
Simulation Modelling Practice and Theory 32 (2013) 42–63
Contents lists available at SciVerse ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat
Simulation of service-oriented systems for Mobile Ad hoc
Networks
1569-190X/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2012.11.010

⇑ Corresponding author.
E-mail addresses: andry.cruzdiaz@gcu.ac.uk (A.B. Cruz), t.boutaleb@gcu.ac.uk (T. Boutaleb), h.tianfield@gcu.ac.uk (H. Tianfield).
Andry B. Cruz ⇑, Tuleen Boutaleb, Huaglory Tianfield
Department of Computer, Communications and Interactive Systems, School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
a r t i c l e i n f o

Article history:
Received 21 August 2012
Received in revised form 6 November 2012
Accepted 25 November 2012

Keywords:
Simulation
Service-Oriented Architecture (SOA)
Mobile Ad hoc Networks (MANET)
OSGi
ns-2
a b s t r a c t

The simulation of distributed systems that implement a Service-Oriented Architecture
(SOA) imposes a set of requirements on their simulation models. These models must rep-
licate the interactions that characterise the SOA operational paradigm and the role of the
entities that support an SOA. When those interactions occur over Mobile Ad hoc Networks
(MANETs), simulation models must accurately reproduce the effects that mobility and
other networking factors have on the system. This paper presents the architecture of a sim-
ulation environment for MANET-interconnected Service-Oriented Systems. The simulation
environment combines the realistic SOA support provided by OSGi with the network sim-
ulation capabilities of ns-2. The application-layer elements of the simulation models built
for this environment are also SOA implementations, thus promoting structural model
validity. This approach provides the opportunity of utilising elements or prototypes from
the modelled systems as part of the simulation model, promoting its continuity. In addi-
tion, it takes advantage of the benefits that SOA has brought to field of Modelling and
Simulation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Distributed systems interconnected by Mobile Ad hoc Networks or MANETs include mobile computing systems, mobile
cloud applications, ubiquitous and pervasive systems, etc. In these systems, referred to as Mobile Ad hoc Networked Systems
(MANS) throughout this paper, interactions between their components are triggered by the need to exchange resources and
capabilities. This exchange, realised as sequences of messages transmitted over the network, helps attain collective, node-
specific and component-specific goals. As resource exchange depends on the effectiveness of its supporting messaging
process, the possibility of fulfilling the goals of MANS is heavily influenced by the intrinsic characteristics of the underlying
network. These characteristics determine the degree of visibility between nodes, between the applications hosted by those
nodes and consequently, the structure of the distributed system that results from the exchange of resources between those
applications.

Amongst the most important characteristics of MANET [1], decentralisation and changing topology can be identified as
challenges to the exchange of resources or capabilities. In order to cope with these challenges, the abstraction of shared
resources and capabilities as services and the adoption of a Service-Oriented Architecture (SOA) [2] for MANS have been ex-
plored as feasible solutions [3–8]. Additionally, SOA can be considered a building block in the development of mobile cloud
applications that may interoperate over a MANET [9–11].

Similar to MANS conceived under other architectural paradigms, Service-Oriented MANS have been routinely studied and
evaluated through simulation. As illustrated in Fig. 1, the model of a MANS utilised in a simulation must be able to combine

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.simpat.2012.11.010&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2012.11.010
mailto:andry.cruzdiaz@gcu.ac.uk
mailto:t.boutaleb@gcu.ac.uk
mailto:h.tianfield@gcu.ac.uk
http://dx.doi.org/10.1016/j.simpat.2012.11.010
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

Fig. 1. Source system and experimental frame inputs of a MANS illustrating the difference between application, networking elements and the experimental
input.

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 43
application-layer and networking features of a source system. It must also be able to replicate the effects of the inputs in an
experimental frame on the modelled features. In particular, on the dynamic structure of the resulting system.

The features of a source system considered as part of the simulation model of a MANS are normally studied under differ-
ent experimental conditions. Therefore, it is desirable that those elements exhibit loose coupling with the elements that gen-
erate the effects of the experimental input. It is also appropriate that the dynamic structure of MANS emerge at simulation
time from the interactions between modelled features and experimental conditions. Thus exempting modellers from having
to include the expected structural changes within the model. In these respects, the SOA design paradigm has been regarded
as an appropriate approach to the design of dynamically reconfigurable models [12]. Moreover, the loose coupling promoted
by SOA furnishes model elements with a high degree of re-usability.

In the specific case of Service-Oriented MANS, simulation models that are also SOA implementations offer advantages ver-
sus alternative approaches. These models can help eliminate validity and continuity problems between their elements and
the elements of the modelled systems. The modularity promoted by SOA permits the composition of models from fine
grained elements. These elements may have a one-to-one correspondence with the elements of a source system, thus con-
tributing to structural validity. That is, how well the model mimics state transitions in the source system in a component-by-
component fashion. Continuity is encouraged when technological constraints allow elements from a source system to be
plugged into its simulation model or vice versa. As modifications to a shared element are immediately reflected in the model
and source system, model validity is continuously retained.

A number of frameworks for the simulation of service-oriented systems (referred to as SOSims, for short) proposed to date
could be utilised for the execution of models that represent Service-Oriented MANS. However, in order to simulate MANS,
one or more of the following issues would have to be tackled depending on the selected simulator:

1. The lack of out-of-the-box, realistic networking simulation support to the level required by MANET.
2. The construction of models that are tightly coupled to the simulation environment or to the implementation of a simu-

lation modelling formalism.
3. The burden of incorporating position awareness support within application-layer elements of the model. Location aware-

ness is the most basic form of context awareness that can be expected to exist in most MANS.
4. The impossibility of utilising actual applications (or their prototypes) as part of the simulation model. This constraint pre-

cludes the selected simulation environment from acting as a debugging aid for Service-Oriented MANS.
5. The infeasibility of modelling service-oriented systems that have a dynamic structure.

As an alternative to using existing SOSims, network simulators such as JiST/SWANS [13], ns-2 [14] or OMNeT++ [15] could
be employed. These tools provide accurate means for the simulation of MANETs. Nevertheless, the simulation scenarios
would be required to incorporate a number of application-layer extensions so as to reproduce the features of a Service-Ori-
ented MANS. These extensions would be tightly coupled to the simulation tool and could be prone to promote poor model
continuity and validity.

The novel SOSim presented in this paper strives to solve the described issues that arise from simulating Service-Oriented
MANS using existing simulators. At the same time, the presented SOSim takes advantage of the enhanced modularity pro-
vided by SOA, both as modelling approach and as the architecture of the simulation environment. Models that realise an SOA
feature reusable elements and permit scalable simulations. In the same manner, the service-oriented architecture of the sim-

44 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
ulation environment facilitates its extensibility and customisation. SOA also promotes loose coupling between simulation
environment and simulation models.

The proposed SOSim relies on the OSGi1 [16] specification as a key enabler of its flexibility. It takes advantage of the MANET
simulation and scripting capabilities of ns-2 and provides coherent timing control and delay modelling across all elements in
the model. When the simulated MANS are also based on OSGi, a technology that has been widely embraced in the development
of embedded and in-vehicle telematics systems; the SOSim permits consumer and provider applications or prototypes from a
source system to be plugged into the simulation model. This capability facilitates the realistic evaluation, debugging and refine-
ment of those components as long as they adhere to a minimum set of constraints required by the simulation environment.

The rest of this paper is organised as follows: Section 2 presents a review of the previous works related to the topic of
service orientation in the field of simulation, Section 3 provides a brief background on SOA and OSGi. Section 4 presents
the two-layered architecture of the SOSim, whereas Sections 5 and 6 describe the composition and instantiation of a simu-
lation model, respectively. Section 7 offers details on the approximate time morphism that characterises a simulation, as well
as the components that control the execution of a model. Section 8 presents an application case study that shows how net-
work and application layer delay play a combined role on the gauged performance of a source system. A discussion, conclu-
sion and future works have been included in Sections 9 and 10, accordingly.
2. Literature review

The role of SOA in simulation design and implementation has been studied from two different angles:

� As an architectural approach in the conception of simulation tools, models and frameworks. Normally with the purpose of
enabling model element re-usability and distributed, scalable simulations.
� As the architecture of the source systems to be modelled and simulated, i.e., whether a framework provides default sup-

port for the simulation of models that represent source systems with a service-oriented application layer. Such support is
not related to the actual architecture of the model or simulation tools.

It is therefore important to make a clear distinction between: (a) frameworks that are SOA implementations or use ser-
vices to support the simulation of models, and (b) SOSims built to simulate models of SOA source systems.

In the context of distributed simulations, implementations of the High Level Architecture (HLA) [17] standard are the
norm. The integration of HLA realisations with service-oriented systems, mostly based on web services, has been identified
as a means of increasing model re-usability and loose coupling of HLA federates [18]. The resulting combination also enables
integration between simulation models, production/source systems and systems of systems [19–22]. Despite these solutions
allow the simulation of HLA federates implemented as services, they do not offer default support for the simulation of ser-
vice-oriented systems. That is, their relationship with SOA is constrained to Modelling and Simulation (M&S) aspects. Non-
HLA frameworks like those put forward in [23–25] have also taken advantage of SOA from an M&S perspective.

SOSims, or the frameworks that provide default support for the simulation of service-oriented systems, incorporate off-
the-shelf functionalities required in an SOA implementation. These include service brokers or registries, service registration,
advertisement and discovery mechanisms, etc. SOSims, however, do not necessarily take advantage of the benefits that SOA
has brought to M&S. Despite the simulation models they support represent service-oriented systems, these models or the
SOSims themselves may not be service-oriented.

The SOA-DEVS Modelling Framework (SOAD), first presented in [26], is one of the most relevant endeavours in SOA sim-
ulation. SOAD is an implementation of the Discrete Event System Specification (DEVS) formalism based on DEVSJAVA, a Java
implementation of DEVS. It also relies on DEVS-Distributed Object Computing (DEVS-DOC) [27] for the separation of soft-
ware and hardware concerns at the model level. The hardware model included in SOAD provides simple network simulation,
but lacks default support for realistic MANET simulation. Furthermore, brokers in SOAD do not operate as services them-
selves which could constitute an obstacle to simulating service-based systems that function in a peer-to-peer fashion. As
a consequence of the formalism-based nature of SOAD, the possibility of including elements from source systems as part
of a model are limited.

As a way of incorporating fine-grained hardware modelling capabilities in SOAD, the simulator for service-based system
co-design outlined in [28] includes additional abstractions for node and networking elements. The former permits accurate
processing load reproduction, whereas the latter are more suitable for networks with static topologies. The extension of
SOAD presented in [29] facilitates dynamic service composition at simulation time, permitting the simulation of systems
with a dynamic structure. Nevertheless, these changes must be scripted within the model; a requirement that prevents
the emergence of system structures from the interaction between modelled features and experimental input.

The framework described in [30] aims to co-simulate realistic communications support in a service-enabled system by
exchanging messages between consumers and providers over OMNeT++. The processes that drive the transmission of mes-
sages are statically modelled in the Process Chain Language (ProC/B) as timed sequences of service calls and inputs. Similar
to SOAD models, the models supported by this framework assume that the structure of the system is known a priori.
1 Formerly known as Open Services Gateway Initiative.

Table 1
Comparison between different simulation environments.

Primary
study

Meant to simulate
SOA systems

Environment is
based on SOA

Default MANET
sim. support (1)

Loc. awareness support
in app. layer (3)

Elems. from source
system in model (4)

Dynamic structur
support (5)

[26]
p

[28]
p

[29]
p p

[30]
p p

[31]
p p p

[32]
p p p

[33]
p

[35]
p

Own
p p p p p p

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 45
Although OMNeT++ supports the simulation of MANETs, the application-layer elements of the framework do not include
facilities like service registries or position update mechanisms.

OMNeT++ is also used to provide realistic networking and mobility control to the SOAMANET environment [31]. SOAMA-
NET relies on Model-Integrated Computing (MIC) for the description of the service-based systems and work flows within a
model. MIC requires data and work flow models to be explicitly defined. The resulting models present a degree of coupling to
their simulation environment that is higher than the characteristic coupling in formalism-based models.

The multi-purpose framework presented in [32] can automatically produce a simulation model and production test
framework from a variety of requirement specification formats. This process, known as the DEVS Unified Process (DUNIP),
is a thorough approach conceived to tackle the continuity problems that could affect formalism-based modelling previously
mentioned in this paper. A DUNIP-generated model can utilise web services from the test/prototype framework which helps
conserve validity as the prototype is refined. Nonetheless, incorporating realistic MANET simulation into a DUNIP model
could require (a) the integration with frameworks such as [29,33] and (b) functionalities like service discovery to be mod-
elled, so they can occur on a peer-to-peer fashion over a network simulator.

A comprehensive survey on service-oriented simulators, simulators for service-oriented systems and their taxonomy, can
be found in [34].

The challenge of integrating realistic network simulations with application layer models has already received attention
from the research community. Simulation environments such as [35,33] extend DEVS implementations with a set of models
and capabilities that permit inter-application message exchange over network simulators. They also synchronise DEVS tim-
ing with the simulation schedulers used for communication purposes. However, those simulation environments do not offer
support for SOA operation. Table 1 presents a comparison between those simulators and the surveyed SOSims around some
of the issues already identified in this paper.

The simulation environment presented in this paper features modelling capabilities comparable to those offered by
[26,30,31,33] and the SOA support of OSGi. It simultaneously provides support for the simulation of Service-Oriented MANS
and exploits the advantages of SOA from the perspective of M&S. Its reliance on the real-world capabilities of OSGi narrows
the gap between source systems and their simulation models.
3. Background

Service orientation is a technology-agnostic software design paradigm based on a set of principles that aim to produce
reusable, scalable, interoperable and modular software [36]. The principles that characterise SOA design seek to constraint
component coupling to the interface or contract level and message format. The resulting loose coupling enables service-ori-
ented systems to operate in a find-bind-execute mode, where consumers have the possibility of locating, binding and eliciting
resources from providers at runtime. This paradigm can be contrasted against approaches where consumers are coupled to
specific provider instances at design time.

Despite the notion of SOA is usually linked to web services and distributed systems, its design principles have been
adopted within stand-alone setups so as to maximise component re-usability and reduce system complexity. In the case
of OSGi, a framework originally conceived as a single-node service gateway, SOA provides the levels of modularity and dy-
namic structure required in embedded environments.

An OSGi framework instance has a local registry that consumers may query in order to find suitable providers. Registry
querying is done syntactically based on a service contract. Optionally, queries can include LDAP filters on the properties that
suitable providers are expected to expose. Both querying and service registration can be attained using Application Program-
ming Interfaces (APIs) or based on metadata files, such as OSGi Declarative Services (DSs). Consumers that declare queries
using metadata receive updates from the registry as suitable provider instances become available. When metadata files are
used, these are included as part of the bundles or packaging units that contain the elements of an application.

The OSGi Release 4 version 4.2 Service Compendium [16] introduced the Remote Services (RSs) specification. RS enables
service sharing between different framework instances or between framework instances and non-OSGi service-oriented sys-

Fig. 2. Sequence diagram illustrating service discovery and invocation operations between two OSGi peers.

46 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
tems. Since then, RS implementations like the Eclipse Communication Framework (ECF) [37] have permitted distributed, ser-
vice-oriented systems totally or partially based on OSGi to be formed.

The RS specification describes the contracts and basic operation of a set of components that are in charge of service dis-
covery. These components are also responsible for service message formatting or service distribution in a way that is trans-
parent to the consumers or providers within a framework instance. As illustrated in Fig. 2, the discovery components in a
node find the local services that have been exported, i.e., whose properties indicate that they are available to consumers
hosted within any framework instance. If those discovery components operate on a proactive manner, an advertisement
is generated and transmitted. However, the discovery strategies, frequency and content of advertisement messages are
not part of the OSGi specification and depend entirely on the implementation of the discovery components. Implementors
can choose between customised message formats or standard formats such as those defined by the Service Location Protocol
(SLP) [38], Domain Name System-Service Discovery (DNS-SD) [39], amongst others. These messages can be sent proactively,
reactively, on a multi-hop manner, towards a centralised registry, etc., according to the needs of the system. Discovery
implementations are also in charge of signalling other components in a framework instance when a remote provider is
no longer available.

When an advertisement is received by a discovery counterpart, e.g.: a node listening on port 427 for SLP-formatted User
Datagram Protocol (UDP) messages, the recipient notifies a corresponding in-node distribution container. The latter imports
each one of the services described in the advertisement by allocating a proxy object implemented within the container. The
instantiated RS proxy is then registered as a provider of the discovered service with the local registry, allowing consumer
applications within the node to bind to the proxy instance. Aside from certain (name,value) properties that imported services
must exhibit in compliance with the RS specification, proxies registered as service providers are indistinguishable from con-
crete providers within a node.

Service call requests issued by consumers to local proxies are forwarded to the distribution container, which formats and
transmits service messages. A compatible distribution container in the provider side receives those messages and translates
them into normal OSGi method calls, which are forwarded to the in-node, concrete provider instance indicated in the mes-
sage. Following a similar process, request responses are returned to the original callers. The format of the request/response
messages depends exclusively on the implementation of a distribution container. Message layouts can be proprietary, re-
mote procedure calls, Simple Object Access Protocol (SOAP) compliant, etc., depending on interoperability requirements.

In the context of SOA model simulations, the proxy-based operational approach of RS and the loose coupling between
application elements in the model facilitate the re-direction of inter-element communications into ns-2. Message re-direc-
tion is achieved by furnishing the environment with simulatable discovery and distribution components. From the point of
view of the simulation environment architecture and simulation execution, RS afford the possibility of carrying out distrib-
uted simulations.
4. Architecture of the simulation environment

The SOSim environment presented in this paper integrates a network simulation layer based on ns-2 with a set of OSGi
simulation services. The ns-2 network simulator provides realistic data communications, mobility and scripting support as
well as simulation-wide event scheduling capabilities. These capabilities are complemented by the OSGi simulation services,
in charge of instantiating and executing the elements in the model that correspond to the application layer. OSGi simulation
services furnish the instantiated model with the ability to operate in simulation time, maintaining coherence between appli-
cation and data communication event timing.

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 47
The following subsections offer more detail on the elements that constitute the layers of the SOSim.
4.1. Application simulator architecture

The application simulator consists of a set of components that instantiate the system model, modify its behaviour accord-
ing to the parameters that define the experimental frame, and mediate between the interactions of the elements in the mod-
el. The support bundles that make up the application simulator provide:

� A Discrete Event Simulation Portal (DES Portal) service that handles all Inter-Process Communication (IPC) with the net-
work simulator.
� A Network Adapter service that decouples the system from the standard networking classes. This allows the detouring of

messages towards the DES Portal.
� A Timer Factory service used in the instantiation of timers, which are useful for functionality scheduling and operate in

simulation time.
� A Simulation Proxy Factory, used to control timing in the application layer by mediating between component interactions.

Simulation proxies also permit application-layer components to be controlled from ns-2 script files.
� RS implementations of the OSGi discovery and distribution mechanisms which utilise the network adapter service.
� A simple Positioning Service, easing the process of evaluating applications that require mobility and position awareness.

This is achieved in accordance with the model’s mobility pattern, normally handled by the network simulator. This basic
service relieves modellers from dealing with position elicitation from simulator-specific structures.
� An Instantiator component that dynamically builds the simulation model at start-up, according to a provided

configuration.

Simulation support bundles operate alongside a set of user-defined bundles that model the application layer of a Service-
Oriented MANS. Fig. 3 illustrates these user-defined or source system bundles and the simulation support bundles within a
model before components are instantiated.

Different instances of certain source system and support components are expected to exist across several nodes in a sim-
ulation model. For instance, all nodes in the model must have their own instance of the network adapter service. In the same
Fig. 3. Ball and socket diagram of the simulation environment at setup time depicting the DS ComponentFactory services corresponding to per-node
components. Framework Runtime Bundles are not shown.

48 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
way, some or all nodes could provide the same user-defined service. In order to replicate these scenarios without having to
create several instances of the OSGi framework, the simulation services provide framework multiplexing.

Depending on the stage of the multiplexing process, the internal structure of the environment’s application layer presents
three clearly differentiated phases: (a) a simulation setup phase, shown in Fig. 3, which includes the simulation support and
source system bundles as they are loaded by the framework before multiplexing, (b) an instantiated system phase, where the
components defined by the loaded bundles have been instantiated or multiplexed according to a description of the model to
be simulated, and (c) a simulation phase, where the instances that make up the model are executed. These instances interact
with each other according to the modelled experimental frame, the network characteristics described by the model and the
behaviour modelled within each component.

4.2. Network simulator architecture

The network simulator has the role of enabling realistic communications. It processes the mobility traces for a specific
scenario and acts as a scheduler for application-layer events. Therefore, this layer of the co-simulator interacts with the
application layer simulation in two different ways: making possible data transmission and controlling the timing of appli-
cation-layer events in combination with a model’s simulation proxies. The operation of these proxies is described later in this
paper.

For the purposes of IPC handling, ns-2 version 2.34 has been enhanced with two classes (IPC server and client) which
manage intercommunication over UDP with the OSGi DES Portal component. Single instances of those two classes are cre-
ated when the network simulator is launched.

The IPC client instance is in charge of dispatching scheduled application layer events and data to the DES Portal from the
main ns-2 execution thread. In contrast, the IPC server runs in a separate thread and listens for ns-2 commands or messages
issued by the application simulator.

The ns-2 simulator has been originally conceived as a single-threaded application. As a consequence, ns-2 is not intrin-
sically thread-safe. However, the operation of the IPC server thread guarantees mutual exclusion between the evaluation of
received commands and the simulator’s event dispatcher. The incoming commands received by the IPC server thread are
issued by the application layer before the co-simulation starts. They may also be generated during a simulation at times
when the ns-2 event dispatcher thread is blocking, waiting for the application simulator to handle an event or message.

Alongside the events that result from model execution, the network simulation triggers the following three additional
events:

� Simulation start-up notification: Serves to inform the DES Portal of the availability of the network simulator. This notifica-
tion is triggered once a warm-up period indicated in the model has elapsed.
� Clock tick events: occur every millisecond (simulation time). This event is dispatched to the DES Portal with the objective

of maintaining the simulation time at the OSGi level, mainly for debugging and logging purposes.
� Position update events: Collect the positions and speeds of the nodes in ns-2 and pass them to the DES Portal. These are

forwarded to the Positioning Service Provider, which notifies those applications in the model that have subscribed to
receive location updates.

The utilisation of the popular ns-2 for the simulation of network elements in the model furnishes the environment with
default MANET simulation support. Amongst existing environments, only SOAMANET [31], DEVS/ns-2 [33] and the proposal
of Bause et al. [30] share this characteristic. Nevertheless, SOAMANET does not take advantage of SOA from the M&S perspec-
tive and its models are tightly coupled to the framework, as discussed in Section 2. Similarly, [30] can simulate a MANET, but
does not offer default support for dynamic service discovery. DEVS/ns-2 could be used to simulate MANS, yet this framework
would require additional modelling efforts as it lacks the means of simulating service-oriented systems.
5. Model composition

Models created for the SOSim feature decoupled elements of three different kinds: (a) those that model the application
layer of a source system, executed by the application simulator, (b) networking elements, responsible for modelling the
underlying MANET, and c) elements that model an experimental frame, which may be executed by the application simulator
or the network simulator according to their implementation.

5.1. Application-layer elements

The application-layer aspects of a simulation model are defined by a set of model bundles. These include source system
bundles and some of the bundles provided by the SOSim. The internal structure of the application layer within each simu-
lated is made up from instances of the components declared by model bundles. This structure is defined in a component setup
file. Amongst other parameters that will be described later in this paper, this file dictates which nodes should host which
component instances at simulation time.

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 49
Application-layer elements of the model may also include OSGi fragments, packaging units whose components extend
those defined in a specific bundle. These are used by the SOSim to compute the application execution delay associated to
a service call.
5.1.1. Model bundles
Model bundles define software components whose instances are expected to be hosted by the simulated nodes. Model

bundles are comprised of source system bundles. They also include the support bundles that provide positioning services,
RS implementations and the network adapter services.

A set of model bundles in a simulation model may define application-layer components of which an instance has to be
created for more than a node in the model. For instance, each node should have its own instance of the component that pro-
vides the network adapter service. The components created for those per-node bundles integrate applications of one or more
of the following types:

� Stateful applications, where identical components hosted by several simulated nodes can maintain state data that might
differ from node to node.
� Applications that directly handle the inputs generated by an experimental frame. These inputs normally correspond to

application instances hosted by specific nodes.
� Applications with delay annotations, where the completion time of at least one of their methods is considered to impact

upon the outcome of a simulation.

In order to facilitate the creation of multiple instances of the components defined by per-node bundles, modellers imple-
menting these components are constrained to utilising OSGi Declarative Services. They must also define those components
as DS component factories. DS components encompass standardised, readable metadata. These metadata include application
properties as name-value pairs, as well as information about the services provided and consumed by the instances of a com-
ponent. These data are used at model instantiation time towards the support of node multiplexing. Declaring DS components
as factories prevents their instantaneous allocation when their containing bundle is loaded or activated. Instead, DS factories
offer a ComponentFactory service that can be consumed by an instantiator, which may create multiple instances of the same
component.

Although per-node bundles provide service metadata and the means of creating multiple instances of the components
they define, they do not contain information about the structure of the simulation models in which they can be integrated.
In Fig. 3, for example, an instance of a component P might be required to exist in all nodes of the model, but that information
is not part of the bundle that defines P. Instead, a component setup file includes information regarding the structure of the
model to be instantiated from the bundles loaded by the framework.

Model bundles may also define global components which usually provide stateless utility services within a node. The
methods of these services are assumed to execute in negligible time and they do not receive direct input from the elements
that model the experimental frame. As the applications defined by those global bundles do not store state data, are not the
direct target of network messages and don’t compose any other services, a single instance within the model is enough to
simulate a utility service that is locally available to all modelled nodes. In contrast with per-node bundles, global bundles
are not constrained to using DS or any other form or OSGi services implementation, but the services they provide must
be registered at bundle activation time. The classification of support and source system bundles according to the number
of instances created from their components is shown in Fig. 3.

The fact that the applications in a model are defined by OSGi bundles permits bundles from an OSGi-based MANS to be
plugged into a model. This can be contrasted with formalism-based approaches like SOAD and its derivations [26,28,29],
where application elements have to be re-written as DEVS models. Although options such as [32,35] have the same plug-
in capabilities, those frameworks do not support the simulation of a MANET.
5.1.2. The component setup file
The component setup file is an XML document whose structure must comply with a specific Document Type Definition or

DTD. An excerpt of this type definition is shown in DTD 1. The parameter values contained in the component setup file are
divided in three main sections according to the aspect they cover. These sections are:

� A general set of values used by the environment at setup time. These include the path to the network simulator executable
and the locator of the network initialisation script in charge of allocating the nodes within ns-2.
� Scenario parameters, including values such as number of nodes in the simulation, warm-up period duration or start time,

simulation end time, the paths to the mobility trace and application interaction scripts which represent inputs from the
experimental frame.
� The node configuration parameters, indicating which component instances are hosted by which nodes and their

properties.

50 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
Under the node configuration, the factory elements declare which instances of the DS component factory service will be
used to instantiate the components hosted by each node. As a design choice, all of the single-token, single-occurrence,
unstructured data properties of factory elements and of their children elements are represented as XML attributes.

DTD 1 Excerpt of the DTD for the component setup file.

<!ELEMENT configuration (general, scenario, node)>
<!ELEMENT general (simulator_exec, simulator_init)>
<!ELEMENT scenario (number_nodes, start_time, end_time, mobility_trace, input _script)>
<!ELEMENT node (factories, global?)> <!ELEMENT factories (factory+)>
<!ELEMENT factory (delay?, properties?, nodenums?)>

<!ATTLIST factory name NMTOKEN #REQUIRED>
<!ATTLIST factory order NMTOKEN #REQUIRED>
<!ATTLIST factory type (infra | scriptable)>
<!ATTLIST factory policy (all | specific | random)>
<!ATTLIST factory prob #IMPLIED>
<!ELEMENT delay (method+)>

<!ELEMENT method EMPTY>
<!ATTLIST method name NMTOKEN #REQUIRED>
<!ATTLIST method meanms NMTOKEN #IMPLIED>
<!ATTLIST method noisems NMTOKEN #IMPLIED>
<!ATTLIST method delaymodel NMTOKEN #IMPLIED>

<!ELEMENT properties (prop+)>
<!ELEMENT prop EMPTY>

<!ATTLIST prop name NMTOKEN #REQUIRED>
<!ATTLIST prop value NMTOKEN #REQUIRED>

<!ELEMENT nodenums (nodeid+)>
<!ELEMENT nodeid (#PCDATA)>

<!ELEMENT global (service+)>
<!ELEMENT service (#PCDATA) >

Factory configurations must include four attributes, specifically, name, order, type and policy. The name is a string that
must match a DS component name declared by the model bundles. The order mimics the effect of the OSGi start level within
each node, indicating the sequence in which component instances must be created. The type defines if the component to be
generated from the factory must have a scripting object counterpart within ns-2. Besides, it might indicate if its methods
have an associated delay. In both cases, the value of type must be set to scriptable, indicating that the application-layer com-
ponent instance can be controlled from an ns-2 script. The policy attribute defines which nodes will be fitted with an instance
of the component produced by the factory. The supported instantiation policies are:

� For all nodes: a component instance is allocated for each node in the model.
� Specific nodes: instances are allocated exclusively for the nodes whose numbers are included in a given list under the
factory/nodenums tag.
� Random nodes: components are instantiated for a uniformly random fraction of the participating nodes. This fraction is

determined by a probability parameter (prob) included in the factory definition entry.

Furthermore, factory configurations may also include a list of property name-value pairs (under properties). This list of
properties is assigned to each component allocated from the factory at instantiation time.

Parameters that determine method execution delay are also associated with the factory used to instantiate a given com-
ponent. If the type of the factory has been declared as scriptable, it is possible to add a delay child element to the factory
configuration entry. This element encloses a list of method entries. Each method entry contains name attribute value along-
side one or more of the following attributes:

� A delaymodel attribute, containing the fully qualified name of a class that implements a delay model function or Te. This
function is utilised to determine the execution time te of its associated method.
� A meanms ðtlÞ representing the average delay for completing the execution of the method, in milliseconds.
� A noisems ðtwÞ which denotes the maximum deviation time in the method’s delay.

If an implementation of a delay model function is not provided for a method, the SOSim utilises the uniform distribution
to compute the method’s local delay according to the formula:

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 51
te ¼ max½Uðtl � tw; tl þ twÞ;0� ð1Þ
Methods that are considered to execute with negligible delay do not need to have a corresponding method element in the
component setup file.

5.1.3. Delay model fragments
Fragments are OSGi bundle-like packages whose main purpose is to provide classes or resources to specific bundles with-

in the framework, effectively ‘‘extending’’ those target bundles.
Delay model fragments belong exclusively to the simulation model. That is, unlike source system bundles, delay model

fragments are not interchangeable with any element of the modelled system. These fragments extend the proxy factory sup-
port bundle. They expose classes whose fully qualified names match the value of a delaymodel attribute included in the com-
ponent setup file. Each class implements a public getDelay function, used to compute the simulation time that a method
must take for it completion. The characteristics of this function and the impact of the computed delay on the simulation pro-
cess are explained later in this paper.

5.2. Networking-layer elements

A simulation model must include a network initialisation script written for ns-2 in the Tool Command Language (Tcl). Its
path is specified as part of the component setup file.

The network initialisation script is in charge of instantiating the wireless communication channel(s) to be utilised, defining
the type of PHY and data link layers of the nodes, the characteristics of the antennas to be simulated, the routing protocol, the
queuing mechanism of the wireless interfaces and a signal propagation model. The network initialisation script must also allo-
cate the ns-2 wireless node instances using the scenario/number_nodes parameter provided at model instantiation time.

The instructions in a network initialisation script are similar to those utilised for the setup of MANET simulations in ns-2.
But unlike ns-2 simulation scenarios, modellers are not required to declare transport-layer agents, application elements or
application behaviour within the Tcl script. Agents within ns-2 are allocated in response to commands received via IPC.
These commands are generated by the application simulator according to the needs of each application, e.g.: when an RS
distribution component allocates a UDP socket through the network adapter service, the latter request a corresponding
UDP agent to be created within ns-2. Application behaviour is modelled by the application-layer elements declared in the
model bundles.

The network initialisation script must also configure the generation of simulation traces that are going to be produced by
ns-2.

5.3. Experimental frame elements

Node mobility is one of the most important input parameters that describe the experimental frame in which MANS are
evaluated. Mobility support in the SOSim is provided by ns-2, in which the movement of nodes is usually defined by a move-
ment trace file. Therefore, the configuration of a simulation model must include the path of such trace file in the scenario
section of the component setup file. Valid traces can be produced with Carnegie Mellon’s setdest, vanetMobiSim [40], etc.

In order to reduce the random bias introduced by mobility traces in the simulation results, MANS are routinely evaluated
using several traces. In consequence, the simulation of MANS models where only the mobility trace changes resembles the
simulation of a pure ns-2 model under different mobility conditions; bundle models remain the same and only a single
parameter in the configuration setup file has to be changed.

The elements that model an experimental frame must also permit the simulation of external input on the modelled sys-
tem. External input can be generated by a component declared within a source system bundle, where timed input event gen-
eration must be carefully implemented to happen in simulation time. As an alternative, external input can be modelled using
Tcl scripts. The path to an input generation script is included in the application_interaction parameter of the compo-
nent setup file. As it has been previously discussed, script-based input modelling requires the components that will handle
the input events to be produced from scriptable factories. Allocation of components from scriptable factories include the cre-
ation of a proxy counterpart object within ns-2. Proxy objects in the networking simulation layer are stored in a standard Tcl
map named app_ that is indexed by the combination ComponentName:n, where ComponentName is the name of the main
class declared as a component in the DS configuration and n is the node number that hosts the component instance.

In order to provide an example of script-based input modelling, it can be assumed that Component Instance X in node 0
(Fig. 4)) handles user input by means of an acceptUserInput method that takes a single integer number as its parameter. It is
then possible to provide such input at a given simulation time by means of the application interaction script, which would
include a line like the following:

$ns_ at 1.73 "$app_(CmpX:0) tellapp acceptUserInput 5".

where $ns_ is the Simulator instance in ns-2, and 1.73 is the time at which the tellapp command will be dispatched to the
network simulator proxy $app_(CmpX:0). A tellapp command with m arguments will pass the argument list
arg1 � � � argm�1 to the method specified by arg0 in the target component.

Fig. 4. Detailed diagram showing two nodes, their model elements and the corresponding proxies for their scriptable components after model instantiation.
The ns-2 proxy object counterparts of the application proxies are also depicted.

52 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
Upon dispatching a scheduled input event at simulation time, the tellapp method handler in the network simulation
proxy forwards the call to the IPC client object in ns-2, which passes the received control data to the DES Portal service. From
there, and based on the name and node of the ns-2 sender proxy, the DES Portal delivers the command to the corresponding
simulation proxy, in charge of invoking the target acceptUserInput method with the appropriate parameters at the appropri-
ate simulation time.

Enabling input modelling via Tcl scripting furnishes the SOSim with a high degree of flexibility. This facilitates the coding
of complex input generation algorithms at the scenario level, outside of the source system or its model elements.

6. Environment start-up and model instantiation

Once the source system bundles have been developed, scripts have been prepared and the component setup file has been
created, it is necessary to start an OSGi framework instance with both support and source system bundles. After all bundles
are loaded by the framework, configuration and script files are read and the elements of the model they describe are created
in both layers of the simulator. The following subsections offer more detail on model instantiation and the packaging of the
simulator.

6.1. SOSim start-up

Similar to other OSGi application, the SOSim can be deployed as a folder containing a set of bundles, alongside an OSGi
config.ini file. The bundles required include source system bundles, delay model fragments and bundles that define external
input generators, support bundles, and framework runtime bundles or third party bundles required for the operation of any of
the previously mentioned bundles. By default, the framework runtime bundles must provide basic OSGi support, DS and Ser-
vice Component Runtime (SCR) support, registry interaction contract definitions, as well as the definition of the contracts
that must be implemented by the RS components, all of which are provided by existing OSGi implementations such as Equi-
nox and Apache Felix.

The config.ini configuration file of an OSGi application lists the names of the bundles or fragments that have to be loaded
in the framework. It also lists their start-up level, or the order in which they should be activated. As the SOSim services don’t
rely on any specific ordering, all bundles in this file can be set to autostart without indicating any start-up order.

After deploying the bundles and start-up information using the directory and config.ini approach or any other means of
OSGi system deployment, the simulator can be launched using the start-up option -Dconfig = P, where P is the path to the
component setup file.

6.2. Instantiation process

Bundles configured as autostart are activated as soon as they are loaded. Bundles that declare DS component factories
immediately register their corresponding ComponentFactory service instances with the framework’s registry. Similarly, com-
ponents declared in global bundles register actual instances of the services they are meant to provide.

As soon as the instantiator support bundle is activated by the framework, the former proceeds to read the component
setup file indicated by the config launch parameter. From that file, the number of nodes in the model, the list of global ser-

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 53
vices declared, the list of per-node factories and the paths to the mobility trace, network initialisation script and network
simulator are read. Those data are used to execute the steps outlined in Algorithm 1.

The instantiation process is crucial in attaining framework multiplexing. In a real system, visibility between per-node
component instances depends on the network visibility of their host nodes. In a simulation model, all per-node component
instances can be hosted by the same OSGi framework instance. Therefore, a series of steps are taken in order to adjust com-
ponent visibility according to their disposition within a node and the inter-node visibility determined by the simulated
MANET. These steps are:

1. Extension of all default properties of a component instance with the property name-value pair (MAC, n), where n is the
node number for which the component has been created (line 36 of Algorithm 1).

2. Before creating components from a ComponentFactory, the service references of the components created by the factory are
examined. When a service reference does not explicitly call for a remote provider or global service, the selection criteria
are augmented with the filter (MAC = n). This indicates that the provider has to be an instance also hosted by node n,
alongside the consumer application (line 17).

3. If a service reference points to a remote provider, the selection criteria are augmented with the filter (LMAC = n). The RS
proxy for a remote service provided by a node m and discovered by node n will exhibit the properties (MAC,m)(LMAC,n).
This extension ensures that the consumer of a service S in node n will be bound to the RS proxy that has resulted from
node n discovering an instance of S hosted by node m (line 14).

Algorithm 1. Model instantiation from config. and component factories

Require: NumberNodes N, GlobalServices G, CompFactories F, FactoryConfigs C, MobilityTrace T, NetworkSimulatorPath
NS, NetworkInitialisationScript I

1: Launch instance of the network simulator at NS.
2: Wait until all services in G have been registered.
3: Wait until all expected factories in C have been bound and added to F.
4: Execute script I in network simulator passing parameter N.
5: Load mobility trace T in network simulator.
6: Initialise service reference target storage S.
7: for all f 2 F
8: dummyInstance f :newInstanceðÞ
9: R SRC:getReferencesðdummyInstanceÞ
10: Initialise reference storage P for factory f.
11: for all r 2 R where r does not target a service in G do
12: if‘‘service.imported=*’’ 2 r:target then
13: {Reference calls for a REMOTE provider, i.e.: an RS proxy.}
14: r:target:augmentCriteriaðLMAC ¼ NÞ
15: else
16: {Reference calls for an in-node (local) provider.}
17: r:target:augmentCriteriaðMAC ¼ NÞ
18: end if
19: P:addðrÞ
20: end for
21: S:putðf ; PÞ
22: dummyInstance:disposeðÞ
23: end for
24: for all c 2 C ordered by C:order do
25: f F:getðc:factoryNameÞ
26: for n = 0 N � 1 do
27: if instance from f should be created for node n then
28: P S:getðf Þ
29: {Get properties for comp. f:n indicated in factory config f}
30: X½f : n� f :propertiesðÞ
31: for all r 2 P do
32: {Replace value N added in 14 or 17 with node number n}
33: r:target replaceðr:target;N ;nÞ
34: X½f : n�:putðr:nameþ‘‘.target’’; r:targetÞ
35: end for

(continued on next page)

54 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
36: X½f : n�:putðMAC; nÞ
37: i f :newInstanceðX½f : n�Þ
38: Create corresponding proxies for i according to config. c in app and networking layers.
39: end if
40: end for
41: end for
42: Start simulation by sending run command to scheduler in ns-2.

Reference examination, as required in steps 2 and 3, is carried out using the OSGi Service Component Runtime (SCR).

A sample instantiated system is shown in Fig. 4. The diagram illustrates how per-node components have their properties
and service references extended with MAC and LMAC criteria. The figure also illustrates how simulation proxies mediate be-
tween the interaction of actual source system component instances in the model. Inter-instance mediation is fundamental in
the enforcement of application layer delay during simulation execution.

7. Simulation Execution

The execution of a simulation model is triggered by the instantiator when all expected global services have been regis-
tered and all per-node component instances have been allocated. This event is handled by the DES Portal, which reads the
simulation warm-up value w from the component setup file and issues an ‘‘at’’ command to the network simulator, sched-
uling the generation of the simulation start-up notification event for time w. Subsequently, the DES Portal issues a run com-
mand to the ns-2 scheduler, starting the simulation process in the networking layer of the SOSim.

A warm-up period w > 0 s is desirable when the mobility trace in the model places the nodes in positions that are not a
reflection of a realistic scenario. In such case, only mobility-related events are executed during the warm-up period. This
allows nodes to reach stable mobility patterns. Once w seconds have elapsed, the simulation start-up notification is dis-
patched to the DES Portal signalling that the application-layer simulation must begin.

Upon receiving a simulation start-up notification, the DES Portal enables the services registered by the simulation proxies
in the system, permitting that consumers bind to local providers. From that point onwards, the execution of the simulation
are a sequence of one or more of the following application-layer events, which are triggered by the ns-2 scheduler: (a) timed
input handling, such as the input included in an application interaction script, (b) timer-controlled tasks, where the timers
have been obtained from the timer factory and operate in simulation time, (c) remote binding operations, executed by a con-
sumer when it gets a reference to a remote service, which in turn occurs as the result of data communications, e.g., the recep-
tion of a service advertisement; and (d) data communications, when a listener associated to a network socket is invoked upon
receiving data. The execution of event handlers may result in the scheduling of further events. This cycle might continue
according to the behaviour of application-layer elements and until the simulation end time is reached.

The following sections offer additional detail on the approximate time morphism that results at execution time from
application-layer delay modelling. In addition, it describes the operation and implementation of the key components that
control the co-simulation process.

7.1. Application-layer delay modelling and its resulting approximate time morphism

As it has been previously discussed, the SOSim facilitates the partial construction of models using application-layer ele-
ments or prototypes from a source system. It also makes possible the simulation of delay linked to the execution of appli-
cation-layer service calls.

To ensure that source system/prototype components remain decoupled from the simulation environment, method delay
is provided by modular artefacts that belong exclusively to a simulation model.

Application delay is enforced during simulation execution by mediating the interactions between components using sim-
ulation proxies, as illustrated in Fig. 4. This delay enforcement approach results in an approximate time morphism during the
simulation, which is influenced by the provided delay parameters and delay model functions.

In order to describe the manner in which delay parameters and model functions shape the resulting approximate time
morphism, the execution of the service consumer Z shown in Fig. 4 can be used as an example. For this purpose, it is possible
to assume that Z features a single method mZ that, upon execution, sequentially consumes a remote service Y (via a remote
proxy rsy) and a local service P, in that order. P and Y feature a simple request-response choreography on two methods mY

and mP , respectively. The execution of mZ in the described SOSim can be abstracted as a series of discrete steps or the states
of a timed automata depicted in Fig. 5. In this automata, transitions corresponding to service request timeout control have
not been considered for the sake of clarity.

The values of t shown in the automata, namely tez; tey and tep, represent the local delay of executing the methods mZ ;mY

and mP , respectively. Those values are computed from the delay configuration provided for each method as soon as it is in-
voked. Alternatively, local delays are equal to zero if no delay configuration has been provided for the method. As illustrated
in Fig. 5, these local delays are enforced by the SOSim before the method is executed. For instance, the execution of mP occurs

Fig. 5. Timed transitions associated with the simulation of a sample method mZ .

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 55
in 0 s (simulation time) tep seconds after the service call is delivered to P. Similarly, the execution of the remote method mY

will occur Tx þ tey seconds after the service call has been delivered from mZ to the remote proxy rsY , where Tx is the simu-
lation time of transmitting the parameters and service call mY from Z to Y.

As the return values rety from mY have to be transmitted back to mZ , the total delay TYZ associated to the execution of mY ,
as perceived by mZ is given by TYZ ¼ Tx þ Tr þ tey, where Tr is the time it takes for the return values to be transmitted from Y
to Z. Both Tr and Tx are dynamically determined at simulation time within ns-2.

In the described scenario, the approximate time morphism that results from the delay enforcement approach of the SO-
Sim when executing mZ , has been illustrated in Fig. 6. The figure also shows the impact upon input and output delivery times
versus a realistic sequence of events. For instance, the transmission of argsy, that would have occurred at tnReal is re-scheduled
to occur at tnSim, putting in evidence how the length of the modelled delays might determine the accuracy of the obtained
results. The effects of the time morphism on these results are minimised when stateless service providers are simulated,
as the order in which operations occur in those components does not alter the output of the service calls they handle.

7.2. The simulation proxy

Simulation proxies are created at instantiation time for all per-node components in the model regardless of their status as
consumers and/or providers. Simulation proxies are in charge of delivering events (and their parameters) to the correspond-
ing application-layer elements of a simulation model, as those events are dispatched by the ns-2 scheduler. When the prox-
ied application is a service provider, the simulation proxy has the responsibility of intercepting all incoming service calls,
computing the local delay corresponding to the execution of the call handler method, and enforcing that delay using the
ns-2 scheduler.

7.2.1. Service binding mediation
Mediating service calls between consumers and providers in a model requires those calls and their corresponding re-

sponses to be intercepted by the simulation proxies. This must be accomplished in a transparent manner, without requiring
any design-time coupling between consumer applications and the proxy objects. For that purpose, a series of steps are car-
ried out at model instantiation time, before consumers can bind to the providers they require.

At instantiation time and during DS metadata examination, the contracts for the services offered by the components cre-
ated from a ComponentFactory are read and stored by the instantiator. Later on, for each per-node component instance cre-
ated from that DS factory, the instantiator requests the allocation of a corresponding simulation proxy from the proxy factory
service. This request includes a list of the properties and services (if any) offered by the proxied component, together with a
reference to the component itself. The simulation proxy allocated by the factory is furnished with the same properties and as
the provider of the services offered by its target component, also keeping the reference to that target. In addition, the proxy
exhibits the property name-value pair (proxied, true).

Apart from the MAC and LMAC filter extensions described in Section 6.2 and that permit node multiplexing, service ref-
erence filters that do not point to global service providers are also extended with the criterion (proxied = true). This exten-
sions aims to ensure that consumers will be bound to services that meet the criteria of their original LDAP filters and that

Fig. 6. Real time of inputs and outputs (a) versus input (b) and output (c) timing according to the approximate morphism implemented in the simulation
environment.

56 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
expose the (proxied, true) property. The resulting binding is shown in Fig. 4. This supplementary criterion is what prevents
consumers from binding to concrete instances of providers within a node, binding instead to the proxies that offer the ser-
vices they require.

Service consumer applications may be programmed to issue service calls as soon as a provider is located. When consumer
and provider are hosted by the same simulated node, those calls might be issued before the model is fully instantiated and
prior to receiving a simulation start-up notification. In order to prevent any interaction from occurring before the networking
elements of the model are ready to communicate data, proxies of service provider applications do not register the services
they provide until the DES Portal notifies the application layer of the simulator that the network simulation layer has
‘‘warmed up’’ and that the simulation must start.
7.2.2. Mediation execution
A typical scenario exemplifying the way in which event delivery from the scheduler and application-layer delay enforce-

ment are achieved is shown in Fig. 7. In the depicted scenario, a scheduled input is received by a consumer application that,
as a result of the stimulus, proceeds to issue a synchronous service call to a provider within the same simulated node. The
handler method for the service call in the provider has been configured with an application layer delay, which requires the
re-scheduling of its execution by the application proxy.

As a first step, the dispatched tellapp invocation is delivered from ns-2 to the DES Portal. With the purpose of ensuring
thread safety, the DES scheduler dispatcher thread in the network simulator remains blocked until the transmitted com-
mand or event has been handled by the application layer, giving the latter the change of issuing new schedule entries before
unblocking.

When a command or event is received by the DES Portal from the ns-2 scheduler, a new delivery helper thread in charge
of locating the command/event target simulation proxy is created. Meanwhile, the DES Portal Incoming Commands listener
thread blocks until the child thread that has been created enters the WAIT state or until it terminates.

A command that has been received by a simulation proxy is parsed as it arrives. Once the target method has been iden-
tified, the proxy verifies with the configuration metadata if the method execution should be re-scheduled (because a delay
for its completion has been assigned in the configuration) or if it should invoke the method immediately.

In the sample scenario shown in Fig. 7, the input as received by the consumer must be immediately handled, therefore,
the proxy uses reflection to run the target method in the actual consumer application. At the same time, the scheduler dis-
patcher thread in the network simulation remains blocked, preventing the simulation time from advancing.

In this particular example, the method that handles the tellapp in the consumer application has to issue a call to a pre-
viously bound local provider as part of its programmed execution flow. Because consumers are bound to services provided by
proxies rather than those provided by the actual applications, the service call is intercepted by the provider’s proxy.

Fig. 7. Sequence diagram for a consumer invocation of a delay annotated method on a local provider, as mediated by the application proxies.

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 57
Similar to the reception of a tellapp command, the provider proxy will determine from the model configuration if the tar-
get method has been annotated with delay, which is the case in the sample scenario.

As discussed in Section 7.1, delay annotated methods have their execution re-scheduled with Dt ¼ te, where te is method-
specific according to the model configuration. As illustrated by marker 0 in Fig. 7, the proxy does not invoke the method in
the concrete provider, but rather computes the total delay from the delay model, creates a task entry with a unique name for
the current invocation and submits an exec task to the ns-2 scheduler, with itself (the proxy) as a target and with the task
name as a parameter. This command is scheduled for delivery back to the proxy on the computed Dt. At this point (illus-
trated by marker 1), the provider proxy sets the current thread to WAIT state using a lock associated with the unique task
name. The thread remains blocked until a different thread notifies of the completion of the task via the task’s lock.

The DES Portal Incoming Listener Thread that had remained blocked waiting for its child thread to terminate or enter the
WAIT state, unblocks. It proceeds to send a signal to the network simulator indicating that the previously delivered event, the
initial tellapp, has been handled. From there, the scheduler dispatcher thread resumes its normal execution, eventually dis-
patching the exec task back to the proxy when Dt) has elapsed.

Reception of an exec task by a proxy implies that the method associated with the task name must be immediately invoked
on the proxy’s concrete target. In the sample scenario, the target method in the provider is not composed of any other ser-
vices (and as a consequence does not issue any other service calls). As soon as the invocation ends, the proxy assigns the
outcome of the execution to the task entry and notifies the corresponding lock about task completion (marker 2 in Fig. 7).

The thread handling the exec task command blocks until the original thread that had submitted the task completes its
execution or enters the WAIT state again.

At the moment the thread that has submitted the task is notified of its completion, the activation of the provider proxy on
that thread collects the corresponding result value and returns it to the consumer. In the example shown in Fig. 7, the con-
sumer does not require any other service, completing its execution as soon as the value from the provider is obtained, thus
terminating the thread in which the tellapp was originally being handled.

When the submitter of a task completes or enters the WAIT state, the thread handling the subsequent exec task termi-
nates. This is indicated in the figure by marker 3. Once again, the DES Portal Incoming Listener Thread that delivered the exec
task event is free to unblock the scheduler dispatcher when its child thread terminates (marker 4). At the end of this se-
quence, the consumer that had issued the service call at t0, receives the response at simulation time t0 þ te, where te is
the local delay of the call handler in the provider side. In a similar scenario, but where the consumed service is remotely
provided, interactions are intercepted by a local RS proxy. This produces additional delays linked to request and response
exchange over the network simulator.

58 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
7.3. Delay model implementation

The getDelay function, partially described in 5.1.3, is the only method that is required to exist in the classes defined within
a delay model fragment. The contract for this method is defined by an interface outlined in the SOSim support bundles and it
must be implemented by those classes.

When a simulation proxy is created for a component instance, its constructor examines the configuration corresponding
to the associated component factory. If one or more methods within the configuration include delaymodel attributes, the
classes indicated by those attributes are instantiated and retained by the proxy.

During the execution of a simulation, proxies determine if the methods targeted by the intercepted service calls have an
associated delay model. If that is the case, the getDelay function is called in the corresponding delay model. This function can
utilise the parameters of the service call and the state of the proxy (such as the current load) in the computation of te.
7.4. Timer-controlled tasks

In addition to timed input events and service calls issued at binding time, the interaction between components at sim-
ulation time can be triggered by timer-controlled tasks within an application element. Timer-controlled tasks refer to
time-triggered service invocations between the component instances of a model.

The SOSim seeks to ensure that components or prototypes of a source system can be used in a simulation model. There-
fore, guaranteeing that timers in those components operate in simulation time calls for an architectural constraint to be im-
posed on their design. Bundles that define simulatable components whose code creates instances of the java.util.Timer class
must obtain those instances from the Timer Factory service. This service is provided by a support bundle included in the
SOSim.

The default implementation of the Timer Factory returns instances of an extended version of the Timer class. When a con-
sumer of that service requests an instance of a timer, a simulation proxy and its network simulation counterparts are allo-
cated for the returned object (as seen in Fig. 4, Component Instance X). Considering timers as individual applications enables
the scheduling of events that are specific to the timer operation, without involving the network simulator proxies for the
applications that contain the timers.

The TimerTasks that have been scheduled to execute with a delay Dt are treated as delayed method calls by the applica-
tion proxies that represent their target timers. These proxies create a corresponding task and submit an equivalent exec task
to the scheduler. This event is later dispatched and sent back to the submitting timer through its proxy, that then runs the
scheduled task.
7.5. Service discovery and distribution

The simulation environment provides a default implementation of the discovery and distribution RS APIs for SOA models,
built around the Remote Service Admin (RSA) specification.

The default discovery mechanism works on a proactive fashion, advertising the exported services on a regular interval
with the help of a timer and discovering single-hop neighbouring providers. Advertisement messages are of a proprietary
format and contain a serialised collection of property sets. Each property set or service endpoint description characterises
one of the exported services in a node and includes contract name, version, the properties of the service provider and those
properties that are required by the OSGi RS specification. Despite the format provided with the default RS discovery imple-
mentation does not implement any of the standard service discover protocol formats, modellers can create or modify the RS
discovery component so as to change the layout and content of the advertisements.

The byte stream that results from serialising the advertisement collection is broadcast using UDP with the help of the
Network Adapter Service. This service forwards the data to ns-2 through the DES Portal which passes it to the intended
ns-2 UDP agent for transmission.

Recipients of an advertisement are determined by ns-2 according to the network conditions. Upon hearing an advertise-
ment, recipients de-serialise its contents and syntactically compare the service names it contains versus the internal registry
in the node. If a new service instance is detected the node’s RSA is notified, resulting in the local registration of an RS proxy
for the discovered instance. At the same time, a lease with a configured duration is created in the discovery registry. If the
service had been previously discovered and its RS proxy is still active in the registry, its lease is immediately renewed.

Service ‘‘undiscovery’’ occurs when an existing lease has not been renewed during a period of time equal or greater than
the lease’s assigned duration. With the help of a timer task, the discovery agent isolates the endpoint identifiers with expired
leases and notifies the RSA of their removal.

The distribution container included in the environment is in charge of maintaining the RS proxies for the services that
have been discovered or removed. RS proxies implemented by the default distribution container are similar to the simulation
proxies described in sub-Section 7.2. Their main difference is that service calls and their responses are serialised, transmitted
over the network simulator, and de-serialised prior to delivering them to the involved parties.

RS proxies keep a record of the requests that have been sent over the network to their delegating providers. It is by means
of this record that received responses are matched to the appropriate requestors. Additionally, RS proxies control request

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 59
timeouts using timer tasks. The execution of these tasks fail requests that remain unfulfilled after a configured tto period has
elapsed.

Remote requests received by the distribution container are immediately delivered to the simulation proxies of the ser-
vices that have been exported, hence securing appropriate delay handling.

The high level of decoupling between applications and the DS distribution component permit that modellers create their
own implementations of a distribution container. New container implementations do not require any changes to the appli-
cation bundles in the model. Customised DS distribution components may serialise requests and responses as Remote Pro-
cedure Calls (RPC), SOAP, Javascript Object Notation-RPC (JSON-RPC), etc., also permitting different discovery and
distribution strategies within RS elements to be implemented and simulated.

The RS implementations provided with the SOSim allow consumers to discover and access service providers at simulation
time. This feature enables the structure of the model to emerge at simulation time, thus providing dynamic structure sup-
port. In contrast, simulation frameworks like [26,28,30] require consumer-provider relationships between simulated in-
stances to be embedded in the model. Other frameworks facilitate the simulation of dynamic models, but cannot
simulate MANETs [29,32] by default or don’t permit components from the simulated system to be used as part of the model
[31].
7.6. The network adapter service

The network adapter service decouples the application layer from the objects that provide access to the network. Appli-
cations with direct access to the network, like the RS implementation components, must obtain the sockets they need from
this service. The simulatable implementation of the network adapter service allocates the corresponding ns-2 agents as soon
as sockets are created, by sending commands to ns-2 via the DES Portal.

Fig. 8 illustrates how a UDP that originates from a node with IP sip is transmitted to its intended destination dip:dport via
ns-2. Sequence a) in the figure corresponds to the steps associated to transmission request. In the sequence, an application
(not shown) submits a message for dip:dport. The call is forwarded to the network adapter service, which produces an ns-2
command for the UDP agent counterpart of the application-layer socket.

Instead of executing the received ns-2 command, the DES Portal asks ns-2 to schedule it with 0 delay. If the send request
passed to the UDP socket was triggered by a method handling a tellapp, exec or the reception of data from ns-2, scheduling
the command permits that the submitting method continues its execution till it completes or blocks, which results in the
DES being unblocked. When event dispatching in the scheduler resumes, the data transmission event is delivered to the
counterpart UDP agent target sip:sport. From there onwards, the process follows the normal ns-2 execution flow. Fig. 8b illus-
trates the steps of the data reception sequence by socket dip:dport.
8. Mobile update service: an application case study

The application case study presented in this section illustrates one of the advantages of the SOSim: the possibility of eval-
uating an application using different delay models, where those delay models are decoupled from the elements that model
application behaviour. This capability prevents delay modelling from becoming an obstacle to model continuity.
(a)

(b)

Fig. 8. Sequence diagram illustrating the re-direction of an UDP from a socket with port sport in a source node with IP address sip, to a destination socket
dip:dport.

Table 2
Simulation parameters.

Parameter Value

Number of nodes 75
Simulation time 60 s
Mobility model Random Waypoint, 1 s maximum stop.
Maximum Speeds 5, 10, 15, 20, 25, 30 and 35 m/s
Area 1 km2

Request timeout tto 100 ms
Average provider te 60 ms
MAC 802.11p
Data rate 6 Mbps
Propagation model TwoRayGround
Transmission range 200 m

60 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
8.1. Problem

The deployers of several Service-Oriented MANS are required to update the settings on the nodes within existing deploy-
ments. Each deployment consists of 75 nodes. All of these nodes run a client application that consumes an update service
provider locally, or located within a single network hop. Nodes also share the same protocol stack. Discovery occurs as a re-
sult of proactive advertisements transmitted by the providers.

Consumer applications within each node issue an update request (service request) to a service provider as soon as an in-
stance of the latter is discovered. Upon receiving a request, the provider node fetches the settings for the received consumer
identifier and sends them back to the requestor. Consumers that receive a response do not issue new update requests during
the next 24 h. If a response is not successfully received in 100 ms, consumers deem the request as failed and issue new ser-
vice calls to an available provider.

In this fictitious scenario, deployers are aware that the process of fetching a request in the provider side has a duration
of 60� 10 ms. They are also aware that different deployments have different average speeds according to their surround-
ing geography. The task of the deployers is to gauge the impact of deploying the update service in nodes that are able to
reply to more than one request at a time, vesus nodes that queue service requests, replying on a first-come, first-served
basis.
8.2. Method

In order to implement application-layer transducer functionalitym, the deployers modify the consumer application so as
to record the succesful completion of a service call. This helps determine the success rate of issued requests and how fast the
nodes in each deployment have their settings updated. In order to analyse the associated network load, ns-2 traces are used.
The simulation parameters employed are presented in Table 2. Seven mobility traces were generated with setdest for each
maximum speed setting, with the objective of minimising the random bias introduced by single scenarios, accounting for a
total of 49 traces.

All traces were simulated against two different delay configurations for the execution of a method getUpdatedSettings in
the provider nodes. The first configuration indicated a meanms = 60 ðtlÞ and a noisems = 10 ðtwÞ in its component setup file
 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 20 40 60 80 100 120 140 160 180

M
ea

n
N

um
be

r
of

 U
pd

at
ed

 N
od

es

Time (seconds)

Number of Updated Nodes versus Time

FIFO - Max Speed: 10 m/s
Parallel - Max Speed: 10 m/s

FIFO - Max Speed: 20 m/s
Parallel - Max Speed: 20 m/s

FIFO - Max Speed: 30 m/s
Parallel - Max Speed: 30 m/s

Fig. 9. Number of updated nodes during the first 3 min following the deployment of the updater service nodes.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

5 10 15 20 25 30 35

M
ea

n
O

ff
er

ed
 L

oa
d

(M
by

te
)

Maximum Speed (m/s)

Mean Offered Load Per Maximum Speed
FIFO

Parallel

Fig. 10. Offered load associated to the update process during the first 3 min following the deployment of the updater service nodes.

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 61
for a te computed at simulation time according to (1). This configuration disregards the provider load, hence modelling a pro-
vider that can fulfil requests with the same delay regardless of concurrency. The second configuration included a delaymod-
el that approximates a FIFO response delay based on the number of concurrent requests being handled by the provider. The
implementation of the delay model function approximates the response delay as: te ¼ n� tl þmax½Uðtl � tw; tl þ twÞ;0�,
where n is the number of service calls being processed by the provider when a new request arrives. The resulting simulations
were executed in Eclipse Equinox 3.6 on top of a Java 6 virtual machine.
8.3. Results

The obtained results for the mean number of updated nodes versus time are depicted in Fig. 9 for scenarios with a max-
imum speed of 10, 20 and 30 m/s and over a period of 180 s. Simulations reveal that the impact of request queuing is min-
imal in terms of the speed at which the system is updated. However, the offered load resulting from request timeout and
subsequent re-submission is, in average, higher than the load offered by the parallel deployment in low speed mobility set-
tings, as depicted in Fig. 10. Both results show that as the maximum speed increases, the differences in terms of update speed
and offered load between parallel and FIFO request execution models disappear. From the simulations, and based on the ac-
tual speed and available bandwidth in the modelled system, a decision can be made on the kind of updater node to be
deployed.

From a model development perspective, this example illustrates how the task of simulating the same MANS over a num-
ber of mobility settings and networking parameters once the application-layer of the model has been developed, resembles
the task of executing multiple simulations with ns-2 models. It also shows the simplicity with which different behaviours of
MANS can be simulated by changing the way in which application-delay is modelled. In addition, once results have been
obtained, the same updater service component can be deployed to the source system with minimal modifications.
9. Discussion

The SOSim presented in this paper exploits a model-driven approach based on SOA and permits OSGi components to be
utilised within a model. These components, which represent application-layer elements, can be interchanged with counter-
parts from a source system. This approach promotes the separation of concerns within a model where application-layer ele-
ments are decoupled from networking elements, thus maximising their re-usability. Additionally, the possibility of sharing
components between source system and simulation model transforms the SOSim into a debugging and refinement tool, as
well as a valid means of feasibility testing in the context of OSGi.

The utilisation of ns-2, one of the most widely used simulators in MANET research, provides support for mobility and a set
of commonly used networking protocols. ns-2 also facilitates the description of elaborate experimental frames by means of
its scripting capabilities.

Although SOSim environments such as those outlined in [30,31] have strived to make available realistic network simu-
lations using OMNeT++, their proprietary means of application layer modelling lack support for highly dynamic systems like
MANS. In that regard, the reliance on an industrial-strength service platform like OSGi constitutes a clear advantage over
existing solutions.

The adoption of SOA, not just as an architectural approach to the construction of simulation models, but as the design
paradigm of the simulation environment, decouples the simulation services that integrate the SOSim from each other.
SOA paves the way for the extension and customisation of the framework and permits the incorporation of new RS API

62 A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63
implementations. This enables the evaluation of service discovery, distribution, selection and composition strategies in com-
bination with the applications they support.

The versatility of the service-oriented simulation framework minimises the impact of the constraints imposed by the SO-
Sim on simulatable components and on the physical deployment of simulation services and models. In spite of that, users
must be aware of the relevance of those constraints when the components to be simulated utilise third party artefacts that
implement their own timing control, require direct access to the network or define stateful applications that have not been
declared as DS components.

Despite the default implementation of the proposed environment depends on ns-2, a discrete event simulation that does
not support parallelism by default; the structural openness provided by SOA facilitates the replacement of ns-2 with other
tools that support parallel simulation execution.
10. Conclusion and future work

Simulations of Service-Oriented MANS require not only the realistic replication of communications over a MANET. They
also calls for the accurate reproduction of those interactions that characterise a service-oriented system. A simulation envi-
ronment for Service-Oriented MANS must permit the effects of mobility and topology change on the application layer of
MANS to be evaluated. This environment is posed to play a central role on the fine-tuning of MANS design and
implementation.

The SOSim framework presented in this paper narrows the gap between source system and simulation model. Its reliance
on SOA and OSGi provides the opportunity of utilising elements from a source system as part of a simulation model. The
performance of these components can be then evaluated under operational settings that are consistent with the scenarios
posed by MANETs.

Future works on the SOSim must seek to incorporate default hardware models. These models can assist with request and
process prioritisation based on node load. Additionally, the SOSim must be extended to integrate energy consumption
awareness.

In terms of the architecture of the SOSim environment, the possibility of node multiplexing across several OSGi frame-
work instances and compliance with HLA should be explored as means of enhancing the scalability of the supported
simulations.
References

[1] I. Chlamtac, M. Conti, J.J.N. Liu, Mobile ad hoc networking: imperatives and challenges, Ad Hoc Networks 1 (1) (2003) 13–64.
[2] H.M. Hajj, W. El-Hajj, M.E. Dana, M. Dakroub, F. Fawaz, An extensible software framework for building vehicle to vehicle applications, in: Proceedings

of the 6th International Wireless Communications and Mobile Computing Conference (IWCMC ’10), ACM, 2010, pp. 26–31.
[3] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, M. Riveill, Lightweight service oriented architecture for pervasive computing, International Journal of

Computer Science Issues (IJCSI) 4 (1) (2009).
[4] Y. Natchetoi, H. Wu, Y. Zheng, Service-oriented mobile applications for ad-hoc networks, in: IEEE International Conference on Services Computing 2008

(SCC ’08), IEEE, 2008, pp. 405–412.
[5] A. Neyem, S.F. Ochoa, J.A. Pino, Integrating service-oriented mobile units to support collaboration in ad-hoc scenarios, Journal of Universal Computer

Science 14 (1) (2008) 1–35.
[6] N. Suri, M. Marcon, R. Quitadamo, M. Rebeschini, M. Arguedas, S. Stabellini, M. Tortonesi, C. Stefanelli, An adaptive and efficient peer-to-peer service-

oriented architecture for manet environments with agile computing, in: Network Operations and Management Symposium Workshops 2008, IEEE,
2008, pp. 364–371.

[7] R. Tergujeff, J. Haajanen, J. Leppanen, S. Toivonen, Mobile soa: service orientation on lightweight mobile devices, in: IEEE International Conference on
Web Services 2007 (ICWS 2007), IEEE, 2007, pp. 1224–1225.

[8] K. Abrougui, A. Boukerche, S. Samarah, Design and performance evaluation of QOS aware and location based service discovery protocol for vehicular
networks, in: Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWIM
’10), ACM, 2010, pp. 73–80.

[9] D. Huang, X. Zhang, M. Kang, J. Luo, Mobicloud: building secure cloud framework for mobile computing and communication, in: Fifth IEEE International
Symposium on Service Oriented System Engineering (SOSE) 2010, IEEE, 2010, pp. 27–34.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based cloudlets in mobile computing, IEEE Pervasive Computing 8 (4) (2009) 14–23.
[11] D. Huang, Mobile Cloud Computing, IEEE COMSOC Multimedia Communications Technical Committee (MMTC), E-Letter, 2011.
[12] Y. Chen, Modeling and simulation for and in service-orientated computing paradigm, Simulation 83 (1) (2007) 3–6.
[13] R. Barr, Z.J. Haas, R. vanRenesse, Scalable wireless ad hoc network simulation, in: Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad hoc

Wireless, and Peer-to-Peer Networks, Auerbach Publications, Boston, MA, 2005, pp. 297–311.
[14] S. McCanne, S. Floyd, The Network Simulator – ns-2. <interrefhttp://www.isi.edu/nsnam/nsurlhttp://www.isi.edu/nsnam/ns> (11.03.11).
[15] A. Varga, The OMNeT++ discrete event simulation system, in: Proceedings of the European Simulation Multiconference (ESM’2001), 2001.
[16] OSGi Alliance, OSGi Service Platform Release 4 Version 4.2 Core Specification, 2009. <http://www.osgi.org> (08.12.10).
[17] IEEE, IEEE Standard for Modeling and Simulation (m&s) High Level Architecture (HLA) – Framework and Rules, 2010.
[18] P. Gustavson, C. Tram, L. Root, Moving towards a service-oriented architecture (SOA) for distributed component simulation environments, in:

Proceedings of 2006 Spring Simulation Interoperability Workshop, Simulation Interoperability Standards, Organization, 2006.
[19] B. Moller, C. Dahlin, A first look at the hla evolved web services api, in: Proceedings of the 2005 Euro Simulation Interoperability Workshop, Simulation

Interoperability Standards, Organization, 2005.
[20] B. Moller, S. Lof, Mixing service oriented and high level architectures in support of the gig, in: Proceedings of 2005 Spring Simulation Interoperability

Workshop, Simulation Interoperability Standards, Organization, 2005.
[21] Q. Xiang, G. Chen, Y. Wang, Distributed simulation based on web enabling hla, in: 2nd International Conference on Artificial Intelligence, Management

Science and Electronic Commerce (AIMSEC), IEEE, 2011, pp. 2062–2064.
[22] H. Zhu, G. Li, L. Zheng, Introducing web services in hla-based simulation application, in: Proceedings of the 7th World Congress on Intelligent Control

and Automation (WCICA 2008), IEEE, 2008, pp. 1677–1682.

http://www.osgi.org

A.B. Cruz et al. / Simulation Modelling Practice and Theory 32 (2013) 42–63 63
[23] W.T. Tsai, C. Fan, Y. Chen, R. Paul, Ddsos: a dynamic distributed service-oriented simulation framework, in: Proceedings of the 39th Annual Symposium
on Simulation, IEEE, 2006, pp. 160–167.

[24] S. Mittal, J.L. Risco-Martin, B.P. Zeigler, Devs/soa: a cross-platform framework for net-centric modeling and simulation in devs unified process,
Simulation 85 (7) (2009) 419–450.

[25] K. Al-Zoubi, G.Wainer, Performing distributed simulation with restful web-services, in: Proceedings of the 2009 Winter Simulation Conference (WSC),
2009, pp. 1323–1334.

[26] H. Sarjoughian, S. Kim, M. Ramaswamy, S. Yau, A simulation framework for service-oriented computing systems, in: Proceedings of the 2008 Winter
Simulation Conference (WSC), 2008, pp. 845–853.

[27] D.R. Hild, H.S. Sarjoughian, B.P. Zeigler, Devs-doc: a modeling and simulation environment enabling distributed codesign, Systems, Man and
Cybernetics Part A: IEEE Transactions on Systems and Humans 32 (1) (2002) 78–92.

[28] M.A. Muqsith, H.S. Sarjoughian, A simulator for service-based software system co-design, in: Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques (SIMUTools ’10). Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST),
2010, pp. 54:1–54:9.

[29] M.A. Muqsith, H.S. Sarjoughian, D. Huang, S.S. Yau, Simulating adaptive service-oriented software systems, Simulation 87 (11) (2011) 915–931.
[30] F. Bause, P. Buchholz, J. Kriege, S. Vastag, A framework for simulation models of service-oriented architectures, in: Proceedings of the SPEC

International Workshop on Performance Evaluation: Metrics, Models and Benchmarks, Springer-Verlag, 2008, pp. 208–227.
[31] H. Neema, A. Kashyap, R. Kereskenyi, Y. Xue, G. Karsai, Soamanet: a tool for evaluating service-oriented architectures on mobile ad-hoc networks, in:

2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), IEEE, 2010, pp. 179–188.
[32] S. Mittal, Agile net-centric systems using devs unified process, Intelligence-Based Systems Engineering 10 (2011) 159–199.
[33] T. Kim, M.H. Hwang, D. Kim, Devs/ns-2 environment: an integrated tool for efficient networks modeling and simulation, The Journal of Defense

Modeling and Simulation: Applications, Methodology, Technology 5 (1) (2008) 33–60.
[34] W. Wang, W. Wang, Y. Zhu, Q. Li, Service-oriented simulation framework: an overview and unifying methodology, Simulation 87 (3) (2011) 221–252.
[35] Y.J. Kim, J.H. Kim, T.G. Kim, Heterogeneous simulation framework using devs bus, Simulation 79 (1) (2003) 3–18.
[36] T. Erl, SOA Principles of Service Design, Prentice Hall, 2007.
[37] The Eclipse Foundation, Eclipse Communication Framework Project. <http://www.eclipse.org/ecf> (03.11.11).
[38] E. Gutman, C. Perkins, J. Veizades, M. Day, Rfc 2608: SLPv2 – A Service Location Protocol, IETF, 1999.
[39] S. Cheshire, M. Krochmal, Dns service discovery (internet draft). <http://www.dns-sd.org> (11.12.11).
[40] J. Harri, F. Filali, C. Bonnet, M. Fiore, Vanetmobisim: generating realistic mobility patterns for vanets, in: International Conference on Mobile Computing

and Networking: Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks, ACM, 2006, pp. 96–97.

http://www.eclipse.org/ecf
http://www.dns-sd.org

	Simulation of service-oriented systems for Mobile Ad hoc Networks
	1 Introduction
	2 Literature review
	3 Background
	4 Architecture of the simulation environment
	4.1 Application simulator architecture
	4.2 Network simulator architecture

	5 Model composition
	5.1 Application-layer elements
	5.1.1 Model bundles
	5.1.2 The component setup file
	5.1.3 Delay model fragments

	5.2 Networking-layer elements
	5.3 Experimental frame elements

	6 Environment start-up and model instantiation
	6.1 SOSim start-up
	6.2 Instantiation process

	7 Simulation Execution
	7.1 Application-layer delay modelling and its resulting approximate time morphism
	7.2 The simulation proxy
	7.2.1 Service binding mediation
	7.2.2 Mediation execution

	7.3 Delay model implementation
	7.4 Timer-controlled tasks
	7.5 Service discovery and distribution
	7.6 The network adapter service

	8 Mobile update service: an application case study
	8.1 Problem
	8.2 Method
	8.3 Results

	9 Discussion
	10 Conclusion and future work
	References

