, otherwise it

must let the threads run freely. 

LaxBarrier and LaxP2P [58,140] are the mechanisms on top of Lax to improve its accuracy. LaxBarrier is the most accurate

synchronization methods of Graphite where all active threads must wait on a barrier after a configurable number of cycles.

It has a relatively poor performance and scalability compared to the other two synchronization models. LaxP2P aims to

achieve the accuracy of quanta-based LaxBarrier without reducing the scalability and performance of lax synchronization.

Using this scheme each tile periodically chooses another random tile and synchronizes with it. If the clocks in the source

and target tiles differ by more than the number of configured cycles then the tile which is ahead goes to sleep for a short

period of time. LaxP2P is fully distributed therefore it creates less overhead than LaxBarrier. In comparison to the barrier

method it provides more scalability and less accuracy [11] . 

4.5. SimK 

SimK [52] is a framework based on the Parallel Discrete-Event Simulator (PDES) synchronization protocol [141] to de-

velop system simulators. PDES [53] is a well known parallel distributed synchronization technique for parallel simulation.

SimK provides simulation modules that target system components, such as CPUs and memory modules. All modules com-

municate through message passing methods, which enables them to run concurrently. A dedicated module maintains the

time synchronization of all simulation modules. P-GAS [142] , HPPNetSim [143] and G-Cluster [144] are the simulators which

have been developed based on the SimK framework. 

Since each component has to synchronize the execution state with its peers, continuously at a microsecond rate, SimK

employs several optimization strategies and techniques to avoid the severe performance degradation that synchronization

would impose. Each node is handled by a single process, which further creates one thread per processor. A user level

scheduling scheme is employed where simulation modules are dispatched to each thread. CPU affinity is used to avoid cache

related performance penalties. Since the simulation modules run on the same process and share the same memory, SimK

employs an asynchronous zero-copy [52] communication mechanism. Further synchronization optimizations are employed 

at the scheduling level to avoid blocking of the simulation modules. Other optimizations employed include lock-free queues,

buffer management and load balance. 

SimK requires a host shared-memory multiprocessor system. While it has shown to scale within this system, the lack

of cache coherence on manycore systems does not allow the shared-memory dependent approach used by SimK to be

effective. Thus, the major bottleneck of this simulation framework, which is synchronization, cannot be solved with the

approach taken by SimK on a manycore system. This severely limits the scalability of SimK to multiprocessor systems. 

4.6. GEMS 

GEMS [26,118] is a full-system simulation platform capable of capturing detailed aspects of processing cores, cache hi-

erarchy, cache coherence, and memory controllers. The simulation platform consists of a set of nodes connected with links

allowing for wide variety of topologies, with each link having a particular latency and bandwidth. This has led to the

widespread use of GEMS in the computer architecture research community, with a huge amount of contributions for vali-

dating research ideas. 

A major limitation of GEMS is its simple interconnection model that serves as a communication fabric between various

cache and memory controllers. Messages traverse the network hop by hop, which makes GEMS incapable of modeling a de-

tailed router or a network interface. In fact it does not integrate a real interconnection network model [145] . Because of this

limitation, GEMS ignores buffer contention, switch and Virtual Channel (VC) arbitration, realistic link contention and pipeline

bubbles. The GEMS interconnect SimpleScalar model also assumes perfect hardware multicast support in routers. However,

considering on-chip network designs, supporting fast and low power hardware multicast is currently still a challenge. 

The limitations in the interconnect model can significantly affect the results reported by the current GEMS implemen-

tation. Thus, GEMS has not been adopted by researchers focusing on low-level interconnection network issues. Researchers

instead rely on traffic trace-driven simulation with synthetic or actual traces. In a trace-driven approach, the functional sim-

ulation is not impacted by the timing simulator. Timing dependent effects are not captured because the trace is generated

a priori on a fixed system, and the timing variation caused in the network does not affect the message trace. Trace-driven

techniques also do not capture program variability that a full-system evaluation can. 

4.7. SimFlex 

SimFlex [5,47] is a full system, component-based simulator, inspired by the ASIM simulator [92] , which enables creation

of timing models for uni and multiprocessor systems running unmodified commercial applications. It integrates SMARTS

methodology [83] for simulation sampling and Simics [34] for functional modeling with techniques to avoid runtime over-

heads that arise from component-based software design. Simics is a high configurable simulator with a basic timing model



J. Zarrin et al. / Simulation Modelling Practice and Theory 72 (2017) 168–201 183 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i.e. uniform timing for all instructions and memory accesses). It can provide functional execution of unmodified commer-

cial OSs and applications for wide variety of systems and ISAs (e.g. x86, SPARC, etc.). SimFlex enables full system simulation

by augmenting Simics with a framework for rapidly building complex timing models. SimFlex receives a stream of fetched

instructions from Simics, and then models the timing behavior of the system while controls the timing advancement in

Simics. 

SimFlex is a collection of C ++ described components connected together in a hierarchical fashion where each component

represents a hardware or software component of a real system. Each component is connected to other components by

definition of ports (i.e. unspecified C ++ template parameters during component development). The connections between

components can be configured and specified in a C ++ code which is called wiring description. And accordingly, when these

wiring descriptions are fed to the compiler, the interconnection between component is created at compile-time. This way,

SimFlex framework can produce a custom timing simulator binary which reflects the desired wiring description. Examples

of SimFlex timing models include UniFlex (uniprocessor simulation), TraceFlex (no timing), CMPFlex (in-order timing) and

CMPFlex.OOO (out-of-order timing). 

Most of applications exhibit homogeneous execution phases which can include millions of instructions. Statistical sam-

pling reduces the amount of simulation effort required for performance estimation of such applications and leads to increase

the simulation speed. SimFlex, using SMARTS rigorous statistical methods, identifies the minimal sample that assesses ap-

plication performance with a required confidence level. 

SimFlex offers detailed multiprocessor memory systems but lacks detailed I/O models and multiple-system capability.

Furthermore, SimFlex suffers from the lack of flexibility for development, particularly for non-academics, since it relies on

Simics, which is a commercial functional simulator with licensing restrictions. 

4.8. COTSon 

COTSon is the HP labs’ full system simulator based on AMD SimNow. It allows researchers to trade speed for accuracy,

depending on the simulation purpose and the user preferences. It uses a trace driven approach where a single core, full

system, simulator generates thread instruction streams. This helps COTSon achieve better simulation speeds, compared to

execution-driven simulation, because of the decoupling of functional simulation from detailed simulation. It also is possible

to simulate any application that might have been run on different platforms, given the correct tracing infrastructure. 

Functional simulation generally adds some extra latency to every transmitted packet. It happens because packets are sent

to the mediator and then the mediator sends them to the destination. COTSon performs bandwidth and network simulation

in the sender NIC device, but all the network timing characteristics and information is collected at the mediator level.

Potentially, COTSon can present reasonable speedups in comparison to some of other simulators, but it assumes an idealized

architecture consisting of a perfect memory hierarchy, which is a little far from real architectures. 

COTSon leverages some of the other existing simulators and tools for individual sub-components through a robust in-

terface layer, integrated closely with the COTSon timing models to improve simulation accuracy (versus simulation speed).

Notable examples are SimNow, for the purpose of functional modeling, and Q-Mediator, for simulation of interconnected

network. However, COTSon does suffer from using SimNow, which is a sequential emulator. 

SimNow produces a sequential instruction stream as output which is demultiplexed into different threads before timing

simulation. It creates a significant drawback for COTSon, limiting parallelism and restricting the simulator to a single host

machine for shared-memory simulations. On the other hand, COTSon is able to launch simulations over an overlay network

consisting of multiple manycore machines. But, it becomes limited to run applications which are created for distributed

memory environments and use a message-passing library (like MPI [146] ). 

4.9. RAMP-Gold 

RAMP-Gold [147] performs system modeling by employing a single timing pipeline, coupled with a single functional

pipeline with moderate resource consumption launched on a low-cost mid-size FPGA. The simulator design is constrained

in the total amount of cache capacity that we can model by using the BRAM consumption of the timing model [76,148] . 

FPGAs include Block RAM (BRAM) and Distributed RAMs (DRAM). Block RAMs or BRAMs are dedicated memory blocks

and DRAMs are the RAMs that are constructed using Look-Up-Tables (LUT). LUTs are distributed across the FPGA fabric and

they can be used as small blocks of RAM by combining DRAMs. RAMP Gold has the capability to simulate 64 SPARC CPUs

over 250 times faster than a regular software-based system simulator launched on a Xilinx Virtex-5 board (which is low-

cost in comparison to other FPGA hardware). This demonstrates the cost performance benefit of FPGA-based simulation. The

design of RAMP Gold also shows that designing FPGA-based architecture simulators is dramatically different from designing

multicore processors in either ASICs or in FPGAs. 

4.10. Other FPGA-based simulators 

FAST [149] is a hybrid FPGA-based simulator, whose functional model runs in software and its timing model runs in

FPGAs. It needs a significant amount of communication bandwidth between FPGA and CPU, which may result in limited

simulation scalability. ProtoFlex [150] and HASim [81] are other simulators which use FPGAs to implement timing models



184 J. Zarrin et al. / Simulation Modelling Practice and Theory 72 (2017) 168–201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for full-cycle-accurate simulations similar to FAST. Unlike FAST and ProtoFlex, HASim implements its functional model in

FPGA and timing model in CPU. 

In general, FPGA-based solutions are costly and require the user to buy expensive hardware. In addition, FPGA-based

approaches are difficult for development and it is not easy to quickly experiment with various designs while implementing

new models in FPGA instead of CPU. 

4.11. GEM5 

GEM5 [4] is a modular, sequential, full system simulator, based on a combination of both M5 [29] and GEMS [26] simu-

lators. It merges the high configurablity of M5 with high detailed and flexible memory subsystem modeling of GEMS. This

leads to the support of a wide range of simulation features ranging from multiple ISAs (such as Alpha, ARM, MIPS, Power,

SPARC, and x86), diverse CPU model (non-pipelined and pipelined CPU models such as AtomicSimple, TimingSimple, In-

Order, and Out-Of-Order), detailed cache hierarchies (using Ruby memory model) and multiple cache coherence protocols

(using SLICC language) to the instantiation of various interconnection networks (Ruby based network models such as Simple

network model and Garnet [151] network model), I/O devices (ranging from simple timers to complex network interface

controllers) and multiple systems. Despite the high accuracy and flexibility of GEM5, it suffers from very slow simulation

speed due to the lack of parallelization in simulation. 

4.12. McSimA+ 

McSimA+ [69] provides a lightweight, flexible, and detailed microarchitecture-level simulator by offering a middle ground

between a full-system simulator and an application-level simulator. It can benefit from the light weight of an application-

level simulator, while the simulator is able to fully control the threads and processes (similar to a full-system simulator).

McSimA+ can simulate x86-based asymmetric manycore systems (up to more than 10 0 0 cores) for both core and uncore

subsystems. The modeling for asymmetric cores can be ranged from single-threaded to multi-threaded workloads and from

in-order to out-of-order CPU models. It also supports sophisticated cache hierarchies, coherence hardware, on-chip intercon-

nects, memory controllers, and main memory. Furthermore, using DBT as simulation engine and the ability to support both

execution-driven and trace-driven simulations, McSimA+ is able to reasonably improve both simulation speed and accuracy.

However, McSimA+ suffers from the inherent limitation of application-level simulators, which is the lack of full support for

OSes and applications with complex I/O system calls and extensive system events. Moreover, the simulation workloads for

McSimA+ is limited to only Pthread applications due to the frontend Pthread library of McSimA+. Non-Pthread multithreaded

applications cannot be executed on McSimA+ without re-targeting the thread interface. In addition, the simulation accuracy

of McSimA+ is most likely suboptimal as compared to most of the cycle accurate emulation based simulators. McSimA+ is

also limited to support modeling of speculative wrong path executions due to the inherent limitation of its Pin [71] based

functional modeling. In fact, Pin does not provide wrong-path instructions, since wrong-path instructions in Pin are invisible

beyond the ISA interface and they are not committed in the native hardware. 

4.13. ZSim 

The ZSim [13] simulator introduces three techniques in order to enable fast, accurate, and scalable simulation for many-

core systems (up to 1024 cores). These techniques are: detailed DBT-accelerated core models, in order to increase sequential

simulation speed; bound-weave parallelization, in order to achieve scalable and accurate parallelization; and lightweight

user-level virtualization, in order to provide support for simulation of complex workloads. ZSim proposes instruction-driven

timing models, based on Pin DBT, to perform most of the core’s operations in the timing model during instrumentation (i.e.

eliminating the need for functional modeling of x86). This reduces most of the FM-TM overheads compared to conventional

cycle-driven or event-driven core models. It also leads to fast sequential simulation (between 20 and 90 MIPS) while the

core modeling is detailed enough to allow simulation of detailed core models like Out-Of-Order (OOO), including features

such as branch prediction, limited fetch and issue widths, and μop fission. 

ZSim also introduces the bound-weave algorithm which is a two phase event-driven parallelization technique that scales

parallel simulation without increasing overheads or loosing accuracy. The main insight behind this algorithm is that, at

a small time scale, most concurrent core-memory accesses occur to different unrelated cache lines. This means that out of

order simulation of these accesses at first and then simulating their detailed timing in order, can be equivalent as simulating

them completely in order. This allows reorderings of instructions only within a small interval (e.g. within 10 0 0 cycles) with

assumption that, in such case, path-altering interference is exceedingly rare. 

A two core-memory accesses might suffer from path-altering interference, if out of order simulation of those accesses,

modifies their paths through the memory hierarchy (e.g. two write for the same cache line from two different cores). ZSim

divides the simulation into small intervals of a few thousand cycles each. As we already mentioned in Section 3.1 , for each

interval the simulator proceeds bound phase and weave phase. In bound phase, cores are simulated in parallel with assump-

tion that all memory accesses have initially zero latencies and for each memory access, the path through memory hierarchy

is recorded. The bound phase also puts a lower bound on the cycle of each microarchitectural event. Accordingly per-core

event traces are generated through instrumenting all loads, stores and basic blocks of the host thread which simulates a
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core. In the weave phase, these traces are used to perform parallel microarchitectural event-driven timing simulation of the

aforementioned memory accesses by dividing events among parallel event queues, and simulating them in full order. 

While bound-weave parallelization is efficient to provide scalability for parallel simulation, it is only applicable for shared

memory target systems. The reason is that the bound-weave approach relies on the assumption that path-altering interfer-

ence being rare, which is true but only for the cores that communicate implicitly through the cache hierarchy. This means

that bound-weave mechanism is not applicable for other target systems like distributed systems with message passing inter-

core communications. Moreover, ZSim is a user-level simulator but since it is using a set of lightweight user-level virtual-

ization mechanisms, it can run most modern workloads (such as client-server workloads and multiprocess applications)

without any modifications. 

4.14. PriME 

PriME [14] is an MPI-based, manycore, x86 simulator. It uses Pin as simulation engine and combines both shared memory

and message passing techniques in order to achieve high parllelization and distribution of simulation workloads through

running simulation across any MPI-enabled cluster of multiprocessor and multicore machines. This allows PriME to support

multi-threaded workloads as well as multi-programmed workloads through benefiting from two levels of parallelization;

within a host machine and across host machines. The simulation of multi-threaded workloads can be parallelized inside of

a host machine while the simulation of multi-programmed workloads can be parallelized across several host machines. This

happens by utilizing MPI to communicate among different PriME modules. 

PriME demonstrates reasonable performance and speed for manycore simulation (for example, it can simulate more than

20 0 0 cores on 9 machines with a total number of 108 cores). However, similar to other simulators, it also suffers from

drawbacks. While the simulator supports detailed modeling of uncore components such as the memory subsystem and NoCs,

it can only simulate simple in-order core models with a constant cycles-per-instruction (CPI) for non-memory instructions.

Therefore, using PriMe, simulation of the detailed core models, like modern out-of-order processors, is not feasible. While

PriME is fast enough to explore thousand-core architectures, it is not cycle-accurate. While PriME offers high configurability

for uncore models such as memory subsystem, cache coherence and interconnect models, the configurability of the simulator

for the core models is poor. For example, the simulated ISA is limited to x86 architectures. 

4.15. Comparison 

Tables 3 and 4 provide comparative analysis of some of the most important multiprocessor and manycore architecture

simulators with respect to the taxonomies presented in Section 3.1 . The results of these comparative analysis, presented

in the tables, also demonstrate the qualitative ideas expressed on Section 3.1 . The discussion of the consequences of these

analysis will be deeply used in the Sections 5 and 6 in order to discuss the status of manycore future simulators. 

5. Fundamental simulation challenges 

Two important features of future peta-scale systems are high-heterogeneity of cores and, very large number of cores.

Due to these features, the requirements for simulation of future peta-scale manycore systems include supporting: 

• Scalability, in terms of number of cores simulated. 

• Heterogeneity, in terms of diversity of cores. 

• High speed simulation, due to the complexity and large number of components of such systems. 

• Accuracy, in terms of level of detail and similarity to the target systems. 

• Flexibility to rapidly explore a very large design space, due to the high diversity of potential architectures for future

peta-scale systems. 

• And low cost simulation, in terms of hardware required as simulation host. 

Efficiently designing future peta-scale manycore architectures is not achievable unless we use powerful simulation tools,

fulfilling the abovementioned requirements, and able to drive micro-architecture exploration, evaluate novel systems and

design decisions. It is obviously desirable to have a simulator with the highest level of accuracy and scalability, while pro-

viding a very fast simulation speed. Along this line, the typical full-cycle-accurate simulators cannot be used anymore, since

in some cases, simulating a single second of execution can take between 1 and 12 days. We expect simulators to deal with

a lot of design space variables, such as heterogeneity, scalability, modularity, in order or out-of-order core models, cache

coherency, memory hierarchy, distributed or shared memory, accelerators, etc. However, there are critical challenges that

create difficulties and obstacles to produce such a desirably simulator. 

Improving large manycore architectures with large amount of cache memory led simulators to employ highly parallel

methods to distribute simulation workloads (as it is the case in current parallel simulators such as PriME and Graphite).

However, due to data dependency between parts of the simulated environment, full parallelization is not easy to achieve

and we return to the problem of concurrency in current architecture models. Additionally, scale-out from core/tile to die,

socket, rack and data-center is really challenging, although this is a necessary requirement for evaluation of future peta-scale

machines. 
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Table 3 

A comparative analysis of various many-core architecture simulators. 

Characteristics SimpleScalar (2002) BigSim (2004) GEMS (2005) SimFlex (2006) SimK (2009) COTSon (2009) 

Simulation 

Execution 

Sequential Parallel Parallel (sequential 

functional simulators) 

Parallel (parallel simulation 

of live points or flex 

points, sequential 

functional simulators) 

Parallel, distributed Parallel (sequential 

functional simulators) 

Simulator 

Organization 

Timing directed (execution 

driven, interpreters) and 

functional-first (trace 

driven) 

Functional-first 

(trace-driven) 

Timing-first and timing 

directed (execution 

driven) 

Cycle driven execution 

model, timing-first for 

out-of-order 

multiprocessor 

simulation 

Functional-first (trace 

driven) and Timing 

directed (execution 

driven) 

Functional-directed 

(feedback-driven) 

Simulation Scope User/Application-level 

simulator 

User/Application-level 

simulator 

Full system simulator Full system simulator Full system simulator Full system simulator 

Simulation Engine Emulation Emulation Emulation Emulation Emulation Emulation 

Target Memory 

Architectures 

Shared memory Distributed memory 

(cluster-based 

simulation) 

Shared memory (with 

cache coherence support) 

Shared memory Distributed shared memory Shared memory, distributed 

memory 

Scalability Very Poor Poor Poor Moderate Moderate High 

Accuracy Cycle accurate (cycle 

timers) 

Instruction-level/cycle- 

accurate 

Cycle accurate Cycle accurate Functional accurate Cycle accurate 

Complexity of 

Setup 

Moderate Moderate High Low Moderate Moderate 

Cost Low Low Low Low Low Low 

Many-Core Support Uniprocessor Multiprocessor is supported Multiprocessor is supported Multiprocessor and 

multi-core are supported 

Multiprocessor and 

multi-core are supported 

Supported (up to 1024 

core) 

Implementation Software simulation Software simulation Software simulation Software simulation Software simulation Software simulation 

Basis Embedded (functional: 

sim-fast, sim-safe, 

sim-profile, sim-cache, 

sim-cheetah, sim-BPred, 

functional with timing: 

sim-outorder) 

BigSim emulator 

(functional simulation), 

BigNetSim (performance 

simulation) 

Simics (functional 

simulation), Rubby 

(timing simulation) 

Simics (functional 

simulation), SMART 

(performance simulation) 

HppSim (performance 

simulation), HppSwSim 

(functional simulation), 

HppNetSim (performance 

simulation for 

interconnection) 

SimNow 

Modeling Features Single-core CPU models 

from simple unpipelined 

processors to detailed 

dynamically scheduled 

micro-architectures with 

multiple-level memory 

hierarchies 

Network models (detailed 

models of 

communication networks 

e.g., network modeling 

for large message-passing 

machines such as Blue 

Waters and BlueGene), 

uni-processor models 

Memory (Ruby model for 

caches, cache controllers, 

memory controllers, and 

banks of main memory), 

Ruby model for 

interconnection network, 

Opal CPU model 

CPU models (uni- and 

multiprocessor systems), 

CMP and DSM system 

models, aggressive 

out-of-order core tuned 

to produce high memory 

parallelism 

CPU cores, memory 

without hardware cache 

coherence, network 

adapters, routers, 

switches, interconnection 

network 

Compute cores, networks, 

memory, the OS and 

common devices such as 

disks, video, or network 

interfaces 

( continued on next page ) 
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Table 3 ( continued ) 

Characteristics SimpleScalar (2002) BigSim (2004) GEMS (2005) SimFlex (2006) SimK (2009) COTSon (2009) 

Event Sampling Not Specified Random sampling of 

sequential execution 

blocks, Slicing, 

Miniaturization 

Not Specified Multi-threaded rigorous 

statistical sampling using 

Flex Points and SMARTS 

Not Specified Single-threaded dynamic 

sampling 

Synchronization Not Specified (only 

inter-stage latch 

synchronization for 

register update and 

memory load/store in 

sim-outorder) 

Optimistic PDES (taking 

advantage of the parallel 

programs’ inherent 

determinacy to reduce 

synchronization 

overhead) 

Not Specified SimFlex does not have an 

explicit synchronization 

component but 

synchronization works 

exactly as it would on a 

real SPARC machine. 

Conservative PDES 

(fine-grained 

block/unblock-based 

synchronization) 

PDES 

Supported ISAs ALPHA , PISA , ARM, 

PowerPC and x86 

x86 SPARC-v9, x86, etc. ALPHA, x86-64, IA-64, 

ARM, MIPS, MSP430, 

PowerPC, POWER, 

SPARC-v8 and v9, etc. 

(on CPU)MIPS64, MIPS III x86-64 

Workloads Single-threaded workloads 

(realistic applications 

with relative simplicity 

and less effort s) 

MPI, CHARM + + and 

Adaptive MPI 

applications 

Not Specified Not Specified Not Specified MPI applications 
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Table 4 

A comparative analysis of various many-core architecture simulators. 

Characteristics Graphite (2010) RAMP-Gold (2010) GEM5 (2011) McSimA + (2013) ZSim (2013) PriME (2014) 

Simulation 

Execution 

Parallel, distributed Parallel Sequential Parallel Parallel (Bound-weave) Parallel, distributed 

Simulator 

Organization 

Timing directed (execution 

driven) 

Multithreaded FAME (FPGA 

Architecture Model 

Execution) 

Timing directed (execution 

driven) 

Supports both 

execution-driven and 

trace-driven, 

event-driven backend 

simulator 

Timing directed 

(execution-driven), 

(instruction-driven core, 

event-driven uncore) 

Timing directed 

(execution-driven) 

Simulation Scope User/Application-level 

simulator 

Full system simulator Full system simulator A middle ground between 

a user/application-level 

simulator and a full 

system simulator 

User/Application-level 

simulator 

User/Application-level 

simulator 

Simulation Engine DBT Emulation Emulation DBT DBT DBT 

Target Memory 

Architectures 

Coherent shared memory 

across a cluster of 

machines, distributed 

memory 

Shared memory (no 

coherence) 

Shared memory (with 

cache coherence support) 

Shared memory (with 

cache coherence 

support), distributed 

memory (cluster-based 

simulation) 

Shared memory (with 

cache coherence support) 

Shared memory (with 

cache coherence 

support), distributed 

memory (across a cluster 

of machines) 

Scalability High Moderate Poor Moderate High High 

Speed Very Fast Fast Very Slow Moderate Fast Fast 

Accuracy Not cycle accurate Cycle accurate Cycle accurate Cycle accurate Not strictly cycle accurate Not cycle accurate 

Complexity of 

Setup 

High High Low Moderate High Moderate 

Cost Moderate High Low Low Low Low 

Many-Core Support Supported (up to 1024 

cores) 

Supported (up to 64 cores) Supported (up to 64 cores) Supported (up to 1024 

cores) 

Supported (up to 1024 

cores) 

Supported (up to 2048 

cores) 

Implementation Software simulation FPGA implementation Software simulation Software simulation Software simulation Software simulation 

Basis Pin Embedded M5 (processor simulator), 

GEMS (network and 

memory simulator)- > 

Ruby (cache and simple 

networks), Garnet 

(complex networks), 

SLICC (coherence 

protocols) 

Pin based frontend 

simulator for functional 

simulations and the 

event-driven backend 

simulator for timing 

simulations 

Pin Pin based frontend 

simulator for functional 

simulations and the 

event-driven backend 

simulator for timing 

simulations 

Modeling Features Core models, memory 

subsystems (cache 

hierarchies with full 

cache coherence), 

on-chip networks 

Cache models, abstract core 

models, CMP models, no 

network models 

Core models, pipelined 

model, memory 

subsystems , networks 

models, system execution 

modes 

Asymmetric core models, 

memory subsystems and 

network models 

Detailed DBT-accelerated 

core models, memory 

subsystems (cache 

hierarchies) 

One-CPI core models, 

profiling-based core 

models, memory 

subsystem, other uncore 

models 

Event Sampling Statistical sampling Not Specified Not Specified Not Specified Not Specified Not Specified 

Synchronization Lax, lax with barrier and 

lax with P2P 

synchronization 

Cycle-level synchronization Not Specified Pthread scheduling Bound-Weave 

parallelization 

Thread-level and 

process-level barrier 

synchronization 

Supported ISAs x86 SPARC-v8 ARM, ALPHA, MIPS, Power, 

SPARC, and x86 

x86 x86 x86 

Workloads Unmodified Pthread 

applications 

Not Specified Multi-threaded applications 

in System-call emulation 

mode and variety of 

workloads in full-system 

mode. 

Unmodified Pthread 

applications 

(single-threaded and 

multi-threaded 

workloads) 

Most modern and complex 

workloads (such as 

multithreaded 

applications, JVM and 

client-server workload) 

MPI applications 
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In the remaining of this section, we discuss the major challenges for simulation of future peta-scale systems. We must

also note that, in this paper, due to the space limitations, and to avoid losing focus, we avoid the discussion on the issues

related to implementation details of the architectural simulators (such as scheduling, synchronization, etc.), since most of

these issues are not particularly specific to the area of microprocessor and manycore simulation, but instead generally apply

to many different areas in computing. 

5.1. System complexity vs simulation capacity 

Complexity arises in manycore systems by having more and more diversity and intricacy in the computing architecture

and interconnects. For future peta-scale systems, we expect simulation tools to provide functionalities to evaluate the com-

plexity of such nonlinear systems by modeling properties and behavior of each individual component, showing ways where

the system behavior cannot be assumed as the sum of the behavior of its parts. For instance, a minor manipulation on the

processing/communication properties/behaviors of one system element may cause a significant impact, a proportional im-

pact, or even no impact on other elements or the whole system. However, managing such complexity is a critical challenge

in manycore system simulators which are constrained by limited capacity to deal with the system complexity like coupling

timing models with functional models. For example, timing models can be multiple orders of magnitude slower than real

time. 

5.2. Performance 

Execution performance for manycore simulators is pushed to its limits when a parallel simulator divides its main se-

quential instruction stream in a set of segmented simulation workloads which have to be executed on a group of individual

processors. Basically, it is not just the problem of simulators, but rather it is a challenge in the upcoming manycore archi-

tectures, which obligate a paradigm shift in algorithmic design to effectively fully unlock manycore capabilities to achieve

maximum performance. Thus, simulators have to deal with challenges such as increasing the level of parallelism, multi-

scaling, hardware acceleration, etc., both during development and implementation phases. 

5.3. Speed vs accuracy 

Interconnection networks and hardware details of manycore machines can be modeled at very different levels of abstrac-

tion depending on the target usage of the simulator. So there is a trade-off between simulation detail and simulation speed.

The level of detail of the models used for describing the resources employed within the simulator has a direct impact on

the final behavior and characteristics of the simulator. Hardware resource Description Languages (HDLs) are essential tools

to build an architecture simulator, and to build an efficient simulator we must use a powerful, accurate and appropriate

resource description model. While classical HDLs, like Verilog and VHDL [152] , are very good at describing detailed hard-

ware characteristics and behaviors (such as timing behavior), they are generally inadequate for expressing the higher-level

abstractions required for (today and) future large and complex micro-architectural architecture designs. 

The Architecture Description Language (ADL) [153] and the XML-Based ADL [154] are examples of the higher-level re-

source description model, which have been used to build manycore simulators such as Mhetero [155] and M3C [156] . C λaSH

[157–159] is another example of functional resource description which is based on Haskell. Using an efficient resource de-

scription language might help to increase the total performance of the constructed simulators. 

Ideally, in order to achieve a proper peta-scale-level simulation platform it is required to describe the hardware details

and interconnections as detailed as possible while keeping the total throughput of the system within an acceptable level.

This requires the (simulator) designers to build methodologies for constructing calibrated models. Unfortunately, this is not

easy to perform, and a common strategy in current simulators is to balance the need for simulation accuracy versus the

desire for good simulation performance. Better modeling of target system details by a simulator will produce more accurate

results but will result in a slower simulation. This trade-off is particularly important when modeling the interconnection

network of a parallel computer. 

5.4. Development cost 

The cost of developing a new validated and useful simulator refers to two different aspects. On one hand, the developing

time of a simulator should not exceed a reasonable duration. For example if we go to design a more detailed cycle-accurate

modeling system, this results in consumption of more time on development, which is not desired. On the other hand the

designed simulator should be modular, pluggable and able to reuse in future related works. In addition, new methodolo-

gies for constructing simulators have to show an acceptable performance while executing on the underlying hardware, and

should not be dependent of some specific-purpose hardware infrastructure. 

However, sticking to the objective of cost efficient modeling solutions in case of either the cost of the required hardware

(e.g. current software-based simulators like GEM5), or the cost of time consuming for development (e.g. SimK), creates

substantial constraints on implementation of some efficient solutions in aspects other than cost. 
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5.5. Design space 

Efficient design space exploration and modeling of manycore environments could be desired from different research

communities with focusing on different metrics, design aspects, applications and requirements. This is a major research

challenge for manycore modeling and simulation. On one hand, a diversity of metrics comes from differentiated market seg-

ments and metric emphases, such as power, temperature, latency, or throughput. On the other hand, a diversity of variable

multi-processor designs (even designs which are not existing yet) are of interest by users. A comprehensive design explo-

ration model has to locate the optimal amounts of results for different metrics and workloads in a large and high-resolution

design space. It should consider all design space parameters simultaneously, while enabling predictions for metrics of inter-

est. 

Full design space exploration (e.g. the case in current full system simulators such as SimFlex and GEM5) is constrained by

the substantial costs of cycle-accurate simulators, which provide very detailed view into system modeling for a wide range of

manycore micro-architectural configurations. We can expose specific trends or interested metrics in design space. However,

due to issues as long simulation times, we are limited to constrain design scenarios and consider only small subsets of the

full design space (as it is the case in current instrumentation-based simulators such as ZSim and McSimA+). Unfortunately,

implying these limitations in design space may lead to results that may not be acceptable for the larger space (e.g. future

peta-scale systems with high diversity of processors). 

5.6. Simulation time 

Designing a high-performance manycore system is extremely time-consuming. It involves exploring and analyzing a huge

number of input parameters and configuration elements. Thus, it would be expectable that, in most cases, general simulation

methods become infeasible or inefficient. The problem is that architectural simulation is very time consuming. In order to

design a microprocessor with optimal characteristics, the simulator must explore and evaluate all possible configurations

and find the optimal one. Note that finding the optimum set of configuration values can be different depending on the

target and the design criteria. In fact we can say that the total simulation time is directly proportional to the number of

configuration parameters which are required to be evaluated. The simulation time is also proportional to the size of the

workload space, the average number of instructions in each application-input pair in the workload space, and the simulator

slowdown factor [160] . 

During simulation, the performance evaluation of the system configuration is done through running a software program

or a benchmark with a suitable set of inputs. In other words a collection of computer programs (workload) is used for

the evaluation process. The simulator must provide capabilities to compose required workloads (the benchmarks with ap-

propriate inputs) which are quite specific depending on the target operation domain of simulated system. Exploration of

workload space along with design space has direct impact on the simulation time. Furthermore, the size of workload and

extra features of the manycore processor architecture increase the timing cost of the simulation. 

It is obvious, that to reduce the total simulation time, we need to reduce the size of any or all of the aforementioned

factors (e.g. COTSon has reduced its workload space to only support MPI applications, ZSim has also reduced its design space

by only supporting x86 as target ISA). But this might have greater costs in other aspects of simulator performance. Along this

line, techniques such as selecting a region of interest through statistical simulation [161,162] (as used in Graphite, LiveSim

[163] and BigHouse [164] ), choosing a limited but representative set of program-input pairs [165–167] , reduced input sets

[168] , trace sampling [169] (as used in TQSIM [170] ), barrier interval time parallelism [171] and simulation optimization

[172,173] (as these are partially used in BigSim and COTSon) might be taken into account. 

5.7. Multi-model simulations 

We must consider modeling manycore systems in different scenarios, as for some studies and analyses we need to have

a simulator with capability of multi-dimensional modeling. It means that the simulator must provide an accurate modeling

of the system and processor architecture while it offers functionalities to analyze the impact of interconnect networks,

thermal and power consumption modeling. It is a challenging task, since we need to put several modeling mechanisms that

communicate and work together. 

5.8. Scalability 

In order to model future peta-scale manycore systems and architectures, the current parallel software simulators are

supposed to exploit the highest level of parallelism from the underlying parallel architectural host platforms. The obvious

big challenge of such simulation is dealing with the rapid increasing number of cores and threads. We expect modeling and

analyzing tools to keep a constant amount of overhead, while coping with the exponentially increasing number of the cores.

In other words, overhead must be constant in time and independent from the system size. Handling and managing the

intercommunication between threads/cores, resources and threads, which are involved in synchronization and contention 

points between threads and cores, in both application and architecture level is critical with respect to the synchronization

bottlenecks. The problem of synchronization in manycore era will result in large scalability issues. 



J. Zarrin et al. / Simulation Modelling Practice and Theory 72 (2017) 168–201 191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.9. Productivity 

Researchers and system designers expect simulators to be more productive and come with a set of requirements, features

and characteristics such as ease of use, management tools, documentation and deploy-ability, visualization, deployment,

debugging, etc. which could help them to perform modeling, designing and evaluating of the future systems in a better

way. However, these requirements are changing, and sometimes are unclear. In addition it increases the cost of simulator

construction. 

6. Discussion and future directions 

In order to produce peta-scale manycore simulators with capability to explore a wide range of micro-architectural design

space of future parallel systems and architecture we have to use the capabilities of the current parallel hardware. This means

that we must be able to fully exploit the current hardware architecture to build future parallel hardware and platforms. This

direction, the only that will follow current hardware evolution, brings all of the challenges in application concurrency, many-

core and hardware parallelism, to simulator designs, while they face some specific challenges which particularly belongs to

the scope of distributed and parallel simulations. We also need to identify the most important capabilities of the current

simulators. 

The followings summarize the key information on the capabilities of the current architecture simulators (as already

discussed in Sections 3 and 4 ): 

• Instrumentation (DBT) based simulators provide faster and more scalable simulation capability compared to emulation

based simulators, while the emulation based simulators provide better simulation accuracy to general architectures. 

• The configurability (i.e. the ability to explore various ISAs and system architecture) of instrumentation based simulators

is limited. Moreover, most of the instrumentation based simulators are user/application level simulators. 

• Sampling based simulators are faster and more scalable compared to non-sampling based simulators with the cost of

reducing simulation accuracy. 

• Hardware-assisted simulators are faster than software-assisted simulators. However, they create complexity for develop-

ment and they are not flexible for design space exploration. Furthermore, hardware-assisted simulators are more expen-

sive than software-assisted simulators. 

• Network/interconnect modeling is a requirement for distributed-memory simulation. Furthermore, distributed memory

simulators are more scalable than shared memory simulators and they can provide faster simulation by enabling cluster

based simulation. 

• Parallel simulators are faster than sequential simulators. However, they generally suffer from drawbacks, such as compli-

cated and inefficient scheduling of simulation segments and high communication overhead. Synchronization techniques

improve the performance of the parallel simulators. But still efficient synchronization is a challenging issue for parallel

simulation. 

• Modularity is a very important feature for simulators, since it provides fast development, ease of use and flexibility

for simulators. Accordingly, for most current simulators, efforts have been made to apply modularity through creating

component based architectures which enables leveraging of existing tools and components. 

We can conclude that, due to the large variety of simulator applications and methodologies trade-offs, it is not feasible

to expect a comprehensive simulator to simultaneously satisfy the requirements of researchers in different communities.

Therefore simulator designers must clarify the specific target usage of their simulation tools at the first step. Furthermore,

due to the aforementioned challenges, we should make effort s towards modular simulation platforms that are able to lever-

age existing high throughput modules, methods and solutions to build the new tools. Here, base-simulation techniques such

as synchronization, sampling, scheduling, etc. are required either to be improved or recreated. 

In this paper, we have presented the characteristics and capabilities of the current simulations and modeling tools, aim-

ing to simulate future peta-scale manycore systems and architectures. We have extracted and demonstrated a set of most

significant problems and challenging issues which the simulator designers have to deal with. In order to cope with the

aforementioned challenges, and to respond to the needs and concerns of different design space exploration and multi/many

core architecture simulation requirements, we argue that, several techniques appear to be more promising to develop. Thus,

we expect that the future direction of research in modeling and simulation of manycore systems will expand upon the

following lines, relying on existing best of breed features currently incipient in different simulators: 

• Regression and analytic models 

• Statistical simulation 

• Acceleration and FPGA-basedPrototyping 

• Modularity,integrability and aspect-oriented simulation 

• Parallel simulation 

• Cloud-based simulation 

• Raising level of abstraction 

• Model-driven simulation 
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6.1. Regression and analytic models 

Regression and analytical modeling is a statistical tool for the investigation of relationships between design space metrics

and variables and it is an efficient approach for accurately predicting different metrics and parameters in a large micro-

architectural design space. Regularly, in manycore modeling we seek to clarify the causal effect of one metrics upon another

metrics and parameters. To explore such issues, we can apply regression techniques to simulators, enabling them to ef-

ficiently obtain approximates of the design metrics. Simulators can collect data on the interested underlying metrics and

employ regression analytic approaches to foresee the quantitative effect of the causal metrics upon the metric that they

influence. For example, the work presented in [174] uses this approach for design space exploration by applying a class of

models where, in each model, the response time is modeled as a weighted sum of foreseeing metrics plus a random noise

(a noise is defined as the effect of the other metrics which are not considered in the prediction model). 

6.2. Statistical simulation 

Analyzing all the functional events and creating timing models for each component is costly due to the simulation time.

Sampling and statistical simulation techniques are solutions to decrease the time of simulation. These approaches rely on

collecting and pre-calculating certain architecture-dependent performance factors. The analysis techniques periodically sam- 

ple and statistic on some characteristics of the running application in order to accelerate subsequent simulations. This so-

lution proved to be highly accurate while having low overhead. However, the statistical simulation is constrained in the

number of architectures that it can support. Furthermore, it is not clear whether these techniques can tolerate significant

modifications in the number of cores or the interconnect network topology. 

6.3. Acceleration and FPGA-based prototyping 

Architecture research already has started to concentrate more on implementation and less on design of instruction sets.

Along this line, FPGAs have been employed at different levels of abstraction in the design for the purpose of simulation,

implementation and evaluation of current and future computer architectures. Architecture simulators can achieve benefits

from increasing the speed of register transfer level simulation by performing logical simulation and evaluation based on

FPGA-accelerated hardware platforms. As example of these range of simulators, we can mention Quick-turn [175] (an old

product) and CadencePalladium [176] (a more recent one). Another example which integrated FPGA technologies into a tool

for exploring and evaluating microarchitectural designs especially for newly proposed architectures is [177] . 

The simple idea behind FPGA-based simulators is using FPGAs to simulate Register Transfer Level (RTL) (i.e. a design

abstraction which models a synchronous digital circuit), because a RTL simulation typically is very slow. In addition, we can

map processors directly to FPGAs, which results to enable using higher clock rates. According to this concept the Research

Accelerator for Multiple Processors (RAMP) [178] provides a set of research effort s such as RAMP Blue [179] , RAMP Red and

RAMP Gold [147] . RAMP Blue is a simulated machine, with 1008 cores, which are inter-operated by message passing and

distributed memory. RAMP Red is another many-core simulator designed to investigate the issues of transactional memory

(TM). Both of these projects used Xilinx FPGAs on Berkeley Emulation Engine 2 (BEE2) boards. 

The most important problem of direct-RTL-mapping is that timing models is a property of the functional modeling.

RAMP Blue tried to solve this problem by employing a separate simple timing model, which uses clock-gating of various

components to get correct functional behavior while faking the desired timing model. This technique implies a tight coupling

between the timing and functional simulations because the timing model is a wrapper around each functional component.

Direct RTL-mapped systems do not support modularity and they are also suffering from timing wrappers. This leads FPGA-

based simulators to completely split the timing and functional modeling of the target system. 

6.4. Modularity, integrability and aspect-oriented simulation 

There are islands of simulation and modeling tools with various focus on different domains, which are completely iso-

lated from each other. Modularity is an important requirement for simulation tools in order to achieve integrability and

reusability. Modularity can be obtained in different levels. Implementation-level (object-level or component-level) modu- 

larity is a common approach to design modular simulators, where a simulator composed of a set of interrelated compo-

nents/objects working together toward a common objective. This even makes simulators more flexible to interoperate with

other external simulators or simulator components. In fact, a powerful and comprehensive solution has to benefit from

existing tools and individual investments as much as possible. In addition, a proper simulation approach must provide an

infrastructure to leverage mature tools via standardized APIs for common simulator services and functionalities (such as time

modeling, synchronization, sampling, event modeling, interconnects simulation, bandwidth and latency modeling, thermal 

and energy consumption modeling). It could support a very large design space exploration in various aspects and objec-

tives. Furthermore, it catalyzes the development process of the new simulator platforms while the resulted tools would

be substantially efficient. There are several examples of successful (implementation-level) modular integrations in the cur-

rent literature, including Qemu-COTSon [30] , NOXIM-COTSon (NOXIM is a network on chip simulator), and SystemC-Qemu

[131,133–136] . 
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Modularity can also be applied in a more conceptual level by advocating aspect-oriented paradigms into the area of

manycore simulation. This type of modularity can be described as model-level (or aspect-level) modularity, where simula-

tion of a target (manycore) system can be performed considering different viewpoints (aspects or simulation aspects). Each

viewpoint can be defined as a representation (specification) of a target system (simulated system) in a certain view or aspect

(i.e. simulation aspect). In fact, a viewpoint (or an aspect) specifies the simulation focus (e.g. memory and cache, process-

ing cores, network on chip, power and energy, OS and application execution). For example, in NoC simulators, it might be

necessary to provide more detailed interconnection while describing cores in more abstract level, since the focus of such

simulators is on interconnection networks. 

In this context, modularity refers to separating the simulation of different concerns of a target system and decomposing

the entire simulation into a set of simulation aspects. Each simulation aspect can simulate the system under study from a

particular point of view. The simulation aspects can be recomposed through a weaving mechanism (e.g. [180] ), providing

facility to simulate a target system from all aspects or only certain aspects of interest. These weaved modular aspects can

flexibly communicate to each other in order to provide a detailed model of a target system with respect to desired aspects.

This can provide simulation efficiency specially when simulation is required for systematic optimization. In such a case, the

optimizer aims to optimize the system under study from a certain point of view, therefore it needs to evaluate the system

from a particular view by simulating the certain aspects of the system. There are some works that already introduced aspect-

oriented simulators [181–184] in the field of discrete event simulation. However, none of them are specifically designed for

the purpose of manycore architecture simulation. 

6.5. Parallel simulation 

The traditional sequential simulators already began to be converted to parallel simulators. However, there are still ma-

jor challenges that adversely affect the performance of parallel simulations. These issues include segmentation of simula-

tion workloads, dynamic scheduling, communications between simulator instances, time management and synchronization.

Among them, synchronization is a key issue, since lacking an adequate synchronization may result in a time causality error

(i.e. violation of the time-stamp order), imposing overhead by periodical synchronization in order to achieve consistency

among logical clocks of different host nodes [185] . For example, a high speed node might receive a straggler event with an

overdated time-stamp from a low speed node (an straggler event is an event which its time-stamp is less than the local

clock value). A potential direction to cope with the synchronization problem might be to use multilevel lax(relax)-based

synchronization approaches, as it is getting common for recent parallel (manycore) simulators [185,186] due to their capa-

bility to significantly reducing the synchronization frequency and in turn, reducing synchronization overhead and increasing

parallelism. These strategies work through efficiently adapting a lax-based technique (e.g. by lengthening of synchronous

periods in occurrence of straggler events [11] ) in one level, while correcting the simulation accuracy in another level (note

that traditional lax-based synchronization suffer from the lack of simulation accuracy). 

Overall, regardless of the aforementioned parallelism issues, we propose two future directions for simulation-level

parallelism along the thematics of this paper: component-level (object-level) and aspect-level (model-level) parallelism.

In component-level parallelism, a simulator contains a set of stand-alone components (a component may include sub-

components/objects) and a target system can be simulated by instantiation of components required and definition of inter-

component processes (e.g. communication between component instances). Component-level parallelism [187,188] can be

achieved by parallel execution of component instances on different host nodes (processors). In aspect-level parallelism, the

simulation of a target system includes a set of stand-alone aspects where each aspect provides a detailed representation of

a system from the prospective of a certain aspect. More complete (global) simulation of a target system can be extracted

through merging a set of aspects desired. 

6.6. Cloud-based simulation 

The Cloud service models such as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-

Service (IaaS) facilitate doing research in all the related fields of distributed/parallel computing. Using Cloud-based systems

offer the end users a completely remote, self-organized, load balanced and distributed environment as a single service/single

system which is more efficient and easy to work with. Definitely, the Cloud-based software services are able to support the

whole rage of softwares as services even simulator softwares. Currently there exist some research works that provide sys-

tem simulation service for Cloud as part of SaaS [189] . However, all the software (such as computation centric and real time

applications) and particularly simulators are not the same and they have different operational behaviors and characteristics,

so we might consider that using a generic SaaS would not be enough to satisfy all the requirements of the future Peta-scale

system simulators. Deploying simulators using SaaS [190] will arise some complexities in different aspects such as configu-

ration, synchronization, workload distribution, etc. In other words it doesn’t provide the performance and ease of use as the

simulator users are expecting. 

A possible approach to improve the performance of the Cloud-based simulators [191–193] is developing the Cloud service

model as Simulation-as-a-Service(SiaS), which means that SaaS have to be adapted and customized precisely to run simula-

tors. So by using such a simulation service, the simulator runs on the Cloud servers while leaving the user’s local resources

free. A large scale manycore simulator explores a very large model/experiment space where the behavior of each model is
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Fig. 9. Interval simulation according to miss events (extracted from [194] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

explored during its creation. Furthermore, in runtime each experiment model in the design space will find emergent prop-

erties which cannot be deducted from the model and they can only be observed during simulation. Simulation in large scale

involves a high number of parameters, values and settings and we can say that it is a resource intensive application which

most of its behaviors can be only identified during runtime. Such a Cloud-based simulation service provides a service based

on the amount of simulated time for the end user experiment. It takes care of the distribution of the experiment work load

on several machines in the Cloud, and finally it will collect all the results from the worker machines. 

6.7. Raising level of abstraction 

Generally, architecture simulators suffer from two major timing limitations, which are simulation time and development

time of simulators. Full-cycle-accurate simulators are examples of this case. They are accurate and fulfill the user require-

ments for correctness of the experiments, but they are highly time consuming and result from a complex development

process which takes time. But this detailed modeling is not necessary for many kinds of design space exploration and just

makes the development of new models more difficult. For example, we do not usually need to model the details of cache

coherence protocols or many-core interconnection networks when investigating trade-offs in the memory system hierarchy. 

Raising the abstraction level of the simulation will help simulators to be faster and easier to use, while remaining ac-

curate. The problem is finding out what level of abstraction is appropriate and how to deal with the tight performance

among the co-executing threads and the micro-architectures. Interval simulation [194] is a possible solution along this line.

It raises the level of abstraction in the core-level compared with the typical detailed simulation. It uses a mechanistic ana-

lytical model [12,194] which drives the timing models of each individual cores with sampling of some set of the instructions

through the cores’ pipeline stages. Each interval is defined as the distance between two miss events (branch mis-predictions,

cache L1 I-cache miss, long-latency load miss or TLB misses) (see Fig. 9 ) through the cores’ pipeline stage which identifies

a part of instructions stream. The miss events can be determined by employing branch predictor, memory hierarchy, cache

coherence and interconnection network simulators.Thus, the mechanistic analytical model drives the timing models for each

intervals instead of the whole instruction set. The integration between miss event simulators and the analytical models

facilitate the modeling of the tight performance entanglement between co-executing threads on manycore architectural pro-

cessors. This approach is a promising technique particularly for system level exploration at the early design stage. Sampling

the simulated instruction stream, using host multi-threading and mapping the simulations workloads on FPGAs or GPU

are the other alternative approaches that achieve considerable simulation speedups while maintain the performance in a

cycle-accurate manner. 

6.8. Model-driven simulation 

MDE based simulation (simulation based on Model Driven Engineering) can be used as a powerful alternative for many-

core simulations in future instead of instrumentation-based simulation. Model-Driven Engineering (MDE) is a software de-

velopment methodology that evolved as a paradigm shift from the object-oriented paradigm (everything is an object), into

the model engineering paradigm (everything is a model) [195] . Currently, this method is used mostly in the domain of soft-

ware engineering, programming languages and domain specific languages, but not in manycore simulation. Applying MDE

concepts in the area of simulation, may lead to a new generation of manycore simulators which can efficiently cope with

multiple challenging issues, including interoperability (e.g. ability to simulate various target systems on a fixed host system),

multi-model simulation, simulation speed, design space exploration, etc. 

In MDE, everything is defined as model and a model basically is a description of a real system (like a manycore system

including different com ponents such as memory, processing cores, network and interconnect). In fact, a (real) system is an

instantiation of a model. Each model, in turn, is defined by another model, so-called metamodel (i.e. the abstract syntax

of a modeling language is specified using another model, describing the syntactic elements and the relationships existing

between those elements). The Object Management Group (OMG) proposed a four-level metamodeling framework as a stan-

dard to develop modeling languages. In each level, except the bottom level (M0), there is a model that specifies a set of

other models at the lower level in a recursive way. The M0 is the bottom level of this hierarchy, specifying various real sys-

tems (e.g. a memory component, a processor, different manycore systems). At the higher level (M1), models (e.g. UML class

diagrams) represent (abstract) these systems. Each model conforms to its metamodel defined at the upper level (M2). And

similarly, metamodels in level M2 conform to another models, defined at the highest level (M3), so-called meta-metamodels.
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Fig. 10. An example of both structural and behavioral metamodel hierarchy for model-driven manycore simulation (note that “Behavior” entities are specific 

for behavioral metamodeling). 

Fig. 11. Extracting behavioral properties of a target model (target system) during run-time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meta-metamodels (e.g. OMG’s Meta Object Facility (MOF) [196] ) are self-descriptive entities, enabling to confirm to theirself.

MDE is able to raise the level of abstraction in system description/specification (by using models at the different levels of

abstraction) and increase automation in running (execution or simulation of) a system (by using code generation and model

transformations mechanism). In other words, the MDE approach promotes the use of models as first-class entities that need

to be constructed, maintained, executed, and mapped into other models or artifacts by model transformations. 

Overall, MDE covers aspects such as architecture design, code generation, model transformation and model checking.

Model checking includes techniques to check and ensure the quality (performance) of the models (e.g. model validation

using behavioral properties). Referring to the above-mentioned metamodel hierarchy, a model-driven manycore simulator

can flexibly explore the design space through specification of unlimited target systems as different models in different levels

of metamodel hierarchy. Since the descriptions of target models in metamodel hierarchy is very abstract, the simulator

can swiftly check the functional accuracy of different designed target models, before going to the detailed simulation of a

specific target system. This can be done through using model checking/validation mechanism provided by MDE approach.

Furthermore, using model transformation languages [197–201] , a model-driven simulator can provide interoperability by

means of capability to convert any desired target models to codes which can be directly executed on the host machine.

This means that a MDE-based simulator can flexibly address platform complexities through simulation of any desired target

system on a fixed host machine (similar to retargetable DBT, discussed in Section 3.1 ). 

As we discussed above, current Model-Driven Architectures (MDAs) provide capability for structural metamodeling which

can efficiently be used for functional modeling in manycore simulators. A recent work [202] in this area introduces the

behavioral metamodeling to complement the structural metamodeling (see Fig. 10 ). This behavioral metamodeling (including

various behaviors described in different levels of metamodel hierarchy) facilitates to extract behavioral properties of a target

model (target system) during run-time. This allows performance modeling while functional modeling is performed (see

Fig. 11 ). Model-driven simulation can be used as an alternative for instrumentation-based simulation which extracts the

performance behavior of the target system by injecting code into the simulated binary, running on the host machine. 

6.9. Summary 

Overall, the areas open to innovation are manyfold. We do expect next generation manycore simulators to rely on several

of the aforementioned techniques to reach the required performance and complexity management of future simulations.

Global technology development, and specially the specific development we will see in manycore systems, and its associated

market, will determine the relevance of each of these simulation techniques in the future manycore simulations that will

handle peta-scale computing systems. 
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