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a b s t r a c t 

The introduction of ICT in techno-socio-economic systems, such as Smart Grids, traffic 

management, food supply chains and others, transforms the role of simulation as a sci- 

entific method for studying these complex systems. The scientific focus and challenge in 

simulations move from understanding system complexity to actually prototyping online 

and distributed regulatory mechanisms for supporting system operations. Existing simula- 

tion tools are not designed to address the challenges of this new reality, however, simula- 

tion is all about capturing reality at an adequate level of detail. This paper fills this gap by 

introducing a Java-based distributed simulation framework for inter-connected and inter- 

dependent techno-socio-economic system: SFINA, the Simulation Framework for Intelligent 

Network Adaptations. Three layers outline the design approach of SFINA: (i) integration of 

domain knowledge and dynamics that govern various techno-socio-economic systems, (ii) 

system modeling with dynamic flow networks represented by temporal directed weighted 

graphs and (iii) simulation of generic regulation models, policies and mechanisms appli- 

cable in several domains. SFINA aims at minimizing the fragmentation and discrepancies 

between different simulation communities by allowing the interoperability of SFINA with 

several other existing domain backends. The coupling of three such backends with SFINA 

is illustrated in the domain of Smart Grids and disaster mitigation. It is shown that the 

same model of cascading failures in Smart Grids is developed once and evaluated with 

both MATPOWER and InterPSS backends without changing a single line of application code. 

Similarly, application code developed in SFINA is reused for the evaluation of mitigation 

strategies in a backend that simulates the flows of a disaster spread. Results provide a 

proof-of-concept for the high modularity and reconfigurability of SFINA and puts the foun- 

dations of a new generation of simulation tools that prototype and validate online decen- 

tralized regulation in techno-socio-economic systems. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

Simulation has traditionally been one of the cornerstone scientific methods for understanding the various complex tech-

nical, social or economic systems. However, the introduction of cutting-edge ICT technologies in such systems, i.e. Internet
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of Things, Big Data and others, has brought fundamental changes in their design and real-time operation with disruptive

implications for the current simulation approaches. On the one hand, techno-socio-economic systems are nowadays highly

inter-connected, inter-dependent and distributed [1,2] . For example, human mobility influences traffic systems, traffic sys-

tems rely on communication networks that also support the operations of Smart Grids, which at the end energize all other

aforementioned systems. A data-driven multi-disciplinary approach is required to understand these interactions and inter-

dependencies. On the other hand, the regulation of such complex inter-connected systems evolves to online, automated and

decentralized control systems running intelligent software mechanisms. Existing simulation tools cannot anymore imitate

the real-world operations of techno-socio-economic systems as these are nowadays of a total different nature. Alternative

distributed simulation tools, of a fundamentally different design approach, are required by researchers, engineers, policy-

makers and operators to build and run decentralized regulation mechanisms for inter-dependent techno-socio-economic

systems. 

This paper introduces such an alternative distributed simulation tool: SFINA, the Simulation Framework for Intelligent Net-

work Adaptations . 1 SFINA aims at bridging the gap of the highly fragmented work on simulation between different scientific

disciplines. This is achieved by splitting the simulation complexity in three levels that form the conceptual layers of SFINA.

The first layer integrates domain knowledge and dynamics from various domains. Existing simulation tools can interoper-

ate with SFINA. The second layer provides a modeling abstraction using domain-independent flow networks represented by

temporal directed weighted graphs. Such graphs are temporal as they change the structure or the weights of the nodes/links

over time. The third layer supports the prototyping and evaluation of regulation models, policies and mechanisms over the

underlying flow networks. Therefore models can be implemented once and validated across multiple applications domains. 

Moreover, this paper illustrates the framework realization with two application scenarios that provides a proof-of-concept

for the modularity, reconfigurability and scalability of SFINA compared to related work. The application scenarios concern

the modeling of cascading failures in Smart Grids and the mitigation of disaster spreads. 

Cascading failures are complex phenomena to understand and challenging to prevent or tolerate. They have tradition-

ally been a source of societal costs, disorder and chaos. Online regulation of techo-socio-economic systems results in new

threats of reliability and system robustness [1,3,4] . This paper shows that the same model of cascading failures can be sim-

ulated using the power flow analysis from two different domain backends. Simulation performance varies and results about

the impact of cascading failures are not always in symphony confirming the requirement for a multi-perspective modular

simulation. 

The interplay of structural and functional dynamics of disasters spread, e.g. diseases, financial crises, earthquakes, and

other, have gained significant attention by several research communities [5] . Mitigation strategies are usually designed with

a specific disaster spread model in mind and for this reason, implemented strategies are usually integrated to the simulated

spread models. In contrast, the framework realization of SFINA interoperates with a disaster spread model as a backend

and two mitigation strategies are implemented as SFINA applications so that they can be reused for the simulation of other

spread models. Moreover, other implemented framework functionality can be seamlessly reused in the simulation process

such as test scenarios, visualization capability and flow measurements. 

The contributions of this paper are summarized as follows: (i) A release to a broad spectrum of scientific communi-

ties of an open-source software framework implemented for multi-domain simulation of techno-socio-economic networked

systems accompanied with several utilities, an extensive tutorial 2 and application examples. (ii) The applicability of flow net-

works as an abstraction methodology in multi-domain simulation. (iii) The interoperation of existing simulation backends

with SFINA, without changing a single code line within a SFINA application even when backends are written in different

programming languages. (iv) Two framework realizations and their evaluation using real-world and synthetic data. They are

used to study cascading failures in power networks and mitigation of disasters spread. 

This paper is organized as follows: Section 2 provides an overview of the SFINA framework. Section 3 illustrates the ar-

chitecture of SFINA in detail. Section 4 introduces a realization of SFINA with two application scenarios: cascading failures in

Smart Grids and disaster spread in flow networks. Section 5 compares SFINA with related work. Finally, Section 6 concludes

this paper and outlines future work. 

2. Overview 

There is often a significant fragmentation in the data formats, models and tools used by academic and industrial com-

munities when studying and optimizing techno-socio-economic systems such as transportation systems, financial markets or

infrastructural networks, i.e. power, gas and water networks. This means that several communities use or develop their own

data formats, models and tools that do not allow a more universal evaluation and comparison of models and mechanisms.

This phenomenon results in discrepancies of findings or very customized solutions with limited applicability. 

Motivated by this limiting status-quo, this paper introduces SFINA, the Simulation Framework for Intelligent Network Adap-

tations . SFINA represents complex techno-socio-economic systems as temporal flow networks modeled by dynamic directed

weighted graphs. In contrast to static undirected and unweighted graphs that only show a snapshot of interactions, a tempo-

ral flow network encompasses both structural and functional aspects of most techno-socio-economic systems. For example,
1 Available at https://github.com/SFINA (Last accessed: December 2016). 
2 Available at: https://github.com/SFINA/Manual (last accessed: November 2016). 

https://github.com/SFINA
https://github.com/SFINA/Manual
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Fig. 1. The three main layers of the SFINA framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the interconnected infrastructural physical assets and their interactions are modeled by the directed graph. The resources

exchanged in a network can be modeled by the weights of the graphs. Any change in the assets of the resources can be

modeled by a temporal instance of the graph. The core operation of SFINA is the flow analysis that computes the flow in a

network given its physical characteristics in an application domain. The grant objective of SFINA is to provide development

toolkits to build and evaluate generic and modular flow regulation mechanisms applicable in different flow analysis models

and, even application domains. 

SFINA is outlined in three layers: (i) Domain knowledge and dynamics concern real-world data and physical laws that

govern techno-socio-economics systems. (ii) Flow networks are an abstraction of domain knowledge and dynamics. (iii) Reg-

ulation models, policies and mechanisms are generic and reusable implementations by the users of the SFINA software. 

The interaction of the three layers model a feedback loop: the bottom layer provides information about the flow distri-

bution in a network given domain knowledge and dynamics, for instance, power flow distribution according to the Kirch-

hoff’s law. The middle layer provides to the top one structural and flow information of the network that is application-

independent. Therefore, the top layer can compute and apply to the middle layer generic network adaptations to the topol-

ogy or flow that improve performance, for instance, disconnect a node to decrease the overall flow in the network. The

middle layer interacts again with the bottom one to compute the application-specific new state of the flow distribution

after the applied network adaptations. 

The three layers of SFINA enable an integrated analysis and prototyping of techno-socio-economic systems with two

novel capabilities: 

1. Support of flow analysis and regulatory models for systems of the same domain. 

2. Support of flow analysis and regulatory models for systems of several independent or inter-dependent domains. 

These capabilities result in the following advantage: An implemented flow regulation model can be evaluated with differ-

ent interoperable tools of the same domain but also among different domains. For example a flow regulation mechanism for

mitigating cascading failures can be evaluated with multiple interoperable tools of a certain domain, e.g. power networks.

One tool may support the power flow analysis and another tool the transient stability (Capability 1). Moreover, the same

flow regulation mechanism can be evaluated in another domain as well, e.g. gas and water networks (Capability 2). 

SFINA is by design a decentralized multi-agent system and it is an open-source 3 implementation in Java. A SFINA user

writes once an application and evaluates it by interoperating with different tools of the same or different application domain

without changing a single line of code in its application. 

3. The SFINA architecture 

The three layers of the SFINA framework in Fig. 1 are realized with the architecture of Fig. 2 . SFINA consists of 7 compo-

nents: (i) the Protopeer toolkit , (ii) the file system , (iii) the flow analyzer , (iv) the backend agent , (v) the flow network , (vi) the

simulation agent and (vii) the applications . 

Protopeer is a distributed prototyping toolkit that provides networking, scheduling, logging and deployment services to

the overall SFINA framework. The file system loads all required information for the simulation. Input data can be reloaded

during simulation and output data are written to files during simulation for further post analysis. The flow analyzer com-

putes the distribution of the flow in the network according to the selected domain backend. The backend agent is re-

sponsible for the power flow analysis given the structural and functional dynamics of a flow network. The flow network
3 Available at https://github.com/SFINA/SFINA . A tutorial for developers and users is available at https://github.com/SFINA/Manual (last accessed: Decem- 

ber 2016). 

https://github.com/SFINA/SFINA
https://github.com/SFINA/Manual
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Fig. 2. An outline of the SFINA framework. 

Fig. 3. Time management in SFINA. 

 

 

 

 

 

 

 

 

 

 

 

 

contains and manages information about the nodes, the links and their topology. The simulation agent orchestrates all other

components by scheduling operations and executing simulation events. Finally, applications expand the functionality of the

simulation agent and implement policies, models and mechanisms for the flow regulation. 

The execution of a simulation consists of the following run time periods: (i) system , (ii) bootstrapping , (iii) simulation , (iv)

step and (v) iteration . Fig. 3 outlines the time management of the SFINA framework. 

The system run time is the total execution period of the SFINA simulation software. It is measured with a Protopeer

clock in simulation or live deployment mode. System run time consists of the bootstrapping run time and simulation run

time. During bootstrapping, the simulation is initialized by loading the required input information for the simulation. The

duration of the bootstrapping period is chosen by the user. Simulation run time is equal to the system run time minus

the bootstrapping run time. It consists of discrete simulation steps of equal length during which measurements are logged,

events are executed and flow analysis is performed. The main operations of applications are also executed in each of the

simulations steps. Finally, each simulation step optionally defines a number of iterations that model sequences of evolving

events. For example, Section 4 shows that the failure of a power line in a power network may result in a cascading failure

during which several other lines consecutively fail. The evolution of a cascading failure can be modeled and studied with

the iterations of SFINA. 
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Fig. 4. An outline of the Protopeer architecture as illustrated in earlier work [7] . SFINA inherits all services and prototyped functionality of Protopeer and 

therefore it can be deployed and run as a fully decentralized networked system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An event in SFINA is the adjustment of flow, topology or system parameters during simulation run time. An event can

be static or dynamic . Static events are encoded offline and manually by the user. They are loaded in the simulation by the

file system. Dynamic events are created in an automated fashion during simulation by the application logic. 

A SFINA application can run single-threaded or multi-threaded in a single machine. It can also run in a cluster or even be

deployed in a real-world operational system such as Planetlab 4 or a cloud computing infrastructure [6] . Protopeer supports

these deployments options [7] . Distributed simulation scenarios may include computationally intensive simulations, model-

ing of inter-dependent flow networks or even multi-domain simulations. SFINA can also run as a web service 5 so that it can

be used in the future within architecture-driven, service-oriented and workflow-based development environments [8,9] , e.g.

BEPEL representation from workflow to executable. 

3.1. The Protopeer toolkit 

SFINA is prototyped as a distributed system by design using the interfaces of the Protopeer library [7] . Fig. 4 illustrates an

outline of the Protopeer architecture. The simulation and backend agent extends the functionality of the ‘peerlet component’.

Therefore, all SFINA applications written on top of the core simulation agent have a network API with which they can

exchange messages in real-world networking environments. Moreover, SFINA applications and domain backends have access 

to measurement and logging services that can be used for a post-analysis of the simulation results. The core simulation

agent inherits the scheduling functionality of Protopeer that reduces low-level programmatic effort required by developers

of applications. 

In summary, low level complexity such as scheduling, networking, logging and measurements is hidden from developers

of the SFINA applications that can focus entirely on the development of flow regulation functionality. Although the current

SFINA implementation is supported by Protopeer library, the design of SFINA does not depend on Protopeer. SFINA interfaces

allow the replacement of Protopeer by another system if this becomes a requirement in the future. 

3.2. File system 

SFINA relies on a structured file system for (i) a user-friendly dynamic loading of all the required data and (ii) export-

ing the simulation output during simulation run time. Four file types are loaded in system run time with the following

information: 

1. Flow : It contains domain-dependent information about the physical characteristics of the network that govern how flow

is distributed. For example, for a power system this file may contain the values of line impedance, node voltages, etc.

For traffic systems it may contain physical characteristics of vehicles, traffic lights or road intersections. 

2. Network : It contains domain-independent information about the topology, meaning which nodes the links connect. 

3. Events : It encodes changes of information about a node, link or system parameter at a certain simulation step. For ex-

ample the removal of a line at a certain step can be encoded by a static event. 

4. Parameters : It contains global system-wide parameters of the simulation such as which domain backend is selected for
the simulation. 

4 Available at https://www.planet-lab.org (last accessed: December 2016). 
5 Available at: https://github.com/SFINA/Web-Services (last accessed: December 2016). 

https://www.planet-lab.org
https://github.com/SFINA/Web-Services
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Fig. 5. Auto-generation of input files based on user-friendly input to a graphical user interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow and network file types can be reloaded and exported at any simulation step, in contrast to the events and pa-

rameters that are loaded only once at the initialization phase. At this development stage, the SFINA file format concerns

comma-separated text files for easier use and readability of the data used in the simulation. SFINA contains extensible

utilities that convert back and forth other file formats 6 to SFINA format so that the user can use state-of-the-art datasets

generated from various domain backends. The data loaders of the file system are modular and can be extended to parse

future data types required in simulations. 

The input files can be interactively generated and modified via a GUI. 7 Instead of generating the flow network informa-

tion programmatically, the files can be auto-generated from user-friendly input given via the SFINA GUI. Fig. 5 illustrates

how the input files can be auto-generated from graphical user input. 

3.3. Flow analyzer 

Flow analysis is the calculation of the flow in the links and nodes of the flow network given the physical character-

istics of the studied domain and perturbations introduced by the executed events. A flow analysis highly depends on the

domain-specific physical characteristics of the studied network and the physical laws that govern such a network. Flow

analysis is performed at each simulation step. It can actually be executed several times following the execution of static or

dynamic events. The output of a flow analysis can be used to tailor decision-making and future regulatory actions on the

flow network. 

3.4. The backend agent 

During bootstrapping, the backend agent loads and parses the flow information from the file system. It provides, through

the simulation agent, a generic interface for flow analysis that is agnostic of the actual implementation of the adopted

domain backend. It is the backend agent that makes the acquired instantiation of the flow analysis based on the selected

domain backend adopted in the simulation. In this way, the application developer does not need to implement flow analysis

algorithms but can use several existing ones implemented at different domain backends. 

3.5. Flow network 

A flow network in SFINA consists of a set of uniquely identified nodes and directed links that contain the flow infor-

mation loaded from the input files. A node contains a set of incoming and outgoing links. Respectively, a link contains a

starting node and ending node. A network is connected if there is a path between any of the nodes, otherwise the network

is disconnected to graph components referred to as islands . 

The flow network manages the topology. Nodes and links have two statuses: (i) activated/deactivated and (ii) con-

nected/disconnected . The former status mandates whether a node or link is operational during the simulation. Events may

determine this status. The latter status denotes whether a node or link is adjacent to a link or node respectively that actually

determines the topology of the flow network. 

Nodes and links have a (i) flow and (ii) capacity . The information type of flow and capacity is determined by a system

parameter and should be information contained in the nodes and links. The flow type represents a resource distributed in

the network and studied in the performed simulation. The capacity type determines which quantity can make a node or

link overloaded that may result in activation/deactivation and, therefore, connection/disconnection from the topology. 
6 Such formats include the MAT-File and the IEEE Common Data Format. 
7 Available at: https://github.com/SFINA/GUI (last accessed: December 2016). 

https://github.com/SFINA/GUI
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The management of the topology is hidden from applications. This means that a generic interface allows adding/removing

nodes and links. The update of the graph occurs in the background without programmatic effort by developers. A flow net-

work contains general-purpose topological and graph spectra metrics such as the node degree, closeness centrality, degree

centrality, degree distribution, clustering coefficient, shortest path and other. Some of this metrics are calculated with the

support of the JGrapht library. 8 Metrics are logged in the background and are available to the researcher for post analysis.

Moreover, the flow network provides the opportunity of a real-time visualization of the temporal flow network by integrat-

ing tools such as Gephi. 9 

3.6. Simulation agent 

The simulation agent orchestrates all other components of SFINA during system run time. It is responsible for the exe-

cution of all scheduled events and the calculation of the network status that is the topology and the distributed flow. For

each measurement type, simulation step, node and link, registered measurements by the framework or by applications are

computed, stored and logged. At the end of each simulation step, the flow and network information are exported by the file

system in the respective SFINA file format. 

The above agent tasks form the active state of the simulation agent and it is executed periodically at every simulation

step. During bootstrapping, the simulation agent loads the topological information from the file system and creates the

static events. A call for a flow analysis by an application is routed to the backend agent for execution. A simulation agent

also has a passive state that listens for external events received during simulation by other agents that may participate in

the simulation. 

3.7. Applications 

A SFINA application is either a usage scenario of the simulation agent or an extension of the simulation agent with

additional prototyped functionality. 

In the first case, minimal or no development effort is required. A SFINA user undertakes the following actions: 

1. Feeding all required input data in the file system as shown in Section 3.2 . 

2. Running a simulation scenario as instructed by the input data in the file system. 

In the second case, development effort is put into extending or overriding the inherited functionality of a simulation

agent. This may include one or more of the following actions: 

1. Performing, logging and analyzing new measurements. 

2. Implementing policies, models and mechanisms for flow regulation. 

3. Adjusting or re-implementing existing complex core functionality of the simulation agent. 

The design approach and interfaces of SFINA support the first two actions. The possibility of the third action occurring

should be minimized by either adopting more effective software engineering practices at the application-level or updating

the core simulation framework of SFINA to support more complex and tailored functionality. 

Upgrading the SFINA framework to support a new domain backend requires the following actions: 

1. Making flow input data available in the SFINA format. This can be done by either using one of the supporting conversion

utilities of SFINA or by building a customized conversion tool for this purpose. 

2. Making available a domain backend library with interfaces for performing flow analysis and other supported operations. 

Moreover, an application logic can be split into multiple communicating agents by using the generic interfaces and mod-

ular approach of SFINA. 

4. Framework realization and evaluation 

This paper provides an empirical proof-of-concept for SFINA by illustrating the framework realization of the following: 

• The interoperation and evaluation of two different backends from the application domain of Smart Grids ( Section 4.1 ). 

• The implementation of a model 10 for cascading failures that can run over the two backends of Smart Grids ( Section 4.1 ).

• The interoperation and evaluation of a backend from the application domain of disaster spread, e.g. disease spreading

( Section 4.2 ). 

• The implementation of two mitigation strategies 11 for disaster spread ( Section 4.2 ). 
8 Available at http://jgrapht.org (last accessed: December 2016). 
9 Available at http://gephi.github.io (last accessed: December 2016). 

10 Available at https://github.com/SFINA/Cascade (last accessed: December 2016). 
11 Available at https://github.com/SFINA/Disaster-Spread (last accessed: December 2016). 

http://jgrapht.org
http://gephi.github.io
https://github.com/SFINA/Cascade
https://github.com/SFINA/Disaster-Spread
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Fig. 6. A reusability map of implemented backends and applications built via the SFINA framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The implementation of a flow monitor 12 for measuring the performance of models running over all three backends

( Sections 4.1 and 4.2 ). 

• The visualization 

13 of flow networks for all three backends ( Sections 4.1 and 4.2 ). 

• Simulation scenarios for testing and evaluating models running over all three backends ( Sections 4.1 and 4.2 ). 

Fig. 6 illustrates the reusability map of the backends and applications illustrated in this paper. The rest of this section

illustrates experimental results for the two application domains. 

Note that, the contributions of SFINA in comparison to related work are mainly qualitative. Therefore, the purpose of this

section is to show how the proposed generic and modular framework can be realized in two application scenarios and what

opportunities are opened up for quantitative measurements. Without the use of the SFINA framework, such measurements

would require a significantly higher and more complex programmatic effort. 

4.1. Cascading failures in smart grids 

The interoperation interfaces of SFINA are implemented for two state-of-the-art domain backends: (i) MATPOWER and (ii)

InterPSS . MATPOWER 

14 is an open-source MATLAB simulation package for power flow and optimal power flow computational

problems [10] . It is one of the most common tools used in the power domain. MATPOWER simulation code is procedural

and has a scripting-style. In contrast, InterPSS 15 is a power system simulation software that follows the object-oriented and

component-based software paradigm [11] . The goal of the interoperation between SFINA and these backends is to perform

DC and AC power flow analysis on which the model of cascading failures relies on. Results from each backend can be

compared without making two application implementations. 

The interoperation of MATPOWER with SFINA is achieved with the support of the Matlabcontrol API. 16 The use of MAT-

POWER requires the installation of MATLAB. The conversion utilities of SFINA can convert the MAT-Files of MATPOWER to

the SFINA file format. It is straightforward to interoperate with other MATLAB-based backends in a similar fashion, such as

backends for water and gas networks [12,13] . The interoperation with InterPSS is straightforward as it mainly requires the

inclusion of the free Java libraries. However, performing the desired system calls to the InterPSS library can be complex.
12 Available at https://github.com/SFINA/Flow-Monitor (last accessed: December 2016). 
13 Available at https://github.com/SFINA/GUI (last accessed: December 2016). 
14 Available at http://www.pserc.cornell.edu//matpower/ (last accessed: December 2016). 
15 Available at http://www.interpss.com (last accessed: December 2016). 
16 Available at https://code.google.com/p/matlabcontrol/ (last accessed: December 2016). 

https://github.com/SFINA/Flow-Monitor
https://github.com/SFINA/GUI
http://www.pserc.cornell.edu//matpower/
http://www.interpss.com
https://code.google.com/p/matlabcontrol/
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Its source code is not open and knowledge of the implemented algorithms may be required in some cases. 17 The generic

interfaces of the backend agent implementing the selected flow analyzer hide this complexity from the SFINA users and

application developers. 

The model of cascading failures is implemented once by reusing and extending the functionality of the simulation agent.

The model captures both DC and AC power flows, it meets the generation limits and performs load-shedding to match

supply and demand. Load-shedding is repeated 15 times at maximum, after which the system results in a blackout. Most

operations performed are actual calls to the simulation agent. It is only the algorithmic logic that is implemented in the

extended agent. In each iteration of the algorithm, power flow analysis is performed to compute the state of the cascading

failure. The model implementation is totally agnostic of which domain backend, MATPOWER or InterPSS, performs the power

flow analysis, in contrast to related work in which they are usually integrated [3,14,15] . 

Cascading failures are evaluated in five case networks 18 : (i) case-30 , (ii) case-57 , (iii) case-118 , (iv) case-2383 and (v) case-

2736 . Two measurements quantify the impact of the cascading failure: (i) line losses and (ii) power losses . Line losses are the

ratio of lines failed due to overloading during the cascading failure. Power losses equal one minus the power served after the

cascading failure over the power served before the cascading failure. These measurements are performed and logged within

the developed flow monitor agent that extends the functionality of the simulation agent. The performed measurements

can be reused beyond cascading failure models. This paper focuses on simulating and quantifying the impact of cascading

failures. Prevention and mitigation strategies, such as flow regulation with smart transformers [16,17] , are out of the scope

of this paper and subject of ongoing work. Experiments are performed on a MacBookAir v.4.2 with 1.8 GHz CPU, 4GB RAM

and Matlab R2015a installed. A prototype for live deployments in the Brutus and Euler cluster 19 of ETH Zurich is under

development as well. 

The integration of Gephi in SFINA is used to visualize the impact of cascading failures. Fig. 7 illustrates two power

networks, case-118 and case-2383 before and after a cascading failure. Several events each removing a power line, trigger

the cascading failure. The links colored red indicate the removed power lines. The size of the nodes and the thickness of the

links indicate the amount of power they serve. The missing links before and after the cascading failure refer to the power

lines trimmed during the cascading failure. 

Fig. 8 illustrates the power losses computed with MATPOWER and InterPSS when a proportion of lines are incrementally

removed. Both DC and AC flow analysis is shown for each domain backend for case-30. Experiments are repeated 10 times

and results are averaged out. In Fig. 8 a, the removed lines are random but fixed between the performed experiments, in

contrast to Fig. 8 b that shows the results for totally random line removals. The results of Fig. 8 a show that the power losses

under cascading failures are on average 15.09% higher for AC compared to DC. Both MATPOWER and InterPSS compute

power flow distributions with the same power losses. 

Fig. 9 complements Fig. 8 by showing the power losses when a proportion of the capacity in the lines is incrementally

decreased. In contrast to Fig. 9 a, Fig. 9 b restores the trimmed lines at every capacity reduction. Results show the same phase

transition in both cases. Both MATPOWER and InterPSS compute power flow distributions with the same power losses. 

In large-scale networks, the two domain backends result in different outcomes. Fig. 10 a shows that for DC in case-

118, MATPOWER results in 1.29% higher power losses than InterPSS. Under AC power flow, InterPSS does not converge and

results in a blackout, in contrast to MATPOWER that computes average power losses of 19.5%. Case-2736 in Fig. 10 b cannot

converge for both MATPOWER and InterPSS in AC power flow due to the violation of the generator limits. For a DC power

flow analysis, both MATPOWER and InterPSS result in 46.61% of average power losses. 

Fig. 11 illustrates the simulation speed of SFINA with each domain backend. Overall, InterPSS is 93.71% and 88.63% faster

than MATPOWER in flow analysis for case-30 and case-57. This is because of the external calls to MATLAB by the JVM.

However, InterPSS has a high initialization overhead in the total run time that is especially observable in low total run

times such as the one of case-30. Simulation in case-30 is on average 89.13% and 72.7% faster than case-57 for MATPOWER

and InterPSS respectively. 

Fig. 12 shows in more detail the processing overhead of SFINA under cascading failures in case-30, triggered by line

removals and capacity reduction. Experiments are repeated 10 times and with random removed lines but fixed among ex-

periments. Fig. 12 a shows an overhead with several fluctuation but without highly distinguished changes as the number of

removed lines increases. The average number of iterations is 1.05. The average simulation time is 359.47, 542.89, 287.97 and

207.41 ms for MATPOWER AC, MATPOWER DC, InterPSS AC and InterPSS DC. These results are expected given the nearly lin-

ear increase of power losses observed in Fig. 8 . In contrast, Fig. 12 b is in line with the phase transitions observed in Fig. 9 .

When capacity reduction overpasses 19.0%, the average number of iterations increase from 1 to 4.53, resulting in an over-

all increase of the simulation time for both domain backends and DC/AC power flow models. The average simulation time

is 542.91, 548.17, 582.97 and 320.35 ms for MATPOWER AC, MATPOWER DC, InterPSS AC and InterPSS DC. The respective

numbers before and after phase transition are 150.56, 164.28, 225.72, 84.66 and 773.63, 751.10, 799.16, 455.41. 

These measurements show that both MATPOWER and InterPSS communities can use their software within SFINA to

study the same model of cascading failures. The model itself can be validated in more depth by inter-changing backends
17 These challenges are overcome using the comprehensive tutorials of InterPSS and direct communication with the InterPSS support team. 
18 Available at http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/menu5.0.html (last accessed: December 2016). 
19 Available at http://brutuswiki.ethz.ch/brutus/Brutus _ wiki (last accessed: December 2016). 

http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/menu5.0.html
http://brutuswiki.ethz.ch/brutus/Brutus_wiki
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Fig. 7. Gephi visualization of cascading failures. Before the cascading failure, the removed lines are marked as red. The size of the nodes and the thickness 

of the lines indicates the amount of power they serve. For better visual representation, line directions are removed. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

as illustrated in this section. Therefore, results can be easier accessible and reproducible between different communities.

The cascading failure model does not always converge for both domain backends. This is subject of discussion and further

explanations in regards to the implemented flow analysis models in the two domain backends and the model of cascading

failures. 

4.2. Disaster spread in flow networks 

Beyond Smart Grids, there is a plethora of networks in real-world that may suffer from the catastrophic effects of cascad-

ing failures. For example, epidemic spreading of diseases [18] , failure of financial markets [14] , traffic congestion [19] are all

examples in which the interplay and inter-dependencies between structural and functional dynamics may result in cascades

of individual damages throughout the network with catastrophic effects. There are several scientific communities that study

general spreading models, protection strategies, emergency response and recovery mechanisms, or even efficient distribution

of resources to fight disasters, e.g. immunization, airline traveling policies or redistribution of medical personnel to mitigate

a pandemic, recovering from floods or fighting forest fires. Given the broad coverage, generality and significance of the topic,

a general state-of-the-art model [20] for disaster spread is implemented in SFINA as a backend. This model is referred to as

DSM, the Disaster Spread Model . The backend is implemented in Java. 
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Fig. 8. Power losses under cascading failures triggered by line removals in case-30. 

Fig. 9. Power losses under cascading failures triggered by capacity reduction in case-30. 

Fig. 10. Power and line losses under cascading failures triggered by line removals in larger-scale networks. 
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Fig. 11. Simulation speed of MATPOWER and InterPSS under cascading failures with DC and AC power flows. 

Fig. 12. Simulation speed and number of iteration under cascading failures in case-30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DSM model defines a flow network of nodes and bidirectional links that calculate a set of coupled differential equa-

tions. Each equation governs the change of ‘damage’ in a node over time. Each node is characterized by a damage level and

a tolerance threshold θ with an α gain parameter over which the node is fully damaged. Moreover, each node has a recovery

rate τ start and the spread of the damage in interconnected nodes is a function of the node degree. Each link is characterized

by the connection strength , a time delay t ij and the β parameter that models the physical characteristics of the surrounding.

The a and b fit parameters weight the influence of node degree on the disaster spread process. More information about the

mathematical model and its parameters is out of the scope of this paper. They are defined in detail in Eq. (2) of the earlier

work [20] . 

The goal of the experimental evaluation is to evaluate damage mitigation strategies in DSM under the N-1 attack model.

This model is broadly used to quantify the robustness of power systems, data centers, aerospace and automobiles appli-

cations. It defines the process of damaging one link/node, checking system reliability, recovering the network to its initial

state and repeating the process for all links/nodes in the network. In contrast, the evaluation process in the earlier work

is limited to the damage of a single random node. Each node damaging is implemented as an experiment and the damage

level of the selected node is set to 4.0. Each experiments runs for 100 simulation steps. The attack model and mitigation

strategies are implemented as SFINA applications and can be reused in different simulations and backends. 

Two types of network topologies with 500 nodes are generated using the networkx package of Python: (i) grid network ,

with 20 rows and 25 columns and (ii) Erd ̋os–Rényi random graph with 0.02 probability. The parameters of the model are

illustrated here for the repeatability of results. Node parameters are chosen as α = 5 , β = 0 . 025 , θ = 0 . 5 and τstart = 4 .

Link parameters are chosen as connection strength of 0.5, t ij from a χ2 distribution with μ = 4 , scaling factor of 0.05 and
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Fig. 13. Gephi visualization of disaster spread for the grid network. The red color indicates the damaged nodes during the spreading process. (a)–(d) No 

strategy. (e)–(h) Strategy A. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

translation factor of 1.2. Moreover, it is set a = 4 and b = 3 . Two mitigation strategies 20 are employed from the earlier

published work: (i) strategy A and (ii) strategy B . The strategies are implemented as SFINA applications by extending the

simulation agent so that they can be reused by other disaster spread models in the future. This flexibility is the result of

the generic and modular design of SFINA. The strategies define resources for recovery from a resource distribution function

r(t) = a 1 t 
b 1 e −c 1 t , with a 1 = 25 , b 1 = 1 . 1 and c 1 = 0 . 03 . These equation and parameters model an initial exponential increase

and a gradual decay of resources over time. Resources are supplied after 10th simulation step. Finally, the recovery rate of

a node at a specified time is given by 1 /τi (t) = 1 / (τstart − β2 ) e 
−α2 R i (t) + β2 with α2 = 0 . 58 and β2 = 0 . 2 . These parameters

are evaluated earlier to give an efficient response to disaster spread. 

Fig. 13 visualizes the disaster spread and the effect of mitigation strategy A for the grid network. It is evident that both

the extent and speed of the disaster are lower for strategy A. The visualization is in line with the average node damage

quantified in Fig. 14 a. The average node damage for strategy A and B is 37.65% and 58.15% lower than the case in which no

mitigation strategy is employed. Strategy A has 35.25% lower average damage than strategy B. Based on this, the probability

of increasing the average node damage from a simulation step to the next one is quantified in Fig. 13 b. During the outbreak

and before resources are supplied, the two strategies do not prevent the spread. After the utilization of the resources, the

spread decreases for a few steps as nodes recover, however, it is already too late as a few more damaged nodes result in

the disaster spread overpassing the recovery process. Given the lower level of damage per node, the two strategies cause an

overall lower spread of the disaster, as shown in the color of the nodes. 

Fig. 15 visualizes the disaster spread and the effect of mitigation strategy A for the Erd ̋os–Rényi random graph. Similarly

to the grid network, the spread of the disaster is evidently lower in the case that strategy A is employed. Fig. 16 a illustrates

the average node damage, in which strategy A and B show 29.28% lower value than the case of no use of mitigation strategy.

Fig. 16 b illustrates the probability of increasing the average node damage from a simulation step to the next one. The

increase of the damage spread is much more dramatic here than in the grid network. This is because the damage has many

more ways to spread in a random network compared to a well-structured grid topology. 

The measurements of the Figs. 14 and 16 are performed by the flow monitor as in Section 4.1 . It is implemented as a

SFINA application that can be reused for flow network measurements in different backends. 

The average simulation time of the flow analysis and the total run time is evaluated in Fig. 17 . Flow analysis causes most

of the processing overhead, 98.33% of the total run time on average, therefore, the SFINA framework by itself introduces a

minimal overhead in the simulations. The simulation with the Erd ̋os–Rényi random graphs are 64.52% slower than the one

of the grid network due to the higher number of links and the overall higher complexity of the interactions modeled in the

differential equations. 
20 These strategies correspond to the strategy 3 and 4 in the earlier work [20] . 
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Fig. 14. Disaster spread for the grid network. 

Fig. 15. Gephi visualization of disaster spread for the Erd ̋os–Rényi random graph. The red color indicates the damaged nodes during the spreading process. 

Nodes with larger size have higher node degree than nodes with smaller size. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

5. Comparison with related work 

Two mainstream approaches for modeling and simulation of complex processes are Petri nets and Pi-calculus. Petri

nets focus on the state representation of processes and they are known for their formal semantics, state-based modeling

and abundance of analysis techniques [21] . However, their interpretation and modeling can be challenging and complex

[21–23] . Moreover, it is earlier documented that state-based representation of workflows and processes have come to their

limitation as techno-socio-economic systems have complex inter-domain and inter-organzitional workflows, for instance, the

service-oriented computing (SOC) with the concepts of orchestration and choreography [24] . The linear language expressions

of Pi-calculus can also be highly complex and require advanced language expertise to adhere to the language and model

formalism, even for simple models as illustrated in earlier challenges [21] . SFINA simplifies the process design by adopting

event-based flow networks for system modeling without prohibiting the aforementioned and other workflow models. Each

node in the network can run a Petri net or Pi-calculus mode for the regulation of the flow in a certain domain. Moreover,
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Fig. 16. Disaster spread for the Erd ̋os–Rényi random graph. 

Fig. 17. Simulation speed of disaster spread in the grid network and the Erd ̋os–Rényi random graph. The flow analysis time and total run time are mea- 

sured. Simulation time is averaged across each node damage in the N-1 model. The errors in the bars indicate the variation in 10 simulation repetitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the flow network can support above a certain Petri net or Pi-calculus model that manages a process such as the restoration

of a power system after a blackout. These mixed modeling approaches are observed in earlier work and are usually domain-

dependent [25] , designed to capture as much details as possible to accurately mimic phsyical systems. In contrast, the core

simulation engine of SFINA is designed to support several multi-domain processes. 

Some earlier work [26–29] stretches the role of software technologies and standards to make simulation tools more

generic and applicable in different applications. Although this paper supports this claim, technology by itself cannot tackle

real-world challenges. The architecture and components of SFINA discussed in this paper are, to a high extent, technology-

independent. It is the actual concepts, system design and component synergies that structure the proposed framework for

the simulation of self-regulating techno-socio-economic systems. 

Most simulation frameworks focus on a single domain. For example, in power systems and beyond MATPOWER or In-

terPSS, GridSpice [30] is an open source cloud-based simulation package for the smart grid. It incorporates code from MAT-

POWER and GridLAB-D. 21 Its simulator wrappers allow users to plug in new tools to run separate distribution and trans-

mission system simulations. This capability shares similarities with the support of multiple backends by SFINA, however,

GridSpice focuses entirely on power systems and does not have generic semantics for flow networks. Moreover, GridSpice

relies on Amazon Web Services, for a cluster deployment, in contrast to SFINA that can be deployed to any networked in-

frastructure. Other simulation tools for power systems include the PowerSystems 22 of Modelica. Co-simulation approaches

move a step further by modeling both power and communication networks [31–34] . Simulation systems in other application

domains include network epidemiology [35–37] , knowledge flows [38] , evacuation systems [39] or traffic systems [40] . 

There is also a plethora of simulation tools that perform simulation of computer networks, physical or overlay net-

works [41–45] . Such tools are reviewed extensively in earlier work [46] . Only a few of these tools model networks as tem-

poral directed weighted graphs. Simpler representation of static networks are usually employed. Other generic simulation

tools include agent-based ones [47,48] , social simulators [49,50] , and simulators of social networks such as Hashkat. 23 These
21 Available at http://www.gridlabd.org (last accessed: December 2016). 
22 Available at https://github.com/modelica/PowerSystems (last accessed: December 2016). 
23 Available at http://hashkat.org (last accessed: December 2016). 

http://www.gridlabd.org
https://github.com/modelica/PowerSystems
http://hashkat.org
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tools focus on understanding system complexity, in contrast to SFINA that goes a step further to simulate mechanisms for

the self-regulation of several techno-socio-economic systems. 

Related work on cascading failures in power grids and beyond is limited to modeling instead of the modular and recon-

figurable simulation of these complex phenomena [3,14] . MATCASC [15] is a MATLAB-based tool that simulates cascading

line outages in power grids. Authors focus on the simulation of cascading failures and not on their control or mitigation.

They provide valuable metrics for quantifying the system robustness under cascading failures. However, MATCASC does not

integrate AC power flow analysis and linearizes active power flow equations with several assumptions that may not al-

ways hold as shown in Section 4 . It exclusively uses the tolerance parameter for estimating the line capacities. In contrast,

SFINA does not rely on a commercial tool but instead interoperates with domain backends such as MATPOWER and InterPSS

to provide state-of-the-art DC and AC power flow analyses with further options for solving optimal power flow problems.

SFINA also simulates line capacities with both tolerance parameter and line ratings. Events can easily encode any static and

dynamic line removal scenarios. 

In conclusion, related work on the simulation of techno-socio-economic systems lies on the spectrum between highly

flexible and generic simulation frameworks to highly customized software tools tailored to simulate system scenarios within

a specific domain. The former may result in complex unintuitive framework realizations. The latter has limited practi-

cal use and applicability, especially when the nowadays techno-socio-economic systems become more inter-connected,

inter-dependent and multi-perspective. SFINA bridges this gap by allowing the interoperation with multiple domain back-

ends, whose domain knowledge and dynamics are abstracted by dynamic flow networks represented as temporal directed

weighted graphs. This network abstraction brings solid theoretical fundamental knowledge on complex networks into a

highly empirical and experimental context. The applicability of regulation models, policies and mechanisms, such as pre-

venting or mitigating cascading failures and disaster spreads, can be simulated and evaluated within the proposed frame-

work. SFINA does not aim to replace existing simulation tools, rather to form a unifying umbrella over a significant but

highly fragmented work on the simulation of techno-socio-economic systems. 

6. Conclusion and future work 

This paper concludes that SFINA is a modular, reconfigurable and scalable simulation framework capable of prototyp-

ing online decentralized regulation for techno-socio-economic systems. This is shown by interoperating and experimentally

evaluating several backends for flow analysis and reusable applications that measure, mitigate, and visualize complex phe-

nomena such as cascading failures and disaster spread. Rather than coming to replace existing simulation tools, SFINA aims

at minimizing the fragmentation and discrepancies between simulation communities. Its ultimate objective is to respond to

nowadays challenges on how to regulate highly inter-connected and inter-dependent techno-socio-economic systems as a

result of the pervasive ICT technologies in several societal sectors. 

The further support of other domain backends, the simulation of models on inter-dependent networks, the showcase of

other application scenarios and the execution of SFINA in real-world distributed networks are part of future work. Moreover,

compliance to interoperability standards [27] , open data formats and code auto-generation for translating high to low level

models are subject of ongoing work. Synergies with several simulation communities are a priority for the wide adoption of

SFINA. 
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